
On the delinearization of array references in
for-loop nests

Marc Moreno Maza, Delaram Talaashrafi, Lin-Xiao Wang
University of Western Ontario, London, Ontario, Canada

LLVM Polyhedral Model Group
September 25, 2019

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

About us

The Ontario Research Center for Computer Algebra

1. Research directions: symbolic computation, but also
high-performance computing

2. Industrial partners: IBM annd Maplesoft.

Sofware projects

1. in support of the solve command in Maple

2. Polyehdralsets, ProgramAnalysis (available in Maple)
Z-Polyehdralsets (to appear in Maple)

3. Basic Polynomial Algebra Subprograms

4. CUMODP Library

5. Metafork framework

http://regularchains.org/
http://www.bpaslib.org/
http://cumodp.org/
http://www.metafork.org/

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

Input:

for (i1⋯; ⋯; i1++) do
. . .
for (id⋯;⋯; id++) do
A[R(i1, . . . , id ,m1, . . . ,mδ)] ← ⋯

end for
. . .

end for

▸ i1, . . . , id take non-negative integer
values such that

L
⎛
⎜
⎝

i1
⋮
id

⎞
⎟
⎠

≤
⎛
⎜
⎝

r1

⋮
rd

⎞
⎟
⎠
,

▸ L is a lower-triangular full-rank
matrix over Z+ (known at compile
time) defining the iteration domain

▸ m1, . . . ,mδ, r1, . . . , rδ: data
parameters (known only at
execution time)

▸ R(i1, . . . , id ,m1, . . . ,mδ) is a
polynomial, the coefficients of
which are known at compile time.

Output:

for (i1⋯; ⋯; i1++) do
. . .
for (id⋯;⋯; id++) do

Ã[f1]⋯[fδ] ← ⋯
end for
. . .

end for

▸ f1, . . . , fδ are affine forms in
i1, . . . , id the coefficients of which
are integers to-be-determined,

▸ Ã is an M1 ×⋯ ×Mδ-array,
▸ M1, . . . ,Mδ are affine forms in

m1, . . . ,md the coefficients of
which are integers TBD,

such that:
R = f1M2⋯Mδ + ⋯ + fδ−1M2 + fδ
holds and for each (i1, . . . , id) in the

iteration domain we have:
0 ≤ f1 <M1, . . . ,0 ≤ fδ <Mδ.

Input:

for (i1⋯; ⋯; i1++) do
. . .
for (id⋯;⋯; id++) do
A[R(i1, . . . , id ,m1, . . . ,mδ)] ← ⋯

end for
. . .

end for

▸ i1, . . . , id take non-negative integer
values such that

L
⎛
⎜
⎝

i1
⋮
id

⎞
⎟
⎠

≤
⎛
⎜
⎝

r1

⋮
rd

⎞
⎟
⎠
,

▸ L is a lower-triangular full-rank
matrix over Z+ (known at compile
time) defining the iteration domain

▸ m1, . . . ,mδ, r1, . . . , rδ: data
parameters (known only at
execution time)

▸ R(i1, . . . , id ,m1, . . . ,mδ) is a
polynomial, the coefficients of
which are known at compile time.

Output:

for (i1⋯; ⋯; i1++) do
. . .
for (id⋯;⋯; id++) do

Ã[f1]⋯[fδ] ← ⋯
end for
. . .

end for

▸ f1, . . . , fδ are affine forms in
i1, . . . , id the coefficients of which
are integers to-be-determined,

▸ Ã is an M1 ×⋯ ×Mδ-array,
▸ M1, . . . ,Mδ are affine forms in

m1, . . . ,md the coefficients of
which are integers TBD,

such that:
R = f1M2⋯Mδ + ⋯ + fδ−1M2 + fδ
holds and for each (i1, . . . , id) in the

iteration domain we have:
0 ≤ f1 <M1, . . . ,0 ≤ fδ <Mδ.

The sub-problems
Polynomial system solving

1. Expressing the coefficients of f1, . . . , fδ and M1, . . . ,Mδ as functions of the
coefficients of R

2. This can be done off-line (that is, before compile-time) once d and δ are
fixed.

3. Recall that the matrix L and the coefficients of the polynomial R are integer
values known at compile-time.

Quantifier elimination

1. The constraint: for each (i1, . . . , id) in the iteration domain we have:
0 ≤ f1 <M1, . . . ,0 ≤ fδ <Mδ

implies constraints on the coefficients of f1, . . . , fδ. and M1, . . . ,Mδ

2. Off-line, this is a non-linear QE problem which can only be solved over the
reals (not over the integers). The obtained constraint is then sufficient but
not necessary.

