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Technology trends such as growing wire delays, power consumption

limits, and diminishing clock rate improvements, present conventional instruc-

tion set architectures such as RISC, CISC, and VLIW with difficult challenges.

To show continued performance growth, future microprocessors must exploit

concurrency power efficiently. An important question for any future system is

the division of responsibilities between programmer, compiler, and hardware

to discover and exploit concurrency.

In this research we develop the first compiler for an Explicit Data Graph

Execution (EDGE) architecture and show how to solve the new challenge of

compiling to a block-based architecture. In EDGE architectures, the compiler

is responsible for partitioning the program into a sequence of structured blocks

that logically execute atomically. The EDGE ISA defines the structure of,

and the restrictions on, these blocks. The TRIPS prototype processor is an

EDGE architecture that employs four restrictions on blocks intended to strike

vi



a balance between software and hardware complexity. They are: (1) fixed

block sizes (maximum of 128 instructions), (2) restricted number of loads and

stores (no more than 32 may issue per block), (3) restricted register accesses

(no more than eight reads and eight writes to each of four banks per block),

and (4) constant number of block outputs (each block must always generate a

constant number of register writes and stores, plus exactly one branch).

The challenges addressed in this thesis are twofold. First, we develop

the algorithms and internal representations necessary to support the new struc-

tural constraints imposed by the block-based EDGE execution model. This

first step provides correct execution and demonstrates the feasibility of EDGE

compilers. Next, we show how to optimize blocks using a dataflow predication

model and provide results showing how the compiler is meeting this challenge

on the SPEC2000 benchmarks. Using basic blocks as the baseline performance,

we show that optimizations utilizing the dataflow predication model achieve

up to 64% speedup on SPEC2000 with an average speedup of 31%.
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Chapter 1

Introduction

Technology trends such as growing wire delays, power consumption lim-

its, and diminishing clock rate improvements, present conventional instruction

set architectures such as RISC, CISC, and VLIW with difficult challenges [1].

To show continued performance growth, future microprocessors must exploit

concurrency power efficiently. An important question for any future system is

the division of responsibilities between programmer, compiler, and hardware

to discover and exploit concurrency.

In previous solutions, CISC processors intentionally placed few ISA-

imposed requirements on the compiler to expose concurrency. In-order RISC

processors required the compiler to schedule instructions to minimize pipeline

bubbles for effective pipelining concurrency. With the advent of large-window

out-of-order microarchitectures, however, both RISC and CISC processors rely

mostly on the hardware to support superscalar issue. These processors use a

dynamic placement, dynamic issue execution model that requires the hard-

ware to construct the program dataflow graph on the fly, with little compiler

assistance. VLIW processors, conversely, place most of the burden of identi-

fying concurrent instructions on the compiler, which must fill long instruction

1



words at compile time. This static placement, static issue execution model

works well when all delays are known statically, but in the presence of variable

cache and memory latencies, filling wide words has proven to be a difficult

challenge for the compiler [29,45].

Explicit Data Graph Execution (or EDGE) architectures partition the

work between the compiler and the hardware differently than RISC, CISC, or

VLIW architectures [1, 16, 36, 53, 62–65, 73], with the goal of exploiting fine-

grained concurrency at high energy efficiency. An EDGE architecture has two

distinct features that require new compiler support. First, the compiler is

responsible for partitioning the program into a sequence of structured blocks,

which logically execute atomically [47]. The EDGE ISA defines the structure

of, and the restrictions on, these blocks. Forming structurally correct blocks

is sufficient for execution, however blocks must also be optimized to achieve

high performance. Second, instructions within each block employ direct in-

struction communication. The compiler encodes instruction dependences ex-

plicitly, eliminating the need for the hardware to discover most dependences

dynamically. Previous work describes the research on direct instruction com-

munication [20, 52]. This work focuses on the former, the compiler flow and

algorithms necessary to generate correct [68] and optimized blocks [42, 71].

The structural restrictions on blocks permit simpler hardware, but are

more restrictive than those for traditional hyperblocks [45] and superblocks [27].

