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ABSTRACT
GPUs are well-established in domains outside of computer graph-
ics, including scientific computing, artificial intelligence, data ware-
housing, and other computationally intensive areas. Their execu-
tion model is based on a thread hierarchy and suggests that GPU
workloads can generally be safely partitioned along the boundaries
of thread blocks. However, the most efficient partitioning strategy
is highly dependent on the application’s memory access patterns,
and usually a tedious task for programmers in terms of decision
and implementation.

We leverage this observation for a concept that automatically
compiles single-GPU code to multi-GPU applications. We present
the idea and a prototype implementation of this concept and vali-
date both on a selection of benchmarks. In particular, we illustrate
our use of 1) polyhedral compilation to model memory accesses, 2)
a runtime library to track GPU buffers and identify stale data, 3) IR
transformations for the partitioning of GPU kernels, and 4) a custom
preprocessor that rewrites CUDA host code to utilize multiple GPUs.
This work focuses on applications with regular access patterns on
global memory and the toolchain to fully automatically compile
CUDA applications without requiring any user intervention.

Our benchmarks compare single-device CUDAbinaries produced
by NVIDIA’s reference compiler to binaries produced for multiple
GPUs using our toolchain. We report speedups of up to 12.4x for
16 Kepler-class GPUs.
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1 INTRODUCTION
GPUs are prime examples for massively parallel processors and
have gained significant traction in the computing landscape. They
have established themselves in many domains requiring high band-
width or high computational performance. They excel in their
high computational power and their energy efficiency in terms of
performance-per-Watt.

The execution model of GPUs follows the Bulk Synchronous Par-
allel (BSP) programming paradigm [28], which is designed around
creating programs with many more parallel tasks than the under-
lying hardware can execute simultaneously. This "excess" paral-
lelism is called slackness and allows latency hiding and high porta-
bility between different processor architectures, classes, and gener-
ations, which might differ in their number of execution units. The
data-parallel programming languages implementing the BSP model
(e.g. OpenCL and CUDA) facilitate this, hiding architectural aspects
from the user while providing consistent performance, indepen-
dent of actual hardware configurations.

However, performance portability is only observed as long as ac-
cesses from processors to memory are equidistant. Individual GPUs
today have such an equidistant (or symmetric) memory architec-
ture, but a multi-GPU system qualifies as a non-uniform memory
architecture (NUMA), breaking this assumption. We anticipate that
future (single) GPU architectures will shift towards NUMA, as tech-
nology constraints might require techniques like multi-chip mod-
ules, hierarchical memory systems or heterogeneous memory [1].

Multi-GPU programming requires modifications throughout
host and device code. These orchestration efforts are completely
incompatible with the single-device programming model, whether
these GPUs are within one machine or multiple machines. Most
high-level optimizations on GPUs aim to reduce stress on the mem-
ory subsystem by explicitly caching or reordering memory accesses.
Introducing multiple GPUs adds another layer to the execution hi-
erarchy, but not to the memory hierarchy, requiring locality opti-
mizations across multiple GPUs to use different communication
methods than within a single GPU.

In this workwe introduce an automatic, compiler-based GPU par-
titioning concept, which allows for a simplified scale-out of single-
device GPU programs to almost any number of GPUs. It transpar-
ently integrates multiple GPUs into the single-GPU execution and
memory model, hiding the complexity of inter-GPU communica-
tion and work partitioning from the user. Since no user intervention
is required, we can maintain the simplicity and efficiency of single-
GPU computing, while providing scalable multi-GPU performance.

Our hybrid optimization scheme relies on both static and dy-
namic program analysis. To minimize overhead at execution time,
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a polyhedral model of the program is analyzed and used to gener-
ate optimized transfers between GPUs at run-time.

In particular, this paper makes the following contributions:
• An application model and toolchain that enable automatic
partitioning of GPU applicationswith regularmemory access
patterns.

• A supporting runtime system that efficiently tracks buffer
usage of GPU applications and identifies stale data based on
a kernel’s memory access patterns.

• Automatic creation of communication and synchronization
code using the CUDA Runtime API, orchestrating the execu-
tion of partitioned kernels on multiple GPUs.

• An analysis of the performance and run-time overhead of
the resulting distributed applications for selected workloads
on up to 16 GPUs.

This work provides a detailed description of an automatically
partitioning compiler prototype for data-parallel languages that
exploits the associated thread hierarchy. Additionally, we analyze
the performance of the resulting binaries with a particular focus on
the overhead at run-time. We consider this run-time overhead to be
of particular importance because even small sequential overheads
can severely limit the scalability of a distributed application.

While we initially focus on GPUs within one machine, our au-
tomatic communication generation scheme can also be applied to
GPU clusters and cloud installations. Our tool stack is based on the
gpucc CUDA compiler integrated into the LLVM/Clang compiler
framework [32]. CUDA and gpucc were chosen for pragmatic rea-
sons and we see no conceptual difference when replacing CUDA
with OpenCL, for instance.

