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Abstract. Current architecture complexity requires fine tuning of com-
piler and runtime parameters to achieve best performance. Autotuning
substantially improves default parameters in many scenarios but it is a
costly process requiring long iterative evaluations.

We propose an automatic piecewise autotuner based on CERE (Codelet
Extractor and REplayer). CERE decomposes applications into small
pieces called codelets: each codelet maps to a loop or to an OpenMP
parallel region and can be replayed as a standalone program.

Codelet autotuning achieves better speedups at a lower tuning cost. By
grouping codelet invocations with the same performance behavior, CERE
reduces the number of loops or OpenMP regions to be evaluated. More-
over unlike whole-program tuning, CERE customizes the set of best pa-
rameters for each specific OpenMP region or loop.

We demonstrate the CERE tuning of compiler optimizations, number
of threads, thread affinity, and scheduling policy on both NUMA and
heterogeneous architectures. Over the NAS benchmarks, we achieve an
average speedup of 1.08× after tuning. Tuning a codelet is 13× cheaper
than whole-program evaluation and predicts the tuning impact with a
94.7% accuracy. Similarly, exploring thread configurations and schedul-
ing policies for a Black-Scholes solver on an heterogeneous big.LITTLE
architecture is over 40× faster using CERE.
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1 Introduction

This paper is an extended version of the work presented at the 22nd Euro-Par
international conference [1]. 3

The current increase of architecture complexity with multiple cores, hetero-
geneity, out-of-order execution, complex memory hierarchies, and Non-Uniform
Memory Access (NUMA) complicates performance characterization. Achieving
full efficiency requires fine tuning parameters such as the degree of parallelism,
thread placement or compiler optimization. Runtime and compiler standard pa-
rameter levels (such as -O3 compiler flag or scatter thread placement) achieve
good-enough performance across most of the codes and architectures. But they
cannot take advantage of target-specific optimizations since they must correctly
work on a large panel of architectures.

Finding the optimal parameters leads to substantial improvement but is a
costly and time consuming process. For example, compilers such as LLVM [2]
3.4 provide more than sixty optimization passes. Passes have different impact
depending on their order of execution and can be applied multiple times. This
leads to a huge exploration space: considering only sequences of 30 passes requires
to explore a space over 6030 points.

Even worse, some applications have different optimal parameters for differ-
ent code regions. For example, compute bound loops and memory bound loops
within the same function will not be sensitive to the same compiler optimiza-
tions.

There are different approaches to tune parameters. Iterative compilation [3]
is a well known automated search method for solving the compiler optimization
phase ordering problem. The idea is to apply successive compiler transformations
to a program and to evaluate them by executing the resulting code. Similar ex-
ecution driven studies [4, 5] explore the efficiency of different thread placement
strategies or frequencies. Smart search algorithms [6, 7] through the parameter
space reduce the evaluation cost. Genetic algorithms [8, 9] or adaptive learn-
ing [10, 11] accelerate the search by avoiding unnecessary parameters.

A common point of these execution driven studies is that they require a full
program evaluation and execution to quantify the impact of a single parameter
value. The problem is that executing an application is costly and time consuming,
especially if we have thousands of points to evaluate. Also, as regions of code
do not benefit from the same parameters, an overall program-evaluation (or
monolithic evaluation) is not able to achieve the optimal per region optimization.
In other words, these studies are expensive to perform and do not necessarily
lead to the optimal parameters.

3 We develop a new multi-process capture technique to accelerate multi-threaded ap-
plications capture. We extend both the NUMA capture and the methodology sec-
tions by providing additional data and more details about the warmup strategies.
A new section discusses how similar codelets can be clustered to accelerate the tun-
ing. Finally, we use CERE to optimize the thread affinity and scheduling on a Juno
big.LITTLE heterogeneous architecture.
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In this paper, we propose a piecewise exploration framework based on CERE [12]
(Codelet Extractor and REplayer) which enhances both the search cost and the
search benefits. We partition applications into small pieces called codelets. Each
independent loop or OpenMP parallel region is extracted as a codelet that can
be replayed as a standalone program. Instead of evaluating parameters on the
whole application, we separately evaluate them on each codelet (section 3).

We note that regions of code may be executed multiple times in an appli-
cation lifetime. Invocations sharing a similar execution context have the same
performance. Therefore, a single invocation replay is sufficient to characterize
them. Codelets exploit this idea to reduce the tuning cost as they can be di-
rectly replayed as few times as we want (section 3.3). Moreover, whole regions
may share a common performance behavior and be sensitive to the same param-
eters. By grouping similar regions, CERE can reduce the number of regions to
evaluate and therefore further accelerate the tuning process (section 3.4).

CERE not only accelerates the searching process but also improves the tuning
performance benefits. The piecewise codelet evaluation allows to find the best
parameters for each region. Combining the best parameters for each region within
a single binary is called hybridization and outperforms traditional monolithic
tuning (section 3.5).

Using codelets as proxies for autotuning requires that codelets faithfully
reproduce the application behavior across the search space. In particular this
requires a warmup of the memory state. CERE already implements various
warmup strategies. To enable thread placement exploration, we extend these
warmup strategies with a new NUMA ownership strategy (section 3.1). We im-
proved the memory capture implementation with a new parallel tracee and tracer
memory capture library based on Ptrace. This implementation significantly ac-
celerates the multi-threaded memory capture (section 3.2).

We demonstrate CERE tuning capabilities over a Reverse Time Migration
(RTM) proto-application and the NAS benchmarks (section 4). To test the
NUMA ownership strategy, we perform the multi-threaded runs on a NUMA
architecture. CERE achieves a 1.11× speedup with a 200× cheaper exploration
over RTM. We also use CERE to tune multiple thread placement and scheduling
strategies for PARSEC Blackscholes over an heterogeneous architecture. CERE
accurately predicts the execution time while remaining 40× faster than full ap-
plication runs (section 5).

The contributions of this paper are:

– A novel automatic autotuner based on codelets and integrated in CERE.

– A holistic piecewise tuning approach that addresses degree of parallelism,
thread placement, OpenMP loop scheduling policy, NUMA effects, hetero-
geneous cores, and compiler optimization passes.

