
LLVM GsoC 2018 Proposal

A single updater class for Dominators in LLVM

PERSONAL INFORMATION

Name Sagar Thakur
Country India (GMT + 5:30)
School International Information of Information Technology,

Hyderabad
https://www.iiit.ac.in/about/quick-facts/

Degree Master of Technology in Computer Science and
Engineering

Email cs.sagarthakur@gmail.com
sagar.thakur@students.iiit.ac.in

Contact (+91) 8446605703

RELEVANT EXPERIENCE

Before joining IIIT hyderabad I was working at Imagination
technologies where I gained 3 years of experience of working in the
LLVM community. I am well aware of the source code structure and the
building process. I have worked on the LLVM, LLDB and the compiler-rt
projects of LLVM. My work was mainly focused on porting LLVM, LLDB
and compiler-rt to support the MIPS backend. My patches and commits
can be found at ​https://reviews.llvm.org/p/slthakur/ . I also have
experience working with the LLVM IR. My work on LLVM IR was mainly
focused on lowering the IR to mips target assembly in the chromium
subzero project. I have also worked with selection DAGs in LLVM. My
patches in the subzero project can be found at:

https://codereview.chromium.org/search?closed=1&owner=sagar.thakur
&reviewer=&cc=&repo_guid=&base=&project=&private=1&commit=1&cr
eated_before=&created_after=&modified_before=&modified_after=&ord
er=&format=html&keys_only=False&with_messages=False&cursor=&li
mit=30

https://www.iiit.ac.in/about/quick-facts/
mailto:cs.sagarthakur@gmail.com
mailto:sagar.thakur@students.iiit.ac.in
https://reviews.llvm.org/p/slthakur/

I have gone through the relevant research papers mentioned in the

comments in the source code and the dominator tree class reference
diagrams. I have run the dominator tree IR tests using debug flags for
the dominator tree to see how it is built.

I have studied graduate level compiler construction and
optimization courses. I had also taken up a course on Advanced
Problem Solving which teaches how to model data structures to solve
complex computer science problems. In the Advanced problem solving
course I have acquired knowledge of basic and advanced graph and
tree algorithms. I have also worked on implementation of Tarjan’s
incremental and decremental dynamic depth first search algorithm as a
project in the Advanced Problem Solving course. Apart from this I have
worked on various Operating System/ Database System/Scripting mini
projects.

OBJECTIVE OF THE PROJECT

Design and implement a new class for abstracting away how the
dominator tree updates are performed when the CFG changes.

CRITERIA OF SUCCESS

1. A clean abstract updater interface for the dominator tree and the
post dominator tree for the users of the dominator tree.

2. Faster incremental updates to the dominator tree and the post
dominator tree. Using the new class we would be able to avoid the
unnecessary changes to the Post dominator tree

MOTIVATION

Although I have worked previously in llvm, my work was mainly
focused on the porting of MIPS processor for various LLVM projects.
This is the first time I will be working on the generic part of LLVM. The
area of dominator trees and such compiler optimizations is completely
new to me and I always wanted to work on the internal data structures
used in compiler optimization.I believe this project will be a good start for
me to get into the field of compiler optimization.

PROPOSAL

Going through the source code I have tried to understand where
the changes need to be made. Here is the plan I propose to follow
based on my understanding of the source code:

● Wrap all the dominator tree related classes such as the
DominatorTree class, DominatorTreeAnalysis class and
DefferedDominance class defined in Dominators.h with a single
updater class.

● Make code changes in the places that use the dominator tree such
as the LoopSimplify, BreakCriticalEdges, LoopUnroll etc. Now we
will use the single updater class.

● To make the updation faster I will design an algorithm to prune any
unnecessary changes to the Post Domination Tree.

● Design new strategies to perform lazy updates.

TIMELINE

I have tried to come up with a preliminary timeline which could be
followed to complete the project. I am open to any change in the timeline
according to the mentor.

Duration Description
April 23 Acceptance of students proposals

April 23 to April 30
(Community Bonding Period)

● Initial discussion about requirements for various modules
with mentor.

● Set up of weekly schedule for updates via
skype/email/chat.

● Explore source code with current state of repository.

April 30 to May 7
(Community Bonding Period)

● Discuss requirements with mentor.

● Continue understanding current codebase.

● Start designing of the inheritance diagram and
collaboration diagram of the updater class.

May 7 –to May 14
(Community Bonding Period)

● Finalize implementation details.

● Start implementation of the updater class.

May 14 to May 21 ● Finish implementation of the updater class and submit
patch for it.

● Address the review comments on the patch and commit
the changes

May 21 to May 28 ● Use the new updater object to the existing code which
was working directly with the dominator / deferred
dominator tree.

● Write and evaluate test cases

● Submit patch the changes and the test cases

May 29 to June 10 ● Address the review comments on the patch.

● Add more tests if needed.

● Commit the changes after acceptance of the patch.

June 11 to June 15
(Phase 1 Evaluation)

● Add documentation if needed.

● Discuss progress with mentor.

June 16 to June 24 ● Start design and visualization of algorithm to prune
unnecessary PostDomTree updates based on updates
to the DomTree.

● Finalize design of algorithm with mentor.

June 25 to July 2 ● Implement the algorithm.

● Write and evaluate test cases.

● Submit patch for it

● Address review comments and commit patch after
acceptance

July 2 to July 9 ● Compare performance metrics for previous
implementation and current implementation

July 9 to July 13
(Phase 2 Evaluation)

● Add documentation if needed.

● Discuss progress with mentor.

July 14 to Aug 5 ● Explore more strategies for performing lazy updates.

● Discuss with mentor about various strategies.

● Implement the best strategy discussed with mentor.

● Write and evaluate test cases.

● Submit patch and commit on acceptance.

● Complete any unfinished task, take up some new tasks
that require to be implemented as per the mentor’s
directive

Aug 6 to Aug 14

● Final week: Submit final product and wait for mentor’s
evaluation

AVAILABILITY

My semester exams finish by the 26th of April allowing me to get started
right away after that. I have no prior commitments during the months of
May, June and July. College reopens in the 1st week of August, which
may slightly affect my schedule with respect to timings, but I intend to
finish a major portion of the work during the summer itself. I would be
able to work 8+ hours on a daily basis. Thus I will be able to devote a
minimum of 56 hours per week for the project.

A NOTE OF THANKS

I would like to thank the llvm community for giving me this opportunity to
write a proposal. I look forward to receiving feedback from those
reviewing this document, and would be glad to discuss/change
accordingly.

