
1

OpenMP Support in Clang

Design and Implementation Proposal

Mahesha S, Prakash Raghavendra, Dibyendu Das

2

Table of Contents

1 INTRODUCTION .. 3

1.1 PURPOSE .. 3
1.2 GOAL .. 3
1.3 SCOPE ... 3

2 BRIEF SUMMARY OF OPENMP .. 5

3 GENERAL OPENMP SUPPORT TASKS IN CLANG ... 6

3.1 CLANG DRIVER SUPPORT ... 6
3.2 CLANG COMPILER PROPER SUPPORT ... 6

4 IMPLEMENTATION OF OPENMP IN CLANG: A PROPOSAL 7

4.1 CLANG DRIVER IMPLEMENTATION ... 7
4.2 CLANG COMPILER PROPER IMPLEMENTATION.. 7

4.2.1 Summary ... 7

4.2.2 Details .. 8

5 OPENMP AST REPRESENTATION IN CLANG ... 10

5.1 AN EXAMPLE AST REPRESENTATION ... 10
5.2 OPENMP AST IMPLEMENTATION IN CLANG ... 10

6 CURRENT STATUS OF IMPLEMENTATION .. 12

6.1 CLANG DRIVER SUPPORT STATUS .. 12
6.1.1 Completed ... 12

6.1.2 Yet to be Completed ... 12

6.2 CLANG COMPILER PROPER SUPPORT STATUS .. 12
6.2.1 Completed ... 12

6.2.2 Yet to be Completed ... 13

7 CONCLUSIONS .. 14

8 ACKNOWLEDGEMENT .. 15

9 REFERENCES ... 16

3

1 Introduction

1.1 Purpose
This document describes design and implementation proposal for supporting
OpenMP in Clang. It also describes the current status of design and
implementation of the same with a plan to put the basic infrastructure code
being implemented till date for review.

Authors assume that readers have basic understanding of:

1. OpenMP principles and language constructs
2. Knowledge of basic internals of Clang compiler front-end

1.2 Goal
The goal of this proposal is to provide a neat and solid support for OpenMP in
Clang compiler front-end.

1.3 Scope
Scope of this document at present is limited to design and implementation
proposal for syntax analysis, semantic analysis, and AST representation of
OpenMP constructs in Clang compiler front-end. Thus, all other issues related to
OpenMP supports like AST lowering, runtime library, ABI, etc are not covered in
this document.

We would like to inform that we are currently keeping track of all the
discussions/proposals that are currently put by LLVM community to support
OpenMP in LLVM [4], [5], [6]. However, a consensus has not yet been reached, and so

we're skipping the topic of OpenMP AST lowering from our current proposal.
However, in our design and implementation, we will make sure that the OpenMP
representing ASTs will store all the relevant information, and they are flexible
enough to any kind of lowering decisions – either, to completely lower OpenMP
constructs to OpenMP runtime calls in Clang compiler front-end itself, or, to
postpone the lowering part to LLVM back-end.

Also, we would like to know about any other on-going effort to support OpenMP
in Clang.

Our proposal is based on the latest published OpenMP specification, which is
version 3.1 at the time of writing. However, the design approach we employed is

4

general enough to allow easy adaptation for future versions of OpenMP
standard.

In the next section (section 2), we summarize the general implementation of
OpenMP in a typical compiler. In section 3, we briefly describe the general tasks
involved to support OpenMP in Clang. Section 4 briefly discusses our design and
implementation proposal for implementing OpenMP in Clang. Section 5 briefly
describes the proposed AST design to represent OpenMP constructs in Clang. In
the section 6, we brief about the current status of our implementation which is
followed by conclusions and acknowledgement in section 7 and section 8
respectively, with references in section 9.

5

2 Brief Summary of OpenMP
OpenMP is comprised of four components (as of version 3.1):

• Directives (+ Clauses)
• Internal Control Variables
• Runtime Library Routines
• Environment Variables

All OpenMP directives in C/C++ are specified with #pragma preprocessing
directive and have the following format:

#pragma omp directive-name [clause [[,] clause]…].

Quick summary of the OpenMP 3.1 API C/C++ syntax and semantics is available
at [1], and detailed specification is available at [2].

OpenMP support in a compiler, in general, involves following steps. However,
note that there may be additional steps involved depending on how the compiler
is implemented and how the program being compiled is internally represented.