– The validation of thread and compiler configurations tuning through codelets
over the NAS benchmarks, PARSEC Blackscholes, and an industrial RTM
proto-application.

– A Ptrace based NUMA aware memory page capture.
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2 Motivating Example

thread affinity xsolve ysolve zsolve rhs total

s2 0;8 32.3 23 28.5 23 106.8
c2 0;1 21.4 17.6 18.1 23.7 80.8
h2 0;16 40 32.6 23 46.1 141.7
s4 0;8;1;9 25.9 20.9 26 12.1 84.9
c4 0;1;2;3 15.5 12.7 13.8 13.2 55.2
h4 0;16;1;17 23.8 17.5 16 24.3 81.5
s8 0;8;1;9;2;10;3;11 24.4 21.9 28.6 6.9 81.8
c8 0;1;2;3;4;5;6;7 14.4 13.4 14.3 9.1 51.2
h8 0;16;1;17;2;18;3;19 17.7 14.2 13.9 13.5 59.3
s16 16 scatter 25.1 21.4 35.5 5.3 87.4
c16 16 compact 17 15 15.5 9.7 57.2
h32 32 scatter 36 31.2 38.9 6.4 112.4

Table 1. Execution time in megacycles of SP parallel regions across different thread
affinities with -O3 optimization. For n threads, we consider three affinities: scatter sn,
compact cn, and hyperthread hn. Executing SP with the c8 affinity provides an overall
speedup of 1.71× over the standard (s16).
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Fig. 1. Tuning exploration for two SP regions. For each affinity, we plot the best, worst,
and -O3 optimization sequences. Custom optimization beats -O3 for s2,s4, and s8 on
ysolve.

We demonstrate how CERE operates on SP, a Scalar Penta-diagonal solver,
from the C version of the NPB 3.0 OpenMP benchmarks [13]. CERE autotun-
ing achieves a 1.82× performance speedup over the standard parameters levels.
Thanks to the CERE codelet approach, the exploration time is approximately
five times cheaper compared to the whole-program iterative compilation.

CERE starts by profiling SP and automatically selects representative OpenMP
regions to tune. xsolve, ysolve, zsolve, and rhs are chosen and cover 93% of
SP execution time. The coverage of a region is defined as the execution time of
the region divided by the execution time of the whole application. CERE uses
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integer linear programming to find the minimal codelet set for a target coverage.
The approach is detailed by de Oliveira Castro et al. [12].

CERE extracts these regions as codelets and tunes them with a holistic ex-
ploration across three dimensions: thread number, thread placement, and LLVM
compiler passes. Once satisfying parameters are found, CERE produces an hy-
brid application where each region uses the best found parameters.

This study is performed on Sandy Bridge. We explore the interactions be-
tween 12 thread configurations combining different number of threads and affin-
ity mappings including scatter, compact, and hyperthread. Scatter distributes
the threads as evenly as possible across the entire system. The opposite strat-
egy, compact, assigns the threads to the cores as closely as possible. Hyperthread
acts like compact but binds multiple threads to the same physical core to take
advantage of virtual cores. We complete this study by evaluating 150 LLVM
optimization sequences generated using the random sub-sampling presented in
section 4. Combining all the parameters produces an exploration space of 1800
points, which gives an insight of how costly it is to simultaneously tune multiple
parameters.

Figure 1 shows the performance of two SP parallel regions across this explo-
ration space. We notice that there is a strong interaction between the compiler
and the thread parameters as they both significantly impact the performances.
Moreover, the best parameters are different for the two regions: scatter place-
ment is best for rhs while compact benefits ysolve.

CERE makes it possible, through codelet replay, to independently explore
each region. Moreover, thanks to CERE replay prediction model presented in
section 3.3, it is possible to quickly evaluate the impact of each configuration
by using only a few datasets. CERE evaluates thread affinities and compiler
optimizations on SP, respectively 5.84× and 4.52× times faster than a full ap-
plication evaluation while keeping a low average error of 2.33%.

Custom parameters outperform the standard 16 threads scatter s16 -O3

on SP. Table 1 shows the performance of different thread affinities compiled
with -O3. The best custom thread affinity 0;1;2;3;4;5;6;7 (single NUMA
socket) achieves a speedup of 1.71× over the standard 16 threads scatter

(two NUMA sockets).

We explore with CERE 350 compiler optimization sequences on the best
single NUMA configuration found above. xsolve and ysolve work best at the
default -O2 level, but a custom best sequence is found for zsolve and rhs.
Figure 2 shows the performance of each region compiled with the default opti-
mization and the best custom sequences. No single sequence is the best for all
regions. CERE hybrid compilation produces a binary where each region is com-
piled using its best sequence, achieving a speedup that cannot be reproduced
using traditional monolithic compilation.
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Fig. 2. Violin plot execution time of SP regions using best NUMA affinity. Measures
were performed 31 times to ensure reproducibility. When measuring total execution
time, hybrid compilation outperforms all other optimization levels, since each region
uses the best available optimization sequence.

3 CERE AutoTuner

CERE [12, 13] is an open source framework for code isolation. CERE finds and
extracts loops or OpenMP parallel regions from an application as isolated frag-
ments of code, called codelets. Codelets can be modified, compiled, run, and
measured independently from the original application.
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Fig. 3. Codelet capture and replay workflow

Figure 3 presents how a region is captured as a codelet and replayed. Using
codelets as a proxy for application characterization requires two steps: capture
and replay. During the capture, the execution state is saved for each region.
During the replay, CERE restores the codelet memory and cache state before
executing the region. At replay, a cache and NUMA page ownership warmup is
necessary to ensure that the replay execution context is close to the original.

One of CERE strong features is allowing change of the number of threads
during replay by extracting the kmpc fork calls [13]. CERE directly executes
the function kmpc fork which decides how many threads are spawned. We can
change the number of threads as long as the thread configuration is not con-
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strained by the capture. A thread configuration is constrained by the capture
if applications manually perform serial initializations to allocate memory slots
depending on fixed values of number of threads. Fortunately, this design pattern
is infrequent and was not used in the considered benchmarks.

