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Abstract
This paper describes ErLLVM, a new backend for the HiPE com-
piler, the native code compiler of Erlang/OTP, that targets the
LLVM compiler infrastructure. Besides presenting the overall ar-
chitecture of ErLLVM and its integration in Erlang/OTP, we de-
scribe the changes to LLVM that ErLLVM required and discuss
technical challenges and decisions we took. Finally, we provide a
detailed performance evaluation of ErLLVM compared to BEAM,
the existing backends of the HiPE compiler, and Erjang.

Categories and Subject Descriptors D.3.4 [Processors]: Code
generation, Retargetable compilers, Run-time environments; D.3.2
[Language Classifications]: Applicative (functional) languages,
Concurrent, distributed, and parallel languages

General Terms Design, Languages, Performance

Keywords LLVM, HiPE, native code compiler, Erlang

1. Introduction
For about a decade now, the Erlang/OTP distribution contains the
HiPE (High Performance Erlang) native code compiler [7] as an
integrated component. By now the HiPE compiler is robust, han-
dles the complete Erlang language and produces reasonably effi-
cient code. It comes with backends for a variety of platforms, start-
ing with SPARC V8+ that was the first architecture it supported,
continuing with x86 [15] and AMD64 (x86 64) [12], PowerPC and
PowerPC64, and various flavors of the ARM family of processors.

Each of these backends requires development and maintenance
of a code base of significant size both in the compiler, which is
written in Erlang, and in the code that interfaces with the Erlang
Run-Time System (ERTS), which exists in C. Although some code
can be shared between all these backends (e.g., the bulk of the code
for the register allocators) or between backends which belong to the
same family (e.g., x86 and x86 64), their maintenance and further
development is not top priority for its original authors anymore.
Perhaps it would be better if this work could be “outsourced” by
using some compiler infrastructure which was more modern and
more actively maintained.

One such infrastructure is that of LLVM. Its language-agnostic
design makes LLVM currently quite popular both as a static or dy-
namic (Just-in-Time) compiler, and as a static program analyzer.
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LLVM seems quite popular nowadays and is used as a common
infrastructure to implement a broad variety of statically and run-
time compiled languages, e.g., the family of languages supported
by GCC, Java and .NET [4], Python [18, 24], Ruby [13, 16],
Haskell [22], as well as countless lesser known languages. It has
replaced a broad variety of special-purpose compilers and has also
been used to create a broad variety of new products (e.g., the
OpenCL GPU programming language and runtime).

Wanting to experiment with LLVM in the context of Erlang, we
embarked on a project, called ErLLVM, whose outcome is a new
backend for the HiPE compiler that targets LLVM. We describe it
in detail in this paper in order to document the current status of our
implementation, measure its performance, describe a few technical
challenges we faced and the tricks we used to overcome them.

Overview We review LLVM and its characteristics in Section 3.
We describe in detail the design of ErLLVM, document the deci-
sions we took, the technical challenges that we needed to address,
and the changes that we made to LLVM’s code base (Section 4). A
detailed performance evaluation against BEAM, HiPE, and Erjang
on a variety of programs is given in Section 5. But let us begin with
a brief overview of HiPE and its existing backends.

2. HiPE
HiPE (High Performance Erlang) was an ASTEC (Advanced Soft-
ware TEChnology competence center) project at Uppsala Univer-
sity during 1998–2005. The main goal of the HiPE project was to
investigate ways of efficiently implementing concurrent program-
ming languages using message-passing in general and the program-
ming language Erlang in particular. One of the concrete outcomes
of the HiPE project was the development of the HiPE native code
compiler for Erlang. Since October 2001, the HiPE compiler is
fully integrated in Erlang/OTP system and it is effectively the na-
tive code compiler for the Erlang language. For more information,
see http://www.it.uu.se/research/group/hipe.

In this section, we will mostly present an overview of the archi-
tecture of the HiPE native code compiler and how it is integrated
in the Erlang Run-Time System of Erlang/OTP focusing on issues
that are relevant for the implementation of the new LLVM backend.

2.1 The HiPE Pipeline
Figure 1 outlines the architecture of the Erlang/OTP system when
HiPE is enabled. (In the same figure, the box labeled LLVM shows
where the new LLVM backend fits in HiPE’s pipeline.) Although
the compilation can start directly from source code, in most cases
the code has already been compiled by BEAM, the bytecode com-
piler of Erlang/OTP. Thus, the compilation to native code starts by
disassembling the bytecode and representing it in a symbolic form.
Besides this symbolic BEAM representation, HiPE uses another
two intermediate representations and ends up generating symbolic
target-specific assembly. The representations used by HiPE are:
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Figure 1: Architecture of the HiPE compiler extended with the LLVM backend.

Symbolic BEAM: This is a symbolic representation of the code
that the bytecode compiler of Erlang/OTP has generated for ex-
ecution in the interpreter of the BEAM virtual machine (VM).
BEAM is a register-based VM and its bytecode has instructions
that implement pattern-matching compilation, message-passing
concurrency, process scheduling, automatic memory manage-
ment of all memory areas (heap, stack, process mailbox, etc.),
exception handling, type checking, bignum arithmetic, etc. All
the optimizations that the bytecode compiler has performed are
part of the symbolic BEAM representation that the native code
compiler starts from. However, when this bytecode is loaded
into the runtime system, the BEAM loader also performs ag-
gressive instruction merging and specialization, which signifi-
cantly expand the set of instructions and make the bytecode run
considerably faster in the threaded interpreter of the VM. This
latter kind of optimizations, i.e., those performed by the BEAM
loader, are not part of HiPE’s starting point.

Icode: Icode is an idealized Erlang assembly language with a min-
imal instruction set of only 16 instructions. The Icode interme-
diate representation (IR) assumes an infinite number of registers
and an implicit stack. Registers are preserved around function
calls and all bookkeeping operations, such as memory manage-
ment and process scheduling, are implicit.
The symbolic BEAM is translated to Icode mostly one instruc-
tion at a time. However, some standard sequences of symbolic
BEAM code are peephole-optimized into more efficient Icode
sequences. Common operations, such as fetching an element
from a tuple or switches that perform pattern-matching, are in-
line expanded into fetches and tests.
Temporaries are also renamed through conversion to Static Sin-
gle Assignment (SSA) form [2] to avoid false dependencies be-
tween different live ranges. This form enables many optimiza-
tions at the Icode level, such as constant and copy propagation,
constant folding, structure reuse, and dead-code elimination.
Figure 2 displays the Icode of a simple tail-recursive function
that computes the sum of all elements of a list. The redtest
primitive operation implements process scheduling: it checks
whether the process executing this code has exhausted its re-
duction steps and if so yields. Otherwise, there are tests whether
v3, the first argument of the function after conversion to SSA
form, is a cons (label 4) or nil (label 6), going to the appropriate
basic block if the test succeeds. If v3 contains some other term,
a function clause exception is raised (label 2).

