

OpenMP Representation in LLVM IR

Design Proposal

Alexey Bataev, Andrey Bokhanko

Contents
Introduction .. 3

Goals .. 4

Function Outlining ... 4

Scope ... 6

Front-End/Back-End Contract ... 7

Pre- and Post-conditions for Front-Ends ... 7

Pre- and Post-conditions for Back-Ends .. 7

Elements of OpenMP .. 9

Directives ... 10

Clauses ... 12

Clauses with Predefined Values .. 12

Clauses with a List of Variables ... 13

Clauses with Scalar or Integer Expressions ... 14

Compound Clauses .. 15

An Example .. 15

Design Alternatives ... 17

Conclusion ... 18

Acknowledgements ... 19

References ... 20

Introduction
This document describes design proposal for OpenMP representation in LLVM IR.

Authors assume that readers have basic understanding of:

1) OpenMP principles and language constructs

2) General design of LLVM compiler system

Goals
Our end goal is to provide a simple, complete and extensible support for OpenMP representation in

LLVM IR.

We aim to extend LLVM IR as little as possible, preferably without adding any new types / language

constructs at all.

Also, we’d like to keep opportunities for optimization of parallel code as widely opened as possible –

obviously, within the boundaries of preserving correct semantics of a user program.

And finally, in the spirit of OpenMP Specification ([OpenMP11]), LLVM IR based compilers should be able

to easily skip IR extensions related to OpenMP support and still generate correct, albeit sequential,

code.

Function Outlining
Eventually, parallel regions should be put into separate routines, a process usually called “function

outlining” or “procedurization”. This can happen as early as in front-end, and as late as right before code

generation.

As can be seen in the following sections, the IR extension we propose doesn’t involve explicit

procedurization. Thus, we assume that function outlining should happen somewhere in the LLVM back-

end, and usually this should be aligned with how chosen OpenMP runtime library works and what it

expects. This is a deliberate decision on our part. We believe it provides the following benefits (when

compared with designs involving procedurization done in a front-end):

1) Function outlining doesn’t depend on source language; thus, it can be implemented once and

used with any front-ends.

2) Optimizations are usually restricted by a single function boundary. If procedurization is done in a

front-end, this effectively kills any optimizations – as simple ones as loop invariant code motion.

Refer to [Tian2005] for more information on why this is important for efficient optimization of

OpenMP programs.

It should be stressed, though, that in order to preserve correct semantics of a user program,

optimizations should be made thread-aware (which, to the best of our knowledge, is not the

case with LLVM optimizations).

By “thread-aware” we mean an optimization that performs legal transformations on parallel

programs. Refer to [Novillo00] for more information on correctness of optimizations for parallel

programs.

Given that LLVM optimizations are currently not thread-aware, initial implementation should call

procedurization pass right at the start of the optimizer. In the future, this pass can be moved further and

further down the optimizer, as more optimizations will become thread-aware.

Essentially, this initial implementation is not that different from implementations with procedurization

done in front-end; however, it keeps window of possibility opened.

Scope

Scope of this design is OpenMP representation in LLVM IR. Thus, all other issues related to OpenMP

support, like runtime library, ABI, etc are not covered.

We also included a set of requirements for front-ends and back-ends, which establish mutual

expectations and is an important addition to the design.

Our proposal is based on the latest published OpenMP specification, which is version 3.1 ([OpenMP31])

at the time of writing. However, the design approach we employed is general enough to allow easy

adaptation for future versions of OpenMP standard.

Front-End/Back-End Contract
While not a part of OpenMP representation design per se, the following pre- and post-conditions help to

establish a set of mutual expectation between front-ends (that generate LLVM IR with OpenMP support)

and back-ends (that consume it). Without this kind of a “contract” ([Meyer92]), a back-end has to verify

too much and basically repeat the work already done by a front-end.

While it is possible to generate LLVM IR that violates these conditions, we consider it to be non-

conformant. Obviously, conformance can be verified, if necessary.

Pre- and Post-conditions for Front-Ends
1) Guarantee correct semantics of directives and clauses. This includes nomenclature and number of

clauses in directives, correct nesting of directives, values of clauses, etc.

For example, front-ends should guarantee that omp single directive has at most one private, firstprivate,

copyprivate and nowait clause, and nothing else; omp section directive is nested inside omp sections

directive; the only possible value of private clause is a list of variables available at the point where this

clause is present; etc.

2) Guarantee correct semantics of statements / structured blocks following directives.

As an example, it should be guaranteed that only for-loops follow omp parallel for directive.

3) Set _OPENMP macro. This is required in section 2.2 of [OpenMP11].

4) Support a command-line option that enables/disables OpenMP support. This is required in Chapter 2

of [OpenMP11].

If a user program violates OpenMP semantics and thus, makes compliance with first two conditions

impossible, a front-end should report a meaningful error message and stop compilation.