3. At compile time, the coefficients of L and R are known and the QE problem
can be reduced to Presburger arithmetic (that is, QE on affine forms over Z)
which can be solved by software like ISL.

4. This is the point of view of the paper Optimistic Delinearization of
Parametrically Sized Arrays by T. Grosser, J. Ramanujam, L.-N. Pouchet, P.
Sadayappan and S. Pop (ICS15).

5. At run-time, m1, . . . ,mδ, r1, . . . , rδ are known and the QE problem reduces
to optimize peice-wise linear functions (actually sawtooth functions).

isl.gforge.inria.fr

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

The 2D-2D case: set up

Loop counters and dimension sizes

1. d = 2, that is, 2 loop counters: i and j.

2. δ = 2, that is, the target array Ã is 2D with dimension sizes
M1 = a1m + b1 and M2 = a2n + b2, where m, n are data parameters
known at execution while a1,b1, a2,b2 are integers TBD.

Array references

1. Given the reference A[R] to the array A with

R = T1 in + T2 jn + T3 n + T4 i + T5 j + T6,

2. we want f1, f2 such that

R = f1M2 + f2

with

f1 = e1 i + g1j + c1 and f2 = e2i + g2j + c2,

3. and for each iteration (i, j) in the domain we have

0 ≤ f2 <M2.

The 2D-2D case: polynomial system solving
The system
From R = f1M2 + f2, we derive

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 = a2e1

T2 = a2g1

T3 = a2c1

T4 = b2e1 + e2

T5 = b2g1 + g2

T6 = b2c1 + c2

(1)

Its solution

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e1 = T1

a2

g1 = T2

a2

c1 = T3

a2

e2 = T4 − b2e1

g2 = T5 − b2g1

c2 = T6 − b2c1

(2)

We observe that a2 and b2 cannot be uniquely determined. However, since a2 is
integer, it must divide T1,T2,T3.

The 2D-2D case: the iteration domain
for-loops of the form

for (i = 0; i < r1; i++) do
for (j = 0; j < r2; j++) do

. . .
end for

end for

the iteration domain, say D, looks
like:

for-loops of the form

for (i = 0; i < r1; i++) do
for (j = 0;qi + sj < r2; j++) do

. . .
end for

end for

the iteration domain looks like:

The 2D-2D case: QE solving
From QE to ILP

1. Recall the validity condition: for each (i, j) we have 0 ≤ f2 <M2.

2. That is: 0 ≤ f2 and F2 <M2 both hold where F2 is the maximum
value of the following integer linear programming (ILP) problem

maximize
(i,j)

e2i + g2j + c2

subject to (i, j) ∈ D

Solving the ILP problem

1. For the rectangular domain, the problem is solved by case inspection

2. For the truncated triangular domain, the problem is easy to solve by
case inspection, except when e2 > 0 and g2 > 0 both hold.

3. For that special case, the problem becomes:

maximize
i

e2 i + g2⌊
r2 − qi

s
⌋ + c2

subject to 0 ≤ i < r1

Formalizing the case e2 > 0 and g2 > 0
▸ Let a,b, c,d , e be integers such that c > 0, d > 0, e > 0 and a < 0 hold. We

consider the function:

f ∶ Z → Q
x z→ e⌊ ax+b

d
⌋ + cx

Given a positive integer X , we need to maximize f (x) over [0,X].
▸ Let x ′ be given by:

x ′ = { 0 if f (0) > f (X)
X otherwise.

Let k ∈ Z be such that

k = { ⌊ aX+b
d

⌋ if e + c d
a
< 0

⌊ b
d
⌋ + 1 if e + c d

a
> 0

Then, the number of evaluations of f over [0,X] (in order to find its

maximum) is no more than c (dk−b−ax′)
ae+cd .

▸ The case e + c d
a
= 0 is easy to handle.

▸ This rough estimate could be improved, making it feasible to evaluate the
validity condition at execution time without solving any QE problem at
compile-time.

▸ However, this requires guessing a2, a3,b2, say trying a2 = a3 = 1 and b2 = 0.

Problem visualization

There are mainly four different cases. Based on the shape of the plots,
we call this type of functions “sawtooth” functions.