1. Parsing of OpenMP directive statements
2. Semantic analysis of the parsed OpenMP directive statements
3. Internal representation of parsed OpenMP directive statements
4. Outlining of OpenMP parallel regions as separate functions
5. Lowering of OpenMP constructs to OpenMP runtime library function calls

A typical compiler, in general can implement the above five steps in one of the
following two ways.

1. All the above steps from 1 to 5 are implemented in the compiler front-
end it-self.

2. Steps from 1 to 3 are implemented in compiler front-end and steps from
4 to 5 are implemented in compiler back-end.

In our proposal, we have planned to implement steps 1, 2 and 3 in Clang
compiler front-end, and steps 4 and 5 are deferred until a consensus is reached
on LLVM side.

6

3 General OpenMP Support Tasks in Clang

3.1 Clang Driver Support
Following are general OpenMP support tasks required by Clang driver.

1. The Clang driver understands the OpenMP enablement option being passed
by the user. The option for the same is “-fopenmp”.

2. Upon seeing the option “-fopenmp” in the option list, it enables the OpenMP
macro “_OPENMP”, and adds the linker option to link to the OpenMP
runtime library.

3. Finally, the driver passes the option “-fopenmp” to other OpenMP handler
components like Clang compiler proper.

3.2 Clang Compiler Proper Support
Following are general OpenMP support tasks required by Clang compiler proper.
While parsing, when the Clang compiler proper encounter with the OpenMP
pragma directive statement, it checks, if the OpenMP support is enabled through
the option “-fopenmp”. It does one of the following two tasks based on whether
the option “-fopenmp” is enabled or not.

1. When the “-fopenmp” is enabled, it does the syntax and semantic analysis of
OpenMP directive statement encountered. In case of any syntax and
semantic errors, it reports the relevant error messages and stops further
compilation. Upon successful syntax and semantic analysis, it builds ASTs.
Finally, CodeGen component of Clang will perform the AST lowering task.

2. When the “-fopenmp” is not enabled, it throws a warning saying that
OpenMP directive statement will be ignored, and simply eats-up (ignores)
the OpenMP pragma directive statement line, and proceeds with the
sequential compilation as usual. In this case, any call to OpenMP runtime
library function within the code will results in linker error (undefined
reference) as the OpenMP runtime library will not be linked in the absence of
“-fopenmp” option.

7

4 Implementation of OpenMP in Clang: A proposal

4.1 Clang Driver Implementation
Clang driver implementation for the OpenMP support is quite straightforward,
and it involves the support for “-fopenmp” option as mentioned in the section
3.1.

4.2 Clang Compiler Proper Implementation
Following is the brief design and implementation proposal of OpenMP support in
Clang compiler proper.

4.2.1 Summary
• Our implementation will strictly adhere to design and implementation

philosophy behind Clang.

• We extend the existing Clang components like Parser, Sema, AST, etc in order
to handle OpenMP in Clang.

• We add a new component called OmpPragmaHandler to Clang. The main job
of OmpPragmaHandler is to assist other Clang components like Parser, Sema,
etc while handling OpenMP constructs.

• Tokens are introduced to represent only OpenMP pragma directives, and
these tokens are inserted by OmpPragmaHandler to token streams, upon
seeing the OpenMP pragma directive statements. Lexer is completely not
aware of these tokens. Additionally, OpenMP pragma clause names are
parsed based on the context with string comparison approach. This strategy
avoids conflicts with “Identifier” tokens that would happen when we
introduce separate tokens for each and every OpenMP construct names.

• As in the case of parsing any other C/C++ constructs, Parser starts parsing the
OpenMP directive statements when it encounters with OpenMP directive
tokens, which are inserted by OmpPragmaHandler. Once the parsing is done,
Parser calls Semantic Analyzer to perform semantic analysis, and to build AST
tree which represents parsed OpenMP directive statement. Finally, CodeGen
component of Clang is called to lower OpenMP ASTs.

8

4.2.2 Details
• A new library called “clangOmp.a” will be added to Clang, which assists other

libraries in Clang like “clangParse.a”, “clangSema.a”, etc while processing
OpenMP constructs. That is, “clangParse.a”, “clangSema.a”, etc will act as
clients to “clangOmp.a”, with “clangOmp.a” it-self be a client to “clangLex.a”
and “clangBasic.a”. Hence, the link order used to create Clang compiler
proper looks as below.