The remainder of this paper is structured as follows. Section 2
provides background information required for the rest of this work,
followed by an overview of the compilation toolchain in Section
3; The polyhedral application model used for the generation of op-
timized communication code is described in Section 4. Sections 5
and 6 explain the host code transformations and polyhedral code
generation, respectively. The kernel partitioning mechanism is de-
scribed in Section 7. Section 8 presents the runtime support system
for the kernel orchestration. Performance results are evaluated in
Section 9. Relevant work is discussed in Section 10 and the work
then concludes with Section 11.

2 BACKGROUND
In this section, we shortly review the current state-of-the-art of
GPU architecture and execution models, multi-GPU programming,
the LLVM compiler framework, and the polyhedral model.

2.1 GPU Architecture and Execution Model
The architecture of GPUs is a consequence of a fundamentally dif-
ferent focus than that of CPUs: while CPUs feature a moderate
amount of cores that are highly optimized for sequential perfor-
mance, GPUs consist of many simple cores that are primarily suited
for data-parallel workloads. To satisfy the data-requirements for
this large number of processor cores, the GPU memory system is
optimized for bandwidth instead of latency. The higher memory
latencies can successfully be hidden by minimizing the cost of con-
text switches and scheduling an excess of tasks onto the available

execution units. Any threads that are waiting on memory are sim-
ply scheduled out for threads that are ready to execute.

Parallel performance is further improved by limiting memory
consistency between threads. All threads are grouped into indepen-
dent collections, so-called thread blocks. Reliable communication
is only possible within a thread block thereby eliminating synchro-
nization overhead between them.

The execution model of current GPUs is organized around a
regular, hierarchical 3D grid. The highest level in the hierarchy is
the grid itself, which is a 3D array of thread blocks. All thread blocks
are again 3D arrays of threads and all share identical dimensions.
The execution grid can be fully described by the grid size and thread
block size each for the three dimensions. Threads are uniquely
identified by the position of the thread block that contains them
and their position within the thread block.

2.2 Multi-GPU Programming
Several approaches to simplify multi-GPU with varying levels of
abstraction and room for optimizations programming exist.

The CUDA API directly provides support for multiple GPUs,
allowing the distribution of tasks between multiple GPUs. The
API is low-level, utilizing it compares to using pthreads for multi-
core utilization. Writing multi-GPU code this way requires careful
manual orchestration of kernels and data movements and tends to
be tedious and error-prone.

Slightly higher abstraction is provided by libraries and frame-
works that work on the level of compound data types (e.g. vectors
and matrices). Such frameworks can be implemented as a BLAS li-
brary, with the GPU-specific code being hidden away in the library.
This approach is productive and achieves high performance for ap-
plications that only use the limited set of operations provided by
these libraries.

Other approaches take inspiration from functional programming
and focus on the scalable composition of user-provided kernels.
A set of computational patterns, such as map, filter, or reduce
operations with user-provided kernels are combined to build more
complex systems. This approach typically scales well and has been
the basis of Google’s MapReduce [7] and Apache’s Spark [25]. The
copperhead library also follows this approach and implements it
for GPUs using the Python programming language [6].

2.3 LLVM Compiler Infrastructure
The LLVM project is a collection of reusable compiler components
for program analysis and optimization. It is based on a platform-
agnostic, assembly-like intermediate representation (IR) that acts as
the interface between all components [19]. This well-defined inter-
mediate representation allows easy reuse of existing functionality,
e.g. alias analysis or common subexpression elimination, as well as
the rapid development of narrowly focused new components.

Generally speaking, there are three stages in modern compilers:

(1) The front-end, which translates human-readable source code
into a compiler-specific intermediate representation.

(2) Optimizers that take code in intermediate representation as
input and optimize it for better performance or smaller code
size. This is also called the middle-end.
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(3) The back-end, which translates code from intermediate rep-
resentation to machine code.

The LLVM projects provides several front-ends for popular pro-
gramming languages, various middle-end analyses and transforma-
tions, as well as a variety of back ends for common architectures.

2.4 Polyhedral Model
The Polyhedral model is a program representation for the analysis of
control flow and memory accesses. It uses symbolic affine formulas
as a concise representation of memory accesses in loop nests [13].

Both loop iterations and memory accesses are described as
unions of Z-Polyhedra. Each Z-Polyhedron is in turn described by
a set of inequalities in Presburger arithmetic. The points inside the
Z-Polyhedron then represent loop iterations or memory accesses.

𝑆1 B { [𝑦, 𝑥] | 0 ≤ 𝑦 ≤ 𝑥 ∧ 0 ≤ 𝑥 ≤ 4 } (1)
𝑀 B { [𝑦, 𝑥] → [𝑦′, 𝑥 ′] | 𝑦′ = 𝑦 + 1 ∧ 𝑥 ′ = 𝑥 + 3 } (2)
𝑆2 B 𝑀 (𝑆1) = { [𝑦, 𝑥] | 1 ≤ 𝑦 ≤ 𝑥 − 2 ∧ 3 ≤ 𝑥 ≤ 7 } (3)
𝑈 B 𝑆1 ∪ 𝑆2 (4)

In Figure 1 the two-dimensional integer sets defined in Equations 1,
3, and 4 are presented. The set 𝑆1, defined in Equation 1, is depicted
in part 1a. Part 1b shows the image of 𝑆1 under the function (or map)
𝑀 , as defined by Equation 2. The resulting set 𝑆2 can be described
by Equation 3. Figure 1c shows the union of both sets.

