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OVERVIEW 

Current machine learning models for compiler optimization select the best optimization strategies 

for functions based on isolated per function analysis. In this approach, the constructed models 

are not aware of any relationships with other functions around it (callers or callees) which can be 

helpful to decide the best optimization strategies for each function. In this project, we want to 

explore the SCC (Strongly Connected Components) call graph to add inter-procedural features in 

constructing machine learning-based models to find the best optimization strategies per function. 

Moreover, we want to explore the case that it is helpful to group strongly related functions 

together and optimize them as a group, instead of per function. 

TENTATIVE TASKS 

1. Explore how machine learning can be used to develop heuristics that can be employed to 

balance analysis passes and transformations toward optimal compile-time, code-size, and 

compute/memory performance.  

2. Use ML to identify patterns and code features that can be checked for using usual 

techniques. 

3. Use ML to identify shortcomings in existing heuristics such as transformation cut-off 

values or pass schedules. For discovered shortcomings, identify inputs and propose 

alternative heuristics to improve performance for those inputs. 

4. Figure out how to get and layout data for analysis by ML models to get the best possible 

loss rates. The usual ML model setup tasks and decisions such as identifying the right 

model, width and depth of model, cost of data labeling efforts versus using unsupervised 

models, training/test/val data splits and sufficiency of data, hyper parameters to be tuned, 

proper activation and loss functions, standardizations and normalization layers needed, 

batch size estimation, need for GPU clusters to accelerate training etc. 

5. Explore what needs to be built into the LLVM libraries to enable online inference 

whenever an optimizing compiler is run for a ML pass. Specifically, lay out how analysis 

and transformations will yield for a ML pass.  

 



 

 

TENTATIVE GOALS 

1. Improved heuristics for existing (inter-procedural) passes, e.g. to weight inlining versus 

function cloning based on code features. 

2. Machine learning models to select the best optimizations using code features and 

inter-procedural analysis. This model can be used for functions in isolation or groups of 

functions, e.g., CGSCCs. 

3. Time permitting project extension: Extend the SCC call graph to functions called on GPUs 

with potential opportunities for building optimized kernels that work across both CPUs 

and GPUs to optimally balance compile-time, code-size, and compute/memory 

performance.  

NOTES 

1. After discussions with LLVM mentors for this project, I have learnt that this topic is very 

much open ended. So, this document might undergo significant changes on describing 

goals and tasks as more clarity is gained and more data is collected and explored. 

2. Extensions to GPU functions depend on how much LLVM compiler libraries can be 

utilized for supporting compilation to GPU assembly. For instance, Nvidia’s compiler nvcc 

uses gcc to compile to CPU assembly and PTX to compile to GPU assembly in a 

combined fashion. Can LLVM compiler be used as well alongside PTX is a question that is 

unclear for now.  