CERE extracts regions at the compiler Intermediate Representation (IR)
level after clang front-end translation but before LLVM middle-end optimiza-
tions. This allows to re-target the codelet compilation and execution.

3.1 NUMA Aware Warmup

A replay has to faithfully reproduce the original invocation context. CERE re-
stores the memory working set of the region and warms up the cache to avoid
cold-start bias [14]. It uses a snapshot of the memory at page level granular-
ity. With a memory protection mechanism, the memory pages containing the
working set are captured. During replay, pages are remapped to their original
addresses. CERE includes two main cache warmup approaches [12] that restore
the execution context before running the codelet.

The first is an optimistic warmup strategy that preloads the whole working
set into the cache. The strategy assumes that the region working set was already
in cache during the original execution. The second, is a page memory tracing
technique. It warms the cache by replaying the memory access history at the
memory page granularity. The first is faster to perform but less accurate than
the second.

In this paper, we present a new orthogonal warmup approach for multi-
threaded codelets executed on architectures with multiple NUMA domains. While
changing the number of threads is easily done over our test applications, correctly
mapping the pages across NUMA domains is a challenge.

Indeed, due to the node local first touch policy in Linux, a page is mapped
to the thread, and therefore to its NUMA domain, which first attempts to use
it. To guarantee that the codelet replay has the same behavior as the original
region, we must ensure that pages are mapped to the same NUMA domains as
they have been in the original run. The problem is that pages are not necessarily
bound to the same NUMA domains across the different thread affinities. For
instance, scatter runtime strategy maximizes the number of NUMA domains
while compact minimizes it.

Figure 4 outlines this problem on a 2-NUMA domains architecture. CERE
default warmup uses a single thread to remap the pages to their original ad-
dresses: all the pages are bound to a single NUMA domain. Replays accurately
predict the execution time as long as the affinity binds the threads to the same
NUMA domain. Otherwise, the replay incurs NUMA latencies that do not ap-
pear in the original run and which cause prediction discrepancies.

To solve this issue, we enhance the page capture by saving, for each page,
the first thread that touches it. During replay, before replaying the codelet code,
each thread touches the pages that it has saved at the capture. Hence, pages are
mapped to the NUMA domain of the thread which is the first to touch them.
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To ensure a correct NUMA mapping at replay, we must not exceed the num-
ber of threads at capture. Also, when the number of threads is changed, we must
spread the pages across the replaying threads to correctly remap them across
the NUMA domains. We spread the pages according to the following formula:

t′(p) = dn
′

n
t(p)e,

where p is the page we are trying to touch. n and n′ are respectively the number
of threads used during the capture and the replay. t(p) is the thread that first
accessed this page during the capture and t′(p) is the thread that must touch
the page at replay to correctly warm it up.

The most common NUMA policy is first touch, but there is also the less
known interleave policy. Interleave is used at boot-time to avoid overloading the
initial boot domain. Interleave evenly spreads the pages across different domains
using round robin. It ensures that pages are evenly distributed across all NUMA
domains, therefore making the NUMA latency uniform. When using interleave
policy, CERE does not use any specific NUMA warmup. There is no guarantee
that the pages are assigned to the same domains than in the original run, but
the uniform distribution across domains is preserved.
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0e+00

1e+10

2e+10

3e+10

4e+10

2 4 8 16 2 4 8 16 32
thread number

C
yc

le
s

Original Single Thread Warmup NUMA Warmup

Fig. 4. Prediction accuracy of a single-threaded warmup versus a NUMA aware
warmup on BT xsolve. Only a NUMA aware warmup is able to predict this region
execution time on a multi NUMA domain configuration.

3.2 Multi-Process Capture with Ptrace

CERE captures the memory state at a page level granularity by only saving
touched pages. After protecting the whole target application memory, the OS
raises a signal when a memory page is touched. This signal is caught by CERE’s
handlers which unprotect and dump the memory page associated with the signal.
Unfortunately, using the same process to execute an application and capture its
memory can be problematic for multi-threaded runs.

The memory must not be modified while we attempt to protect it. In multi-
threaded capture, threads have to be stopped before the tracing thread protects
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memory pages. Otherwise CERE can attempt to protect a segment which is no
longer valid. Indeed, a race condition exists: a thread may protect a page which
has since been deallocated by another running thread. To avoid the issue the
tracing thread should be able to stop all the other threads.

A first solution would be to send a SIGSTOP signal to the other threads. Yet,
sending SIGSTOP to a process stops all its threads, including the thread which
actually sent the signal. This will not work since the tracing thread will also be
stopped hanging the capture. A second solution would be to use functionalities
provided by the Oracle Solaris OS thr suspend and thr continue or Window
OS ResumeThread and SuspendThread which allow stopping and restarting each
individual thread. Unfortunately, the POSIX standard does not implement these
functions. It is possible to simulate stop/restart functionalities by using a shared
mutex, but this requires knowing the spawned threads in advance and modifying
their code to include calls to the mutex. Since the CERE capture library does not
make assumptions about the underlying program, we cannot apply this solution.

To address this challenge, we separate the studied application from the CERE
capturing process. We use the ptrace mechanism. Ptrace is a system call which
allows a process called tracer to monitor another process called tracee. Tracer
can examine and change the tracee’s memory and registers. To follow a thread,
the tracer must attach it with ptrace. Since this command is per thread, the
tracer must attach each thread of the tracee. (see block Attach all threads in
Fig. 5). So the capturing process and the application respectively act as tracer
and tracee.

When a signal is delivered to the tracee, the kernel stops the process and sends
the signal to the tracer. The ptrace API provides a mechanism called signal

injection and suppression: the tracer can choose to inject or suppress the
signal. If the signal is injected, it is sent to the tracee. If the signal is suppressed,
it is lost and the tracee remains stopped. We use this mechanism to capture
the signal SIGSEGV raised when a thread touches a protected page. Protecting
or unprotecting tracee’s memory pages cannot be done from the tracer since a
process can only modify its own memory.