(a) The set 𝑆1. (b) Translated 𝑆2
B 𝑀 (𝑆1) .

(c) Union𝑈 B 𝑆1 ∪𝑆2.

Figure 1: Visual representation of the integer set 𝑆1, its image
𝑆2 under the function 𝑀 , thus 𝑆2 B 𝑀 (𝑆1), and the union of
𝑆1 and 𝑆2.

Polyhedral optimization consists of three steps: 1) build a poly-
hedral model of the application 2) transform the model to repre-
sent the same computation but with improved performance, and 3)
regenerate the application code from the optimized model. Since
Z-Polyhedra typically represent loop nests and their memory ac-
cesses, the primary task of the code generator is to emit optimized
loops that iterate over all points in the set efficiently. In addition,
code can be generated to compute polyhedral expressions, for exam-
ple, the lower bound of a Z-Polyhedron in a particular dimension.

Libraries such as piplib [12], omegalib [16], and isl [29] provide
implementations for the mathematical concepts underlying poly-
hedral compilation. For this work, we decided on using the integer
set library (isl), which is used by the LLVM polyhedral optimizer
Polly [14, 30, 31]. The isl library provides models to represent poly-
hedral sets and maps and implements many operations on them,
e.g. translations, intersections, and projections. Additionally, it pro-
vides a code generator for polyhedra and polyhedral expressions,
which this work heavily relies on.

3 COMPILATION TOOLCHAIN
In this section, we provide a high-level overview of the components
making up the toolchain and their interactions.

Our work is built on top of gpucc [32], a CUDA compiler imple-
mentedwithin the LLVM framework. Except for our runtime library,
which implements the buffer management, and a source-to-source
translator written in lua, all our analyses and transformations are
implemented as part of the gpucc pipeline [15]. Note that in contrast
to CPU-only applications, GPU applications target two different ar-
chitectures at once and therefore require two separate compilation
paths. To partition GPU applications, our pipeline performs the fol-
lowing five high-level tasks distributed over two passes of gpucc:

(1) Analyze the GPU kernels and create high-level application
models of their memory behavior (first pass, described in
section 4).

(2) Apply source-to-source transformations to reference multi-
GPU primitives (non-gpucc, described in section 5).

(3) Generate communication code from the memory behavior
model that dynamically identifies stale and updated kernel
data (second pass, described in section 6).

(4) Create partitioned copies of the GPU kernels computing
partial results (second pass, described in section 7).

(5) Link the application against our runtime library that imple-
ments the multi-GPU primitives (second pass, described in
section 8.

gpucc

Rewriter

host device

Polyhedral
Analysis

gpucc

host device

linking

Kernel
Partition

Polyhedral
Codegen

Runtime
Library

CUDA

Binary

Figure 2: Toolchain overview

Figure 2 illustrates how the individual steps are integrated into a
single compilation pipeline. The first pass of gpucc is required only
to obtain thememory behaviormodels, other results, e.g. object files,
are discarded. After the source-to-source rewriter transforms the
application, gpucc is invoked a second time to generate the multi-
GPU application. This repeated invocation of gpucc introduces
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redundant work, resulting in a compile time increase from 1.9× -
2.2× for the tested applications.

4 POLYHEDRAL APPLICATION MODELS
In this section, we describe how polyhedral program analysis [9]
allows building a model of an application’s memory accesses. The
analysis is a stand-alone LLVM pass that generates polyhedral
memory accesses descriptions similar to the representation used
by polyhedral optimizers [5, 14]. However, the pass is designed as
a general-purpose analysis and can generate (approximate) results
for any reducible control flow graph. While we currently ignore
low-level correctness issues, such as potential integer overflows,
we can use the same techniques as polyhedral optimizers to ensure
soundness [8].

The application model of a kernel describes all memory accesses
to externally visible arrays as polyhedral integer maps that map a
thread id (in the grid) to zero or more points in each array. Since op-
tional write accesses exist, all relevant memory accesses are first col-
lected and then categorized as either “must” or “may”. While avail-
able, this information is currently not exploited, optional “may”-
accesses are treated as “must”-accesses. This is a pessimistic ap-
proximation and utilizing it can improve performance, but it does
not impact correctness.

4.1 Memory Access Maps for CUDA
The code describes the instructions of an individual thread in the
execution grid. Its coordinates are specified in a two-level hier-
archy, the thread block index being the first level, specified via
blockIdx.{z,y,x}, and the thread’s position within the thread
block being the second level, specified via threadIdx.{z,y,x}.
Since the grid itself is later partitioned (ref. section 7), memory lo-
cations are be expressed in terms of these coordinates. However, as
applications can configure arbitrary thread block dimensions (ac-
cessible through blockDim.{z,y,x} in the kernel code) the global
thread position in the grid contains a non-affine multiplication of
two variables, which is not directly supported in the polyhedral
model. For a dimension𝑤 ∈ {𝑧,𝑦, 𝑥} of the grid, the global position
is typically computed using the following expression:

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑤 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑤 · 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑤 (5)

Since the thread block size is unknown but fixed for one launch
of the kernel and the CUDAmemory model guarantees the indepen-
dence of thread blocks, we can introduce a new “block offset” dimen-
sion to encapsulate the non-affine multiplication [24]. Thus, with

blockOff .𝑤 = 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑤 · 𝑏𝑙𝑜𝑐𝑘𝐷𝑖𝑚.𝑤 (6)

, the global position of a thread in the thread grid becomes the
following affine expression:

𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑𝑥 .𝑤 + blockOff .𝑤 (7)

Before starting the kernel, blockOff.{x,y,z} needs to be ini-
tialized accordingly.

