<div dir="ltr"><div dir="auto"><span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline">Very cool! The first thing that jumps out to me is how tidy and modular the code structure is. The code feels very familiar (stylistically, organizationally, etc.) to me as an LLVM developer.</span><br></div><div dir="auto"><br></div><div dir="auto">One thing that wasn't at all clear to me is how this is different/similar to TensorFlow XLA<span style="color:rgb(34,34,34);font-family:arial,sans-serif;font-size:small;font-style:normal;font-variant-ligatures:normal;font-variant-caps:normal;font-weight:400;letter-spacing:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px;background-color:rgb(255,255,255);text-decoration-style:initial;text-decoration-color:initial;float:none;display:inline"><span> </span>(previously mentioned on this list)</span>. Can you briefly compare and contrast this with TensorFlow XLA?</div><div dir="auto"><br></div><div>-- Sean Silva</div><div><br></div><div><br></div><div class="gmail_quote"><div dir="ltr">On Thu, May 3, 2018, 6:14 PM Saleem Abdulrasool via llvm-dev <<a href="mailto:llvm-dev@lists.llvm.org" target="_blank">llvm-dev@lists.llvm.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div dir="ltr"><div>Hello LLVM community,</div><div><br></div><div>We have been working hard on a new domain specific optimizing compiler, and we</div><div>are pleased to announce that we have recently open sourced the project! We</div><div>would like to introduce you to Glow, an optimizing compiler for neural networks!</div><div><br></div><div>This new compiler is built on the hard work of this community and we would like</div><div>to thank all of the contributors to the LLVM project. We hope that the project</div><div>will be beneficial to others as well, which would not have been possible without</div><div>your work.</div><div><br></div><div>You can find the sources to it at <a href="http://github.com/pytorch/glow" rel="noreferrer" target="_blank">http://github.com/pytorch/glow</a> and read up on</div><div>the work in the associated paper we have released at <a href="https://arxiv.org/pdf/1805.00907" rel="noreferrer" target="_blank">https://arxiv.org/pdf/1805.<wbr>00907</a>.</div><div><br></div><div>Thank you all!</div><div><br></div><div>The Glow Developers</div>
</div>
______________________________<wbr>_________________<br>
LLVM Developers mailing list<br>
<a href="mailto:llvm-dev@lists.llvm.org" rel="noreferrer" target="_blank">llvm-dev@lists.llvm.org</a><br>
<a href="http://lists.llvm.org/cgi-bin/mailman/listinfo/llvm-dev" rel="noreferrer noreferrer" target="_blank">http://lists.llvm.org/cgi-bin/<wbr>mailman/listinfo/llvm-dev</a><br>
</blockquote></div></div>