
1 | SCOTT EGE RT ON

CAPTURE TRACKING IMPROVEMENTS

ABSTRACT

Capture tracking analysis is an analysis pass used to determine which pointers are

“captured”. This means that a function has made a copy of a pointer that may

potentially outlive the function that called it. This information is useful during the

optimisation process; this is used to improve memory management via aliasing.

The capture tracking analysis is currently inefficient and inaccurate in cases due to

the fact that it returns false positives and expensive functions are unnecessarily

repeated. This is where I would make improvements. I would aim to reduce the

number of false positives without increasing the compile time significantly. It could be

improved in a number of ways, as mentioned by Philip Reames on the mailing list. I

would like to use this opportunity to take my previous experience within LLVM and

apply it to other areas of LLVM.

BENEFITS

Improvements to pointer capture tracking would be greatly beneficial. Changes such

as minimising the number of false positives as well as the reduction to the cost

through the introduction of caching will be made. Caching the results of certain

functions, storing the result, will cause performance increases, should the same data

be requested again as the result will already be stored. As a result of this, it could

become a more valuable tool to have within the LLVM suite. This would also cause

improvements to the code optimisation process and potentially increase the quality

of code compiled with LLVM. It should also use up fewer resources during the

analysis pass.

DELIVERABLES

 There are cases where “potentially captured” is returned incorrectly. As a

starter task I would gather a list of all of the known and unknown cases that

cause this to occur and work on removing them. This would serve as a good

introduction to LLVM compiler analysis and would be achievable in a short

time span.

Approximately 5 weeks.

 By making changes to the current design, this could be made to be more cost

effective than it currently is. I would do this by caching the results as

previously suggested. This will be used to invalidate results when required.

Approximately 6 weeks.

2 | SCOTT EGE RT ON

 The analysis could be made more accurate in order to recognise object sub-

graphs which do not escape.

Approximately 5 weeks.

This work will link in with other ongoing work within LLVM and will assist other

developers working on compiler analysis. I believe that I may not be able to complete

all of these tasks within the given time, however I will aim to.

BIOGRAPHICAL INFORMATION

I have been working on LLVM for the past year as an industrial placement student

within a compiler team and am keen to do more LLVM work. I am a BSc Computer

Science student at the University and will begin my final year of study in September.

In the past I have worked on a University project which required me to be inventive

with data structures in order to efficiently solve the given problem. I thoroughly

enjoyed this and would be grateful for another opportunity to exercise my design

skills.

Due to other commitments with my current industrial placement, unfortunately I will

be unable to work on this project during working hours (9-5 GMT) until the first week

of June. However, I am more than happy to make up this time as the summer

progresses.

