<div dir="ltr">On 24 April 2013 09:00, Reed Kotler <span dir="ltr"><<a href="mailto:rkotler@mips.com" target="_blank">rkotler@mips.com</a>></span> wrote:<br><div class="gmail_extra"><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div class="im"><span style="color:rgb(34,34,34)">When you are debugging a calculator that's what you want.</span></div></blockquote><div><br></div><div style>I thought that most calculators used fixed-point or arbitrary precision math...</div>
<div><br></div><div><br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div class="im"><span style="color:rgb(34,34,34)">Scientists using the math library want the math to be as close to real math as possible.</span></div>
</blockquote><div><br></div><div style>Scientists that don't understand FP well write bad scientific code. Computers can't do math, sorry. </div><div style><br></div><div style>Relying on a supposedly identical sequence of FP operations to generate the same output is one thing, relying on computers doing abstract math is a bit of a jump...</div>
<div style><br></div><div style>I know of a few examples where well written crude models easily outperform (in speed and quality) in-depth badly written models.</div><div style><br></div><div style>cheers,</div><div style>
--renato</div></div></div></div>