These restrictions make the compiler’s task of forming dense but legal blocks

more challenging. Fewer restrictions allow for a simpler compiler but require

2



more complicated hardware. The TRIPS processor is the first EDGE architec-

ture. The TRIPS ISA employs four restrictions on blocks intended to strike

a balance between software and hardware complexity. They are: (1) fixed

block sizes (maximum of 128 instructions), (2) restricted number of loads and

stores (no more than 32 may issue per block), (3) restricted register accesses

(no more than eight reads and eight writes to each of four banks per block),

and (4) constant number of block outputs (each block must always generate a

constant number of register writes and stores, plus exactly one branch).

The TRIPS hardware issues instructions dynamically and out-of-order

as their source operands become available. In addition, the ISA employs a

lightweight dataflow predication [71] model, necessary for forming large blocks.

Predication linearizes instruction flows by converting control dependences to

data dependences, thus improving control flow predictability, instruction fetch

bandwidth, and the size of the instruction scheduling window for the compiler.

VLIW and vector machines have successfully applied predication to obtain all

three of these improvements [24, 61, 79]. However, predicated execution has

not achieved widespread use in out-of-order architectures. The complexities

of merging predication with dynamic scheduling [56]–particularly register re-

naming [18, 35, 40, 78]–have outweighed its perceived benefits. Block atomic

execution employing dataflow predication is one solution to these problems.

In dataflow predication, any instruction producing a value can instead pro-

duce a predicate. With this ISA support, as well as appropriate support in

the microarchitecture and compiler, the TRIPS processor exploits the benefits

3



afforded by both predication and dynamic out-of-order issue.

1.1 TRIPS EDGE ISA and Microarchitecture

This section provides an overview of the TRIPS EDGE ISA and mi-

croarchitecture [16, 36, 52, 53, 63]. EDGE architectures break programs into

blocks that are atomic logical units, and within those blocks, instructions di-

rectly target other instructions without specifying their source operands in the

instruction word. For example, in a RISC architecture, an ADD instruction

adds the values of R4 and R5 and places the result in R3:

ADD R3, R4, R5

An equivalent EDGE instruction takes the following form:

ADD 126(0), 37(p)

When the ADD instruction receives two operands, it computes the re-

sult, and forwards its result to the left-hand (0) operand of instruction number

126 and the predicate field (p) of instruction number 37 (both within the same

block). Upon receiving its operands and predicate, instruction 37 will fire only

if the predicate condition evaluates to true. We call the latter representation

target form.

To provide some context for the compiler’s compilation target, Fig-

ure 1.1 shows the TRIPS microarchitecture. The execution core consists of an
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Figure 1.1: TRIPS Prototype Processor Core

array of 16 ALUs connected by a lightweight switching network. The TRIPS

microarchitecture binds each instruction number within a block to a specific

reservation station coupled to an ALU. The microarchitecture consists of five

types of tiles: G-tile (global control), R-tile (registers), E-tile (execution), I-tile

(instruction cache), and D-tile (data cache).
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Figure 1.2: TRIPS Block Constraints.

1.2 What is a Block?

The TRIPS microarchitecture supports out-of-order execution of in-

structions organized within blocks. The compiler is responsible for forming

blocks that adhere to the following architectural constraints (Figure 1.2):

• Fixed Block Size: All blocks contain at most 128 compute instructions

(register reads and writes are additional). Blocks that do not contain

128 compute instructions are padded with NOP’s.

• Load-Store Identifiers: Each load and store contains a 5-bit ordering

identifier or LSID (e.g., a store with LSID 7 must logically complete

before a load with LSID 8 and a store with LSID 9). There may be

more than 32 static load and store instructions per block, since loads or

6



stores down disjoint predicate paths may share the same LSID, but at

most one memory operation with a given LSID may fire, and there are

at most 32 LSIDs. If an LSID is shared, it may only be shared among

like memory operations. In other words, a load and store cannot share

the same LSID.

• Register Constraints: There are 128 registers divided into four regis-

ter banks each with 32 registers. Each register bank issues at most eight

read and eight write instructions per block. This means that each block

can read from 32 global registers and write to 32 global registers. All

register accesses are done through read and write instructions which do

not count toward the 128 instruction limit.

• Constant Output: In order for the control logic to detect that a block

is complete, each block emits a consistent number of register writes and

stores, plus exactly one branch. If a block contains a store or register

write down one path of execution but not another, the compiler must

insert additional instructions on the alternative path to ensure the hard-

ware does not wait for a store or write that will never issue. This restric-

tion adds instruction overhead, but considerably simplifies detection of

block termination.