For each of the thread grid dimensions {𝑧,𝑦, 𝑥 } we now have
three input dimensions blockOff, blockId, and threadId that describe

the thread’s position in the hierarchical grid. This leads to the
descriptions of memory accesses in an array having having the
form Z9 → Z𝑑 , with 𝑑 being the number of dimensions of the array.

The CUDA execution model guarantees thread blocks to be an
atomic unit of execution. This allows simplifying the memory ac-
cess descriptions by eliminating the threadId dimension. Before
projecting out of all three grid dimensions a constraint is added for
each: 0 ≤ threadId < blockDim, which emulates thread blocks. The
resulting memory access maps are now a subset of Z6 → Z𝑑 . They
accurately model the memory behavior as seen from outside of a
GPU kernel, provided the constraint blockOff = blockId ∗ blockDim
is satisfied.
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(a) Partition
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(c) Write Set

Figure 3: Read and written memory locations of a 5-point
stencil applied to a partition of the grid.

Figure 3 illustrates the memory access patterns of a 5-point
stencil, where each thread computes exactly one element in the 2-
dimensional result array. The thread grid partition on the left has
read accesses that also include the halo of the target elements. The
write accesses, on the other hand, are a 1:1 mapping of the thread
grids to array elements.

While read maps can always be over-approximated without
compromising correctness, write maps need to be accurate and any
over-approximation can lead to incorrect results. Additionally, write
maps must be injective, indicating that no two threads write to the
same address. Since the CUDA execution model does not impose an
order of execution between threads or thread blocks, such writes
can occur in any order. Applications with this behavior exist, often
as an optimization relying on particular hardware characteristics.
Since we cannot replicate these characteristics with multiple GPUs,
write-after-write hazards prohibit multi-GPU execution.

After performing these checks, the application model is saved to
disk. For each kernel, a record is created that contains the kernel’s
name, suggested partitioning strategy, and a list of its arguments.
The read and write maps of arrays are stored per-argument.

5 HOST CODE TRANSFORMATIONS
This section describes the transformations applied to the host code
of the application, not including communication code generation,
which is explained in section 6. To utilize multiple GPUs, the host
code of the application needs to be transformed to use multi-GPU
primitives instead of the CUDA API. This transformation can be
applied on different representation levels, including plain text, the
abstract syntax tree (AST), or the low-level intermediate representa-
tion (IR) of the host code. We decided to use text substitutions with
regular expressions for the source-to-source transformation. This
allows for a simple implementation at the cost of not supporting all
possible CUDA applications. Three types of substitutions are made.
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The first type inserts information at the very top of the source
code file, including:

The last type of substitution alters kernel launches to perform
four tasks:

(1) Partition the execution grid for the available GPUs.
(2) Synchronize all buffers that are read from to contain up-to-

date values.
(3) Launch each partition of the kernel on its respective GPU.
(4) Update the buffer tracker to account for all writes performed

by the kernel partitions.

1 params = [arg in args | arg is parameter]

2 for gpu in GPUs:

3 partition = model.kernel.partitioning(grid , gpu , params)

4 reads = [arg in args | arg is array and arg is read]

5 for array in reads:

6 pattern = pattern_for(model.kernel , array)

7 buffer_synchronize(array , pattern , partition , params)

8 all_devs_synchronize ()

9

10 for gpu in GPUs:

11 partition = model.kernel.partitioning(grid , gpu , params)

12 newGrid = partition.max - partition.min

13 newArgs = []

14 for arg in args:

15 if arg is array:

16 newArgs += [instance_for_gpu(arg , gpu)]

17 else:

18 newArgs += [arg]

19 partitioned_kernel <<<newGrid , blocks >>>(newArgs , partition)

20

21 for gpu in GPUs:

22 partition = model.kernel.partitioning(grid , gpu , params)

23 writes = [arg in args | arg is array and arg is write]

24 for array in writes:

25 pattern = pattern_for(model.kernel , array)

26 buffer_update(array , pattern , partition , params)

Figure 4: Pseudo code of the kernel launch replacement that
is inserted by the source-to-source rewriter.

Algorithm 4 shows the pseudo-code that is inserted to replace
kernel launches in the original program. The bodies of the three
top-level loops correspond to the tasks (2), (3), and (4) in the list
above and the grid partitioning from step (1) is integrated into the
loops themselves.

In the first loop, multi-GPU primitives defined in the runtime
library and the automatically generated code are used to synchro-
nize all buffers between GPUs that are read from by the kernel.
A virtual buffer is synchronized by iterating over each partition’s
memory accesses (determined using polyhedral code generation as
explained in Section 6), using the memory tracker to identify the
GPU that has most recently written to each location, and copying
the data to the local GPU.

