[Mlir-commits] [mlir] [mlir][affine] remove divide zero check when simplifer affineMap (#64622) (PR #68519)

llvmlistbot at llvm.org llvmlistbot at llvm.org
Thu Oct 26 02:28:20 PDT 2023


https://github.com/lipracer updated https://github.com/llvm/llvm-project/pull/68519

>From 3a87e2245b637f1f9f067ae4d81f1c2e2a75318f Mon Sep 17 00:00:00 2001
From: lipracer <lipracer at gmail.com>
Date: Sun, 8 Oct 2023 18:31:59 +0800
Subject: [PATCH] [mlir][affine] remove divide zero check when simplifer
 affineMap (#64622)

when affineApplyOp has poison semantics we should not fold the op, but also not crash
---
 mlir/include/mlir/IR/AffineExprVisitor.h      | 163 +++++++++++++-----
 mlir/include/mlir/IR/AffineMap.h              |   9 +-
 .../Analysis/FlatLinearValueConstraints.cpp   |   3 +-
 mlir/lib/Dialect/Affine/IR/AffineOps.cpp      | 101 ++++++++++-
 mlir/lib/Dialect/Affine/IR/CMakeLists.txt     |   3 +-
 mlir/lib/IR/AffineExpr.cpp                    |  59 ++++---
 mlir/lib/IR/AffineMap.cpp                     |  54 ++++--
 mlir/lib/Tools/mlir-opt/MlirOptMain.cpp       |  17 +-
 mlir/test/Dialect/Affine/constant-fold.mlir   |  19 ++
 9 files changed, 334 insertions(+), 94 deletions(-)

diff --git a/mlir/include/mlir/IR/AffineExprVisitor.h b/mlir/include/mlir/IR/AffineExprVisitor.h
index f6216614c2238e1..7a3616f024d0a9e 100644
--- a/mlir/include/mlir/IR/AffineExprVisitor.h
+++ b/mlir/include/mlir/IR/AffineExprVisitor.h
@@ -14,6 +14,7 @@
 #define MLIR_IR_AFFINEEXPRVISITOR_H
 
 #include "mlir/IR/AffineExpr.h"
+#include "mlir/Support/LogicalResult.h"
 #include "llvm/ADT/ArrayRef.h"
 
 namespace mlir {
@@ -65,8 +66,80 @@ namespace mlir {
 /// just as efficient as having your own switch instruction over the instruction
 /// opcode.
 
+template <typename SubClass, typename RetTy>
+class AffineExprVisitorBase {
+public:
+  // Function to visit an AffineExpr.
+  RetTy visit(AffineExpr expr) {
+    static_assert(std::is_base_of<AffineExprVisitorBase, SubClass>::value,
+                  "Must instantiate with a derived type of AffineExprVisitor");
+    switch (expr.getKind()) {
+    case AffineExprKind::Add: {
+      auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      return static_cast<SubClass *>(this)->visitAddExpr(binOpExpr);
+    }
+    case AffineExprKind::Mul: {
+      auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      return static_cast<SubClass *>(this)->visitMulExpr(binOpExpr);
+    }
+    case AffineExprKind::Mod: {
+      auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      return static_cast<SubClass *>(this)->visitModExpr(binOpExpr);
+    }
+    case AffineExprKind::FloorDiv: {
+      auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      return static_cast<SubClass *>(this)->visitFloorDivExpr(binOpExpr);
+    }
+    case AffineExprKind::CeilDiv: {
+      auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      return static_cast<SubClass *>(this)->visitCeilDivExpr(binOpExpr);
+    }
+    case AffineExprKind::Constant:
+      return static_cast<SubClass *>(this)->visitConstantExpr(
+          expr.cast<AffineConstantExpr>());
+    case AffineExprKind::DimId:
+      return static_cast<SubClass *>(this)->visitDimExpr(
+          expr.cast<AffineDimExpr>());
+    case AffineExprKind::SymbolId:
+      return static_cast<SubClass *>(this)->visitSymbolExpr(
+          expr.cast<AffineSymbolExpr>());
+    }
+    llvm_unreachable("Unknown AffineExpr");
+  }
+
+  //===--------------------------------------------------------------------===//
+  // Visitation functions... these functions provide default fallbacks in case
+  // the user does not specify what to do for a particular instruction type.
+  // The default behavior is to generalize the instruction type to its subtype
+  // and try visiting the subtype.  All of this should be inlined perfectly,
+  // because there are no virtual functions to get in the way.
+  //
+
+  // Default visit methods. Note that the default op-specific binary op visit
+  // methods call the general visitAffineBinaryOpExpr visit method.
+  RetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { return RetTy(); }
+  RetTy visitAddExpr(AffineBinaryOpExpr expr) {
+    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
+  }
+  RetTy visitMulExpr(AffineBinaryOpExpr expr) {
+    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
+  }
+  RetTy visitModExpr(AffineBinaryOpExpr expr) {
+    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
+  }
+  RetTy visitFloorDivExpr(AffineBinaryOpExpr expr) {
+    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
+  }
+  RetTy visitCeilDivExpr(AffineBinaryOpExpr expr) {
+    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
+  }
+  RetTy visitConstantExpr(AffineConstantExpr expr) { return RetTy(); }
+  RetTy visitDimExpr(AffineDimExpr expr) { return RetTy(); }
+  RetTy visitSymbolExpr(AffineSymbolExpr expr) { return RetTy(); }
+};
+
 template <typename SubClass, typename RetTy = void>
-class AffineExprVisitor {
+class AffineExprVisitor : public AffineExprVisitorBase<SubClass, RetTy> {
   //===--------------------------------------------------------------------===//
   // Interface code - This is the public interface of the AffineExprVisitor
   // that you use to visit affine expressions...
@@ -113,29 +186,54 @@ class AffineExprVisitor {
     }
   }
 