It should be noted that front-ends are not required to guarantee full conformance of generated LLVM IR

to OpenMP specification. As an example, the specification deems programs that branch into or out of

parallel regions to be non-conformant. We believe that verification of such properties is too complex for

most front-ends. This matches well with what is written in the specification itself: “compliant

implementations are not required to check for code sequences that cause a program to be classified as

non-conforming” ([OpenMP11], Section 1.1).

Pre- and Post-conditions for Back-Ends
1) Intrinsics, builtins, library routines and language implementation should be thread-safe. This is equally

applicable to front-ends and is required in Section 1.5 of [OpenMP11].

2) Optimizations should be thread-aware.

3) Support a command-line option that enables/disables OpenMP support. This is required in Chapter 2

of [OpenMP11].

4) Rely on post-conditions guaranteed by front-end, and nothing else.

Conditions 2)-5) are only applicable to optimizations working on IR before procedurization.

As noted in the previous section, LLVM IR is not guaranteed to be fully conformant with OpenMP

specification. Back-ends should be able to compile cleanly non-compliant programs, but no promises are

made on correct behavior of resulting machine code.

Elements of OpenMP
OpenMP is comprised of four components (as of version 3.1):

 Directives (+ Clauses)

 Internal Control Variables

 Runtime Library Routines

 Environment Variables

Internal Control Variables, Runtime Library Routines and Environment Variables are provided / handled

by OpenMP runtime library. These components of OpenMP don’t require special support in LLVM IR and

thus are out of scope of this document.

All OpenMP directives in C/C++ are specified with #pragma preprocessing directive and have the

following format:

#pragma omp directive-name [clause [[,] clause]…].

Next two chapters describe our design proposal for representation of, correspondingly, directives and

clauses.

Directives
Directives in LLVM IR are represented as calls to “llvm.omp.directive” intrinsic with a single argument

referencing LLVM IR metadata. The metadata contains an identifier of a directive.

Almost all OpenMP directives are represented with two intrinsic calls: one for entry and one for exit

point of the directive’s context. It is enough to have just one intrinsic call for several directives which are

supposed to be enclosed in other directives (like omp section, which must appear only within omp

sections context) or specify a single instruction (like omp flush) or are declarative (like omp

threadprivate). Exit point for such directives is either non-existent or can be determined by examining

other intrinsic calls and thus, not required to be explicitly present.

Metadata specify only one thing: type of a directive. Currently LLVM IR does not support integer or

enumeration metadata types; thus, we decided to use MDString (metadata string type) to represent the

type. The list of directives and their identifiers is shown in Table 1.

Table 1. OpenMP Directives

Type of directive

#pragma omp …
MDString in metadata

parallel
OMP_PARALLEL

OMP_END_PARALLEL

[parallel] for
OMP_[PARALLEL_]LOOP

OMP_END_[PARALLEL_]LOOP

[parallel] sections
OMP_[PARALLEL_]SECTIONS

OMP_END_[PARALLEL_]SECTIONS

section OMP_SECTION

single
OMP_SINGLE

OMP_END_SINGLE

task
OMP_PTASK

OMP_END_PTASK

taskyield OMP_PTASKYIELD

master
OMP_MASTER

OMP_END_MASTER

critical
OMP_CRITICAL

OMP_END_CRITICAL

Type of directive

#pragma omp …
MDString in metadata

barrier OMP_BARRIER

taskwait OMP_PTASKWAIT

atomic
OMP_ATOMIC

OMP_END_ATOMIC

flush OMP_FLUSH

ordered
OMP_ORDERED

OMP_END_ORDERED

An example of an OpenMP directive and its representation in LLVM IR:

C/C++
#pragma omp parallel

LLVM IR
call void @llvm.omp.directive(metadata !0)

...

call void @llvm.omp.directive(metadata !1)

!0 = metadata !{metadata !”OMP_PARALLEL”}

!1 = metadata !{metadata !”OMP_END_PARALLEL”}

Clauses
All OpenMP clauses can be divided into four groups:

 Ones with predefined values (default, ordered, nowait, untied, read, write, update, capture)

 Ones with a list of variables (shared, private, firstprivate, lastprivate, copyin, copyprivate,

directives flush, threadprivate)

 Ones with a scalar or integer expression (if, num_threads, final, collapse)

 Compound ones (reduction, schedule, directive critical)

Clauses in LLVM IR are represented as intrinsic calls. Each intrinsic call representing a clause has one

mandatory argument and arbitrary number of optional arguments. The mandatory argument references

LLVM IR metadata. The metadata contains identifier of the clause (MDString) and, for some compound

clauses, additional data represented as another MDString. Optional arguments reference LLVM variables

or expressions.