The 2D-2D case: QE solving again
Formal solution over the reals
Using the RegularChans library in Maple we can solve the following QE
query (over the reals):

f := &A([i,j]), ((0 < i) &and (i < r1) &and

(0 < j) &and (j < r2) &and

(0 < r1) &and (0 < r2) &and

(0 < e2) &and (0 < g2) &and (0 < B))

&implies (e2 * i + g2 * j < B);

sols := QuantifierElimination(f);

After simplification, with B =M2 − c2, we obtain:

r1e2 + r2g2 + c2 <M2

Consequence for b2

Recall that we have:

e1 = T1

a2
, g1 = T2

a2
, c1 = T3

a2
, e2 = T4−b2e1, g2 = T5−b2g1, and c2 = T6−b2c1.

Hence we have: r1(T4 − b2
T1

a2
) + r2(T5 − b2

T2

a2
) +T6 − b2

T3

a2
< a2n + b2.

Once the values of T1, . . . ,T6, r1, r2,n are known, we obtain a condition on
b2 (and a2).

The 2D-2D case: rectangular domain
Loop Format:

for (i = 0; i ≤ r1; i++) do
for (j = 0; j ≤ r2; j++) do
A[2 ∗ i ∗ n + n + 3 ∗ j + 2] = ⋯

end for
end for

▸ We have T = [2,0,1,0,3,2].
▸ [a2 = a2, b2 = b2, e1 = 2, e2 = −2b2, g1 = 0, g2 = 3, c1 = 1, c2 = 2−b2]
▸ The validity condition (derived from QE over the reals) becomes:

−r1b2
2
a2
+ 3r2 + 2 − b2

1
a2
< a2n + b2.

▸ Evaluating at b2 = 0 and a2 = 1, we obtain f1 = 2i + 1 and f2 = 3j + 2

▸ max(i) = r1, max(j) = r2
▸ Assume n = 10, that is, Ã[][10],

▸ r1 = r2 = 1, max(f2) = 5 < 10, delinearization valid.
▸ r1 = r2 = 2, max(f2) = 8 < 10, it is delinearization valid.
▸ r1 = r2 = 3, max(f2) = 11 > 10, it is invalid delinearization unless a

larger value of b2 is chosen, since 1 < 6b2 must hold when we have
n = 10, r1 = r2 = 3.

The 2D-2D case: (truncated) triangular domain

Loop Format:

for (i = 0; i ≤ r1; i++) do
for (j = 0; i + 2j ≤ r2; j++) do
A[2 ∗ i ∗ n + n + 3 ∗ j + 2] = ⋯

end for
end for

▸ [a2 = a2, b2 = b2, e1 = 2, e2 = −2b2, g1 = 0, g2 = 3, c1 = 1, c2 = 2−b2]
▸ Evaluating at b2 = 0 and a2 = 1, we obtain f1 = 2i + 1 and f2 = 3j + 2

▸ Assume n = 10, that is, Ã[][10],
▸ r1 = r2 = 1, max(f2) = 3 < 10, delinearization valid.
▸ r1 = r2 = 2, max(f2) = 5 < 10, delinearization valid.
▸ r1 = r2 = 3, max(f2) = 5 < 10, delinearization valid.

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

The 3D-3D case: set up
Loop counters and dimension sizes

1. d = 3, that is, 3 loop counters: i, j, k.
2. δ = 3, that is, the target array Ã is 3D with dimension sizes M1 = a1m + b1,

M2 = a2n + b2, and M3 = a3p + b3, where m, n, p are data parameters known
at execution while a1,b1, a2,b2, a3,b3 are integers TBD.

Array references

1. Given the reference A[R] to the array A with

R =T1inp +T5in +T9ip +T13i+
T2jnp +T6jn +T10jp +T14j+
T3knp +T7kn +T11kp +T15k+
T4np +T8n +T12p +T16

(3)

2. we want f1, f2, f3 such that
R = f1M2M3 + f2M3 + f3, where:

f1 = e1i + g1j + h1k + c1, f2 = e2i + g2j + h2k + c2 and f3 = e3i + g3j + h3k + c3

3. and for each iteration (i, j,k) in the domain we have
0 ≤ f2 <M2 and 0 ≤ f3 <M3.

The 3D-3D case: the polynomial system
The equation R = f1M2M3 + f2M3 + f3 leads to the following system of polynomial
equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T1 = a2a3e1

T2 = a2a3g1

T3 = a2a3h1

T4 = a2a3c1

T5 = a2b3e1

T6 = a2b3g1

T7 = a2b3h1

T8 = a2b3c1

T9 = a3b2e1 + a3e2

T10 = a3b2g1 + a3g2

T11 = a3b2h1 + a3h2

T12 = a3b2c1 + a3c2

T13 = b2b3e1 + b3e2 + e3

T14 = b2b3g1 + b3g2 + g3

T15 = b2b3h1 + b3h2 + h3

T16 = b2b3c1 + b3c2 + c3

(4)

▸ Recall that the coefficients T1, . . . ,T16 of R over i, j, k, m, n, p are known
at compile time.