-  // Function to visit an AffineExpr.
-  RetTy visit(AffineExpr expr) {
+private:
+  // Walk the operands - each operand is itself walked in post order.
+  RetTy walkOperandsPostOrder(AffineBinaryOpExpr expr) {
+    walkPostOrder(expr.getLHS());
+    walkPostOrder(expr.getRHS());
+  }
+};
+
+template <typename SubClass>
+class AffineExprVisitor<SubClass, LogicalResult>
+    : public AffineExprVisitorBase<SubClass, LogicalResult> {
+  //===--------------------------------------------------------------------===//
+  // Interface code - This is the public interface of the AffineExprVisitor
+  // that you use to visit affine expressions...
+public:
+  // Function to walk an AffineExpr (in post order).
+  LogicalResult walkPostOrder(AffineExpr expr) {
     static_assert(std::is_base_of<AffineExprVisitor, SubClass>::value,
                   "Must instantiate with a derived type of AffineExprVisitor");
     switch (expr.getKind()) {
     case AffineExprKind::Add: {
       auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      if (failed(walkOperandsPostOrder(binOpExpr)))
+        return failure();
       return static_cast<SubClass *>(this)->visitAddExpr(binOpExpr);
     }
     case AffineExprKind::Mul: {
       auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      if (failed(walkOperandsPostOrder(binOpExpr)))
+        return failure();
       return static_cast<SubClass *>(this)->visitMulExpr(binOpExpr);
     }
     case AffineExprKind::Mod: {
       auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      if (failed(walkOperandsPostOrder(binOpExpr)))
+        return failure();
       return static_cast<SubClass *>(this)->visitModExpr(binOpExpr);
     }
     case AffineExprKind::FloorDiv: {
       auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      if (failed(walkOperandsPostOrder(binOpExpr)))
+        return failure();
       return static_cast<SubClass *>(this)->visitFloorDivExpr(binOpExpr);
     }
     case AffineExprKind::CeilDiv: {
       auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
+      if (failed(walkOperandsPostOrder(binOpExpr)))
+        return failure();
       return static_cast<SubClass *>(this)->visitCeilDivExpr(binOpExpr);
     }
     case AffineExprKind::Constant:
@@ -151,41 +249,14 @@ class AffineExprVisitor {
     llvm_unreachable("Unknown AffineExpr");
   }
 
-  //===--------------------------------------------------------------------===//
-  // Visitation functions... these functions provide default fallbacks in case
-  // the user does not specify what to do for a particular instruction type.
-  // The default behavior is to generalize the instruction type to its subtype
-  // and try visiting the subtype.  All of this should be inlined perfectly,
-  // because there are no virtual functions to get in the way.
-  //
-
-  // Default visit methods. Note that the default op-specific binary op visit
-  // methods call the general visitAffineBinaryOpExpr visit method.
-  RetTy visitAffineBinaryOpExpr(AffineBinaryOpExpr expr) { return RetTy(); }
-  RetTy visitAddExpr(AffineBinaryOpExpr expr) {
-    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
-  }
-  RetTy visitMulExpr(AffineBinaryOpExpr expr) {
-    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
-  }
-  RetTy visitModExpr(AffineBinaryOpExpr expr) {
-    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
-  }
-  RetTy visitFloorDivExpr(AffineBinaryOpExpr expr) {
-    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
-  }
-  RetTy visitCeilDivExpr(AffineBinaryOpExpr expr) {
-    return static_cast<SubClass *>(this)->visitAffineBinaryOpExpr(expr);
-  }
-  RetTy visitConstantExpr(AffineConstantExpr expr) { return RetTy(); }
-  RetTy visitDimExpr(AffineDimExpr expr) { return RetTy(); }
-  RetTy visitSymbolExpr(AffineSymbolExpr expr) { return RetTy(); }
-
 private:
   // Walk the operands - each operand is itself walked in post order.
-  RetTy walkOperandsPostOrder(AffineBinaryOpExpr expr) {
-    walkPostOrder(expr.getLHS());
-    walkPostOrder(expr.getRHS());
+  LogicalResult walkOperandsPostOrder(AffineBinaryOpExpr expr) {
+    if (failed(walkPostOrder(expr.getLHS())))
+      return failure();
+    if (failed(walkPostOrder(expr.getRHS())))
+      return failure();
+    return success();
   }
 };
 