The second loop launches a partitioned kernel: a new grid con-
figuration is calculated, then all kernel arguments referring to GPU
buffers are replaced with a pointer the partition’s local instance,
and finally the kernel is launched asynchronously;

The third loop updates the memory trackers of the virtual buffers
to reflect the write accesses each partition. This happens concur-
rently to the asynchronous kernels and relies on multi-GPU primi-
tives from the runtime library.

6 POLYHEDRAL CODE GENERATION
This section describes the code generation that enables efficient
memory transfers to synchronize buffers contents between kernel
launches. Generally speaking, polyhedral maps are translated into
executable code to extract two pieces of information:

(1) the elements in the image of an access map, and
(2) the dimension sizes of all arrays in global memory.

The elements in the image of an access map can be represented
in multiple ways. Directly generating a function 𝑓 : Z6 → Z𝑑 , as
described in our model in section 4, would require iterating over
all thread blocks of a partition to get its read or write set. This
can be optimized into a function of the form 𝑓 : P → 𝐴, 𝑃 ∈
(Z6,Z6,Z3), 𝐴 = {𝑥 |𝑥 ∈ Z𝑑 } that returns all elements 𝐴 that are in
the image of the access map applied to a partition 𝑃 . The partition 𝑃
is described as a 6-dimensional box spanned between two tuples of
blockOff .{z, y, x} and blockId .{z, y, x} (the thread block dimension
need to be provided as well). By constraining the domain of the
map to the inside of this 6-dimensional box, the image contains
only the elements accessed by a specific thread grid partition. This
is exactly the information required from the access maps in order
to allow automatic buffer synchronization between GPUs.

6.1 Code Generation
The isl library provides highly optimized code generation facilities
that allow to easily embed this information into the application
as native IR functions. It provides an API that generates Abstract
Syntax Trees (ASTs) from polyhedral sets and expressions, which
can then be translated into LLVM IR. The ASTs generated by isl
can be directly expressed in a structural programming language,
such as C. All nodes in an AST are either control flow or (closed-
form) expressions.

Control flow in isl is limited to for-loops and conditional branches.
Both are basic control flow primitives and can be directly translated
into fixed sets of LLVM IR basic blocks and branches.

Polyhedral expressions are also generated as ASTs. Each node in
the expression’s AST is either a constant value, a variable reference,
or an operator with one or more expressions as operands. Since
operands can themselves be the result of an operation, complex
expressions can be built from simpler ones. Polyhedral expressions
are closed-form expressions, meaning they never contain control
flow and can be computed in constant time. Virtually every operator
in the AST has a direct counterpart in LLVM IR, allowing very easy
generation of the appropriate IR for a given expression.

partition read set write set

(a) Partition

partition read set write set

(b) Read Set

partition read set write set

(c) Write Set

Figure 5: Scanning the memory accesses of a 5-point stencil
code
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Enumerating every single element in the image of an access map
(i.e. every accessed array element) is, while straight-forward, pro-
hibitively expensive. Instead, we leverage the fact that CUDA uses
row-major order to store multi-dimensional arrays and enumerate
only the first and last element of each row in the image. The first
and last set are computed by fixing all but the last dimension of the
image to the position of the given row and computing the lexico-
graphical minimum and maximum of the resulting polyhedral set.
The result can either be a convex set, in which case this optimiza-
tion produces exact results, or a union of convex sets, resulting in an
over-approximation of the enumerated sets. For a union of sets, the
over-approximation can be eliminated by applying this approach
to each convex set of the union instead of the union set itself.

6.2 Enumerator Interface
The generated code needs to be available to the static runtime li-
brary and therefore requires a well-defined interface. Each gener-
ated function for a read or write map is given the same name as
the kernel, followed by a suffix containing the position of the argu-
ment in the kernel arguments and a "read" or "write" parameter.

Input to the functions are the partition of interest and the values
of scalar arguments, both are passed using arrays of 64-bit integers
to avoid variable numbers of arguments. The partitioning infor-
mation is a 6-tuple describing the partition as pairs of half-open
intervals of thread blocks, one for each of the three thread grid di-
mensions. The scalar arguments are simply copied into an array
from the kernel launch they belong to.

Output of the function is a list of element ranges in the set. Since
the number of these are unknown, a callback function is used to
avoid dynamic memory allocations. The callback is invoked once
for each element range.

Using this approach, the static runtime can easily and efficiently
use the information collected during kernel analysis.

7 KERNEL PARTITIONING
Transformed kernels should behave as if acting on only a subset of
their original thread grid. In this section we describe the transfor-
mations required for this. A thread grid partition is a 3-tuple of inte-
ger pairs: ((𝑚𝑖𝑛𝑧 ,𝑚𝑎𝑥𝑧), (𝑚𝑖𝑛𝑦,𝑚𝑎𝑥𝑦), (𝑚𝑖𝑛𝑥 ,𝑚𝑎𝑥𝑥 )). Each pair
describes the start (inclusive) and end (exclusive) of the partition
in one of the three thread grid dimensions. In contrast to the gener-
ated code in section 6, block dimensions do not need to be included
in the partition because the regular block dimensions from CUDA’s
special registers are still valid.

𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑤 → 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛.𝑚𝑖𝑛𝑤 + 𝑏𝑙𝑜𝑐𝑘𝐼𝑑𝑥 .𝑤 (8)
𝑔𝑟𝑖𝑑𝐷𝑖𝑚.𝑤 → 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛.𝑚𝑎𝑥𝑤 (9)
gridConf .𝑤 = 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛.𝑚𝑎𝑥𝑤 − 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛.𝑚𝑖𝑛𝑤 (10)

𝑤 ∈ {𝑧,𝑦, 𝑥}
The first step is cloning the kernel code and appending the argu-
ments for the kernel partition. In this state, the kernel behaves ex-
actly like the original one and would just ignore the additional ar-
gument. Next, the two substitution rules from equations (8) and
(9) are applied. Rule (8) adds an offset to the block ID so that from
the kernel’s perspective the thread blocks now start at the start of
the partition instead of at zero. Rule (9) replaces the kernel’s grid

dimension with the end of the partition. Combining both rules re-
sults in the kernel executing code only for thread blocks in the half-
open interval [𝑚𝑖𝑛𝑤 ,𝑚𝑎𝑥𝑤),𝑤 ∈ {𝑧,𝑦, 𝑥}. The correctness of this
transformation relies on the grid configuration at kernel launch to
be updated according to equation (10).

8 RUNTIME LIBRARY
The runtime library contains high-level, static functions that are
common to all partitioned applications. These functions do not
need to be customized to individual applications and can be imple-
mented and compiled in advance. This allows using a high-level
implementation language, such as C++. The library is split into two
parts: virtual buffer management and CUDA wrapper functions.

8.1 Buffer Management
When kernel partitions distributed over multiple devices, each de-
vice needs a copy of its data in a device-local buffer. The coherence
protocol between these device-local buffers is similar to cache co-
herence protocols of GPUs, albeit much simpler due to all synchro-
nization points being known in advance (i.e. memcopies and kernel
launches).

Instead of allocating a single buffer on a single GPU, the parti-
tioned application allocates one device buffer per device, creates a
tracker component, and bundles them into a "virtual buffer".

The tracker contains a sorted list of non-overlapping segments,
each containing a reference to the buffer instance that holds the
most recently updated copy of that segment. The tracker is updated
by all operations that write to the virtual buffer, namely kernel
launches (described in 5) and memcopies (as described in 8.3). This
allows the accurate tracking of the distribution of the most up-to-
date data contained in a virtual buffer. The segment list is based on
a B-Tree map using the start of each segment as the key and the
"owner" of the most recent version as the value.

In GPU kernels with regular memory access patterns, locality of
thread IDs often directly translates to data locality in the buffers
used in the location. This is a result of the execution model encour-
aging to calculate one output element per thread and to equate the
thread ID to the output element index. As a consequence, large con-
tiguous partitions in the thread grid cause large contiguous arrays
in memory to be read and written, further limiting fragmentation.
The extreme case are GPU kernels with a 1:1 correspondence be-
tween the thread ID and the output element index. Kernels with
such a write pattern produce a single segment per partition in the
tracker of the buffers they are writing to.

8.2 Memcopies for Multiple Devices
Memcopies in a single GPU application always have exactly one
source buffer and exactly one target buffer. In partitioned multi-
GPU applications, however, CUDA memcopies can have multiple
source or destination buffer instances. This requires some adaptions
to the corresponding memcpy operations. Since the CUDA Runtime
API requires its memcopies to specify the direction of the data
movement, they can be translated based on the specified direction.

Host-to-Device memcopies turn into a 1:n data movements.
The single source buffer is distributed among multiple GPUs. Static
analysis can not reliably prove the read pattern applied to the buffer
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in the presence of unpredictable control flow or kernel configu-
rations. Consequently, data is distributed in a predefined pattern,
hoping that this pattern matches the read pattern of the following
kernels. Currently, this pattern is a linear distribution among all
GPUs. Any mismatches between this pattern and the actual read
pattern of the kernels need to be corrected before the kernel launch
as described in subsection 8.3.

Device-to-Host memcopies are a n:1 data movement in the
translated application. Since all data is gathered into a single host
buffer and the tracker has a record of the data distribution of the
device buffer, this memcpy is easily translated: 1) The tracker is
queried for all contiguous segments and the GPU that segment is
located on and 2) the segment is copied from the given GPU to the
host buffer.

Device-to-Device copies turn into n:n data movements. This
can be implemented as a combination of the Host-to-Device and
Device-to-Host strategies. Single-GPU applications typically avoid
device-to-device copies since it results in duplicated data data on
a single GPU. For this reason, Device-to-device memcopies are
currently not supported.

Host-to-Host data movements are left unmodified.

8.3 Synchronization of Virtual Buffers
Enforcing coherence between buffer instances with respect to ker-
nel launches requires the generated code described in section 6.
Both synchronizing a virtual buffer and updating its tracker are
operations that are specific to a particular partition and therefore
need to be repeated for each partition. Currently, each partition
corresponds to exactly one GPU.