The code for dumping and unprotecting a page is injected by the tracer in
the tracee memory with ptrace. Then, the tracer resumes the tracee to execute
the injected code, a SIGTRAP call at the end of the injected payload returns the
focus to the tracer. (See block Memory capture Fig. 5)

Figure 5 details the new ptrace capture which is composed of four successive
phases:

1. Attach all threads: the tracer attaches tracee threads with the ptrace
attach command. Then it sends a SIGSTOP to each tracee to stop it. The
tracer checks that the SIGSTOP has been received for each tracee. Once all
the tracee threads are stopped the tracer is ready for the second phase.

2. Memory Protection Mechanism: the tracer protects the whole memory of
the tracees by injecting a protecting assembly payload and restarts the
threads. If a thread was already stopped before receiving the tracer SIGSTOP,
the queued SIGSTOP signal must be cleared at restart to avoid a deadlock.
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3. NUMA first touch and page trace starts once all the memory is protected.
It captures the tid of the first thread to touch each page. It also keeps a
trace of the most recently touched pages that is used to warmup the cache
state at replay.

4. Memory capture starts when the region to capture is reached. CERE re-
protects the whole memory and starts executing the region. It dumps all
touched pages that are accessed until the region ends.

Figure 6 shows the performance comparison between the old single process
capture and the new ptrace capture on the BT benchmark. BT is composed
of four representative regions. For each region, CERE captures a representative
invocation (see section 3.3). To evaluate the capture cost, we measured the exe-
cution time required to capture these invocations. On this benchmark, the ptrace
based capture is 64.86× faster than the old memory capture. We note that to
accelerate the capture process, CERE interrupts it as soon as the targeted invo-
cation is executed. Since the full application is not executed, the capture process
might be faster than the original execution.

The ptrace based capture speedup is achieved when the NUMA first touch
capture is active. The old capture immediately re-protects each page because
the whole memory must be protected when a codelet to capture is reached. This
implies that the same page should be unprotected and protected several times
during the NUMA capture phase, increasing the overhead. On the other side,
the new NUMA capture pays the protection overhead only once, since it is able
to protect the whole memory with multiple thread running thanks to its thread
stopping strategy.

3.3 Piecewise Optimization with Codelets

Regions within an application are not sensitive to the same optimizations: SP rhs

and zsolve regions in section 2 from the motivating example have different best
compiler optimizations. Unlike monolithic approaches, CERE enables tuning
each codelet independently.

The piecewise search not only improves the benefits over a monolithic tuning,
but also accelerates the exploration by avoiding the execution of useless compiler
sequences (see in experiments Fig. 12) or regions. IS illustrates how codelets can
be use to focus the tuning over a specific region. IS is composed of two regions
that respectively generates a random sequence of numbers and sorts them. The
benchmark purpose is to measure the sorting time. Nevertheless, the random
number generation represents 60% of the application execution time. Through
a codelet, CERE extracts the sorting region and tunes it without executing the
rest of the application, thus avoiding the initialization overhead.

Codelets also accelerate the tuning process for each region. Regions also
have performance variations across different invocations. By using the CLuster-
ing LARge Applications algorithm [15] (CLARA), CERE groups the invocations
sharing a similar execution time into clusters that capture different performance
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Fig. 6. Speed comparison between of old memory capture versus new memory capture
on BT. We used 8 threads on 4 physical i7-4470 cores. The original execution column
corresponds to the execution time of BT. xsolve, ysolve, zsolve, and rhs represent the
execution time required to capture the first invocation of these regions with either the
old or the new capture. The last column sums the capture cost of all the regions for
the two strategies. Capturing BT memory context is faster than executing the whole
application because we interrupt the execution of each capture as soon as the invocation
of interest is executed.

classes. Once the performance classes are identified, CERE selects one represen-
tative invocation per class. The representative is the invocation that is closest
to the median performance of all the invocations inside the cluster.

CERE accelerate the tuning process by only replaying representative invoca-
tions. In particular, CERE extrapolates the full region performance by summing
the contribution of each performance class. The contribution of a performance
class is defined as its representative invocation execution time multiplied by the
number of invocations within that class. Figure 7 demonstrates how CERE re-
plays the parallel region Resid MG executed with four threads and compiled
with -O0. CERE clusters the 42 invocations into 3 performance classes (top
left) and selects a representative invocation per performance class to replay. By
only replaying these three invocations (top right), CERE can extrapolate the
execution time of the whole region.

Figure 7 also presents the same region compiled with -O3 and executed with
two threads. We observe that invocations remain in the same performance classes
(down left). Therefore, changing a parameter has the same impact over all the
invocations within the same performance class. This is the fundamental assump-
tion of CERE execution time prediction. So, by replaying the same three repre-
sentative invocations (down right), CERE predicts the region execution for this
new configuration.

Figure 8 shows how CERE applies this methodology to tune a region across
different compiler optimizations. ysolve has 400 invocations with a similar exe-
cution time that CERE detects as a single performance class. Since CERE only
executes one representative invocation, tuning the region is 149× cheaper with
a codelet than running the full SP benchmark.
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3.4 Finding Common Optimization Sequences in Codelet Clusters

The codelet search can also take advantage of similar and repeated computation
patterns within the applications to accelerate the tuning. For instance, two linear
algebra solvers, despite using different algorithms, will share common computa-
tion patterns such as vector copy loops, dot product computations, or matrix
vector multiplications. We expect that these similar patterns are impacted in
the same way by similar compiler optimizations [16, 11].

CERE takes advantage of codes with such similar patterns by extracting them
as codelets. Instead of evaluating an optimization across all the codes, CERE
evaluates the optimization once with a selected codelet. Then, it extrapolates
its impact over the other similar codelets. Figure 9 illustrates how clustering
codelets accelerates the evaluation process of new optimizations.
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Fig. 9. Clustering codelets for fast compiler optimization tuning. Step A: perform
static and dynamic analysis to capture codelets metrics vectors. Step B: by using the
proximity between metrics vectors, CERE clusters similar codelets and selects one
representative per cluster. Step C: CERE extracts and replays the representatives as
standalone codelets.

To detect similar computation patterns, CERE relies on an hybrid approach
combining both static and dynamic performance metrics with clustering. First,
we profile each region that is a codelet candidate for extraction. We extract the
static metrics with MAQAO Code Quality Analyzer [17]. The dynamic metrics
are provided by reading the hardware performance counters with Likwid [18].