RTL: RTL is a generic three-address register transfer language.
RTL itself is target-independent, but the code is target-specific
due to references to target-specific registers and primitive pro-

1 lists:sum/2(v1, v2) ->
2 %% Info: [’Not a closure’,’Leaf function’]
3 1:
4 v3 := phi({1, v1}, {3, v6})
5 v4 := phi({1, v2}, {3, v7})
6 _ := redtest() (primop)
7 goto 4
8 4:
9 if is_cons(v3) then 3 else 6

10 3:
11 v5 := unsafe_hd(v3) (primop)
12 v6 := unsafe_tl(v3) (primop)
13 v7 := ’+’(v5, v4) (primop)
14 goto 1
15 6:
16 if is_nil(v3) then 5 else 2
17 5:
18 return(v4)
19 2:
20 v10 := function_clause
21 fail(error, [v10])

Figure 2: The Icode (in SSA form) of a lists:sum/2 function.

cedures. The RTL instruction set is RISC-like consisting of only
27 instructions. RTL has tagged registers for proper Erlang val-
ues (all Erlang terms are tagged in BEAM) and untagged reg-
isters for arbitrary machine values, such as addresses, raw inte-
gers or floating-point numbers. To simplify the garbage collec-
tor interface, function calls only preserve live tagged values.
In the translation from Icode to RTL a large number of op-
erations (e.g., arithmetic, data construction, tests) are inlined.
Data tagging and untagging are made explicit, data accesses
and initializations are turned into loads and stores. Icode-level
switch instructions for switching on basic values are translated
into RTL code that implements these switches. Moreover, stack
and exception handling code is expanded into explicit code.
The RTL code is also represented in SSA form and optimiza-
tions like common subexpression elimination, constant prop-
agation, constant folding, and dead code elimination are per-
formed again in this form.
Figure 3 shows the RTL code that the HiPE compiler currently
produces for the lists:sum/2 function of Figure 2. Notice
how the Icode primitive operations have been inlined, how un-
tagging has been made explicit (e.g., lines 22, 23, and 25), how
constant terms have been substituted by their internal represen-
tation (line 36), and how addition has been partially inlined



1 {lists,sum,2}(v19, v20) ->
2 ;; Leaf function
3 ;; Info: []
4 .DataSegment
5 .CodeSegment
6 L1:
7 v21 <- v20
8 v22 <- v19
9 goto L2

10 L2:
11 v23 <- phi({1, v21}, {11, v32})
12 v24 <- phi({1, v22}, {11, v33})
13 %fcalls <- %fcalls sub 1 if lt then L4 else L6
14 L4:
15 <- suspend_0() then L6
16 L6:
17 r25 <- v24 ’and’ 2 if eq then L7 else L8
18 L7:
19 v26 <- [v24+-1]
20 v27 <- [v24+7]
21 r28 <- v26 ’and’ v23
22 r29 <- r28 ’and’ 15
23 if (r29 eq 15) then L13 else L12
24 L13:
25 r34 <- v23 sub 15
26 v35 <- v26 add r34
27 if not_overflow then L11 else L12
28 L11:
29 v31 <- phi({13, v35}, {12, v30})
30 v32 <- v31
31 v33 <- v27
32 goto L2
33 L12:
34 v30 <- ’+’(v26, v23) then L11
35 L8:
36 if (v24 eq -5) then L15 else L16
37 L15:
38 return(v23)
39 L16:
40 v36 <- atom_no(’function_clause’)
41 <- erlang:error(v36)
42 return(15)

Figure 3: RTL code (in SSA) produced by the Icode of Figure 2.

(fixnum addition happens in basic block L13 and, if bignum
addition is required, control goes to basic block L12).

Symbolic target-specific assembly: This representation, used by
the existing HiPE backends, is just a simple abstraction of the
assembly of the target architecture (SPARC, x86, . . . , PowerPC)
as Erlang terms. Symbolic assembly gets produced by translat-
ing RTL to it. It differs from RTL in that the code contains id-
ioms which are target-specific (e.g., that the target architecture
has a base register plus offset addressing mode).

2.2 The Existing HiPE Backends
The main phases of the existing backends are: 1) register allocation,
2) frame management, 3) code linearization, and 4) translation of
the symbolic assembly to a loadable object. Let us describe them.

Register allocation. In this phase, the compiler attempts to map
temporaries to actual machine registers. Every temporary that re-
mains unallocated is mapped to a specific stack slot during the sub-
sequent phase of frame management. The HiPE compiler has paid
special attention to register allocation and provides a wide variety
of allocators: an iterated register coalescing allocator [5], an opti-
mistic register coalescing allocator [14], a Briggs-style graph color-
ing register allocator [1] and a linear scan register allocator [17, 19].

On register-poor architectures (e.g., x86) or in optimization level o3
the allocator used by default is the iterated register coalescing. This
allocator has been tuned over a number of years and is typically
quite effective.

Frame management. After register allocation, stack frames are
introduced to the code. This phase is responsible for:

• mapping spilled temporaries to stack slots, minimizing the size
of the stack frame (i.e., by mapping temporaries whose life
times do not overlap to the same stack slot), and rewriting uses
of these temporaries as memory operands in the stack frame;
• adding code to the function prologue in order to check for stack

overflow and setting up the call frame (the frame size and max-
imum stack usage are computed and taken into consideration);
• creating stack descriptors for each call site, describing the stack

layout, the stack slots that correspond to live temporaries (using
the result of the liveness analysis) and whether the call is in the
context of a local exception handler; and
• generating code, at each tail call, to shuffle the actual parame-

ters to the initial portion of the stack frame.

Code linearization. The previous phases operate on code that is
in a Control Flow Graph (CFG) form. Before translating to native
code, the CFG must be linearized by ordering the basic blocks
and redirecting jump instructions accordingly. The linearization
phase is responsible for performing this ordering while taking into
account the likelihood of a conditional jump being taken or not,
and the static branch prediction algorithm used in hardware. This is
a crucial phase of the backend as it improves the efficiency of the
generated native code.

Assembling. Finally, a custom assembler converts the symbolic
assembly to binary code and produces a loadable object (i.e., an
appropriate Erlang term) with the machine code, the constant data,
the symbol table, and the external references needed to be patched
for the runtime system. Notice that the assembling phase is also an
in-memory phase and no intermediate files are created at any step
in the compilation pipeline.

2.3 Pros and Cons of the Existing HiPE Backends
With the exception of offering a wide selection of register alloca-
tors and of performing stack minimization, which pays off when
garbage collection is triggered, the backends of HiPE are relatively
simple. Instruction selection is standard and none of the backends
performs instruction scheduling. Also, the HiPE backends by de-
fault generate native code for the lowest common denominator of
the target family. For example, the x86 backend still generates x87
code for floating point operations by default even though nowadays
there are probably very few x86-based machines in operation that
do not support SSE2 (Streaming SIMD Extensions 2). As another
example, the ARM backend of HiPE has never been updated to gen-
erate floating point instructions; till recently, most ARM processors
did not come with hardware support for floating point.