▸ Recall that the coefficients
a1, a2, a3,b1,b2,b3, c1, c2, c3, e1, e2, e3,g1,g2,g3,h1,h2,h3 are integers TBD.

The 3D-3D case: solving the polynomial system
We obtain the following solution

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b3 = a3T5

T1

e1 = T1

a2a3

g1 = T2

a2a3

h1 = T3

a2a3

c1 = T4

a2a3

e2 = T9−a3b2e1

a3

g2 = T10−a3b2g1

a3

h2 = T11−a3b2h1

a3

c2 = T12−a3b2c1

a3

e3 = T13 − (b2b3e1 + b3e2)
g3 = T14 − (b2b3g1 + b3g2)
h3 = T15 − (b2b3h1 + b3h2)
c3 = T16 − (b2b3c1 + b3c2)

(5)

where

1. a2, a3 are free as long as a2a3 divides gcd(T1,T2,T3,T4) and that a2b3

divides gcd(T5,T6,T7,T8),

2. b2 is free, and we have T5

T1
= T6

T2
= T7

T3
= T8

T4
.

The 3D-3D case: solving the QE problem
Principles: similar to the 2D-2D case

1. Inspect the different shapes of the Z-polyhedra defining the iteration
domain

2. for each shape, one con solve the problem off-line over the reals,
keeping in mind that the obtained condition may be too strict.

3. for each shape, one can solve the problem at execution time by
optimizing sawtooth functions.

The 3D-3D case: using sawtooth functions

For the 3D-3D cases, the “sawtooth” function would be in the form of

f (x , y) = e ⌊ax + b

d
⌋ + cx + h⌊kx + ly + g

m
⌋

Here are two examples of the plot for the function.

The 3D-3D case: solving the QE problem over the reals
t_5 a_3 t_1 a_2 t_9 - b_2 t_1 t_1 t_13 - t_5 t_9

[a_1, a_2, a_3, b_1, b_2, -------, -------, -----------------, ------------------,

t_1 a_2 a_3 a_2 a_3 t_1

t_2 a_2 t_10 - b_2 t_2 t_1 t_14 - t_10 t_5 t_1 a_2 t_11 - b_2 t_1

-------, ------------------, -------------------, -------, ------------------,

a_2 a_3 a_2 a_3 t_1 a_2 a_3 a_2 a_3

t_1 t_15 - t_11 t_5 t_1 a_2 t_12 - b_2 t_1 t_1 t_16 - t_12 t_5

-------------------, -------, ------------------, -------------------]

t_1 a_2 a_3 a_2 a_3 t_1

>

> validity_condition_1 := ‘<‘(r_1 * e_2 + r_2 *g_2 + r_3 * h_2 + c_2, a_2 * m + b_2);

validity_condition_1 := e_2 r_1 + g_2 r_2 + h_2 r_3 + c_2 < a_2 m + b_2

> eval(validity_condition_1, [e_2= (a_2 * t_9 - b_2 * t_1) / (a_2 * a_3),

> g_2 = (a_2 * t_10 - b_2 * t_2) / (a_2 * a_3),

> h_2 = (a_2 * t_11 - b_2 * t_1) / (a_2 * a_3)]);

r_1 (a_2 t_9 - b_2 t_1) r_2 (a_2 t_10 - b_2 t_2) r_3 (a_2 t_11 - b_2 t_1)

----------------------- + ------------------------ + ------------------------ + c_2

a_2 a_3 a_2 a_3 a_2 a_3

< a_2 m + b_2

The 3D-3D case: rectangular domain
Loop Format:

for (i = 0; i ≤ r1; i++) do
for (j = 0; j ≤ r2; j++) do
for (k = 0; k ≤ r3; k++) do

A[12npi + 18npj + 6np + 6ni + 9nj + 16pi + 22pj + 3n + 8p + 8i +
11j + k + 4] = ⋯

end for
end for

end for

▸ T ∶= [12,18,0,6,6,9,0,3,16,22,0,8,8,11,1,4];
▸ After solving the delinearization problem, we would get the validity

conditions:

r1(16 − 4b2) + r2(22 − 6b2) − 4r3b2 + 8 − 4b2 < b2 + 3m

and
r3 < p + 1

▸ We can successfully retrieve a2 = 3, a3 = 2 and b3 = 1.
▸ (The real array format for this problem should be

A[2 ∗m + 1][3 ∗ n + 2][2 ∗ p + 1])

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

Another approach to the delinearization problem
Principles

1. Assume that the delinearization problem has been solved for a particular
problem instance, say 2D-Jacobi.

2. Assume that we have another problem instance which looks very similar
3. We may want to check whether the solved problem instance is obtained from

the unsolved problem instance via a rank-preserving unimodular
transformation (between the two iteration domains)

4. If this the case, then the validity condition of the solved problem instance
and the validity condition of the unsolved problem instance are equivalent.