Figure 1.3(a) shows two disjoint paths of execution. Although there are

three memory instructions in the example, the compiler can take advantage

of the fact that only one of the paths will execute and assign the same IDs
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load 1 store 0

load 1

(a)

store 0 store 0

load 1

(b)

load 1

Figure 1.3: Example of (a) loads down disjoint predicate paths sharing the
same LSID, and (b) store inserted by the compiler for block completion.

to both loads. This example shows how the compiler can reduce the number

of LSIDs required for a block to include more than 32 static load and store

instructions. Figure 1.3(b) shows the same example but with an additional

store instruction inserted by the compiler. Because each path of execution

in a block must produce the same set of store IDs, the compiler must add

an additional store with LSID 0 to the block. The compiler must perform a

similar operation for register writes.

1.3 Dataflow Predication Model

In order to increase the size of blocks to improve performance, TRIPS

uses a dataflow predication model. In this model any instruction that pro-
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duces a value can instead produce a predicate. The operand network routes

predicates to their dependent instructions just like any other value. Dataflow

predication makes possible a clean synergy between predication and out-of-

order execution, with lower predicate overhead than the partial predication

implemented in previous dataflow architectures [4, 10, 25, 37, 74], and lower

hardware complexity than proposed predicated out-of-order superscalar de-

signs [18, 44,56,78].

The compiler for the TRIPS ISA must follow a number of rules to

produce well-formed, predicated blocks:

1. Any instruction (except for a few specific data movement and constant

generation instructions) may be predicated. A two-bit predicate field

indicates whether an instruction is predicated and on what polarity of

the arriving predicate the instruction should be executed.

2. For a predicated instruction to fire and execute, it must receive all of its

data operands and a matching predicate operand. A matching predicate

is one that matches the polarity of the waiting instruction. For example,

an instruction waiting for a “false” predicate will only fire when a “false”

predicate arrives.

3. Multiple instructions may target the predicate operand of an instruction,

but at most one may deliver a matching predicate.1

1Multiple instructions may target the same operand field of any instruction, as long as
the compiler guarantees only one value is ever received for an operand.
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if (i == j) {
   b = a + 2;
} else {
   b = a + 3;
}
c = b * 2;

teq 00 x-op predicate: 58 predicate: 57

addi 10 x-op 2 left: 60

addi 11 x-op 3 left: 60

slli 00 x-op 1 target

I3

I57

I58

I60

teq

addi  #2

slli  #1

addi  #3

i j

a

I3

I57 I58

I60

c

Figure 1.4: Predication in the TRIPS ISA.

4. The predicated dataflow graphs must preserve the exception behavior of

an unpredicated program, meaning that the same exceptions must be

detected at the TRIPS block boundaries.

This thesis treats all predicates as intra-block values. There are subtle

architectural restrictions on using predicates across block boundaries that are

not discussed here. Throughout the remainder of this document, we use the

following syntax for predication. To indicate that an instruction is waiting for

a “false” predicate, we append “ f” to the opcode name. Likewise, we append

“ t” to indicate a “true” predicate. The predicate an instruction is predicated

on is shown in “<>”. For example,

addi_t<p100> t2, t17, #1
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is an add immediate instruction that is predicated on p100 being true. If the

predicate matches then one is added to the value in t17 and stored in t2.

Note that p100, t2 and t17 are not registers but dataflow edges in the data

dependence graph. For convenience, we distinguish between operands that

represent temporary values with a “t” and those that represent predicates

with a “p”.

1.4 Compiling to TRIPS

To compile to the TRIPS ISA, the compiler forms blocks of instructions

that adhere to the block constraints. The compiler forms hyperblocks, using

the dataflow predication model, to expose parallelism and take advantage of

the large number of compute resources available. The example in Figure 1.5

shows the compilation of a C function to the TRIPS ISA. A RISC architecture

uses registers as temporary storage for values between computations. In an

EDGE ISA, registers are only used to communicate values between blocks

of instructions. Computation within a block is in dataflow fashion with an

instruction sending its result directly to the instructions which use that result.