In short, we expect that by outsourcing to LLVM: instruction
selection, instruction scheduling, and the task of detecting the pres-
ence of special hardware and optimizing for it, the generated native
code can be better than the one currently produced by HiPE back-
ends.

3. LLVM
LLVM is an open source compiler infrastructure written in C++
that started at the University of Illinois at Urbana-Champaign by
Chris Lattner [9]. Nowadays, LLVM is a collection of modular and
reusable state-of-the-art compiler and toolchain technologies, that



can be used to create static compiler backends, Just-in-Time (JiT)
compilers or mid-level and optimization analysis tools on a com-
piler pipeline. It provides a source- and target-independent opti-
mizer that operates only on the LLVM Intermediate Representation
and targets one of the available code generators to produce native
machine code for a variety of architectures.

LLVM’s novelty comes from the following features:

• The organization of the optimizer as a set of well-defined li-
braries.
The compilation pipeline comprises of more than 100 distinct
analysis and optimization passes. These optimizations include
many of the classic compiler optimizations found in compiler
text books. Each pass is run on the input and, after verifying
a specific transformation, updates the code, preparing it for
the next optimization pass or the code generator. The compiler
designer is able to select which passes should be executed along
with their order, or even implement new ones that leverage these
libraries and construct the intended pipeline.
• The support for lifelong program analysis through Link-Time

Optimization (LTO) and Install-Time Optimization (ITO).
Link-Time Optimization is used to perform optimization (like
inlining) across file boundaries. With LTO enabled, the com-
piler emits LLVM bitcode (cf. Section 3.1) instead of native
code to the object file, and delays code generation to link time.
The LLVM Linker is responsible for identifying that the object
files contain LLVM bitcode, for loading them in memory and
for triggering the optimizer over the aggregate and, then, the
code generator.
Install-Time Optimization is based on the same idea and de-
lays code generation even later. By delaying, for example, in-
struction choice, scheduling, code layout, and other aspects of
code generation, more appropriate choices can be made to bet-
ter leverage the underlying hardware.
• The design of the LLVM Intermediate Representation as a com-

plete code representation that enables the aforementioned fea-
tures.

ErLLVM does not take advantage of lifelong program analysis,
since Erlang supports language-level Dynamic Software Updating
(DSU) (also known as “hot-code loading”) which currently restricts
the inter-procedural optimizations; hence, we will not expand on
this feature now. Instead, we will examine more thoroughly the
LLVM IR, as this serves as our interface with the LLVM.

3.1 The LLVM Intermediate Representation
The LLVM Intermediate Representation (IR), or LLVM assembly, is
a high-level portable assembly language, providing abstraction be-
tween native assembly and source language. It is basically a com-
mon, low-level, code representation in SSA form. Some of its inno-
vative features include: a strict, language-independent type system
that exposes the primitives commonly used to implement high-level
language characteristics; an instruction for typed address arithmetic
(getelementptr); simple mechanisms that can be used to imple-
ment garbage collection and exception handling in a uniform man-
ner. LLVM IR was designed to be a “universal intermediate repre-
sentation” able to express many different characteristics and host
various optimizations for arbitrary high-level programming lan-
guages.

Types need explicit handling from the programmer and no type
inference is performed on an instruction. The type system was thor-
oughly designed to enable a broad class of high-level transforma-
tions on low-level code without the need for extra analysis on the
side. Furthermore, type-mismatches can be used to detect errors in
optimizations by the LLVM consistency checker.

LLVM provides three different, yet equivalent, code representa-
tions: an in-memory compiler IR, an on-disk binary format, known
as LLVM bitcode (suitable for compact saving and fast loading by a
Just-in-Time compiler), and a human-readable assembly language
representation. This allows LLVM to provide a powerful intermedi-
ate representation for efficient compiler transformations and analy-
sis, while also providing a natural means to debug and visualize the
transformations.

LLVM programs are composed of modules, each of which is a
translation unit of the input program. Figure 4 contains the opti-
mized LLVM module of lists:sum/2 example of Figure 3. Each
module consists of metadata, global variables, external symbol def-
initions and function definitions. Metadata include definitions of
the endianess, the pointer size and the alignment of the data layout.
Global variables define regions of memory allocated at compile-
time rather than at runtime. They are pointers to data with global
scope and are prefixed with the @ symbol, similar to functions (e.g.,
@lists.sum.2). This should be compared to the local temporaries
(virtual registers and labels) spotted within a function scope and
denoted with the % prefix, e.g., %1-%68. The first N virtual regis-
ters, i.e., %1, %2, %3 and %4, are used for the incoming arguments.
External declarations, such as @atom_function_clause, define
symbols that may be used in the current module but are meant to
be defined during linkage. Comments begin with a ; and go until
the end of the line.

A function definition contains a list of basic blocks, forming the
Control Flow Graph (CFG); in our example code there are many
such blocks. Each basic block may optionally start with a label
(giving the basic block a symbol table entry), contains a list of
instructions, and explicitly ends with a terminator instruction, such
as a branch (e.g., a br) or a function return (ret). The first basic
block in a function is not allowed to have predecessor basic blocks
(i.e., there cannot be any branches to the entry of the function).
There is a straightforward correspondence of the LLVM blocks in
Figure 4 with the RTL blocks in Figure 3, e.g., %21 corresponds to
block L4 (suspend block), %31 to L7 (data untagging), %42 to L13
(fixnum addition), etc.

All operations are explicitly annotated with types, e.g., in
line 14 a 64-bit integer value (-5) is stored in a consistent pointer
variable (i64* %5) already allocated on the stack (notice the
%5 = alloca i64 instruction on line 11). Another example is that
of explicit pointer arithmetic performed using add, then inttoptr
(for explicit type conversion) and, then, load which can be seen in
lines 27–29. The number of arguments and return values in calls
differ from the corresponding ones in Figure 3; this is closely re-
lated with the cc11 annotations in function definitions and calls,
and will be discussed later on in Section 4.2.

3.2 Garbage Collection in LLVM
LLVM provides garbage collection built-ins (intrinsically) in the
intermediate representation and a framework for compile-time code
generation plugins. These facilities should generically support var-
ious popular garbage collection algorithms, such as semi-space,
mark-and-sweep, generational, reference counting, incremental,
concurrent and cooperatives, without providing an actual imple-
mentation for them.

Using the plugins one can generate code and data structures that
conform to the binary interface specified by the language’s runtime
library (hosting the garbage collector): denote safe-points, compute
and print stack maps, and use read/write barriers.

