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ABSTRACT
Compilers come with a multitude of optimizations to choose from,
and the chosen optimizations significantly affect the performance
of the code being optimized. Selecting the optimal set of optimiza-
tions to apply and determining the order to run them is non-trivial.
All of these optimizations closely interact with each other. An op-
timization’s ability to improve the code heavily depends on how
the previous optimizations modified it. The current approach to
solve this is to use a one-size-fits-all optimization sequence, that
is designed to perform reasonably well for any given source code.
In other words, they are not designed to optimize depending on
the nature of the code which usually results in non-optimal per-
formance. In this paper, we present preliminary work tackling the
problem from the perspective of compile-time by adapting the opti-
mization sequence to cater to different program types. We start by
analyzing how the source code interacts with the passes, as well as
how the passes interact with each other. We use this information
and propose two potential methods driven by machine learning to
run customized optimization sequences on the source code. First,
we look at how we can use a neural network to predict and skip
passes that do not optimize the code to improve compilation time.
Second, we look at how we can use clustering and predictive mod-
els to select custom pass pipelines. We believe that our approach
has the potential to replace the current one-size-fits-all approach,
with better optimization sequences that are tailored to perform
better depending on the code. At the same time, it will allow testing
the potential pipelines thoroughly, a practical requirement to gain
confidence in the correctness of the compiler.

CCS CONCEPTS
• Software and its engineering → Compilers; • Computing
methodologies→Machine learning.
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1 INTRODUCTION
Compilers use transformation passes to produce an optimized ver-
sion of the application that is expected perform better than the
original source code. Since manually selecting the best set of opti-
mizations to run on a given application is tedious and impossible
to thoroughly test, developers generally use standard optimization
sequences or pass pipelines like O1, O2, or O3 to optimize their
code. Production compilers, like LLVM [13], still rely on manually
curated pass pipelines to determine which optimization passes are
run and in which order. While, this process is not tailored for a
particular application, or kind of application, as it is designed to
perform reasonably well for any input source code. Similarly im-
portant, it allows the compiler developers to test their pipelines and
detect unforeseen interactions between passes during development.

Compilers ship with a plethora of optimization passes that can
be incorporated into the pass pipeline. New passes are added to
the optimization pipeline in order to achieve more aggressive opti-
mization. Traditionally, developers simply look at the compile-time
and the performance of the final optimized code to guide the pass
pipeline design. In our work, we extend the optimization pipeline
design to other factors which are usually overlooked; how often
the passes actually optimize (or modify) code, how passes interact
with one another, and their inter-dependencies.

We start by investigating the likelihood of a pass to modify the
source code, and how passes interact with one another within the
LLVM compiler infrastructure. Furthermore, we track and analyze
how code features of the application change through the length
of the pass pipeline. Once the dependencies between the existing
passes and code features are identified for programs with different
mixtures of instructions, e.g., pointer heavy, call heavy, etc., we
use the findings to build models that optimize the pass pipeline.
These models allow the compiler to devise improved orderings of
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the transformation passes, tailored to different code structures and
features.

We make the following main contributions in this paper.

• Study LLVM’s internal statistics and derive insights about
how passes affect (modify or optimize) different functions.
We accomplish this by tracking how code features change
after each pass.

• Derive insights about the dependencies between existing
passes. Specifically, we analyze the likelihood of a pass to
modify code, and the conditional probabilities of the subse-
quent pass to modify code.

• Build an artificial neural network that can predict and skip
passes that do not modify/optimize code, effectively saving
compile time.

• Build a machine learning model that can identify patterns
in the code structure, and select the best optimization pass
pipeline based on the recognized pattern.

2 METHODOLOGY
In the first half of our methodology, we analyze the impact of
different passes on LLVM IR and its code features. In the second
half, we propose methods to optimize the LLVM pass pipeline in
two folds: local level optimizations and global level optimizations.