In order to synchronize a virtual buffer for a given GPU, the read
set of that GPU’s partition is iterated over using the generated code
for that array (as described in 6). For each interval in the read set,
the tracker is queried and returns one or more segments pointing to
the buffer instance that contains the most recent version of the data
in that segment. If the data is already present on the current GPU,
nothing is done. Otherwise, an asynchronous memcpy is issued to
copy the data from its most recently written to GPU. The tracker of a
virtual buffer does not support shared copies, resulting in redundant
transfers for applications with large amounts of shared data.

Updating the tracker requires iterating over the write set of a
GPUs partition. For each interval in the write set of a given GPU,
the tracker is updated so that the interval points to the buffer of
that GPU as owning the most recently updated version of the data.

8.4 CUDA Runtime Replacement
The CUDA replacement functions have identical prototypes to their
CUDA API counterparts to ease code transformation and provide a
stable interface. The memory related CUDA API (cuda{Malloc /
Free / Memcpy / MemcpyAsync}) is replaced by functions dispatch-
ing to their virtual buffer implementation. cudaGetDeviceCount
is replaced by a function that always returns 1 and cudaDevice
Synchronize is replaced by a function that synchronizes all avail-
able devices. New CUDA replacements are implemented as required.

Table 1: Configurations of the benchmark applications.

Benchmark Small Medium Large Iterations

Hotspot 8,192 16,384 36,864 1,500
N-Body 65,536 131,072 327,680 96
Matmul 8,192 16,384 30,656 N/A

9 EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the prototype im-
plementation using three proxy applications.

The system used for the tests is a Supermicro X10DRG equipped
with two Intel Xeon E5-2667 Processors, eight NVIDIA K80 GPUs,
and 256GiB of DDR4 RAM running at 2133MHz. Single-GPU re-
sults are from the reference binary produced by NVIDIA’s NVCC
compiler version V8.0.61. Multi-GPU applications have been com-
piled using our toolchain as an external module to the development
version of LLVM/Clang from Jan 8, 2018. NVIDIA driver initializa-
tion and host buffer initialization were measured separately and
removed from the total runtime.

9.1 Workload Evaluation
The selection of workloads the approach can be tested on is lim-
ited to those that exhibit memory access patterns that can be ac-
curately predicted using our polyhedral model. The three chosen
benchmarks are taken from the computational dwarfs identified by
Berkeley in [2], and configurations are summarized in table 1.

Hotspot is a 5-point stencil operating on a quadratic grid. The
problem size describes the side lengths of this grid and the num-
ber of iterations has been fixed to 1500 for the graphs shown. The
amount of computation per thread is constant and comparatively
low, as are the data requirements per thread. As a result, this bench-
mark is susceptible to overheads in the distribution process and
expected to exhibit only limited scalability. Figure 6 shows that the
maximum speedup of about 7.1x is reached with 14 GPUs.

The N-Body benchmark is a direct gravitational N-Body simu-
lation, with the problem size describing the number of simulated
bodies. Clustering optimizations have not been applied, since the
dynamic clusters would result in irregular memory accesses. In this
benchmark, computation per thread grows cubic with the problem
size, while the data requirements per thread grow only linearly,
resulting in excellent scaling behavior. The maximum speedup of
about 12.4x is reached using 16 GPUs, as seen in Figure 6.

Matmul computes the product of two dense, quadratic matrices,
with the problem size being the side length of the matrices. The
version used here is a basic tiled implementation. In a square matrix
multiply, the total work per thread also grows cubic with the side
length of the matrix while the read set grows quadratic with it. The
second matrix of the product is read column-wise by each thread
but distributed linearly over all devices (the default distribution
pattern). This mismatched data distribution is corrected by the
runtime before the kernel starts. The resulting initial overhead
together with the lack of iterative execution limits scalability. Figure
6 shows a maximum speedup of about 6.3x for 14 GPUs.
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Figure 6: Speedup of the benchmarks for up to 16 GPUs.
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Figure 8: Overhead of the runtime system.

9.2 Overhead Analysis
Parallelizing a CUDA application is not only limited by the kernels
themselves, but also by the sequential overhead that orchestrates
the parallel kernels. The lower bound of these overheads can be
measure by executing the partitioned application on a single GPU:
across all single-GPU experiments, the slow-down has a median of
2.1 %, with a 25th and 75th percentile of 0.13 % and 3.1 %, respec-
tively.

The next step is a further dive into the different types of over-
head introduced by the partitioning of the application. We compute
overheads based on direct measurements of the executed applica-
tions to avoid instrumentation and parallelism issues. The execu-
tion time of each benchmark is measured in three configurations:

• 𝛼 : regular execution of the multi-GPU application
• 𝛽 : execution with disabled transfers, but dependency resolu-
tion and tracker updates are performed

• 𝛾 : executionwith disabled dependency resolution and tracker
updates, which automatically also disables transfers

Using these measurements, the following relative times can be
computed:

• time spent only in application logic: 𝑇𝐴𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝛾/𝛼
• time spent in transfers: 𝑇𝑇𝑟𝑎𝑛𝑠 𝑓 𝑒𝑟𝑠 = (𝛼 − 𝛽)/𝛼
• time spent in non-transfer overheads:𝑇𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 = (𝛽 − 𝛾)/𝛼

Figure 7 shows an overview of how these parts of the execution
time have been measured for the "medium" sized problems for all
three benchmarks. As expected, the relative time spent with over-
head increases with larger numbers of GPUs. However, the major-
ity of the overhead is caused by transfers for buffer synchroniza-
tion that are essential to the partitioning. Non-transfer overheads
(mostly caused by the resolution of data dependencies) make up a
maximum of 6.8% over all measurements.