• Basically, “clangOmp.a” defines and implements a class, called “class
PragmaOmpHandler” which interfaces with other classes like “class Parser”,
“class Sema”, etc. Both Parser and Sema objects hold a referenced
PragmaOmpHandler object in order to get required assistance from it.

• Clang Preprocessor is responsible for registering all the OpenMP pragma
directives, and further processing them when OpenMP pragma directives
statements are encountered. Clang Parser is responsible for all syntax
analysis and syntax errors checking and reporting (if any). Clang Semantic
Analyzer is responsible for all semantic analysis and semantic errors checking
and reporting (if any). All the ASTs classes are defined and implemented
within Clang AST manager component (clangAST.a) with all the additional
supporting implementation for AST visiting, AST writing, AST reading, etc.
Finally, CodeGen component of Clang (clangCodeGen.a) implements all the
AST lowering routines.

• During the initialization of Clang compiler proper before processing a translation

unit, a PragmaOmpHandler object is constructed before both Parser and
Sema objects are constructed. Upon creation of PragmaOmpHandler, it is
made to initialize all its members, and asked to call Preprocessor to get
register all the OpenMP pragma directive’s names. Later, both Parser and
Sema objects are made to reference PragmaOmpHandler object when they
are constructed.

• During the parsing of a translation unit, Clang Lexer, upon lexing the token
“#”, calls Preprocessor to handle possibly encountered pragma statement.
Clang Preprocessor, after realizing that the encountered pragma is an

“……………. clangParse.a clangSema.a ...…………….. clangAST.a clangOmp.a
clangLex.a clangBasic.a”

9

OpenMP pragma statement, it calls PragmaOmpHandler to handle it. The
PragmaOmpHandler, upon called to handle OpenMP pragma statement,
does one of the following two tasks depending on whether the “-fopenmp”
option is enabled or not.

1. When the “-fopenmp” option is enabled, it inserts a token which
represents the encountered OpenMP pragma statement into token
stream so that parser can recognize it and can parse the respective
OpenMP pragma directive statement. Parser will later take care of
parsing the encountered OpenMP pragma directive statement.

2. When the “-fopenmp” option is not enabled, it simply eats-up (ignores)
the OpenMP pragma directive statement line, so that, Parser can proceed
with the sequential compilation as usual. However, in this case, a warning
message is emitted saying that the current OpenMP directive statement
will be ignored. Note that Clang emits only one warning message per
translation unit irrespective of the number of OpenMP constructs
encountered within the translation unit being parsed. This avoids
message bloating on the output device.

• Once the parsing, semantic analysis, and AST creation is completed, Clang
CodeGen component is called for lowering ASTs.

10

5 OpenMP AST Representation in Clang

5.1 An Example AST Representation
Figure 1 shows an AST representation for OpenMP directive statement by
considering the “parallel” directive statement as an example.

Figure 1

5.2 OpenMP AST Implementation in Clang
Following is the brief summary about AST implementation in Clang.

• All the AST classes which represent OpenMP directives or clauses publicly
derive from the statement AST base class namely “class Stmt”.

• There will be a separate AST class implementation for each OpenMP directive
and clause.

#pragma omp parallel private(VarA, VarB) private(VarC) shared(VarD)
{ // Parallel body }

OmpParallelStmt

CompoundStmt OmpClause

OmpPrivateClause OmpPrivateClause

OmpSharedClause

DeclRefExpr(VarA) DeclRefExpr(VarB)

DeclRefExpr(VarC)

DeclRefExpr(VarD)

……....

11

• There will be an additional AST class node implementation, called “class
OmpClause”. OmpClause AST node holds other AST clause nodes as its
children, which represent the different OpenMP clauses appeared in an
OpenMP directive statement as shown in the figure 1. However, note that
the same clauses which appear more than once in an OpenMP directive
statement are represented as a linked list as shown in the figure 1 for the
“private” clause. This representation makes tree traversal easier for few
particular semantic checks.

• Variables in the list clauses like “private” clause are represented as
“DeclRefExpr” node.

• ASTs are designed and implemented in such a way that *no* OpenMP
information is lost including source location information.

Note: More details will be given about OpenMP AST implementation when the
code is put for review.

12

6 Current Status of Implementation

6.1 Clang Driver Support Status

6.1.1 Completed
• The option “-fopenmp” is implemented. Clang driver now understands the

above option, and pass it onto the Clang compiler proper.

6.1.2 Yet to be Completed
• To enable “_OPENMP” macro, and to add the linker option to link to the

OpenMP runtime library when the driver recognizes the option “-fopenmp”.