CERE combines the performance metrics into vectors that are associated to
each region. These metric vectors are used as performance signatures to detect
similar regions. MAQAO and Likwid provide over 80 different metrics. Irrele-
vant metrics add noise that degrades CERE predictions. Grouping codelets that
are not sensitive to the same optimizations causes CERE to miss-predict the
impact of a compiler optimization. Therefore, it is necessary to wisely select
metrics, keeping only those that adequately capture the program behavior. Ta-
ble 2 presents the performance metrics used by CERE while section 4.4 explains
how they were selected.

Once a metric vector is associated to each region, we group the regions sharing
similar vectors into clusters. In particular, CERE computes euclidean distances
across the vectors and uses the hierarchical clustering with Ward’s criterion [19].
The final number of clusters is selected with the Elbow method [20].
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MAQAO static metrics Likwid dynamic metrics

- Bytes stored per cycle assuming L1 hits - Floating point rate in MFLOPS.s−1

- Data dependencies stalls - L2 bandwidth in MB.s−1

- Estimated IPC assuming only L1 hits - L3 miss rate
- Number of SD instructions - Memory bandwidth in MB.s−1

- Pressure in dispatch port P1
- Ratio between ADD+SUB/MUL

- Vectorization ratio for Multiplications (FP +INT)
- Vectorization ratio for Other (FP)
- Vectorization ratio for Other (INT)

Table 2. Performance metric set used to cluster regions.

Finally, CERE selects a representative per cluster and extract it as a codelet.
A representative must adequately capture the performance metrics of the cluster:
we choose the codelet closest to the cluster centroid. The centroid reduces the
subsetting approximations since it is the closest point to the cluster average
values.

Codelets from the same cluster share the same metrics and should react in
the same way to compiler changes. Therefore, by measuring a single represen-
tative per cluster, we can extrapolate the performance of all its siblings. This
method has been validated for architecture selection by de Oliveira Castro et
al. [21] and we extend it to compiler optimizations in this paper. In particu-
lar, we demonstrate that codelets from the same cluster are sensitive to similar
compiler optimizations in section 4.4.

3.5 Hybrid Compilation

As stated in section 3.3, CERE tunes each codelet separately to outperform
monolithic approaches through hybridization. Figure 10 presents how the hybrid
tuning operates in two phases. First, the piecewise tuning finds the best com-
piler optimizations for each loop and OpenMP region. Second, the best found
optimizations are applied to each region.

Unfortunately, LLVM does not provide a mechanism to select compiler op-
timizations at the function or loop granularity. To compile each region with a
different set of optimizations, we must extract each region in its own compilation
unit. We leverage the extract tool included in LLVM which allows to extract
an IR function to a separate IR file.

The first step is outlining each region of interest in its own IR function.
Before any middle-end optimization is applied, each region is moved to a separate
compilation unit using LLVM extract. A special pass changes the visibility of
symbols used by the extracted region from internal to global so that they are
not removed by the compiler. Then, the best compiler sequence found is applied
to each separate IR file and an object file is produced. Finally, all the objects
files are linked together producing an hybrid binary.
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Fig. 10. Hybrid compilation process. Through codelets, CERE finds the best compiler
sequence for each region. Then, each region is compiled with its best compiler sequence
in the original application.

A limitation of the approach is that an extracted region in a new compila-
tion unit may not be sensitive to the same optimizations. Since the compilation
context is different in the new compilation unit, the same compiler optimiza-
tion can generate different codes between the original and the extracted region.
Nevertheless, in our experiments, this did not happen.

Another limitation is that our approach does not model the interactions
between regions [22, 23]. In this paper, we assume that we can apply compiler
optimizations to each region separately without impacting the others. Detecting
when two regions can be separately optimized without impacting each other is a
challenge. Our intuition is that regions that are far from each other during the
execution should have few interactions.

4 Thread and Compiler Parameters Tuning Validation

This section validates the usage of codelets as proxies to tune compiler and
runtime parameters. Codelets capture most of the application hotspots [12]. This
section shows that codelet tuning helps finding optimal parameters and reducing
the search cost. To accurately predict best parameters, codelet replays must
capture the original application reaction to the different compiler and thread
configurations. So, we quantify the similarity between codelet and application
executions. We also evaluate CERE speedup and tuning benefits over standard
monolithic approaches.

4.1 Experimental Setup

We used two different Intel CPU micro-architectures for this validation: a Sandy
Bridge E5 with 64 GB of RAM and an Ivy Bridge i7-3770 with 16 GB of RAM.
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We chose Sandy Bridge to explore thread affinities because it has 2 NUMA
sockets and each socket has 8 physical (16 hyper-threaded) cores. On the other
side, the Ivy Bridge was used for the compiler exploration.

Thread configurations were selected to explore different degrees of paral-
lelism, NUMA and hyper-threading effects. Sandy Bridge has 16 physical cores,
so we did not explore configurations beyond 32 threads. We used the Intel KMP
affinity [24] notation to characterize the thread placement. Cores ranked be-
tween 0 and 7 reference the physical cores of the first NUMA domain while cores
between 8 and 15 reference the physical cores of the second NUMA domain.
Similarly, cores from 16 to 23 and from 24 to 31 reference the hyper-threaded
cores of respectively the first and the second NUMA domain.

The exploration was performed on LLVM 3.4 using a random pass selection.
We use LLVM opt and llc to respectively change middle-end and back-end op-
timizations. Middle-end passes have different impact depending on their order
of execution, and can be executed multiple times. -O3 is a manually tuned se-
quence composed of 65 ordered passes aiming to provide good performances.
In this paper, random compilation sequences were generated by down-sampling
the -O3 default sequence. Each pass was removed with a 0.7 probability, and
the process was repeated four times to explore the impact of pass repetitions.
We empirically found that this generation method produces good and diverse
candidates. Back-end passes were selected among -O0, -O1, -O2 and -O3.