The available intrinsics are:

llvm.gcroot: Declares the existence of a GC root to the code
generator. The potential root must be a stack allocated value,
i.e., a virtual register previously declared with an alloca in-



1 declare void @llvm.gcroot(i8**, i8*)
2 declare cc11 { i64, i64, i64 } @suspend_0(i64, i64)
3 declare cc11 { i64, i64, i64 } @erlang.error.1(i64, i64, i64)
4 declare cc11 { i64, i64, i64 } @bif_add(i64, i64, i64, i64)
5 declare cc11 { i64, i1 } @llvm.sadd.with.overflow.i64(i64, i64)
6

7 @atom_function_clause = external constant i64
8

9 define cc11 {i64, i64, i64} @lists.sum.2(i64, i64, i64, i64)
10 nounwind noredzone gc "erlang_gc" {
11 %5 = alloca i64
12 %6 = bitcast i64* %5 to i8**
13 call void @llvm.gcroot(i8** %6, i8* @gc_metadata)
14 store i64 -5, i64* %5
15 ; More gcroot declarations
16 ...
17 br label %11
18 ...
19 ; <label>:21 ; preds = %11
20 %22 = call cc11 { i64, i64, i64 }
21 @suspend_0(i64 %13, i64 %12) nounwind
22 %23 = extractvalue { i64, i64, i64 } %22, 1
23 %24 = extractvalue { i64, i64, i64 } %22, 0
24 br label %25
25 ...
26 ; <label>:31 ; preds = %25
27 %32 = add i64 %28, -1
28 %33 = inttoptr i64 %32 to i64*
29 %34 = load i64* %33
30 store i64 -5, i64* %7
31 %35 = add i64 %28, 7
32 %36 = inttoptr i64 %35 to i64*
33 %37 = load i64* %36
34 store i64 %37, i64* %5
35 %38 = load i64* %9
36 %39 = and i64 %34, 15
37 %40 = and i64 %39, %38
38 %41 = icmp eq i64 %40, 15
39 br i1 %41, label %42, label %52
40

41 ; <label>:42 ; preds = %31
42 %43 = add i64 %38, -15
43 %44 = call { i64, i1 }
44 @llvm.sadd.with.overflow.i64(i64 %34, i64 %43)
45 %45 = extractvalue { i64, i1 } %44, 0
46 %46 = extractvalue { i64, i1 } %44, 1
47 br i1 %46, label %52, label %47
48 ...
49 ; <label>:52 ; preds = %42, %31
50 store i64 -5, i64* %9
51 %53 = call cc11 { i64, i64, i64 }
52 @bif_add(i64 %27, i64 %26, i64 %34, i64 %38) nounwind
53 %54 = extractvalue { i64, i64, i64 } %53, 1
54 %55 = extractvalue { i64, i64, i64 } %53, 0
55 %56 = extractvalue { i64, i64, i64 } %53, 2
56 %57 = load i64* %5
57 br label %47
58 ...
59 ; <label>:60 ; preds = %58
60 %61 = load i64* %9
61 %62 = insertvalue { i64, i64, i64 } undef, i64 %27, 0
62 %63 = insertvalue { i64, i64, i64 } %62, i64 %26, 1
63 %64 = insertvalue { i64, i64, i64 } %63, i64 %61, 2
64 ret { i64, i64, i64 } %64
65

66 ; <label>:65 ; preds = %58
67 %66 = ptrtoint i64* @atom_function_clause to i64
68 %67 = call cc11 { i64, i64, i64 }
69 @erlang.error.1(i64 %27, i64 %26, i64 %66) nounwind
70 %68 = insertvalue { i64, i64, i64 } %67, i64 15, 2
71 ret { i64, i64, i64 } %68
72 }

Figure 4: Partial LLVM assembly output of the Optimizer for
lists:sum/2 of Figure 3.

struction. A usage example can be seen in the entry block of the
code (lines 11–14) in Figure 4.

llvm.gcread/llvm.gcwrite: Identifies reads (writes) of refer-
ences from (to) heap supporting garbage collector implemen-
tations that require read or write barriers.

These intrinsics can be lowered in actual code in the way that is
defined in the GC plugin.

3.3 Exception Handling in LLVM
The exception handling interface of LLVM has recently been re-
designed in order to conveniently support the two most common
schemes of exception handling utilised by programming languages:
the dynamic registration and the table-driven approach.

The first scheme is supported through what is called Setjmp/-
Longjmp (SJLJ) exception handling [10]. LLVM implements this
by providing appropriate intrinsics (llvm.eh.sjlj.*) for build-
ing, accessing and removing the unwind frame contexts at runtime.
This approach is more compact in terms of space and faster for han-
dling a thrown exception, but adds execution overhead on normal
control flows. Thus, the second scheme is generally preferred.

The Itanium ABI Zero-cost exception handling [10] is the
most well-known implementation of the table-driven scheme, also
used by many production-quality C++ compilers [3]. It defines a
methodology for creating static tables, called Exception Handling
Tables, at compile- and link-time which relate program regions
with exception handlers. In case of a thrown exception, the runtime
can use these tables to determine how to unwind the stack and han-
dle the exception. Thus, this specification adds “zero-cost” to the
normal execution of an application.

The IR provides three instructions related to exception handling:

invoke: Causes control to transfer to a specific function, like a
normal call, with the possibility of the control flow to return
to either a “normal” label or an “exception” label.

landingpad: Specifies a basic block where an exception lands;
saves the exception structure reference; then, proceeds to select
the catch block that corresponds to the type info of the excep-
tion object. It can be used to perform a “catch”, a “cleanup” or
a “filter” on the exception object.

resume: Resumes propagation of an existing (in-flight) exception
whose unwinding was interrupted with a landingpad instruc-
tion.

4. ErLLVM
Important requirements in the design of ErLLVM have been to fit as
easily as possible within the existing pipeline of the HiPE compiler
and maintain Application Binary Interface (ABI) compatibility in
order to enable interoperability with the rest of HiPE’s infrastruc-
ture. As depicted in Figure 1, ErLLVM is placed after the RTL
passes, just like the other backends of HiPE. This decision is based
on the fact that RTL aims to represent Erlang code in a form that
is as low-level as possible while still being hardware-independent;
in RTL all high-level characteristics of Erlang, such as exception
handling and garbage collection, have been explicitly expanded to
low-level code.

Although the RTL and LLVM intermediate representations have
many similarities, and the mapping from one to the other is almost
straightforward, the fact that Erlang code is executed in a Managed
Runtime Environment (MRE) introduces several obstacles in pro-
ducing efficient code using the LLVM infrastructure. Most of these
are related to the fact that the Erlang Run-Time System (ERTS)
provides automatic memory management by employing a precise
garbage collector. In this section, we will discuss these issues but
let us first go through some details of the new HiPE pipeline.
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Figure 5: The LLVM component of HiPE’s pipeline.

4.1 The ErLLVM Pipeline
As we have already discussed in Section 2.1, the original pipeline
of the HiPE compiler produces symbolic native assembly for the
target architecture and, after optimizing the code, uses HiPE’s cus-
tom assembler to generate binary code that will be loaded to the
Erlang Run-Time System by the HiPE loader. HiPE’s assembler
operates specifically on the in-memory symbolic assembly repre-
sentation generated by HiPE. Additionally, along with assembling,
it gathers all the information that is required by the loader to be able
to load the binary code. This information includes:

• the offsets of the compiled functions and closures;
• the function calls with their stack descriptors and addresses of

exception handlers;
• the Erlang terms that need to be interned in tables, such as

constants and atoms; and
• the jump tables for switch statements.