• To add any other missing support.

6.2 Clang Compiler Proper Support Status

6.2.1 Completed
• A new library, called “clangOmp.a” is added within Clang, and linked it with

other Clang libraries as described in the section 4.2. Within this library, an
OpenMP pragma handler class, called “class PragmaOmpHandler” is defined
and implemented, and this Clang component is made to interface with other
Clang components like Parser, Sema, etc as described in section 4.2.

• OpenMP pragmas registration with Clang Preprocessor is implemented.

• AST classes for *all* the OpenMP constructs except for “critical” construct are
defined and implemented.

• Skeleton routines (with few partially implemented) for parsing, semantic analysis
are introduced.

• Following two things are happening currently with respect to the handling of
OpenMP constructs in Clang.

1. When the user does not pass the “–fopenmp” flag, Clang warns the user that
the OpenMP directives will be ignored, then eats-up/discards the OpenMP
directive statements.

2. When the user does pass the “–fopenmp” flag, Clang Parser is made to
understand the OpenMP directive tokens, and respective parsing routines are
called to parse the OpenMP constructs. But, these parsing routines, currently,

13

again just eats-up the OpenMP directive statements without actually parsing
the OpenMP directive statements.

6.2.2 Yet to be Completed
• We are just in the beginning, with the basic support for infrastructure being

laid down.

• Major support for parsing, semantic analysis, AST visiting, AST writing, AST
reading, AST lowering, testing, etc is required.

• Decision about runtime library support to be taken. To discuss, if we can go
with GCC libgomp library, in case, there won’t be any licensing issues in using
it. Or, to discuss about implementing altogether a new OpenMP runtime
library in Clang/LLVM infrastructure.

14

7 Conclusions
In this document, we briefly descried our proposal to support OpenMP in Clang
with brief description about the status of our current implementation. As
mentioned in the section 6, we have currently laid down the basic infrastructure
to support OpenMP in Clang as per our design that we proposed in this
document.

Further, we are looking forward for your constructive feedback.

In particular, we would like to know about the Clang community opinions about
further steps to support OpenMP in *Clang* based on current proposal and its
implementation status as mentioned in the section 6. And, we want to discuss
next steps for code review, submitting patches, etc, once all the design reviews
are taken care. We would also like to have discussions about OpenMP AST
lowering, once the consensus is reached on supporting OpenMP in LLVM side.

15

8 Acknowledgement
Authors would like to acknowledge valuable advice provided by Hal Finkel [4],
Prashantha Rao, and Vishwanath Prasad while preparing this proposal document and
while prototyping the same.

16

9 References
 [1] OpenMP 3.1 API C/C++ Syntax Quick Reference Card. Available at:
http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf

[2] “OpenMP Application Program Interface”, Version 3.1, July 2011. Available at:
http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[3] "Clang" CFE Internals Manual. Available at:
http://clang.llvm.org/docs/InternalsManual.html

[4] Hal Finkel, [LLVMdev] [RFC] Parallelization metadata and intrinsics in LLVM

[5] Sanjay Das, [LLVMdev] [RFC] Progress towards OpenMP support

[6] Alexey Bataev, Andrey Bokhanko, “OpenMP Representation in LLVM IR:
Design Proposal”, [LLVMdev] [RFC] OpenMP Representation in LLVM IR

http://openmp.org/mp-documents/OpenMP3.1-CCard.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://clang.llvm.org/docs/InternalsManual.html

	1 Introduction
	1.1 Purpose
	1.2 Goal
	1.3 Scope

	2 Brief Summary of OpenMP
	3 General OpenMP Support Tasks in Clang
	3.1 Clang Driver Support
	3.2 Clang Compiler Proper Support

	4 Implementation of OpenMP in Clang: A proposal
	4.1 Clang Driver Implementation
	4.2 Clang Compiler Proper Implementation
	4.2.1 Summary
	4.2.2 Details

	5 OpenMP AST Representation in Clang
	5.1 An Example AST Representation
	5.2 OpenMP AST Implementation in Clang

	6 Current Status of Implementation
	6.1 Clang Driver Support Status
	6.1.1 Completed
	6.1.2 Yet to be Completed

	6.2 Clang Compiler Proper Support Status
	6.2.1 Completed
	6.2.2 Yet to be Completed

	7 Conclusions
	8 Acknowledgement
	9 References
	[3] "Clang" CFE Internals Manual. Available at:

