
A GSoC 2013 Proposal

Inter-Procedural Program
Slicing in LLVM
Mingliang Liu, Tsinghua University

T
his is a GSoC 2013 proposal for LLVM
project. Program slicing has been used
in many applications, the criteria of

which is a pair of statement and variables. I
would like to write an inter-procedural pro-
gram slicing pass in LLVM, which is able to
calculate C program slices of source code ef-
fectively. There is no previous work imple-
mented in LLVM, which considers both the
dynamic program slicing and source code of
the sliced program.

Background

Program slice contains all statements in a program
that directly or indirectly act the value of a variable
occurrence [5]. Program slicing has been used in
many applications, e.g., program verification, testing,
maintenance, automatic parallelization of program
execution, automatic integration of program versions.
While it’s straightforward to implement the slicer in
the back-end of compiler using SSA form, the source
code of the original program instead of intermediate
representation is preferred in most cases. Moreover,
we can further narrow the notion of slice, which
contains statements that influence the value of a
variable occurrence for special program inputs. This
is referred as dynamic program slicing [1]. However,
there is no previous work implemented in LLVM
which solved the two problems.

Motivation

There are two public projects which implement the
backwards static slicing in LLVM.

Giri Written by John Criswell from UIUC, a sub-
project of LLVM. The Giri code contains the
static backwards intra-procedure slicing passes,
and runs with an older version of LLVM. It also
only backtracks until it hits a load. Additional
code must be written to backtrack further to
find potentially reaching stores.

LLVMSlicer This implementation is a complete
static backwards slicer from Masaryk University.
It works on the well defined data and control
flow equations in a white paper by F. Tip [4].
However, this code was written for specific pur-
pose, thus it’s not general enough to be use by
others. They implemented the Andersen’s alias
algorithm [2], callgraph, and modifies analysis
to support the slicer, instead of using the LLVM
APIs.

They eliminate the useless IR statements and keep
the ones affect the values of the criteria. However,
neither of them generates the compilable source code
slice, which is heavily needed in reality. There are
several ways to do this. One is to generate the source
code from sliced IR using llc tool. The issue is that
the IR is not concerned with high-level semantic. The
generated source code is different from the original
program and not suitable for human reading. An-
other approach is deleting the source code according

Page 1 of 2



to sliced IR, with line number information (in meta-
data of each instruction). The naive script deleting
sliced source code one by one fails to handle tricky
cases. I think a better source code slicer is to take
use of the AST info.

Plan

There are three main steps of this proposal.

First, borrow an implementation of static back-
wards slicing from Giri or LLVMSlicer, and use the
LLVM callgraph, mod/ref and alias interfaces as
much as possible.

Second, implement the dynamic program slicing
using the approach 3 in the paper [1].

Third, generate the source code of the sliced pro-
gram. To make the sliced source code compile di-
rectly, we need to employ clang front-end.

Table 1: Plan of the project

Work Weeks

Investigate 1

Static inter-procedure slicing 3

Dynamic slicing 3

Source code generating 3

Slice large programs 2

Scrub code, write tests 1

Conclusion

I’d like to write an inter-procedural program slicing
pass for LLVM, which considers both the dynamic
program slicing and source code of the sliced pro-
gram. The final result of this summer of code is to
make this pass work effectively and documented well.
Further, I’ll write test cases and behave as the active
maintainer for this project. My long-term plan is to
add more features, e.g. Objective-C/C++ support,
thing slicing [3], to this project.

Any comment is highly appreciated.

References

[1] H AGRAWAL. Dynamic Program Slicing. In
ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI),
1990.

[2] L.O. Andersen. Program analysis and specializa-
tion for the C programming language. PhD thesis,
University of Cophenhagen, Germany, 1994.

[3] M. Sridharan, S.J. Fink, and R. Bodik. Thin
slicing. In Proceedings of the ACM SIGPLAN
conference on Programming Language Design and
Implementation, volume 10 of PLDI’07, pages
112–122, 2007.

[4] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
1995.

[5] M. Weiser. Program slicing. In Proceedings of
the 5th International Conference on Software En-
gineering, ICSE, pages 439–449. IEEE, 1981.

Page 2 of 2