We performed the experiments on the NAS 3.0 sequential [25] and C OpenMP
parallel [26] benchmarks (respectively NAS SER and NPB) with CLASS A
datasets and on a Reverse Time Migration [27] (RTM) proto-application. Since
we execute both the original and the codelet versions for each region, we selected
CLASS A datasets to perform more experiments in a reasonable amount of time.
To improve the accuracy, we use the CERE page tracing strategy to warmup
the codelets used for serial compiler passes tuning.

4.2 Number of Threads and Affinity Tuning

This section presents the thread affinity tuning results. CERE page memory
capture was performed on a 16 threads scatter run. Table 3 evaluates CERE
thread affinities replay accuracy and reduction factor over NAS OpenMP regions.

We focused on regions representing more than 5% of the application execu-
tion time. On average, a region exploration is 6.55× faster with codelets than
with whole program evaluations. Tuning all the SP regions from the motivating
example with codelets is five times faster as SP has four regions with an average
acceleration of twenty per region. CERE uses a realistic warmup that replays
each representative invocation four times to restore its execution context. We
performed four meta-repetitions to ensure performance stability and accuracy.
These repetitions are not amortized on EP and MG.

EP is composed of a big parallel region executed once in the original execu-
tion. The region covers the whole application execution time: there are no other
invocations or regions in EP that CERE can avoid to accelerate the tuning.
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MG regions have multiple performance variations across their different invoca-
tions. To accurately predict each region execution time, CERE replays multiple
representative invocations which slows down the tuning.

Also, we note that as we increase the data sets, the warmup overhead be-
comes smaller compared to the replay execution time. We tested xsolve BT with
CLASS B data sets and a single warmup invocation to achieve an acceleration
of 9.48×, twice the one achieved in class A, with an accuracy of 98.36%.

The average CERE prediction accuracy is 93.66%. It allows the autotuner to
outperform the standard scatter s16 over EP, FT, LU, and SP and to perform an
average speedup of 1.40× (see Fig. 11). CERE mispredict some thread config-
urations for CG and MG. These issues only appear for high number of threads
configurations. We note that there is no thread affinity to privilege over the
others: h32, s16, and c8 are all optimal on at least two applications.

hyperthread.h32 compact.c8
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Fig. 11. Original and CERE predicted speedup for two thread configurations. Replay
speedup is the ratio between the replayed target and the replayed standard configura-
tion. CERE accurately predicts the best thread affinities in six out of eight benchmarks.
For CG and MG, we miss-predict configurations that use all the physical cores.

4.3 Compiler Passes Tuning and Hybridization

Table 3 also presents CERE predictions through compiler optimizations with
3000 compiler sequences for BT, 500 for MG and 1000 for the others NAS SER.
The average CERE prediction accuracy and acceleration for a region is 95.8%
and 20.61×.

Figure 12 presents the number of explored compiler sequences required to
achieve a speedup over 1.04× per region. We empirically determined this speedup
value. Unlike monolithic approaches which must continue exploration until all
regions are optimized, codelets can stop the search over a region once a satisfy-
ing speedup is found and focus the exploration on other regions. Here, CERE
evaluates BT ysolve 461 times instead of 3000 times. Each evaluation is on av-
erage 99 times cheaper than a full application run due to the codelet invocations
clustering.

The focus of this paper is not on the compiler flag selection, that is why a
naive random compiler pass search was used. Nevertheless, CERE results could
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Compiler passes Thread affinity
Benchmarks #Regions Accuracy (%) Reduction factor #Regions Accuracy (%) Reduction factor

BT 3 98.73 79.63 4 95.24 5.28
CG 2 98.65 3.39 2 79.48 1.23
FT 5 98.3 2.6 5 90.71 2.17
IS 3 96.64 1.26 2 94.85 1.04
SP 6 98.78 68.9 4 97.66 20.07
LU 7 95.04 8.49 2 99.00 12.64
EP 1 83.08 0.36 1 99.31 0.25
MG 4 97.22 0.28 4 93.04 0.45

Average 95.8 20.61 93.66 5.39

Table 3. The accuracy of the codelet prediction is the relative difference between
the original and the replay execution time. The benchmark reduction factor or ac-
celeration is the exploration time saved when studying a codelet instead of the whole
application. CERE fails to accelerate EP and MG evaluation: EP has a single region
with one invocation while MG displays many performance variations.

be improved with more sophisticated techniques for passes selection such as
genetic algorithms [7] which would also benefit from the piecewise approach.
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cost of piecewise exploration overhead of monolithic exploration

Fig. 12. Compiler sequences required to get a speedup over 1.04× per region. CERE
evaluates the sequences in the same order for all the regions. Exploring regions sepa-
rately is cheaper because we stop tuning a region as soon as the speedup is reached.

CERE outperforms the standard -O3 over BT, SP, and IS with an average
speedup of 1.06× (see Fig. 13). IS random generator and sorting algorithm do
not benefit from the same optimizations which explains the significant difference
between the hybrid and the monolithic approaches. Hybrid binaries based on
original or replay explorations have the same performances which ensure that
we do not miss any optimizations through the codelets.

We make the simplifying assumption that optimizing a region does not affect
other regions. This is not always true: due to memory effects, it is possible to have
performance interactions between neighbors. We find a compilation sequence
which gives a speedup of x1.08× over LU jacu. Unfortunately, optimizing jacu
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has the side effect of slowing down by 0.92× the neighboring region jacld. The
two regions are executed multiple times one after the other. Since each region is
compiled in its compilation unit, there is no code generation interaction between
them. So, we suspect some memory interactions.

To stress the CERE prediction accuracy model, we performed a simultaneous
search of 1000 compiler sequences across the thread affinities on LU ssor. CERE
predicted region execution time with a mean accuracy of 99% across parameters.
Detailed accuracy and reduction factor reports over the NAS benchmarks are
available at https://benchmark-subsetting.github.io/autotuning-results/.
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Fig. 13. Speedups over -O3. We only observe speedups from the iterative search over
BT, SP, and IS. Best standard is the more efficient default optimization (either -O1,
-O2, or -O3). Monolithic is best whole program sequence optimization. Hybrid binaries
are build upon optimizations found either with codelets or with original application
runs.