Details

1. rank-preserving guarantees that the same array coefficients are read/written
in the same order.

2. rank-preserving transformations are “classifiable” off-line, next slide.
3. unimodularity guarantees that we can map integers to integers back and

forth.
4. This can be performed at compile time (at the simple cost of linear algebra)

and leads to a case discussion which can be evaluated at execution time.

2D Pattern matching problem

[a b
c d

] × [i
j
] = [ai + bj

ci + dj
]

QE input:

∀[i1, j1, i2, j2], (i1 < i2) ∨ ((i1 = i2) ∧ (j1 < j2)) Ô⇒
(a i1 + b j1 < a i2 + b j2) ∨ ((a i1 + b j1 = a i2 + b j2) ∧ (c i1 + d j1 < c i2 + d j2))

QE output:
(b = 0) ∧ (0 < a) ∧ (0 < d)

We also assume that ad − bc = 1, which gives us the final matrix as below
where a > 0

[a 0
c 1

a

]

3D Pattern matching problem

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a b c
d e f
g h l

⎤
⎥
⎥
⎥
⎥
⎥
⎦

×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

i
j
k

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ai + bj + ck
di + ej + fk
gi + hj + lf

⎤
⎥
⎥
⎥
⎥
⎥
⎦

QE input:

∀[i1, j1, k1, i2, j2, k2],

(i1 < i2) ∨ ((i1 = i2) ∧ (j1 < j2)) ∨ ((i1 = i2) ∧ (j1 = j2) ∧ (k1 < k2)) Ô⇒

(a i1 + b j1 + c k1 < a i2 + b j2 + c k2)

∨((a i1 + b j1 + c k1 = a i2 + b j2 + c k2) ∧ (d i1 + e j1 + f k1 < d i2 + e j2 + f k2))

∨((a i1 + b j1 + c k1 = a i2 + b j2 + c k2) ∧ (d i1 + e j1 + f k1 = d i2 + e j2 + f k2)

∧(g i1 + h j1 + l k1 < g i2 + h j2 + l k2))

QE output:
(f = 0) ∧ (0 < e) ∧ (c = 0) ∧ (b = 0) ∧ (0 < a) ∧ (0 < l)

which gives us the final matrix as below

⎡
⎢
⎢
⎢
⎢
⎢
⎣

a > 0 0 0
c e > 0 0
g h l > 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Plan

About our research group

The delinearization problem

The 2D-2D delinearization problem

The 3D-3D delinearization problem

Pattern matching via rank-preserving unimodular transformations

Concluding remarks

Concluding remarks: 4 or 5 approaches (1/2)

Using Presburger arithmetic at compile time

1. the computed validity conditions are sufficient and necessary

2. extra work at compile-time (the underlying algorithms are
exponential in d and δ)

3. the implementation in the Polly framework seems not to handle
some corner cases like b2 ≠ 0

Using QE over the reals off-line

1. the computed validity conditions are only sufficient, but still useful in
practice as shown above

2. no extra work at compile-time

3. can determine a2, a3,b2 at execution time and support automatic
case discussion at execution time to ensure delinearization.

https://polly.llvm.org/

Concluding remarks: 4 or 5 approaches (1/2)
Using sawtooth functions

1. the computed validity conditions are sufficient and necessary

2. little extra work at execution time

3. combined with polynomial system solving (performed off-line) it can
be used to determine a2, a3,b2 at execution time, provided that we
replace the optimization problem by a parametric one (work in
progress).

Pattern matching via rank-preserving unimodular
transformations

1. As for QE, most of the work can be done off-line

2. At compile-time, only linear system solving is needed, which can be
regarded as cheap.

3. the computed validity conditions are sufficient and necessary

4. but this approach is heuristical

5. however, it is reasonable to think of building a good set of popular
patterns.

	About our research group
	The delinearization problem
	The 2D-2D delinearization problem
	The 3D-3D delinearization problem
	Pattern matching via rank-preserving unimodular transformations
	Concluding remarks