@@ -246,7 +317,7 @@ class AffineExprVisitor {
 // expressions are mapped to the same local identifier (same column position in
 // 'localVarCst').
 class SimpleAffineExprFlattener
-    : public AffineExprVisitor<SimpleAffineExprFlattener> {
+    : public AffineExprVisitor<SimpleAffineExprFlattener, LogicalResult> {
 public:
   // Flattend expression layout: [dims, symbols, locals, constant]
   // Stack that holds the LHS and RHS operands while visiting a binary op expr.
@@ -275,13 +346,13 @@ class SimpleAffineExprFlattener
   virtual ~SimpleAffineExprFlattener() = default;
 
   // Visitor method overrides.
-  void visitMulExpr(AffineBinaryOpExpr expr);
-  void visitAddExpr(AffineBinaryOpExpr expr);
-  void visitDimExpr(AffineDimExpr expr);
-  void visitSymbolExpr(AffineSymbolExpr expr);
-  void visitConstantExpr(AffineConstantExpr expr);
-  void visitCeilDivExpr(AffineBinaryOpExpr expr);
-  void visitFloorDivExpr(AffineBinaryOpExpr expr);
+  LogicalResult visitMulExpr(AffineBinaryOpExpr expr);
+  LogicalResult visitAddExpr(AffineBinaryOpExpr expr);
+  LogicalResult visitDimExpr(AffineDimExpr expr);
+  LogicalResult visitSymbolExpr(AffineSymbolExpr expr);
+  LogicalResult visitConstantExpr(AffineConstantExpr expr);
+  LogicalResult visitCeilDivExpr(AffineBinaryOpExpr expr);
+  LogicalResult visitFloorDivExpr(AffineBinaryOpExpr expr);
 
   //
   // t = expr mod c   <=>  t = expr - c*q and c*q <= expr <= c*q + c - 1
@@ -289,7 +360,7 @@ class SimpleAffineExprFlattener
   // A mod expression "expr mod c" is thus flattened by introducing a new local
   // variable q (= expr floordiv c), such that expr mod c is replaced with
   // 'expr - c * q' and c * q <= expr <= c * q + c - 1 are added to localVarCst.
-  void visitModExpr(AffineBinaryOpExpr expr);
+  LogicalResult visitModExpr(AffineBinaryOpExpr expr);
 
 protected:
   // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
@@ -328,7 +399,7 @@ class SimpleAffineExprFlattener
   //
   // A ceildiv is similarly flattened:
   // t = expr ceildiv c   <=> t =  (expr + c - 1) floordiv c
-  void visitDivExpr(AffineBinaryOpExpr expr, bool isCeil);
+  LogicalResult visitDivExpr(AffineBinaryOpExpr expr, bool isCeil);
 
   int findLocalId(AffineExpr localExpr);
 
diff --git a/mlir/include/mlir/IR/AffineMap.h b/mlir/include/mlir/IR/AffineMap.h
index 5af7835258f6bd2..78a0ef57e15c6d8 100644
--- a/mlir/include/mlir/IR/AffineMap.h
+++ b/mlir/include/mlir/IR/AffineMap.h
@@ -298,7 +298,8 @@ class AffineMap {
   /// Folds the results of the application of an affine map on the provided
   /// operands to a constant if possible.
   LogicalResult constantFold(ArrayRef<Attribute> operandConstants,
-                             SmallVectorImpl<Attribute> &results) const;
+                             SmallVectorImpl<Attribute> &results,
+                             bool *hasPoison = nullptr) const;
 
   /// Propagates the constant operands into this affine map. Operands are
   /// allowed to be null, at which point they are treated as non-constant. This
@@ -306,9 +307,9 @@ class AffineMap {
   /// which may be equal to the old map if no folding happened. If `results` is
   /// provided and if all expressions in the map were folded to constants,
   /// `results` will contain the values of these constants.
-  AffineMap
-  partialConstantFold(ArrayRef<Attribute> operandConstants,
-                      SmallVectorImpl<int64_t> *results = nullptr) const;
+  AffineMap partialConstantFold(ArrayRef<Attribute> operandConstants,
+                                SmallVectorImpl<int64_t> *results = nullptr,
+                                bool *hasPoison = nullptr) const;
 
   /// Returns the AffineMap resulting from composing `this` with `map`.
   /// The resulting AffineMap has as many AffineDimExpr as `map` and as many
diff --git a/mlir/lib/Analysis/FlatLinearValueConstraints.cpp b/mlir/lib/Analysis/FlatLinearValueConstraints.cpp
index 382d05f3b2d4851..b8ff4d82be697b1 100644
--- a/mlir/lib/Analysis/FlatLinearValueConstraints.cpp
+++ b/mlir/lib/Analysis/FlatLinearValueConstraints.cpp
@@ -86,7 +86,8 @@ getFlattenedAffineExprs(ArrayRef<AffineExpr> exprs, unsigned numDims,
     if (!expr.isPureAffine())
       return failure();
 