The new LLVM backend takes RTL as input and aims at produc-
ing native code and all the anticipated loading information using
the LLVM infrastructure. In this way we do not need to modify the
HiPE loader. The ErLLVM pipeline, illustrated in Figure 5, consists
of the following phases:

Translation of RTL to LLVM assembly. Direct mapping of the
RTL code representation to the corresponding LLVM assem-
bly. Some information (e.g., the values of the jump tables) is
collected to be used at load time. The LLVM assembler is trig-
gered in order to translate the human-readable LLVM assembly
to binary format, the LLVM bitcode, which is more efficient for
the optimizer.

Compilation and optimization of the LLVM assembly. LLVM’s
optimizer and code generator are employed to create a file con-
taining the optimized native assembly.

Assembling. An object file is created from the native assembly
using an available assembler, e.g., the llvm-gcc or the gcc
assembler.

Object file parsing. As already mentioned, the HiPE loader does
not take as input an object file. Instead, its input is an Erlang
record containing a binary with the native code and all informa-
tion necessary for loading this code. ErLLVM parses the object
file and uses the information collected in the first phase of this
list, in order to construct the aforementioned record.

Compiling RTL to LLVM Assembly
As already mentioned, both the RTL and the LLVM IR consist of
a low-level instruction set and memory model, and therefore all
aspects of RTL can be directly mapped to LLVM assembly. The
primary difference is that LLVM assembly includes a static type
system, whereas RTL is generally untyped. Fortunately, mapping
an untyped language to a typed one is not difficult, since when the
type of a variable cannot be inferred from the instruction in which
it is used, we can safely consider it to have the type word (i.e., the
size of a generic pointer) of the target architecture.

This compilation phase is done per function, as functions are
the compilation units of the HiPE compiler. Each instruction is
mapped to one or more symbolic LLVM instructions which are in-
ternally represented as Erlang records. Then, the human-readable
LLVM assembly for each function is dumped in a file and serves
as the point of interaction with the LLVM framework. We chose a
human-readable representation for this interaction because: (a) this
representation is more suitable for debugging, and (b) in the be-
ginning of ErLLVM’s development, there were no Erlang bindings
available for the LLVM API.

4.2 Calling Convention
Different languages use different calling conventions to describe
how the caller and the callee interact during a call. A calling
convention specifies: (a) where the parameters and the return values
are placed, (b) in which order, (c) which are the caller-/callee-saved
registers, and (d) how the task of setting-up and restoring the stack
after a function call is divided between the caller and the callee
(e.g., the callee pops the arguments off the stack).

LLVM can support multiple calling conventions, by augmenting
each function call with a calling convention annotation. HiPE,
though, uses a custom calling convention which does not match
with any of those provided by LLVM. So, we extended LLVM by
implementing a new calling convention (cc11) which describes the
scheme used by the HiPE compiler for the X86 and the X86 64
architectures1. This was the first patch we had to apply to LLVM.

Precoloured Registers
In RTL most registers are abstract (virtual) and independent of the
target architecture. However, a small subset of them, that includes
frequently accessed components of the ERTS, is mapped to actual
hardware registers for performance reasons. HiPE implements this
by treating these architecture registers as unallocatable; such regis-
ters are: the Native Stack Pointer (NSP), the Process Control Block
Pointer (P), and the Heap Pointer (HP). The NSP register contains a
pointer to the top of the Erlang runtime stack. Similarly, HP contains
a pointer to the next free memory location in the heap. P points to
a location in memory storing useful information about the Erlang
process that is currently running. These registers are called pre-
coloured (or pinned) in the following.

The LLVM assembly is designed to be strictly target-independent
and offers no way of interacting with the architecture. Pinning pre-
coloured registers to physical registers would require explicit con-
trol over register allocation, which is something that is not currently
offered by LLVM. Fortunately, the same problem was attacked by

1 Detailed information about the calling conventions used in HiPE appears
in $OTP_ROOT/erts/emulator/hipe/hipe_$ARCH_abi.txt text files.



define f (%arg1) {
...
res = call g (%arg1, %tmp);
...
return 0;

}

↓

define cc11 f (%HP, %P, %arg1) {
...
{%HP’’, %P’’, res} =

call cc11 g (%HP’, %P’, %arg1, %tmp);
...
return {%HP’’’, %P’’’, 0};

}

Figure 6: A simplified example of the transformation performed
by the backend in order to achieve register pinning using the new
calling convention in LLVM.

David Terei and Manuel Chakravarty when they implemented an
LLVM backend for the Glasgow Haskell Compiler (GHC) [22]
based on suggestions by Chris Lattner2.

Figure 6 shows how we achieved to place our “special” virtual
registers to specific physical ones by leveraging the new calling
convention (described in Section 4.2). We properly defined the
calling convention to: pin the first n arguments to registers (where
n is the number of precoloured registers) and, also, pin the first
n return values to the same physical registers. Then, our backend
translates each function call to a new one, which has n extra
parameters and return values, and uses this calling convention to
guarantee that the precoloured registers reside in the corresponding
physical ones. The HiPE calling convention defines that NSP resides
in SP (e.g., ESP for X86 and RSP for X86 64); LLVM, also, uses
SP for the same reason. Hence, the NSP virtual register is not
included in the transformation. Concrete examples of extracting
return values from a call and returning values to the caller can
be seen in lines 20–23 (block %21) and lines 60–64 (block %60),
respectively, of Figure 4.

With this transformation, the precoloured registers will have
the correct values on function entry and return. Throughout the
body of the function these registers are handled like any other
virtual register allowing, for example, the register allocator to spill
them to the stack when there is high register pressure. However,
this is not a problem as precoloured registers should, in fact, be
pinned to hardware registers only upon entry and exit of a function,
as these are the points of interaction with the runtime system.
Actually, this approach should offer better performance since there
are more registers available for the register allocator, and, thus,
should produce more efficient code. However, this is not the case
for the reasons that we will go through in Section 5.

4.3 Garbage Collection
Erlang, as most functional programming languages, relies on pre-
cise garbage collection (GC) for automatic memory management.
A precise garbage collector attempts to reclaim memory occupied
by objects no longer in use by the program by tracing pointers to
heap objects. Precise GC requires support from the runtime system
and may have great impact on performance. As many other com-
pilers, HiPE uses stack maps (or stack descriptors) computed at

2 The discussion can be found in http://nondot.org/sabre/
LLVMNotes/GlobalRegisterVariables.txt.

1 Entry:
2 ;; In the entry block of the function,
3 ;; allocate stack space for virtual register %X.
4 %X = alloca i64*
5

6 ;; Tell LLVM that the stack space is a stack root.
7 %tmp = bitcast i64** %X to i8**
8 call void @llvm.gcroot(i8** %X, i8* null)
9 ;; Store the ’nil’ value into it, to indicate that

10 ;; the value is not live yet. "-5" is the tagged
11 ;; representation of ’nil’.
12 store %i64 -5, %64** %X
13 ...
14 ;; "CodeBlock" is the block corresponding to the
15 ;; start of the scope of the virtual register %X.
16 CodeBlock:
17 store i64 %some_value, i64** %X
18 ...
19 ;; As the pointer goes out of scope, store
20 ;; the ’nil’ value into it, to indicate that
21 ;; the value is no longer live.
22 store %i64 -5, %64** %X

Figure 7: LLVM assembly for handling a GC root.

each safe point in order to expose this information to the garbage
collector.