Clauses with Predefined Values
Clauses with predefined values are represented as calls to “llvm.omp.simple” intrinsic. For this group of

clauses metadata contains an MDString with a clause’s identifier.

The list of clauses and their identifiers is shown in Table 2.

Table 2. OpenMP Clauses with Predefined Values

Clause MDString in Metadata

default(none) OMP_DEFAULT_NONE

default(shared) OMP_DEFAULT_SHARED

ordered OMP_ORDERED

nowait OMP_NOWAIT

untied OMP_UNTIED

read OMP_READ

write OMP_WRITE

update OMP_UPDATE

capture OMP_CAPTURE

Here is an example of OpenMP clause with a predefined value and its representation in LLVM IR:

C/C++
#pragma omp atomic read

LLVM IR
call void @llvm.omp.simple(metadata !1)

!1 = metadata !{metadata !”OMP_READ”}

Clauses with a List of Variables
Clauses with a list of variables are represented as calls to “llvm.omp.list” intrinsic. For this group of

clauses metadata contains an MDString with a clause’s identifier.

Additional arguments of the intrinsic reference LLVM variables associated with a clause. It is important

to reference variables directly in intrinsic calls and not in metadata, in order to preserve data

dependency.

Each variable of a non user-defined type is represented with a single argument (referencing the

variable).

Each variable of a user-defined type is represented with four arguments: one referencing the variable

itself, one referencing its default constructor, one referencing its copy constructor and one referencing

its destructor. References to constructors / destructors are required to correctly create and destroy

private copies of variables.

The list of clauses and their identifiers is shown in Table 3.

Table 3. OpenMP Clauses with a List of Variables

Clause MDString in Metadata

private(list) OMP_PRIVATE

firstprivate(list) OMP_FIRSTPRIVATE

lastprivate(list) OMP_LASTPRIVATE

shared(list) OMP_SHARED

copyin(list) OMP_COPYIN

Directive flush(list) OMP_FLUSH

Directive threadprivate(list) OMP_THREADPRIVATE

Here is an example of OpenMP clause with a list of variables and its representation in LLVM IR:

C/C++
#pragma omp parallel private(a,b)

LLVM IR
call void (metadata, ...)* @llvm.omp.list(metadata !1, i32* @a, i32* @b)

!1 = metadata !{metadata !”OMP_PRIVATE”}

Clauses with Scalar or Integer Expressions
Clauses with scalar or integer expressions are represented as calls to “llvm.omp.expr” intrinsic. For this

group of clauses metadata contains an MDString with a clause’s identifier.

Second argument of the intrinsic references a scalar or integer LLVM expression associated with a

clause. It is important to reference expressions directly in intrinsic calls and not in metadata, in order to

preserve data dependency.

The list of clauses and their identifiers is shown in Table 4.

Table 4. OpenMP Clauses with Scalar or Integer Expressions

Clause MDString in Metadata

if(scalar_expr) OMP_IF

num_threads(integer_expr) OMP_NUM_THREADS

final(scalar_expr) OMP_FINAL

collapse(const_integer_expr) OMP_COLLAPSE

Here is an example of OpenMP clause with a scalar expression and its representation in LLVM IR:

C/C++
#pragma omp parallel if(a)

LLVM IR
%4 = load i32* @a, align 4

%5 = icmp ne i32 %4, 0

call void @llvm.omp.expr(metadata !1, i32 %5)

...

!1 = metadata !{metadata !”OMP_IF”}

Compound Clauses
Compound clauses are represented as calls to “llvm.omp.compound” intrinsic. For this group of clauses

metadata contains an MDString with a clause’s identifier and additional data, also represented as an

MDString.

Additional arguments of an intrinsic call for reduction clause reference LLVM variables associated with a

clause (see format of “Clauses with a List of Variables”).

Second argument of an intrinsic call for schedule (static), schedule (dynamic) and schedule (guided)

clauses references an integer LLVM expression associated with a clause (see format of “Clauses with

Scalar or Integer Expressions”).

The list of compound clauses along with their representation in metadata is shown in Table 5.

Table 5. OpenMP Compound Clauses

Clause Representation in Metadata

reduction(operator : list) OMP_REDUCTION, <operator>

schedule(static [, integer_expr]) OMP_SCHEDULE, STATIC

schedule(dynamic [, integer_expr]) OMP_SCHEDULE, DYNAMIC

schedule(guided [, integer_expr]) OMP_SCHEDULE, GUIDED

schedule(auto) OMP_SCHEDULE, AUTO

schedule(runtime) OMP_SCHEDULE, RUNTIME

Directive critical(name) OMP_NAME, <name>

Here is an example of a compound OpenMP clause and its representation in LLVM IR:

C/C++
#pragma omp parallel reduction(+ : a, b)

LLVM IR
call void (metadata, ...)* @llvm.omp.compound(metadata !1, i32* @a, i32* @b)

!1 = metadata !{metadata !”OMP_REDUCTION”, metadata !”+”}

An Example
Here is a more complex example, demonstrating LLVM IR representation of a directive with several

clauses of different types.