-    flattener.walkPostOrder(expr);
+    auto flattenResult = flattener.walkPostOrder(expr);
+    assert(succeeded(flattenResult) && "affine expr containts poison expr");
   }
 
   assert(flattener.operandExprStack.size() == exprs.size());
diff --git a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
index ba4285bd52394f3..6970dc2180b49f2 100644
--- a/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
+++ b/mlir/lib/Dialect/Affine/IR/AffineOps.cpp
@@ -9,6 +9,7 @@
 #include "mlir/Dialect/Affine/IR/AffineOps.h"
 #include "mlir/Dialect/Affine/IR/AffineValueMap.h"
 #include "mlir/Dialect/MemRef/IR/MemRef.h"
+#include "mlir/Dialect/UB/IR/UBOps.h"
 #include "mlir/IR/AffineExprVisitor.h"
 #include "mlir/IR/IRMapping.h"
 #include "mlir/IR/IntegerSet.h"
@@ -226,6 +227,8 @@ void AffineDialect::initialize() {
 Operation *AffineDialect::materializeConstant(OpBuilder &builder,
                                               Attribute value, Type type,
                                               Location loc) {
+  if (auto poison = dyn_cast<ub::PoisonAttr>(value))
+    return builder.create<ub::PoisonOp>(loc, type, poison);
   return arith::ConstantOp::materialize(builder, value, type, loc);
 }
 
@@ -580,7 +583,12 @@ OpFoldResult AffineApplyOp::fold(FoldAdaptor adaptor) {
 
   // Otherwise, default to folding the map.
   SmallVector<Attribute, 1> result;
-  if (failed(map.constantFold(adaptor.getMapOperands(), result)))
+  bool hasPoison = false;
+  auto foldResult =
+      map.constantFold(adaptor.getMapOperands(), result, &hasPoison);
+  if (hasPoison)
+    return ub::PoisonAttr::get(getContext());
+  if (failed(foldResult))
     return {};
   return result[0];
 }
@@ -700,6 +708,94 @@ static std::optional<int64_t> getUpperBound(Value iv) {
   return forOp.getConstantUpperBound() - 1;
 }
 
+/// Get a lower or upper (depending on `isUpper`) bound for `expr` while using
+/// the constant lower and upper bounds for its inputs provided in
+/// `constLowerBounds` and `constUpperBounds`. Return std::nullopt if such a
+/// bound can't be computed. This method only handles simple sum of product
+/// expressions (w.r.t constant coefficients) so as to not depend on anything
+/// heavyweight in `Analysis`. Expressions of the form: c0*d0 + c1*d1 + c2*s0 +
+/// ... + c_n are handled. Expressions involving floordiv, ceildiv, mod or
+/// semi-affine ones will lead std::nullopt being returned.
+static std::optional<int64_t>
+getBoundForExpr(AffineExpr expr, unsigned numDims, unsigned numSymbols,
+                ArrayRef<std::optional<int64_t>> constLowerBounds,
+                ArrayRef<std::optional<int64_t>> constUpperBounds,
+                bool isUpper) {
+  // Handle divs and mods.
+  if (auto binOpExpr = expr.dyn_cast<AffineBinaryOpExpr>()) {
+    // If the LHS of a floor or ceil is bounded and the RHS is a constant, we
+    // can compute an upper bound.
+    if (binOpExpr.getKind() == AffineExprKind::FloorDiv) {
+      auto rhsConst = binOpExpr.getRHS().dyn_cast<AffineConstantExpr>();
+      if (!rhsConst || rhsConst.getValue() < 1)
+        return std::nullopt;
+      auto bound = getBoundForExpr(binOpExpr.getLHS(), numDims, numSymbols,
+                                   constLowerBounds, constUpperBounds, isUpper);
+      if (!bound)
+        return std::nullopt;
+      return mlir::floorDiv(*bound, rhsConst.getValue());
+    }
+    if (binOpExpr.getKind() == AffineExprKind::CeilDiv) {
+      auto rhsConst = binOpExpr.getRHS().dyn_cast<AffineConstantExpr>();
+      if (rhsConst && rhsConst.getValue() >= 1) {
+        auto bound =
+            getBoundForExpr(binOpExpr.getLHS(), numDims, numSymbols,
+                            constLowerBounds, constUpperBounds, isUpper);
+        if (!bound)
+          return std::nullopt;
+        return mlir::ceilDiv(*bound, rhsConst.getValue());
+      }
+      return std::nullopt;
+    }
+    if (binOpExpr.getKind() == AffineExprKind::Mod) {
+      // lhs mod c is always <= c - 1 and non-negative. In addition, if `lhs` is
+      // bounded such that lb <= lhs <= ub and lb floordiv c == ub floordiv c
+      // (same "interval"), then lb mod c <= lhs mod c <= ub mod c.
+      auto rhsConst = binOpExpr.getRHS().dyn_cast<AffineConstantExpr>();
+      if (rhsConst && rhsConst.getValue() >= 1) {
+        int64_t rhsConstVal = rhsConst.getValue();
+        auto lb = getBoundForExpr(binOpExpr.getLHS(), numDims, numSymbols,
+                                  constLowerBounds, constUpperBounds,
+                                  /*isUpper=*/false);
+        auto ub = getBoundForExpr(binOpExpr.getLHS(), numDims, numSymbols,
+                                  constLowerBounds, constUpperBounds, isUpper);
+        if (ub && lb &&
+            floorDiv(*lb, rhsConstVal) == floorDiv(*ub, rhsConstVal))
+          return isUpper ? mod(*ub, rhsConstVal) : mod(*lb, rhsConstVal);
+        return isUpper ? rhsConstVal - 1 : 0;
+      }
+    }
+  }
+  // Flatten the expression.
+  SimpleAffineExprFlattener flattener(numDims, numSymbols);
+  auto flattenResult = flattener.walkPostOrder(expr);
+  assert(succeeded(flattenResult) && "affine expr containts poison expr");
+  ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
+  // TODO: Handle local variables. We can get hold of flattener.localExprs and
+  // get bound on the local expr recursively.
+  if (flattener.numLocals > 0)
+    return std::nullopt;
+  int64_t bound = 0;
+  // Substitute the constant lower or upper bound for the dimensional or
+  // symbolic input depending on `isUpper` to determine the bound.
+  for (unsigned i = 0, e = numDims + numSymbols; i < e; ++i) {
+    if (flattenedExpr[i] > 0) {
+      auto &constBound = isUpper ? constUpperBounds[i] : constLowerBounds[i];
+      if (!constBound)
+        return std::nullopt;
+      bound += *constBound * flattenedExpr[i];
+    } else if (flattenedExpr[i] < 0) {
+      auto &constBound = isUpper ? constLowerBounds[i] : constUpperBounds[i];
+      if (!constBound)
+        return std::nullopt;
+      bound += *constBound * flattenedExpr[i];
+    }
+  }
+  // Constant term.
+  bound += flattenedExpr.back();
+  return bound;
+}
+
 /// Determine a constant upper bound for `expr` if one exists while exploiting
 /// values in `operands`. Note that the upper bound is an inclusive one. `expr`
 /// is guaranteed to be less than or equal to it.
@@ -3379,7 +3475,8 @@ static LogicalResult canonicalizeMapExprAndTermOrder(AffineMap &map) {
       return failure();
 