In the TRIPS compiler, the back end first generates basic blocks in a

RISC-like intermediate form (Figure 1.5(b)), and the basic blocks are then

combined into hyperblocks. Figure 1.5(c) shows the corresponding dataflow

graph for the function after hyperblock formation. The two paths of execution

in the original source have been combined into a single predicated region of

code. The tgti instruction creates a predicate that is used to predicate both

11



(a) Example C code (b) RISC assembly

int rei(int x) {

  int z; 

  int y = x - 2;

  if (x > 1) {

    z = x * y;

  } else {

    z = x;

  }

  return z;

}

// r2 = y

// r3 = x

// r4 = z

L0: subi r2,r3,#2

    ble r3,#1,L1

    mul r4,r3,r2

    br L2

L1: mov r4,r3

L2: ret

tgti #1

read r3

subi #2

mul

y

x

x

x

  mov

write r4

z z

x

ret

(d) Scheduling

tgti retmul

(e) TRIPS assembly

R0: read I0,I1,I2 [R3]

I0: subi I3

I1: tgti I2,I3 

I2: mov W0

I3: mul W0

I4: ret

W0: write [R4]

(c) Data!ow graph

Figure 1.5: Example of compiling a C function to the TRIPS ISA.
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the mul and mov instructions. If the test is true (i.e., x > 1) then the multiply

instruction will execute. Otherwise the mov instruction will execute. Of special

interest is the return instruction. Since this instruction is not dependent on

any other instruction, the ret will execute immediately, but the block will not

commit until the register write is also complete.

After legal blocks have been formed that adhere to the TRIPS ISA,

the scheduler determines the execution tile and reservation station for each

instruction. In the TRIPS ISA, instructions are statically scheduled but exe-

cute dynamically, out-of-order. The scheduler converts the instructions from

a more traditional RISC-like intermediate form into the TRIPS target form

called TASL, which encodes the consumers of each instruction (Figure 1.5(e)).

1.5 Thesis Statement

Before this research was undertaken, it was unknown whether an EDGE

compiler could be built that would generate code with acceptable code quality,

compile time, and compiler complexity. This dissertation is the first to solve

the problem of compiling to a block-based EDGE architecture and contributes

the overall compiler flow, the internal representation for predicated blocks,

and the algorithms for forming legal blocks and optimizing them. Specifically,

this dissertation describes the high-level back-end flow of the TRIPS compiler,

evaluates the resultant code quality, and evaluates some of the design decisions

made in the TRIPS ISA

13



1.6 Dissertation Contributions

I led the development of the compiler support for the TRIPS ISA, but

the design and implementation of any compiler is a large task, and many people

have contributed to the TRIPS compiler project. In this section, I highlight

my specific contributions in the context of related work.

The basis of the TRIPS compiler is the Scale compiler developed orig-

inally at the University of Massachusetts Amherst and now at the University

of Texas at Austin. I joined the TRIPS compiler project at the onset in the

summer of 2002, and during that time, ported Scale’s Alpha backend to a rudi-

mentary version of the TRIPS ISA, while working with Steve Keckler, Doug

Burger, Kathryn McKinley, Jim Burrill, Bill Yoder, Robert McDonald, Chuck

Moore, Ramadass Nagarajan, and Karthikeyan Sankaralingam to define the

ISA for the TRIPS prototype processor. I wrote the TRIPS Application Bi-

nary Interface (ABI), which Jim Burrill extended, and led the development of

the TRIPS Intermediate Language (TIL). I ported the diet libc [77] C library

to TRIPS and wrote the runtime system. Bill Yoder, Mark Gebhart, and I

ported the math library and support for software floating point.

Jim Burrill, Jon Gibson, and I updated the code generator to use the

opcodes for the TRIPS ISA. I developed all the support in the backend for

predicated blocks including the internal representation used, the algorithms

for entering block form, the routines for analyzing block constraints, and the

block splitter which reforms illegal blocks into legal ones. Only an overview of

this research has been previously published [68].
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Jim Burrill wrote the original linear scan register allocator used by all

the back ends. I modified the register allocator to work on the compiler’s

intermediate representation for predicated blocks, wrote the dataflow analysis

used to compute liveness on block form, added support to the register allocator

for the blocks constraints, and wrote the support for handling blocks that

become illegal due to spill code. I also recognized that the register allocator

could minimize the number of blocks split due to spilling by prioritizing which

live ranges to assign based on the block constraints. Behnam Robatmili and I

collaborated to implement a priority function that assigns live ranges based on

block size which is published in [11]. In Chapter 4, I present a new, unpublished

priority function, that combines live range length with the block constraints.