Currently, LLVM supports precise garbage collection by the
llvm.gcroot intrinsic we described in Section 3.2. A compiler
author can write an appropriate GC plugin to export a stack map in
the form that is required by the runtime system. Hence, we added a
GC plugin in the LLVM source code — this was our second set of
patches — in order to be ABI compatible with ERTS.

The problems arise from the fact that LLVM strictly demands
the variables, which will be used for hosting GC roots, to be al-
located in the stack in the entry block of a function and, thus, are
considered live for the entire function3. With this approach, the root
property is attributed to stack variables rather than values/virtual
registers. In Figure 7 we present the LLVM assembly that is gen-
erated in order to handle a root in the %X virtual register. In the
current scheme, it is the responsibility of the frontend to copy val-
ues that contain garbage collectable objects to stack variables. Also,
the frontend has to explicitly track down the liveness information of
these variables and save a value that is not traceable by the garbage
collector (the nil value) in order to denote them as dead.

This approach obviously leads to suboptimal code since the
LLVM code generator, that has more information about all virtual
registers, should be responsible for spilling and reloading roots on
and from the stack around safe points with the goal of creating
minimal stack maps by re-using stack locations for variables with
non-overlapping lifetimes. Even worse, saving nil to denote that a
stack variable does not contain a live pointer has a runtime overhead
(i.e., the garbage collector traverses all stack slots and considers
those that store nil as dead) and corrupts the static property of
stack maps.

The latest version of ErLLVM tries to minimize this overhead
by doing a liveness analysis on the frontend for RTL registers that
are potential roots and conservatively mapping those with non-
overlapping lifetimes to the same stack variable. But still, while
improving the performance slightly, this solution cannot produce
code as efficient as the existing backends of HiPE. Furthermore, the

3 While the stack variables/stack slots are considered live during the lifetime
of the function, the values that “inhabit” them (i.e., the actual pointers on
the heap) may not be, for example if the compiler explicitly stores a value
untraceable by the garbage collector in the corresponding stack slot.

http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt
http://nondot.org/sabre/LLVMNotes/GlobalRegisterVariables.txt


L1:

   v19 <- 1

   <- bar(v19) to L3 fail to L5

L5:

   ; begin handler

   <- erlang:get_stacktrace()

   ...

   goto L3

L3:

   v21 <- atom_no('ok')

   return(v21)

Figure 8: RTL control flow graph of a function calling bar/1,
protected with an exception handler (the basic block with label L5).

translation of RTL to LLVM becomes more complicated without
the anticipated reward.

4.4 Exception Handling
Exception handling in HiPE is implemented by adding an extra
label to call instructions, if they are in the scope of some exception
handler. A local exception handler is represented by the basic block
that implements it. So, exceptions in HiPE’s control flow graph
are just edges between a basic block that ends with a call and a
basic block that implements the handler. An example of a CFG that
includes a call that is protected with an exception handler can be
seen in Figure 8.

The address of the call, along with the address of the excep-
tion handler, are information that is exported to the runtime sys-
tem through the stack descriptors. In this way there is no runtime
cost for setting-up an exception handler since, when an exception
is thrown, the stack map is used for unwinding the stack and trans-
ferring the control to the corresponding handler.

We used the Itanium ABI exception handling of LLVM (cf. Sec-
tion 3.3) in order to implement the corresponding functionality. We
found very useful for this the invoke instruction; this instruction
operates as a standard call, with the only difference being that it cre-
ates a correlation between the call and the two labels, which is used
at runtime. This correlation is exposed in the object file in the form
of Exception Handling Tables in the .gcc except table section
of an ELF object file.

Since these Exception Handling Tables contain all the necessary
information which is required by the runtime system, ErLLVM
just reads them from the object file and creates the corresponding
stack descriptors, in the format expected by the HiPE Loader (see
Section 4.1).

4.5 Explicit Stack Management
The HiPE compiler manages the Erlang call stack separately from
the standard C stack4. During the translation from the high-level
Erlang code to the low-level RTL code, the stack manipulations are
made explicit. Allocation in this stack is done in small pieces in-
stead of big chunks in order to optimize stack usage, especially for
functions that do not make any call (leaf functions). As described
in Section 2.2, the compiler prepends code to each function, which
checks for stack needs and, if the function does not have enough
space to execute, calls a BIF to allocate more space. This pro-
logue must follow the frame initialization phase because the size of

4 An exception is made for primitive built-in functions (BIFs).

the function’s frame must be known in order to perform the stack
check. Thus, it can only be inserted by the compiler that setups the
frame.

In LLVM there is a special post register allocation (post-ra) pass
named Prologue/Epilogue Insertion (PEI) which is responsible for
finalizing the function’s frame layout, saving callee-saved registers,
and emitting proper prologue and epilogue code for the function.
So, we needed to modify the LLVM source code again — this was
our third patch — in order to extend this pass and force the LLVM
code generator to insert the special prologue code when compiling
HiPE functions.

5. Evaluation
Next, we will report on the performance of the new LLVM backend
and compare it (on x86 64 and x86) with BEAM, the existing HiPE
backends, and, whenever possible, with Erjang.

The Erjang system [23] is an implementation of Erlang based on
Java Virtual Machine (JVM) which compiles BEAM bytecode into
JVM bytecode and then relies on Just-in-Time compilation to native
code for speed. Roughly, what happens is that Erjang loads Erlang’s
binary .beam file, converts it into Java’s .class file format, and
loads it into the JVM. It also implements a BEAM interpreter that
uses a shared heap [6] memory model for processes. (This means
that in Erjang messages are not copied between Erlang processes.)
The main benefit of Erjang is that it takes advantage from a virtual
machine with very mature implementation technology, thanks to
the vast amount of engineering effort that has been put into it, and
a JiT compiler that is able to perform aggressive optimization and
inlining of the code of “hot spots”.

5.1 Benchmarks
We wanted a compiler benchmark suite that consisted of programs
that run for a reasonable amount of time (more than a couple of
seconds) so that the impact of low-level optimizations could be re-
liably measured, but less than 10 minutes in order to have easily re-
producible results. Thus, for this paper, we created a simple bench-
marking infrastructure [21] with benchmarks from two groups:

Micro-benchmarks These are mostly common benchmarks used
in the past to evaluate the existing HiPE backends. Some of
them (barnes) are floating-point intensive, some of them (life
and smith) are concurrent, and the others are sequential pro-
grams that manipulate integers (tak), strings (prettypr, huff,
and yaws html), binaries (decode), and lists (length, length u,
nrev, and qsort).
We also included in this group a sequential program, orbit seq,
that solves the orbit problem: given a space X , a list of gener-
ators f1,...,fn : X → X and an initial vertex x0 : X , the goal
is to compute the least subset Orb of X such that Orb contains
x0 and is closed under all generators. (We note that orbit is far
from a micro-benchmark; it consists of several Erlang modules
of a total of about 1, 000 lines of Erlang code. It also comes with
parallel and distributed versions of solving the same problem.)

Shootout This group consists of concurrent programs (binary-
trees, chameneos-redux, fannkuch-redux, fasta, mandelbrot,
n-body, pidigits, spectral-norm and thread-ring) that come
from the so called “The Computer Language Benchmarks
Game” [20]. They were created to compare performance across
a wide variety of programming languages and their different
implementations. They are small, yet non-trivial, concurrent
programs that run for a considerable amount of time.

For BEAM, HiPE and ErLLVM, we have executed each bench-
mark five times in the same VM and kept the median value in or-
der to remove the noise from the measurements. Measuring Erjang



performance was a bit more complicated: since this system needs
to warm up, we run each benchmark four times in order to give the
JVM a chance to find the hot spots and optimize them and with a
small pause of one second between runs to let its JiT compiler be
scheduled. We then kept the average value of the next two runs.
We decided to report both the time for the first run (“Erjang - 1st”)
and the average time for the fifth and sixth runs (“Erjang - 5th”).
The difference between the two times shows the effect, presumably
positive, that the Java JiT compiler has.

The experiments for the x86 64 (AMD64) architecture were
conducted on a machine with four Intel Xeon E7340 CPUs (2.40
GHz) quad-cores, having a total of 16 cores and 16 GB of RAM.
For the x86 measurements we used a dual-core Intel Pentium D
CPU (3.00 GHz) with 1 GB of RAM. Both machines run Debian
GNU/Linux 2.6.32-5 and use GCC 4.4.5.

5.2 Runtime Performance
Figure 9 shows the results of a runtime comparison for the x86 64
(AMD64) architecture in the form of speedups from BEAM and
Figure 10 contains performance results for x86. As can be seen, on
average, code produced by the ErLLVM is two to three times faster
than BEAM bytecode and almost as fast as the native code pro-
duced by HiPE. Note that on three of the benchmarks (mandelbrot,
smith and tak), the speedup is considerably higher than this aver-
age (esp. on x86). On the other hand, on concurrent benchmarks
such as thread-ring, pidigits and life, which spend the majority of
their execution in Erlang BIFs implemented by the Erlang runtime
system in C, the speedups are non-existent.

Overall, it is clear that the new LLVM backend has not managed
to outperform the code produced by the existing HiPE backends, as
we initially hoped it would do, given the current expectations from
LLVM. Still, we think that these results are quite promising tak-
ing into account the years of development that HiPE has had. On a
more positive note, as can be observed from the performance dif-
ference between length and its “loop unfolded” version length u,
especially on x86 64, ErLLVM prefers code with big code blocks
where LLVM’s optimizer can be more effective.

Native code, either produced by HiPE or ErLLVM, seems to
perform as least as well as Erjang in the majority of benchmarks.
Erjang is particularly fast in benchmarks containing a lot of floating
point arithmetic and huge message passing, like chameneosredux
and nbody. Notice, however, that the additional speed up that JiT
compilation gives to Erjang is in most cases pretty small.

The evaluation of a compiler backend often focuses exclusively
on runtime performance. However, we believe that in the case of
a compiler for an industrially relevant language there are more
factors that must be taken into consideration: compilation time,
code size, and the backend code maintainability. So, we will try
to evaluate our backend in a more complete way.

5.3 A Deeper Look into ErLLVM’s Runtime Performance
To further inspect the performance of ErLLVM we examined the
impact of different optimization levels (-O1, -O2 and -O3) pro-
vided by the LLVM target-independent optimizer (opt). In Ta-
ble 1 we explore this impact for both the X86 and the X86 64
backends. Surprisingly, some benchmarks experienced a slowdown
when an optimization level was used, while most of them showed
a small speedup. The first row of each sub-table presents the aver-
age (Avg.) of slowdowns, while the second row depicts the corre-
sponding mean value of benchmarks exhibiting speedups; the third
line presents the average value of all benchmarks. It is obvious that
ErLLVM’s performance is only improved slightly when compiled
with the -O2 optimization group (≈ 5%), while -O3 produces mi-
nor further improvement. The dearth of improvement is somewhat
disappointing given the large number of optimizations performed

O1 O2 O3
Avg. of Slowdowns 0.96 0.97 0.98
Avg. of Speedups 1.09 1.11 1.09
Total Avg. 1.02 1.03 1.04

(a) x86

O1 O2 O3
Avg. of Slowdowns 0.96 0.93 0.93
Avg. of Speedups 1.07 1.10 1.13
Total Avg. 1.05 1.06 1.08

(b) x86 64

Table 1: The impact of different optimization levels in the LLVM
optimizer against no optimizations used (-O0/-OX).

by LLVM compared to the other HiPE backends. This also shows
that the code generated for Erlang via Icode and RTL is not the
“typical” code that compilers for C-like languages generate.

The biggest drawback of ErLLVM, that has a great negative
impact on performance, is the code that supports precise garbage
collection, as explained in Section 4.3. The way that is imposed
by the LLVM for handling garbage collection roots significantly
reduces runtime performance, as the static property of root liveness
shifts to memory stores during runtime. Even more the garbage
collector must traverse a bigger stack, as currently LLVM does
not perform any form of stack minimization for garbage collection
roots in order to allocate two roots to the same stack offset if their
live ranges do not overlap. To get some indication of how much
the code could be improved by stack minimization, we performed
some manual optimization of root handling in the produced code
and we got up to 20% improvement.

We also believe that the minor improvement achieved with dif-
ferent optimization levels is due to the nature of the compiled code.
This can also be seen by the small speed up that JiT compilation
gives to Erjang. It is common for Erlang modules to consist of
small and simple functions; the native code usually follows a pat-
tern of a few primary operations and low register usage but many
function calls and high memory traffic. Additionally, because of
the dynamic typing of Erlang, even primary operations may in-
volve BIF calls, for example Erlang uses arbitrary-sized integers
(bignums) and integer arithmetic is performed with a built-in func-
tion (when needed). Finally, hot-code loading restricts the effect of
inter-procedural optimizations; the unit of compilation in HiPE is a
single function and, thus, each function is compiled independently
in ErLLVM. Therefore, no optimization can occur even between
functions in the same module. Due to all these reasons, most of
LLVM’s optimization passes have no significant effect currently.
We believe that there is work to be done in the future in order to
take advantage of all of the optimizations that LLVM offers.

5.4 Binary Code Size
We used two applications of the Erlang/OTP system: the Standard
Library (stdlib) and the HiPE compiler (hipe), comprised of 79
and 196 modules respectively, in order to compare the binary code
sizes that are generated by ErLLVM to those generated by HiPE
both for x86 64 and x86. Table 2 displays the aggregate results for
these applications.

The LLVM backend produces 15–20% larger binaries than the
existing HiPE backends. This is imposed mainly by the the way it
handles garbage collection roots and the need for explicitly mark-
ing roots liveness with store instructions. Secondly, LLVM tries to
optimize the binary code to better fit in memory by aligning the
code with extra padding (when needed).
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HiPE ErLLVM HiPE/
ErLLVM

Code Size 5504880 6625368 0.83
Compilation Time 427.29 547.89 0.78

(a) x86

HiPE ErLLVM HiPE/
ErLLVM

Code Size 6607584 7915928 0.84
Compilation Time 497.64 541.70 0.92

(b) x86 64

Table 2: Binary code sizes (in bytes) and compilation times (in
seconds) for hipe and stdlib applications.

In the current state of ErLLVM, reducing the size of the binary
code has never been a top priority for us. However, we do believe
that by the time we will have achieved better runtime performance
(through more aggressive optimizations of the final code) the size
of the binaries will have reduced too to the levels currently achiev-
able by HiPE.

5.5 Compilation Times
We also compared the compilation times of ErLLVM when com-
piling the same two applications of the Erlang/OTP system on both
supported architectures. Compilation times were obtained starting
from the point where the BEAM bytecode is already present and is
being disassembled (cf. Figure 1). Table 2 only displays the total
results for both applications along with the ratios HiPE/ErLLVM
of compilation times on x86 64 and x86.

We can see that the HiPE backend is approximately 10–20%
faster than LLVM on average of 275 modules in both x86 and
x86 64. This fact is not surprising since the LLVM backend is still
immature, and attention was put to correctness rather than fast com-
pilation. The main problem lies on the fact that the new backend
uses an inefficient way for representing LLVM assembly and many
intermediate files for passing data from one tool to the other. We
tried to reduce the compilation time as much as possible by us-
ing buffered writes on files opened as raw5. Furthermore, for the
translation to LLVM assembly, we use the final, unconverted SSA
form of RTL provided by HiPE. Apparently, we go through all the
optimizations that HiPE performs (described in Section 2.1) plus
many optimizations that are provided by the LLVM optimizer and
the LLVM code generator. So, many optimizations are performed
more than once in different phases of the translation and this may
not be worth it. We believe that we should use the simplest form
of RTL (before being optimized at all) and let the LLVM infras-
tructure optimize it as much as possible. We consider compilation
times as something that can be easily improved in the future.

5.6 Implementation Complexity
Finally, we evaluate the new LLVM backend in terms of implemen-
tation complexity. The term “complexity” refers to the amount of
work required to build, maintain and extend the backend.

Each of the existing HiPE backends implements a compiler
from RTL to symbolic target-specific assembly and an assembler
to create binary code ready for loading into the runtime system.
On the contrary, ErLLVM needs a (target-agnostic) translator from
RTL to LLVM assembly and, in the current implementation, an ob-
ject file parser to extract the generated information from the gener-
ated (on-disk) object file. It is clear for any compiler developer that

5 For more information regarding raw files consult the documentation of the
file module in Erlang/OTP and file:open/2 in particular.

HiPE Backend Size (LOC)

ARM

Total: 5352
Code: 3886
Blank: 636
Comments: 830 (17.6%)

SPARC

Total: 5137
Code: 3616
Blank: 643
Comments: 878 (19.5%)

x86/x86 64

Total: 10463
Code: 7424
Blank: 1056
Comments: 1983 (21.1%)

PPC/PPC64

Total: 6684
Code: 5001
Blank: 792
Comments: 891 (15.1%)

ErLLVM (x86/x86 64)

Total: 4824
Code: 3441
Blank: 439
Comments: 944 (21.5%)

Table 3: Code Sizes for various HiPE’s backends. Measurements
include only Erlang source (.erl) and header (.hrl) files; no
Makefiles and other text files in the directories. The percentage of
comments is estimated as: Comments/(Code+Comments).

mapping from one intermediate representation to another is by far
easier than creating an assembler for each supported architecture.

In Table 3 we present the sizes, in lines of codes (LOC), of the
various HiPE backends. These numbers do not include common
code that all backends share, such as code from the flow, icode,
rtl and misc directories of the hipe application. It is clear that
the LLVM backend is the simplest, both conceptually and in lines
of code. In fact, only 2, 563 lines of plain Erlang code correspond to
the translator while 885 LOC belong to the elf* format modules,
that implement the object file parser.

6. Concluding Remarks and Future Work
This paper has described the architecture, design decisions and im-
plementation details for a new backend for the native code com-
piler of Erlang/OTP that uses the LLVM compiler infrastructure
for code generation. Special attention was paid from the beginning
of the project to retain ABI compatibility with the other backends
of the HiPE compiler and support all features of Erlang, such as
hot-code loading, garbage collection, and exception handling. We
evaluated the new backend with respect to two broad dimensions:
performance and code complexity.

Our benchmark results indicate that the code generated from
ErLLVM is significantly faster than BEAM, and on x86 and x86 64
achieves on average about the same performance as that of existing
HiPE backends (Section 5.2). These results suggest that there are
good indications that the LLVM backend, when extended to support
all the architectures that HiPE currently supports, may become the
default (only?) backend of the ahead-of-time native code compiler
of Erlang/OTP. The main reason why this is likely to happen is
that ErLLVM not only is a single code base that can offer the
functionality of four different ones, but it is also easier to maintain
and extend than all the other HiPE backends. This is a big gain
and, taking into consideration that LLVM currently has a very
active community of developers which is progressing quickly in all
areas, HiPE can effortlessly benefit too, by outsourcing this work
to LLVM.



Currently, the biggest drawbacks of ErLLVM are two: longer
compilation times and the need for a custom version of LLVM.
We are not surprised by the first one as, primarily, attention was
paid to correctness and completeness rather than fast compilation.
The compilation time can be improved significantly with the use
of the LLVM bindings [8] in order to avoid printing to and parsing
intermediate files. As far as the patches to LLVM are concerned, we
have been in close contact with the LLVM developers in order to
bring our changes to an acceptable form for the project. We expect
to have them pushed upstream before the next stable release.

While the new backend is complete and rather fast, our work has
clearly some way to go. Our primary focus in the future will be to
improve ErLLVM’s performance by properly taking advantage of
many powerful features of LLVM that are currently underutilized,
e.g., the Type-Based Alias Analysis (TBAA) [11] or the use of
branch probabilities (that already exist in RTL) for better basic
block placement. In the short run, our immediate goals involve:
(a) changing the unit of compilation from function to module in
order to enable intra-module optimizations, such as better inlining
(while taking care of preserving hot-code loading semantics), and
(b) using the LLVM bindings to avoid the overhead of intermediate
files. In the long run, extending ErLLVM’s translator to support all
architectures currently supported by HiPE and ERTS (not just x86
and x86 64) would definitely be worthwhile.
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