     SimpleAffineExprFlattener flattener(map.getNumDims(), map.getNumSymbols());
-    flattener.walkPostOrder(resultExpr);
+    auto flattenResult = flattener.walkPostOrder(resultExpr);
+    assert(succeeded(flattenResult) && "affine expr containts poison expr");
 
     // Fail if the flattened expression has local variables.
     if (flattener.operandExprStack.back().size() !=
diff --git a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
index 89ea3128b0e743f..10df928da8233f0 100644
--- a/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
+++ b/mlir/lib/Dialect/Affine/IR/CMakeLists.txt
@@ -16,8 +16,9 @@ add_mlir_dialect_library(MLIRAffineDialect
   MLIRDialectUtils
   MLIRIR
   MLIRLoopLikeInterface
-  MLIRMemRefDialect
   MLIRShapedOpInterfaces
   MLIRSideEffectInterfaces
   MLIRValueBoundsOpInterface
+  MLIRMemRefDialect
+  MLIRUBDialect
   )
diff --git a/mlir/lib/IR/AffineExpr.cpp b/mlir/lib/IR/AffineExpr.cpp
index 4b7ec89a842bd65..5aff41b48b724d1 100644
--- a/mlir/lib/IR/AffineExpr.cpp
+++ b/mlir/lib/IR/AffineExpr.cpp
@@ -511,7 +511,6 @@ unsigned AffineSymbolExpr::getPosition() const {
 
 AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
   return getAffineDimOrSymbol(AffineExprKind::SymbolId, position, context);
-  ;
 }
 
 AffineConstantExpr::AffineConstantExpr(AffineExpr::ImplType *ptr)
@@ -1135,7 +1134,7 @@ SimpleAffineExprFlattener::SimpleAffineExprFlattener(unsigned numDims,
 // In case of semi affine multiplication expressions, t = expr * symbolic_expr,
 // introduce a local variable p (= expr * symbolic_expr), and the affine
 // expression expr * symbolic_expr is added to `localExprs`.
-void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
+LogicalResult SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
   assert(operandExprStack.size() >= 2);
   SmallVector<int64_t, 8> rhs = operandExprStack.back();
   operandExprStack.pop_back();
@@ -1151,7 +1150,7 @@ void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
     AffineExpr b = getAffineExprFromFlatForm(rhs, numDims, numSymbols,
                                              localExprs, context);
     addLocalVariableSemiAffine(a * b, lhs, lhs.size());
-    return;
+    return success();
   }
 
   // Get the RHS constant.
@@ -1159,9 +1158,10 @@ void SimpleAffineExprFlattener::visitMulExpr(AffineBinaryOpExpr expr) {
   for (unsigned i = 0, e = lhs.size(); i < e; i++) {
     lhs[i] *= rhsConst;
   }
+  return success();
 }
 
