<div dir="ltr"><div><div><div><div><div><div>What is the preferred method for compiler (frontend) developers to optimize and generate target machine code from IR?<br><br></div>At one point I found a tutorial that recommended simply dumping the IR to a file and spawning llc to do the job.<br><br></div>Up until now I have "manually" created a TargetMachine, PassManager, etc. to generate my object code. The initial version of my code was cribbed from llc for LLVM 3.2, and has since been updated for 3.5.1.<br><br></div>However, with every new release of LLVM, the API to the backend optimization and code generation passes changes. The changes from 3.5.1 to 3.6 are quite significant. If I'm lucky, the impact of a change is that my C++ code refuses to compile, and I have to fix. If I'm unlucky, the impact may be that my code compiles and runs, but LLVM works suboptimally - perhaps some optimizations don't happen. (This can happen if a newer API expects me to do some step which was not required in earlier releases, and there is no assert to catch it.)<br><br></div>As an alternative, I am seriously considering "simply dumping the IR to a file and spawning llc" to perform my backend work. The API to create IR is much more stable than the API to do useful things with it. Furthermore, it's a lot easier to manually debug IR that has been dumped to a file. Finally, I can spawn multiple, independent, concurrent invocations of llc on a multi-core machine. I needn't worry about concurrency, as the standard Linux fork/waitpid type calls will suffice. Given that 90% of my runtime is spent inside LLVM, I get 90% of the benefit of a fully concurrent design with almost zero work.<br><br></div>But now it seems that this usage model is frowned upon.<br><br></div>What is the recommended usage model?<br><br></div><div class="gmail_extra"><br><div class="gmail_quote">On Tue, Mar 17, 2015 at 2:32 PM, Owen Anderson <span dir="ltr"><<a href="mailto:resistor@mac.com" target="_blank">resistor@mac.com</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div style="word-wrap:break-word"><span class=""><br><div><blockquote type="cite"><div>On Mar 17, 2015, at 11:13 AM, Dario Domizioli <<a href="mailto:dario.domizioli@gmail.com" target="_blank">dario.domizioli@gmail.com</a>> wrote:</div><br><div><div style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">What does the community think?</div><div style="font-family:Helvetica;font-size:12px;font-style:normal;font-variant:normal;font-weight:normal;letter-spacing:normal;line-height:normal;text-align:start;text-indent:0px;text-transform:none;white-space:normal;word-spacing:0px">Discuss. :-)</div></div></blockquote></div><br></span><div>Devil’s advocate: opt, llc, lli, etc. are development/debugging tools for LLVM developers, not for end users, and the project optimizes their functionality for that use case.</div><span class="HOEnZb"><font color="#888888"><div><br></div><div>—Owen</div></font></span></div><br>_______________________________________________<br>
LLVM Developers mailing list<br>
<a href="mailto:LLVMdev@cs.uiuc.edu">LLVMdev@cs.uiuc.edu</a> <a href="http://llvm.cs.uiuc.edu" target="_blank">http://llvm.cs.uiuc.edu</a><br>
<a href="http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev" target="_blank">http://lists.cs.uiuc.edu/mailman/listinfo/llvmdev</a><br>
<br></blockquote></div><br></div>