Finally, we used CERE to tune the RTM proto-application used in a imaging
system for geophysical depth, and provided by Asma Farjallah and Total [10].
RTM is dominated by one Jacobi stencil computation called 3000000 times and
which represents 91.1% of the total execution time. CERE extracts this loop and
performs a compiler search of 300 passes. This codelet is 200× faster to evaluate
and finds a compiler optimization 1.11× faster than -03.

4.4 Codelets Clustering

This section presents how codelets clustering can be used to further accelerate
the tuning process. Codelets from the same cluster share the same metrics and
should react in the same way to compiler changes. Therefore, by measuring a
single representative per cluster, we can extrapolate the performance of all its
siblings.

Figure 14 presents the impact of the best found compilation sequence for
each region applied over the other regions. We consider the NAS clusters that
were originally designed for architecture selection [21]. We expect that the best
optimization of a codelet within a cluster will also benefit the other codelets
within that cluster. Except for clusters C3 and C4, the white squares show that
in general the best optimization for a codelet also benefits the other codelets in
that cluster. Each cluster contains between two or three codelets. Since a single
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codelet per cluster is replayed, this approach provides an average additional
speedup of 2.28× over the tuning. Codelets clustering is attractive when we use
a lot of programs because executing multiple applications increases the chances
of introducing redundancies. Therefore, this speedup can be further increased
by considering more applications.

It is interesting to notice that this clustering was originally designed to catch
architectural changes [21]. Applications were decomposed into codelets and pro-
filed over a Nehalem L5609. Instead of executing whole applications on new
architectures to evaluate them, only representative codelets were measured. Yet
and as demonstrated by Fig. 14, the architectural clustering remains suitable to
gather codes according to their compiler optimization sensitivity.
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Fig. 14. Optimization sequence evaluation across clusters of similar codelets. To build
the color matrix, we apply to each codelet (horizontal axis) the best optimization
sequence for every other codelet (vertical axis). The color of each cell represents the
slowdown over the best sequence found. The square C1 represents the compilation
passes of the first cluster applied to the regions within C1.

5 Exploring runtime parameters in heterogeneous
architectures

Tuning through CERE codelets is flexible and can be extended to new domains.
In this section we consider the problem of mapping and tuning a parallel applica-



22

Fig. 15. Juno big.LITTLE ARM architecture
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Fig. 16. Execution time of PARSEC Blackscholes 64K in a Juno board. The horizontal
axis shows the thread mapping across the four A53 and two A57 cores. The numbers in
the first (respectively second) line are the number of threads mapped on A57 (respec-
tively A53) cores. The first two categories consider homogeneous mappings and the last
category considers heterogeneous mappings. For each mapping, we both consider static
and guided scheduling strategies. For each scheduling, we validate the time estimated
by CERE to the time measured in the original benchmark.
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tion over an heterogeneous architecture such as the ARM big.LITTLE Juno [28]
development board. The architecture, as shown in Fig. 15, combines two clus-
ters: one big dual-core A57 and one little A53 quad-core. Each cluster has its
own L2 cache but they can share data through a cache-coherency interface.

Mapping a parallel application to this architecture is challenging because
of the compute imbalance between the A53 and A57 and the difficulty to es-
timate the communication cost between clusters. Through CERE codelets, one
can quickly test different mapping and scheduling strategies to find the best
configuration. We demonstrate this by exploring PARSEC Blackscholes config-
urations on the Juno board. In this study, we focus on execution time and do
not consider energy measurements.

PARSEC Blackscholes computes option pricing by solving a Partial Differ-
ential Equation. PARSEC OpenMP implementation is embarrassingly parallel
except for the data initialization phase. We use CERE to capture the main par-
allel region found at Blackscholes.m4.cpp line 368. To achieve this we had to port
CERE to AArch64; which required multiple changes in the capture library4.

Once codelets were extracted, we systematically explored the available thread
affinities. The horizontal axis of Figure 16 shows the fourteen considered map-
pings: the first four are homogeneous executions on the A53; the next two are
homogeneous executions on the A57; and the final eight are heterogeneous map-
pings. We used the OpenMP default static scheduling strategy which divides
loops iterations into equally sized chunks across the different threads. The time
of each execution was measured using the cntvct el0 cycles register [29]. To
ensure that CERE estimates were correct, we validated each run execution time
against the execution time of the original benchmark.

Running Blackscholes on the fourteen configurations took 1.42 seconds when
using the CERE codelet and 60.53 seconds when running the original benchmark.
Despite this significant speedup, the CERE estimates are very accurate across
all configurations.

When an homogeneous cluster is used, either A53 or A57, we see that Blacksc-
holes linearly scales as expected from an embarrassingly parallel benchmark. On
the other side, performances on heterogeneous configurations are limited by the
work imbalance. Let us consider heterogeneous mappings with three threads.
We observe similar performance when using two A53 cores or two A57 cores.
Since the workload is equally divided across the different cores, performances
are limited by the workload running on the A53 cluster. Similarly, A53 cores
limit performance across the other heterogeneous mappings with two and four
threads.

To take advantage of the A53 cores, we propose to switch the scheduling
policy for loop iterations from static to the OpenMP guided. Instead of equally
dividing the loop iterations across the cores, the guided policy considers a work
queue of loop iterations grouped into chunks. When a thread finishes his chunk,
it retrieves the next chunk from the top of the queue. While this OpenMP

4 The AArch64 Linux ABI obsoletes some system calls and we had to rewrite some
architecture-specific sections of code.
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policy improves work-balancing by considering the target processors, it also in-
troduces an overhead. To partially reduce this overhead while preserving work-
balancing, guided starts with large chunks and reduces them through the exe-
cution. Figure 16 demonstrates the benefits of the guided scheduling over the
default OpenMP policy. Using guided scheduling achieves a speedup of 1.29×
compared to the default policy over the best mapping strategy. CERE remains
faithful to the original executions across the different guided mappings while
quickly finding the best scheduling strategy.

This preliminary study on the big.LITTLE ARM architecture demonstrates
that CERE autotuning capabilities can easily be applied to problems involving
heterogeneous architectures by simultaneously considering different number of
threads, thread mapping strategies, and scheduling polices. As future work, we
can test applications that require to change the OpenMP parameters for each
specific region.