-void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
+LogicalResult SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
   assert(operandExprStack.size() >= 2);
   const auto &rhs = operandExprStack.back();
   auto &lhs = operandExprStack[operandExprStack.size() - 2];
@@ -1172,6 +1172,7 @@ void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
   }
   // Pop off the RHS.
   operandExprStack.pop_back();
+  return success();
 }
 
 //
@@ -1184,7 +1185,7 @@ void SimpleAffineExprFlattener::visitAddExpr(AffineBinaryOpExpr expr) {
 // In case of semi-affine modulo expressions, t = expr mod symbolic_expr,
 // introduce a local variable m (= expr mod symbolic_expr), and the affine
 // expression expr mod symbolic_expr is added to `localExprs`.
-void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
+LogicalResult SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
   assert(operandExprStack.size() >= 2);
 
   SmallVector<int64_t, 8> rhs = operandExprStack.back();
@@ -1202,13 +1203,12 @@ void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
                                                        localExprs, context);
     AffineExpr modExpr = dividendExpr % divisorExpr;
     addLocalVariableSemiAffine(modExpr, lhs, lhs.size());
-    return;
+    return success();
   }
 
   int64_t rhsConst = rhs[getConstantIndex()];
-  // TODO: handle modulo by zero case when this issue is fixed
-  // at the other places in the IR.
-  assert(rhsConst > 0 && "RHS constant has to be positive");
+  if (rhsConst <= 0)
+    return failure();
 
   // Check if the LHS expression is a multiple of modulo factor.
   unsigned i, e;
@@ -1218,7 +1218,7 @@ void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
   // If yes, modulo expression here simplifies to zero.
   if (i == lhs.size()) {
     std::fill(lhs.begin(), lhs.end(), 0);
-    return;
+    return success();
   }
 
   // Add a local variable for the quotient, i.e., expr % c is replaced by
@@ -1250,33 +1250,41 @@ void SimpleAffineExprFlattener::visitModExpr(AffineBinaryOpExpr expr) {
     // Reuse the existing local id.
     lhs[getLocalVarStartIndex() + loc] = -rhsConst;
   }
+  return success();
 }
 
-void SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
-  visitDivExpr(expr, /*isCeil=*/true);
+LogicalResult
+SimpleAffineExprFlattener::visitCeilDivExpr(AffineBinaryOpExpr expr) {
+  return visitDivExpr(expr, /*isCeil=*/true);
 }
-void SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
-  visitDivExpr(expr, /*isCeil=*/false);
+LogicalResult
+SimpleAffineExprFlattener::visitFloorDivExpr(AffineBinaryOpExpr expr) {
+  return visitDivExpr(expr, /*isCeil=*/false);
 }
 
-void SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
+LogicalResult SimpleAffineExprFlattener::visitDimExpr(AffineDimExpr expr) {
   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   auto &eq = operandExprStack.back();
   assert(expr.getPosition() < numDims && "Inconsistent number of dims");
   eq[getDimStartIndex() + expr.getPosition()] = 1;
+  return success();
 }
 
-void SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
+LogicalResult
+SimpleAffineExprFlattener::visitSymbolExpr(AffineSymbolExpr expr) {
   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   auto &eq = operandExprStack.back();
   assert(expr.getPosition() < numSymbols && "inconsistent number of symbols");
   eq[getSymbolStartIndex() + expr.getPosition()] = 1;
+  return success();
 }
 
-void SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
+LogicalResult
+SimpleAffineExprFlattener::visitConstantExpr(AffineConstantExpr expr) {
   operandExprStack.emplace_back(SmallVector<int64_t, 32>(getNumCols(), 0));
   auto &eq = operandExprStack.back();
   eq[getConstantIndex()] = expr.getValue();
+  return success();
 }
 
 void SimpleAffineExprFlattener::addLocalVariableSemiAffine(
@@ -1307,8 +1315,8 @@ void SimpleAffineExprFlattener::addLocalVariableSemiAffine(
 // or t = expr ceildiv symbolic_expr, introduce a local variable q (= expr
 // floordiv/ceildiv symbolic_expr), and the affine floordiv/ceildiv is added to
 // `localExprs`.
-void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
-                                             bool isCeil) {
+LogicalResult SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
+                                                      bool isCeil) {
   assert(operandExprStack.size() >= 2);
 
   MLIRContext *context = expr.getContext();
@@ -1326,14 +1334,13 @@ void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
                                              localExprs, context);
     AffineExpr divExpr = isCeil ? a.ceilDiv(b) : a.floorDiv(b);
     addLocalVariableSemiAffine(divExpr, lhs, lhs.size());
-    return;
+    return success();
   }
 
   // This is a pure affine expr; the RHS is a positive constant.
   int64_t rhsConst = rhs[getConstantIndex()];
-  // TODO: handle division by zero at the same time the issue is
-  // fixed at other places.
-  assert(rhsConst > 0 && "RHS constant has to be positive");
+  if (rhsConst <= 0)
+    return failure();
 
