
1 | SCOTT EGE RT ON

CAPTURE TRACKING IMPROVEMENTS

ABSTRACT

Capture tracking analysis is an analysis pass used to determine which pointers are

“captured”. This means that a function has made a copy of a pointer that has outlived

the function that called it. This information is useful during the optimisation process. I

believe that this is used to improve memory management.

The capture tracking analysis is currently inefficient and inaccurate in cases due to

the fact that it returns false positives and expensive functions are unnecessarily

repeated. This is where I would make improvements. It could be improved in a

number of ways, as mentioned by Philip Reames on the mailing list. I would like to

use this opportunity to take my previous experience within LLVM and apply it to other

areas of LLVM.

BENEFITS

Improvements to pointer capture tracking would be greatly beneficial. Changes such

as the removal of false positives as well as the reduction to the cost through the

introduction of caching will be made. Caching the results of certain functions, storing

the result, will cause performance increases, should the same data be requested

again as the result will already be stored. As a result of this, it could become a more

valuable tool to have within the LLVM suite. This would also cause improvements to

the code optimisation process and potentially increase the quality of code compiled

with LLVM. It should also use up fewer resources during the analysis pass.

DELIVERABLES

 There are cases where “potentially captured” is returned incorrectly. As a

starter task I would remove the known and unknown cases that cause this to

occur. This would serve as a good introduction to LLVM compiler analysis and

would be achievable in a short time span.

Approximately 2 weeks.

 By making changes to the current design, this could be made to be more cost

effective than it currently is. I would do this by caching the results as

previously suggested. This will be used to invalidate results when required.

Approximately 6 weeks.

 The analysis could be made more accurate in order to recognise object sub-

graphs which do not escape.

Approximately 5 weeks.

2 | SCOTT EGE RT ON

This work will link in with other ongoing work within LLVM and will assist other

developers working on compiler analysis. I believe that I may be able to complete

this work within 11 weeks; however I have allocated the extra time to account for any

issues I may encounter.

BIOGRAPHICAL INFORMATION

I have been working on LLVM for the past year as an industrial placement student

within the MIPS compiler team and am keen to do more LLVM work. I am a BSc

Computer Science student at the University of Hull and will begin my final year of

study in September. In the past I have worked on a University project which required

me to be inventive with data structures in order to efficiently solve the given problem.

I thoroughly enjoyed this and would be grateful for another opportunity to exercise

my design skills.

Due to other commitments with my current industrial placement, unfortunately I will

be unable to work on this project during working hours (9-5 GMT) until the first week

of June. However, I am more than happy to make up this time as the summer

progresses.