6 Related Work

We classify our work into three categories: design space exploration, fine grained
tuning with application reduction, and code isolation. They all share a common
objective: improving the tuning process of applications.

6.1 Design Space Exploration

A common method to accelerate the compiler tuning process is to guide the
search exploration though machine learning techniques such as Genetic Algo-
rithms (GA) [7, 9, 8]. Cooper et al. [8] applied GA for compiler exploration on
embedded applications. In particular, they show that GA more quickly converges
over satisfying results than random selection for code reduction. Host et al. [9]
extend the usage of the GA through Pareto frontiers to target multi-objective
compiler exploration such as reducing the code size, the execution time or the
compilation time.

An additional approach to guide the parameter exploration is through code
clustering. As discussed in section 3.4, similar regions of code or applications can
be clustered together to accelerate the tuning. The idea is to associate the best
compiler optimization to each cluster. Common GA with iterative compilation
is usually used to find these best optimizations. To optimize a new application,
we classify it among the clusters and associate the compiler optimization of
the selected cluster: we avoid the evaluation of the whole parameter space. The
challenge of these approaches is to select the metrics for the clustering: they
must actually gather codes that are both sensitive to the same optimizations.

There are different propositions for the clustering criteria. Fursin et al. [11]
with Milepost GCC propose static performance metrics to perform the cluster-
ing. Martins et al. [30] quantify the similarity between functions through data
mining applied to a symbolic representation of the code. Ashouri et al. [31] ex-
tend these metrics by combining static and dynamic architecture independent
metrics into an hybrid characterization.



25

Tuning compiler optimizations through codelet replays is an orthogonal ap-
proach to these tuning strategies. Codelets do not focus on the search space
but rather accelerate the evaluation of each exploration point. Nevertheless, sec-
tion 4.4 shows how codelets can be clustered with hybrid metrics to additionally
prune the exploration space.

Instead of focusing on the code properties, other methods target the compiler
optimizations in order to also reduce the number of evaluations. For example,
some studies [32, 33] statically determine the impact of some compiler optimiza-
tions. Purini et al. [34] propose to search general sets of compilation sequences
instead of a unique sequence. Through LLVM iterative compilation runs, they
find general optimization sequences that should work well on any given program.
CERE codelets could be used as proxies to quickly tune the good optimizations
set instead of exploring all the optimizations.

6.2 Application Reduction and Fine Grained Tuning

Applications execution change over time in ways that are often structured as
sequences of a small number of reoccurring behaviors, and which are called
phases [35]. Each interval of execution labeled as a phase is expected to yield
some distinct execution properties, e.g. performance metrics, compared to the
other phases. Popular methods to define such phases include basic block vec-
tors [36], performance metrics [35], or parallel synchronizations [37].

Usual benchmark reduction techniques take advantage of these phases to re-
duce the simulation cost [36]. They cannot be directly used for compiler tuning
as they operate on the assembly. Fursin et al. [38] take advantage of the ap-
plication phases by producing multiple versions of the same region where each
version is associated to a compiler sequence to evaluate. When the application is
executed, each invocation may use a specific compiler optimization, allowing the
evaluation of multiple sequences with a single run. However, they do not use any
code isolation techniques so they cannot focus the search as we demonstrate in
Fig. 12. This is problematic when a region of interest has a few invocations com-
pared to the others. Moreover their cache warmup system is limited because it
does not use a memory trace and is based on the execution of previous iterations.
Similarly, Kulkarni et al. [39] propose a piecewise search at the function level
granularity. They propose a per-function compilation using the VPO compiler
framework. Yet, they do not use any extraction mechanism during the search:
exploring two functions within the same file requires to execute the program
many times.

One limitation of our work is that we ignore the adjacent regions dependen-
cies regarding the effect of optimizations. To address this, the work of Curtis
et al. [23] proposes an exploration technique to avoid neighboring optimizations
with negative cache effects.

Another point to consider is the data set sensitivity of the hybrid compilation.
Fine grained optimization increases the performance benefits over monolithic
tuning and therefore the chances of optimizing the code for a specific data set.
Chen et al. [22] show that increasing the number of trained data sets increases
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the overall performance on multiple applications. As future work, we can test
the hybridization across different data sets.

The main difference between these related works and CERE is that CERE
relies on code isolation. Unlike whole application tuners, extracted codelets can
directly target and optimize the representative phases without execution con-
straints.

6.3 Code Isolation

Multiple approaches have been propose for sequential code isolation [12], but
to the best of our knowledge, only Liao et al. [40] extract tunable kernels out
of parallel OpenMP programs. They isolate parallel for loops at source level.
Unfortunately, some transformations used during source isolation may hinder
compiler optimization passes [41]. Moreover, outlining a source loop from a par-
allel region removes the loop from the lexical extent of the parallel region and
alters the semantics of the program because the scope of OpenMP data clauses
(private, shared, or reduction) is lost. The source outlining approach requires
an additional step that repairs the lost scopes. On the contrary, CERE IR level
outlining is simpler because it is done after OpenMP data clauses expansion.

7 Conclusion

In this paper we present an autotuner based on CERE codelets. Codelets serve as
proxies for tuning applications holistically, considering the interactions of thread
placements, NUMA effects, heterogeneous architectures and compiler optimiza-
tion passes. CERE proposes a novel piecewise approach that accelerates explor-
ing the parameter space and enables an hybrid compilation where each region
uses the best set of local parameters. It outperforms traditional monolithic tun-
ing. Using a clustering approach, we show that it is possible to further reduce
the exploration cost by applying the best optimization found for a codelet to
other similar codelets in the same cluster.

CERE predicts the impact of thread placement and compiler optimization
with a mean accuracy of 94.7% over the NAS 3.0 benchmarks. On an RTM proto-
application, CERE achieves a 1.11× execution speedup through compiler pass
selection. The search is 200× faster thanks to codelet tuning. Finally, tuning
Blackscholes thread configurations on an heterogeneous architecture was 42×
faster with codelets than running the whole application.

The Ptrace based NUMA capture and the hybrid compiler are released in
CERE v0.2.2 which is available at https://github.com/benchmark-subsetting/
cere/.
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