   // Simplify the floordiv, ceildiv if possible by canceling out the greatest
   // common divisors of the numerator and denominator.
@@ -1349,7 +1356,7 @@ void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
   // If the divisor becomes 1, the updated LHS is the result. (The
   // divisor can't be negative since rhsConst is positive).
   if (divisor == 1)
-    return;
+    return success();
 
   // If the divisor cannot be simplified to one, we will have to retain
   // the ceil/floor expr (simplified up until here). Add an existential
@@ -1379,6 +1386,7 @@ void SimpleAffineExprFlattener::visitDivExpr(AffineBinaryOpExpr expr,
     lhs[getLocalVarStartIndex() + numLocals - 1] = 1;
   else
     lhs[getLocalVarStartIndex() + loc] = 1;
+  return success();
 }
 
 // Add a local identifier (needed to flatten a mod, floordiv, ceildiv expr).
@@ -1419,7 +1427,8 @@ AffineExpr mlir::simplifyAffineExpr(AffineExpr expr, unsigned numDims,
     expr = simplifySemiAffine(expr);
 
   SimpleAffineExprFlattener flattener(numDims, numSymbols);
-  flattener.walkPostOrder(expr);
+  if (failed(flattener.walkPostOrder(expr)))
+    return expr;
   ArrayRef<int64_t> flattenedExpr = flattener.operandExprStack.back();
   if (!expr.isPureAffine() &&
       expr == getAffineExprFromFlatForm(flattenedExpr, numDims, numSymbols,
diff --git a/mlir/lib/IR/AffineMap.cpp b/mlir/lib/IR/AffineMap.cpp
index 3bd1181b6c7bbd8..36ebf5effc58872 100644
--- a/mlir/lib/IR/AffineMap.cpp
+++ b/mlir/lib/IR/AffineMap.cpp
@@ -8,6 +8,7 @@
 
 #include "mlir/IR/AffineMap.h"
 #include "AffineMapDetail.h"
+#include "mlir/Dialect/UB/IR/UBOps.h"
 #include "mlir/IR/AffineExpr.h"
 #include "mlir/IR/Builders.h"
 #include "mlir/IR/BuiltinAttributes.h"
@@ -46,6 +47,8 @@ class AffineExprConstantFolder {
     return nullptr;
   }
 
+  bool hasPoison() const { return hasPoison_; }
+
 private:
   std::optional<int64_t> constantFoldImpl(AffineExpr expr) {
     switch (expr.getKind()) {
@@ -57,13 +60,34 @@ class AffineExprConstantFolder {
           expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
     case AffineExprKind::Mod:
       return constantFoldBinExpr(
-          expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
+          expr,
+          [expr, this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
+            if (rhs < 1) {
+              hasPoison_ = true;
+              return std::nullopt;
+            }
+            return mod(lhs, rhs);
+          });
     case AffineExprKind::FloorDiv:
       return constantFoldBinExpr(
-          expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
+          expr,
+          [expr, this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
+            if (0 == rhs) {
+              hasPoison_ = true;
+              return std::nullopt;
+            }
+            return floorDiv(lhs, rhs);
+          });
     case AffineExprKind::CeilDiv:
       return constantFoldBinExpr(
-          expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
+          expr,
+          [expr, this](int64_t lhs, int64_t rhs) -> std::optional<int64_t> {
+            if (0 == rhs) {
+              hasPoison_ = true;
+              return std::nullopt;
+            }
+            return ceilDiv(lhs, rhs);
+          });
     case AffineExprKind::Constant:
       return expr.cast<AffineConstantExpr>().getValue();
     case AffineExprKind::DimId:
@@ -82,8 +106,9 @@ class AffineExprConstantFolder {
   }
 
   // TODO: Change these to operate on APInts too.
-  std::optional<int64_t> constantFoldBinExpr(AffineExpr expr,
-                                             int64_t (*op)(int64_t, int64_t)) {
+  std::optional<int64_t> constantFoldBinExpr(
+      AffineExpr expr,
+      llvm::function_ref<std::optional<int64_t>(int64_t, int64_t)> op) {
     auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
     if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
       if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
@@ -95,6 +120,7 @@ class AffineExprConstantFolder {
   unsigned numDims;
   // The constant valued operands used to evaluate this AffineExpr.
   ArrayRef<Attribute> operandConsts;
+  bool hasPoison_{false};
 };
 
 } // namespace
@@ -375,12 +401,12 @@ std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const {
 /// Folds the results of the application of an affine map on the provided
 /// operands to a constant if possible. Returns false if the folding happens,
 /// true otherwise.
-LogicalResult
-AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
-                        SmallVectorImpl<Attribute> &results) const {
+LogicalResult AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
+                                      SmallVectorImpl<Attribute> &results,
+                                      bool *hasPoison) const {
   // Attempt partial folding.
   SmallVector<int64_t, 2> integers;
-  partialConstantFold(operandConstants, &integers);
+  partialConstantFold(operandConstants, &integers, hasPoison);
 
   // If all expressions folded to a constant, populate results with attributes
   // containing those constants.
@@ -394,9 +420,9 @@ AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
   return success();
 }
 
-AffineMap
-AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
-                               SmallVectorImpl<int64_t> *results) const {
+AffineMap AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
+                                         SmallVectorImpl<int64_t> *results,
+                                         bool *hasPoison) const {
   assert(getNumInputs() == operandConstants.size());
 
   // Fold each of the result expressions.
@@ -406,6 +432,10 @@ AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
 
   for (auto expr : getResults()) {
     auto folded = exprFolder.constantFold(expr);
+    if (exprFolder.hasPoison() && hasPoison) {
+      *hasPoison = true;
+      return {};
+    }
     // If did not fold to a constant, keep the original expression, and clear
     // the integer results vector.
     if (folded) {
diff --git a/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp b/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp
index 644113058bdc1cc..7a865333e78788f 100644
--- a/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp
+++ b/mlir/lib/Tools/mlir-opt/MlirOptMain.cpp
@@ -268,7 +268,8 @@ static LogicalResult doVerifyRoundTrip(Operation *op,
     llvm::raw_string_ostream ostream(buffer);
     if (useBytecode) {
       if (failed(writeBytecodeToFile(op, ostream))) {
-        op->emitOpError() << "failed to write bytecode, cannot verify round-trip.\n";
+        op->emitOpError()
+            << "failed to write bytecode, cannot verify round-trip.\n";
         return failure();
       }
     } else {
@@ -281,7 +282,8 @@ static LogicalResult doVerifyRoundTrip(Operation *op,
     roundtripModule =
         parseSourceString<Operation *>(ostream.str(), parseConfig);
     if (!roundtripModule) {
-      op->emitOpError() << "failed to parse bytecode back, cannot verify round-trip.\n";
+      op->emitOpError()
+          << "failed to parse bytecode back, cannot verify round-trip.\n";
       return failure();
     }
   }
@@ -300,7 +302,8 @@ static LogicalResult doVerifyRoundTrip(Operation *op,
   }
   if (reference != roundtrip) {
     // TODO implement a diff.
-    return op->emitOpError() << "roundTrip testing roundtripped module differs from reference:\n<<<<<<Reference\n"
+    return op->emitOpError() << "roundTrip testing roundtripped module differs "
+                                "from reference:\n<<<<<<Reference\n"
                              << reference << "\n=====\n"
                              << roundtrip << "\n>>>>>roundtripped\n";
   }
@@ -409,6 +412,14 @@ static LogicalResult processBuffer(raw_ostream &os,
   // Create a context just for the current buffer. Disable threading on creation
   // since we'll inject the thread-pool separately.
   MLIRContext context(registry, MLIRContext::Threading::DISABLED);
+
+  for (const auto allocFunc :
+       llvm::map_range(registry.getDialectNames(), [&registry](auto name) {
+         return registry.getDialectAllocator(name);
+       })) {
+    allocFunc(&context);
+  }
+
   if (threadPool)
     context.setThreadPool(*threadPool);
 
diff --git a/mlir/test/Dialect/Affine/constant-fold.mlir b/mlir/test/Dialect/Affine/constant-fold.mlir
index cdce39855acdff4..f99056ab39589e0 100644
--- a/mlir/test/Dialect/Affine/constant-fold.mlir
+++ b/mlir/test/Dialect/Affine/constant-fold.mlir
@@ -60,3 +60,22 @@ func.func @affine_min(%variable: index) -> (index, index) {
   // CHECK: return %[[r]], %[[C44]]
   return %0, %1 : index, index
 }
+
+// -----
+
+func.func @affine_apply_poison_division_zero() {
+  %c0 = arith.constant 0 : index
+  %0 = affine.apply affine_map<(d0)[s0] -> (d0 mod s0)>(%c0)[%c0]
+  %1 = affine.apply affine_map<(d0)[s0] -> (d0 floordiv s0)>(%c0)[%c0]
+  %2 = affine.apply affine_map<(d0)[s0] -> (d0 ceildiv s0)>(%c0)[%c0]
+  %alloc = memref.alloc(%0, %1, %2) : memref<?x?x?xi1>
+  %3 = affine.load %alloc[%0, %1, %2] : memref<?x?x?xi1>
+  affine.store %3, %alloc[%0, %1, %2] : memref<?x?x?xi1>
+  return
+}
+
+// CHECK-NOT: affine.apply
+// CHECK: %[[poison:.*]] = ub.poison : index
+// CHECK-NEXT: %[[alloc:.*]] = memref.alloc(%[[poison]], %[[poison]], %[[poison]])
+// CHECK-NEXT: %[[load:.*]] = affine.load %[[alloc]][%[[poison]], %[[poison]], %[[poison]]] : memref<?x?x?xi1>
+// CHECK-NEXT: affine.store %[[load]], %alloc[%[[poison]], %[[poison]], %[[poison]]] : memref<?x?x?xi1>



More information about the Mlir-commits mailing list