I wrote the backend support for predication and the optimizations uti-

lizing the dataflow predication model [71], and implemented the hyperblock

generation framework that incrementally if-converts, combines, and optimizes

blocks. Bert Maher extended the hyperblock generator to support a general-

ized form of loop unrolling and to explore policies for selecting which blocks

to merge [42].

The software scheduler was developed by Katherine Coons, Ramadass

Nagarajan, Xia Chen, Sundeep Kushwa, and Saurabh Drolia. Bill Yoder

ported the GNU assembler and linker to TRIPS [83]. Innumerable students,

staff, and users helped to find and fix bugs.
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1.7 Dissertation Layout

The remainder of this dissertation is organized as follows. Chapter 2

provides an overview of the TRIPS compiler. Chapters 3 and 4 describe how

to generate correct code, and Chapter 5 describes how to generate optimized

code. Finally, Chapter 6 evaluates the complexity of the algorithms developed

in this research, the resultant generated code quality, and some of the design

decisions made in the TRIPS ISA.

Correct Code: Chapter 3 explains how the compiler represents and

reasons about blocks of predicated code and how it forms blocks based on the

structural constraints imposed by the block-based EDGE execution model. To

simplify the discussion, this chapter assumes the TRIPS architecture supports

an unlimited number of registers, load-store identifiers, and instructions per

block. The chapter develops the algorithms for computing liveness on block

form, inserting read and write instructions, assigning load-store identifiers,

nullifying write and store instructions, and also shows how the static single

assignment form (SSA) of a predicated block can be built.

Next, Chapter 4 describes how the compiler handles blocks that violate

any of the TRIPS block constraints. This chapter introduces block splitting–a

framework for reshaping blocks that violate the block size and load-store iden-

tifier constraints. Block splitting is an adaption of reverse if-conversion, which

was developed for predicated VLIW architectures. The chapter explains how

to perform register allocation on blocks and handle spilling, which may cause

a block to violate a constraint. Finally, stack frame generation is described.
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Together, Chapters 3 and 4 provide all the necessary details for building a

working EDGE compiler for the TRIPS ISA.

Optimized Code: Chapter 5 turns to building optimized predicated

blocks and presents iterative hyperblock formation–a solution for forming large

blocks with respect to the additional constraints imposed by EDGE architec-

tures. Iterative hyperblock formation solves the phase ordering problem which

exists between building legal blocks, and applying optimizations. Chapter 5

also shows how to optimize blocks using the dataflow predication model to re-

duce the overheads of predicate fanout and increase the amount of speculative

execution within and across blocks.

Evaluation: Chapter 6 provides an evaluation of the complexity of the

algorithms developed in this research by measuring the compile time spent in

the individual back end phases. Chapter 6 also compares the speedup on the

SPEC2000 benchmark suite for the optimizations developed in Chapter 5, and

provides an evaluation of some of the design decisions made in the TRIPS ISA.
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Chapter 2

TRIPS Compiler Overview

The TRIPS compiler extends the Scale retargetable compiler for C and

FORTRAN. Scale is written in Java and supports the Sparc, Alpha, PowerPC,

and TRIPS ISAs. Figure 2.1 shows the three major components of the com-

piler: the front end, the target-independent optimizer, and the target specific

back ends.

Front End: The input to the Scale compiler is C89 or FORTRAN 77.

Some support for C99 and gcc specific extensions is included in the C front

end. After parsing, the front ends generate an abstract syntax tree (AST) in

Clef [13] form. The AST can be written out to a file as C code on demand.

Target-Independent Optimizer: The abstract syntax tree is con-

verted to a target-independent control flow graph (CFG) called Scribble. The

compiler performs alias analysis and array dependence analysis on this form

in preparation for optimization. The compiler can read in (or insert) profile

information to guide optimization and can write the Scribble CFG out to C

at any time, which is useful when debugging an optimization pass.