Figure 8 gives a more accurate view of the non-transfer over-
heads over all benchmarks and problem sizes as a box plot. Over
all measurements, the 25th percentile of the overhead is at 0.001 %,
the 75th percentile at 3.5 % and the median at 0.51 %. The over-
heads computed in this section already account for highly iterative
benchmarks that are sensitive to sequential overheads, such as the
Hotspot. Thus, we consider the overhead to be within the accept-
able range for an automated solution.

10 RELATEDWORK
Several forms of automated partitioning techniques have been pro-
posed in the past. Even though all aim to achieve a similar goal,
they differ substantially in their concepts and details.

Related work on runtime systems focusses on shared virtual
memory and memory optimizations. Li et al. explore the use of page
migration for virtual shared memory in [23]. Tao et al. utilize page
migration techniques to optimize data distribution in NUMA sys-
tems [27]. As opposed to our work, these concepts rely on page mi-
gration and perform all tasks at execution time. Instead, we exploit
knowledge generated at compile-time to optimize data movements
at execution time. However, we see page migration as a possible
solution for workloads with dynamic, data-driven memory access
patterns like graph computation, sparse linear algebra and similar.

Lee et al. use kernel partitioning techniques to enable a collab-
orative execution of a single kernel across heterogeneous proces-
sors like CPUs and GPUs (SKMD) [21], and introduce an automatic
system for mapping multiple kernels across multiple computing
devices, using out-of-order scheduling and mapping of multiple
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kernels on multiple heterogeneous processors (MKMD) [22]. How-
ever, they focus on scheduling optimizations rather than automatic
partitioning.

In [20], Lee et al. implement software-based virtual memory
management for OpenCL kernels to circumvent GPU memory size
limitation. Instead of using static analysis for memory pattern anal-
ysis, they create a minimal clone of each kernel that marks accessed
memory in a page table, yielding accurate results at the expense of
significant runtime overhead.

Related work on memory access patterns has a rich history.
Recent work that focuses on GPUs includes Fang et al., who analyze
memory access patterns to predict the performance of OpenCL
kernels [11]. Ben-Nun et al. are representative of various work that
extends code with library calls to optimize execution on multiple
GPUs by decisions based on the user-specified access pattern [3].

Bondhugula et al. take a similar approach in their work [4] by
modeling the memory access patterns of loop nests and distribut-
ing the work and data across a distributed memory system. While
influential, their work focuses on solely CPU based systems with
no CPU-GPU interplay and relies exclusively on polyhedral compi-
lation, instead of using a dynamic tracker at runtime to allow for
the arbitrary distribution of data.

Moll et al. in [24], similar to us, leverage the polyhedral model
to reason about memory access patterns and split the input space
of data-parallel languages. Since they only model and split a single
thread block at a time, it is orthogonal our work. However, we
observe that a complete understanding of memory access patterns
might require a combination of multiple analysis techniques.

The APOLLO project is an automatic loop-parallelizer for CPU
applications that also uses a polyhedral model to partition the code
for execution on multiple cores [26]. As opposed to the whole-
kernel analysis used in our work, they use instrumented code to
profile different partitioning strategies on a small subset of the
workload and find the best performing one.

Both SnuCL [18] and rCUDA [10] address the complexity of
scaling out GPU applications to multiple nodes by projecting GPUs
on remote nodes into the local system, essentially providing GPU
virtualization. Although related to our work, GPU kernels and
buffers are treated as atomic, liberating both projects from the
need to manage coherence within individual device buffers. While
extensions [17] optimize scalability by replicating host program
execution and data, the task of mapping control and data to these
devices is left to the programmer.

11 CONCLUSION
In this work, we presented an LLVM-based toolchain that automati-
cally compiles single-GPU code to multi-GPU applications. Polyhe-
dral compilation is used for the analysis of memory access patterns
and communication code generation, and standard code transforma-
tion techniques are used to partition host and device code. We intro-
duce the tool stack and the methodology behind it, providing details
on the different steps performed at compile time and run time. Three
different workloads are used for experiments on a system with 16
GPUs, resulting in speedups of up to 12.4x. A detailed analysis of the
runtime overhead, i.e. the non-transfer overhead, has shown it to be
very low with a median of 0.51 % of the total application runtime.

These results suggest that automatic partitioning using polyhe-
dral compilation is feasible for GPU programs, and the runtime over-
head of the resulting multi-GPU binaries is very low. The primary
limitation of this approach is that it requires an accurate model of
the kernel’s write accesses to global memory. This limitation can be
remedied by using instrumentation to collect write patterns, shared
virtual memory for result distribution, or annotation of the source
code with write patterns by the programmer. Of course, any combi-
nation of these and other approaches are also possible, and recent
GPU features seem to support such approaches.
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