C/C++
int a, gVar;

int main() {

 int lVar;

#pragma omp parallel default(shared), private(gVar, a), if(lVar)

 {

 ...

 }

 return (0);

}

LLVM IR
@a = global i32 0, align 4

@gVar = global i32 0, align 4

define i32 @main () nounwind uwtable ssp {

 %lVar = alloca i32, align 4

 call void @llvm.omp.directive(metadata !0)

 call void @llvm.omp.simple(metadata !1)

 call void (metadata, ...)* @llvm.omp.list(metadata !2, i32* @gVar, i32* @a)

 call void @llvm.omp.expr(metadata !3, i32* %lVar)

 ...

 call void @llvm.omp.directive(metadata !4)

 ret i32 0

}

!0 = metadata !{metadata !”OMP_PARALLEL”}

!1 = metadata !{metadata !”OMP_DEFAULT_SHARED”}

!2 = metadata !{metadata !”OMP_PRIVATE”}

!3 = metadata !{metadata !”OMP_IF”}

!4 = metadata !{metadata !”OMP_END_PARALLEL”}

Design Alternatives
It is possible to propose several viable alternatives to representing information on OpenMP directives

and clauses while keeping general design approach intact.

Some things that we considered:

a) Represent information on types of directives and clauses as constant expressions instead of

MDStrings.

b) Place MDStrings with identifiers of directives and clauses directly into intrinsic calls instead of

metadata.

c) Do not represent clauses as separate intrinsics with references to metadata; instead, put a list of

references to metadata for all clauses associated with a directive at the end of metadata

describing the directive.

As we said, all these are viable alternatives. We decided to choose what we chose and not employ the

alternatives listed above in order to keep true the following three design principles:

1) Absolute simplicity and readability (including human readability). This ruled out alternatives a)

and [partially] c).

2) Uniformity of representation, for both directives and clauses. This ruled out alternatives b) and

c).

3) As much extensibility and openness for future changes in both LLVM IR and OpenMP as

possible. This ruled out alternatives b) and c).

We believe that the only downside of our choice is larger size of LLVM IR required to represent same

number of directives and clauses.

However, we consider this as a relatively minor element of our design; one might argue in favor of these

or other similar design alternatives.

Conclusion
In this document we described our design proposal for OpenMP representation in LLVM IR. We believe

the IR extensions we proposed are:

1) Simple

They rely on existing LLVM IR types and language constructs; the only new things are a few new

intrinsics. Thus, LLVM IR consumers lacking OpenMP support can simply ignore these two intrinsics and

still generate correct, albeit sequential, code.

2) Complete

OpenMP 3.1 Specification ([OpenMP31]) is fully covered.

3) Extensible

The design approach is general enough to readily incorporate future versions of OpenMP standard.

4) Enables both early and late procedurization and aggressive optimization

This is when compared with designs implying explicit procedurization done right in front-ends.

Acknowledgements
Authors would like to acknowledge valuable contributions and advice provided by Kevin B Smith, Xinmin

Tian, Stefanus Du Toit, Brian Minard, Dmitry Babokin and other colleagues from Intel and Diego Novillo

from Google. This *does not* automatically imply approval of this proposal by said individuals.

References

[Lattner10] Chris Lattner, Devang Patel, “Extensible Metadata in LLVM IR”. Available at:

http://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html

[Meyer92] Bertrand Meyer, “Applying “Design by Contract”, IEEE Computer, October 1992, pp. 40-51.

Available at: http://se.ethz.ch/~meyer/publications/computer/contract.pdf

[Novillo00] Diego Novillo, “Analysis and Optimization of Explicitly Parallel Programs”, PhD Thesis,

University of Alberta, Edmonton, Alberta, Canada, 2000. Available at:

http://www.airs.com/dnovillo/Papers/Thesis.pdf

[OpenMP11] “OpenMP Application Program Interface”, Version 3.1, July 2011. Available at:

http://www.openmp.org/mp-documents/OpenMP3.1.pdf

[Tian05] Xinmin Tian, Milind Girkar, Aart Bik and Hideki Saito, “Practical Compiler Techniques on

Efficient Multithreaded Code Generation for OpenMP Programs”, The Computer Journal, September

2005, pp.588-601. Available at: http://dl.acm.org/citation.cfm?id=1095017

http://blog.llvm.org/2010/04/extensible-metadata-in-llvm-ir.html
http://se.ethz.ch/~meyer/publications/computer/contract.pdf
http://www.airs.com/dnovillo/Papers/Thesis.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://dl.acm.org/citation.cfm?id=1095017