2.1 Code Feature Analysis
We record static code features, such as counters of each instruc-
tion opcode, basic block counts (i.e. small/medium/large size basic
blocks, single successor/predecessor basic blocks, etc.), floating-
point instruction counts, after every pass in the pass pipeline to
observe how the pass affects the source code. These features are
tracked separately for each individual function in the program. Fig-
ure 2 illustrates how the code features change for the simple matrix
multiplication program shown in Figure 1 with just two functions.
Only the following code features are depicted in Figure 2:

• total number of basic blocks in the function
• total number of switch instructions in the function
• total number of direct calls to function definitions
• total number of load instructions in the function
• total number of store instructions in the function
• maximum loop depth of the function

We note that not all the passes in an optimization level are ap-
plied to all the functions. For instance, Loop Deletion pass and Loop
Full Unroll pass are skipped for the main function, while they are
applied to the multiply function. Therefore, to observe how func-
tion features change throughout the pass pipeline we need to align
all the passes that were applied to each function. We use a dynamic
programming based algorithm inspired by the Needleman–Wunsch
algorithm [20] to align the pass sequences from each function.

In Figure 2 we can observe how inlining affects the main function
across all the plots. Further, canonicalization passes later eliminate
one of the loops and replace it with a closed-form expression. An-
other important observation is that most of the passes do not have
an impact on the code feature. We go into more details about this
in the next section.

#define N 2

void multiply(int mat1 [][N], int mat2 [][N], int res[][N]){

for (int i = 0; i < N; i++)

for (int j = 0; j < N; j++) {

res[i][j] = 0;

for (int k = 0; k < N; k++)

res[i][j] += mat1[i][k]*mat2[k][j];

}

}

int main() {

int mat1[N][N], mat2[N][N], res[N][N];

multiply(mat1 , mat2 , res);

}

Figure 1: Source code for thematrix multiplication program

2.2 Pass Analysis
We investigate the probability of a pass actually modifying, or
optimizing, code.We apply the default O3 optimization to the LLVM
test suite [16] and record whether each pass in the pass pipeline
reported to have performed modifications. Note that we do not
analyze the IR but trust the passes to report changes accurately.
Figure 3 shows that only 5 passes out of the ones we observe are
likely to change the code over 25% of the time. All the other passes
have an even lower probability of modification. Moreover, there
are a significant number of passes that have little to no effect on
the LLVM test suite. This indicates that most of the passes waste
resources most of the time without doing any actual optimizations,
indicating room for large improvements in compile time.

As a next step we determine inter-dependencies between passes
by running pairs of passes in isolation. A dependency exists if
the rate with witch the second pass performs a modification is
impacted by the first pass. Figure 4 shows the strengths of depen-
dencies between the passes we look at. Simplified, we can avoid
pass combinations in the pipeline in which the second pass has a
low probability of change.

2.3 Local Optimizations
In local optimizations, we try to improve the LLVM pass pipeline
by predicting if a pass will optimize (or modify) code in order to
skip the ones that will not. Precisely, we create a neural network
based predictor that can predict the effect of a pass on a function
beforehand, and skip the passes with no impact to save compile
time. Static code features mentioned in Section 2.1 and the ’n’ most
recent pass results (whether they modified the IR) are used as inputs
to the neural network. To minimize the overhead we perform the
prediction on a set of ’n’ passes at once. The prediction model is
depicted in Figure 5, with 𝑛 = 6. In other words, the neural network
makes predictions for subsets of 6 passes at a time.

To embed this model into LLVM’s pass pipeline, we use the
following approach. We insert predictors at four specific points in
the pass pipeline, a different predictor for each point. We start by
running a subset of passes and reaching the first checkpoint. At
this point, the ’n’ most recent pass results and code feature are
fed to the predictor as inputs. The model predicts which passes
from the next ’n’ passes will optimize code based on the inputs.
We skip passes based on these predictions. This process is repeated

2
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Figure 2: Function code features after each pass in the -O1
optimization pipeline is applied to the matrix multiplica-
tion in Figure 1. The horizontal axis represents the passes in
the pipeline, the vertical axis the code feature count. Each
line represents a function, specific passes are annotated to
explain code feature changes.

until the end of the pass pipeline. Figure 6 provides an overview of
how the predictor is embedded into the optimization pipeline. Note
that our preliminary setup is only able to deal with function passes
which substantially limits the effectiveness and is the reason we
are limited to predetermined points in the pipeline.

The predictor is built using a fully connected artificial neural
network with two hidden layers with ReLU and Sigmoid activation
functions as depicted in Figure 7. Furthermore, we use Adam op-
timization with binary cross-entropy as the loss function. We use
a relatively simpler neural network architecture as models with
complex architectures take longer to make a prediction, effectively
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Figure 3: Probabilities of the passes in -O3pipeline tomodify
the input code as reported by the passes themselves.

reducing any potential compile time gains. We use TensorFlow
ahead of time (AOT) to compile the inference graph to an exe-
cutable code that we call it from within the LLVM pass pipeline.

2.4 Global Optimizations
Our goal in global optimization is to categorize different input pro-
grams based on their code features and use the best suited pass
pipeline. First, we cluster the functions using the code features
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Figure 4: Heatmap showing the conditional probabilities of
pass 2 modifying the IR, given pass 1 was executed immedi-
ately before that.
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Figure 7: Neural network architecture.

introduced in Section 2.1. By using the same data set with inter-
mediate code features, we are able to factor in the effect each pass
has on the code to our clustering algorithm. We use the K-Means
clustering algorithm [23] to identify 7 function clusters. Figure 8
shows the clusters obtained from a single module from the LLVM
Test Suite, each color in the graph represents a cluster, the features
are the same as in Figure 2.

We take the standard LLVM optimization levels–O1, O2, O3–
as the potential pass sequences because they are well tested and
provide different compile time investments. To assign the clusters
to pipelines we compare the assembly files of each function after
applying standard optimizations: O1, O2, and O3. If O1 produces
the same output as O2 and O3, then applying O1 is enough for that
function, similarly for O2. If the vast majority of functions within
the cluster agree with the same optimization level, we allocate that
pass sequence to that cluster. This allows us to directly reduce
compile time.

We formulated our clusters by holistically looking at how dif-
ferent passes affected functions throughout the pass pipeline. But,

Figure 8: Function code features after each pass in the -
O3 optimization pipeline is applied to MultiSource/Applica-
tions/SPASS/clause.c module from the LLVM Test Suite. The
horizontal axis is the pass pipeline, while the vertical axis is
the code feature value. Each line represents a function. Each
color represents a cluster.

now we need a way to know which cluster a function belongs to
early on in the pass pipeline, in order to apply the custom pass
sequence to it. We build a predictive model using Gradient Boosted
Trees to accomplish this task.

3 EXPERIMENTAL RESULTS
We evaluate our proposed methodology on Intel’s Coffee Lake
microarchitecture. We primarily worked with LLVM 12.0.0. For
building the machine learning models we use TensorFlow 2.2.0.
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3.1 Local Optimizations
We use the LLVM test suite’s single and multi source benchmarks
without CTMark as the train data set, and CTMark as the test data
set. Figure 9 shows the current results, confirming that we can
indeed reduce the compile time significantly while having only
minor impact on the execution time.

Figure 9: Relative changes to the baseline in compile time
and execution time after the pass skipping predictor is em-
bedded into the O3 optimization pipeline for the CTMark
benchmarks.

We have a hyper-parameter in our model which defines the
threshold over which the predictor decides to run a pass. The pre-
dictor only runs the pass if the pass is likely to change the code
with a probability above the threshold. This threshold defines the
aggressiveness of the algorithm.

The predictions made by the predictor affect the compile and
execution time of the program in the following ways.

• true-positive: predictor says pass will modify code and the
pass will truly modify code→ no change

• false-positive: predictor says pass will modify code but the
pass will not truly modify code → missed compile time
reduction

• true-negative: predictor says pass will not modify code and
the pass will not truly modify code → compile time reduces

• false-negative: predictor says pass will not modify code but
the pass will truly modify code→ execution time changes

It should be noted that when we increase the aggressiveness of
the algorithm, the number of false negatives increases. However,
lowering the aggressiveness increases the number of false positives.
Due to this trade-off, the ideal predictor is mostly dependent on the
users priorities.

3.2 Global Optimizations
In this experiment we assign an optimization level from O1, O2,
and O3 to each function based on their cluster. Figure 10 shows
the different clusters and required optimization levels required for
each function in MultiSource/Applications/SPASS/clause.c module
from the LLVM Test Suite. We can observe that the majority of the
functions in clusters 3, 4, and 6 only require an optimization level
of O2; implying that O3 is wasteful for these functions. Similarly,
clusters 0 and 1 are well served with O2, leaving O3 to be applied to
clusters 2 and 5 only. While the clustering scheme is not perfect yet,
we think our results show promise that this approach can indeed be
implemented practically within the compiler through either better
cluster analysis and/or refined custom pass sequences beyond O1,
O2, and O3.

Figure 10: Clustering and optimization level required for
each function in SPASS/clause.c. The x- axis represents the
clusters obtained through K-Means clustering. Green repre-
sents functions that requireO3,while red and blue represent
functions that require O2 and O1, respectively.

The Gradient Boosted Tree based predictive model gives us an
accuracy of 85% accuracy to predict the cluster of function. Our
current approach requires the compiler to execute the first 30 passes
(out of the 300+ passes long pass sequence resulting from the pass
alignment) in the O3 pass pipeline and record the code features
after the thirtieth pass. With these code features as input the model
predicts the cluster for each function. We are working on the in-
frastructure to allow the compiler to then switch to O2 or O1 pass
sequences to avoid executing futile passes. Other cutoff points and
selection criteria need to be explored in the future.

4 RELATEDWORK
Compiler developers face two major problems when writing op-
timizations due to the inter-dependencies between optimization
phases: the optimization pass selection problem and the phase-
ordering problem [5]. Earlier research tries to solve said problems
using iterative compilation, while more recent work tends to use
machine learning [15].

Applicability of iterative search techniques for compiler opti-
mizations is explored in [6] and [10]. They show that iteratively
searching over the transformation pass space can significantly im-
prove the performance of code. Even though iterative compilation
can improve performance, it was practically impossible to imple-
ment as it required hundreds of compilations and executions. There
has been various attempt to address this limitation by; using com-
piler writer’s knowledge encoded in heuristics to select a subset
of optimizations [25], or algorithmically reducing the search space
of optimization sequences [1, 21]. The OpenTuner framework [3]
addresses these issues by using an ensemble of search techniques to
select the optimization passes. Genetic algorithms have also been

5
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widely adopted to solve the search problem efficiently in heuristic
tuning [24], as well as the phase ordering problem [11] .

However, due to the prohibitive overheads of repeated compila-
tions, researchers began to look for better alternatives to iterative
compilation. One such popular approach is to use machine learning
techniques to learn compiler heuristics [19, 24]. Decision trees are
used in [18] to generate target machine-specific heuristics for loop
unrolling. Milepost GCC [8] used static analysis of code features to
predict the set of passes to apply to a given program. MiCOMP [4]
uses clustering and supervised learning techniques to tackle the
phase ordering problem and outperforms LLVM’s O3 optimization
level. There is work that modifies that models the phase-ordering
problem as a Markov process, and uses only the current state of
the program to predict the next optimization [12]. Taking the idea
of Markov models further, there has been few attempts to solve
the phase-ordering problem using reinforcement learning models
trained on static code features [9, 17]. However, all the said ma-
chine learning approaches rely on human-crafted code features.
DeepTune [7] is the first attempt that uses a deep neural network
to extract code features from the raw source code.

In contrast to most existing work we do not (yet) try to fully
customize the optimization pipeline but instead select the parts of
existing pipelines that are required. There are multiple benefits,
e.g., a much smaller search space, though the main motivation is
testability. Fully custom optimization pipelines are not testable in
a reasonable way. Shipping a compiler without testing the opti-
mization pipeline thoroughly is simply impractical as unforeseen
interactions between passes that could lead to miscompilations are
still way too common.

5 CONCLUSION AND FUTUREWORK
We presented analysis results of how code features change along
the optimization pass pipeline. We also looked at how different
passes affect code differently and interact with each other. We
were able to identify passes that have strong inter-dependence.
We also presented our preliminary work on how to utilize these
findings within the compiler itself to reduce compile time, and in the
future, execution time as well. Our current models are able to give
significant improvements over the compile time.We believe that our
current approach for global optimizations can be readily adapted
to the compiler with the addition of few custom pass sequences.

We have a few shortcomings in our current work, which we
plan to address in future work. We currently only look at function-
specific static code features categorize programs. We need to inves-
tigate more and pick out more relevant code features. Furthermore,
we could look beyond static code analysis, and use a machine learn-
ing based [2, 14] or a graph based [22] approach to generate the
code features from the program. However, this has to be cautiously
done since complex feature generation techniques can significantly
impact the compile time. Additionally, we plan to extend this to
larger benchmark sets to build our models, beyond the current
LLVM test suite.

We also plan to come up with a few different pass pipelines that
can cater to each function cluster we identify. One approach to
come up with these new pipelines would be to use reinforcement
learning to search through all combination pass pipelines, similar

to the approach [9] has followed. The search space could be reduced
by using the dependencies between passes to group them together.
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