Command line options control the optimizations applied and their or-

der. The compiler performs inlining, followed by loop unrolling, loop flatten-
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Figure 2.1: Scale Compiler Overview

ing, and loop interchange. It implements the following optimizations using

static single assignment form (SSA) [23]: sparse conditional constant propa-

gation [81], copy propagation, value numbering, loop invariant code motion,

scalar replacement for array elements, and partial redundancy elimination [34].

Additionally, non-SSA versions of: global variable replacement, useless copy

removal, dead variable elimination, and placing C structure fields in registers

are implemented. Basic block redundant load and store elimination, and tree

height reduction can also be performed in or out of SSA form.
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Figure 2.2: TRIPS Compiler Back End
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Code Generation: After optimization, the TRIPS back end shown in

Figure 2.2, generates instructions in three-address form [69] from the Scribble

CFG. This is the first TRIPS-specific phase of the compiler. Code generation in

an EDGE compiler differs from that of a more traditional CISC/RISC compiler

because of the block based execution model. In the block based model there is

no concept of a fall through branch. The compiler inserts unconditional and

predicated branch instructions to make all branches explicit. For example,

consider the following source program:

if (x > 1) {

i++;

}

In a RISC architecture, if the “branch less than or equal” instruction

was false, execution would fall through, and continue at the addi instruction

following the branch.

L1: ble x, 1, L2 // execution falls-through if x > 1

addi i, i, 1

L2: ...

However, in the block based execution model, the compiler must create

a predicate and two predicated branches. If x > 1, then the predicate p1 will

be true, and the processor will branch to the block beginning at label L2.
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Otherwise, p1 will be false, and the processor will branch to the block denoted

by label L3. Similarly, after i is incremented, there must be an unconditional

branch to the next block of execution.

L1: tgti p1, x, 1

br_t<p1> L2

br_f<p1> L3

L2: addi i, i, 1

br L3 // unconditional branch to L3

L3: ...

Explicit branches within a block simplifies the architecture at the ex-

pense of requiring additional instructions for branching. However, since the

number of branches in a block is typically small compared to the number of

compute instructions, this overhead is not a limiting factor for blocks.

Block/Predicate Flow Graph Construction: The code generator

produces a linearized list of instructions in three-address form. This inter-

mediate representation is unsuitable for building and analyzing blocks since

the intra-block paths of execution are obscured by predication. In this step,

the compiler builds a block flow graph (the block equivalent of a control flow

graph), and a predicate flow graph for each block (which makes control flow

explicit within predicated code). The compiler uses this representation to

progressively optimize and lower blocks until they meet the architectural con-

straints.
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Block Formation: The next step is to transform each block into

block form. In block form, compute instructions within a block target each

other directly, in dataflow fashion. The compiler inserts register read and

write instructions, transforms the block into dataflow form using static single

assignment, nullifies register writes, assigns load-store identifiers to memory in-

structions, and nullifies stores. Block formation can be re-applied by any phase

of the compiler. For example, the hyperblock generator applies if-conversion

and combines blocks together. This merging changes the read and write in-

structions for a block, which changes the nulls required for write nullification.

The number of memory instructions also changes, and the respective load-store

identifier assignment, and store nullification. The hyperblock generator reruns

the block formation algorithms as required, which is simpler than requiring

every transformation in the backend to try to incrementally maintain block

form at the expense of additional compile time.

• Read and Write Insertion: In the TRIPS ISA, compute instructions

within a block cannot access the register file directly. The compiler iden-

tifies the global registers used by each block and inserts read instructions

at the beginning of the blocks and write instructions at the end of the

blocks.

• Static Single Assignment: After adding the read and write instruc-

tions to blocks, the compiler uses SSA to rename the temporary registers

in each block. SSA removes any references to the global registers from
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the compute instructions and replaces them with references to the read

and write instructions.

• Write Nullification: After SSA renaming, the compiler identifies each

write instruction that needs to be nullified and inserts any required null

instructions.

• Load-Store Identifier Assignment: The compiler assigns each load

and store instruction an identifier. The simplest approach is to assign a

unique identifier to each memory instruction in program order. However,

using the dataflow predication model, identifiers can be overlapped to

increase the number of static load and store instructions that may be

assigned to a block.

• Store Nullification: Once the LSIDs are assigned, the compiler iden-

tifies the set of stores in a block that must be nullified and inserts any

required store nullification.

Block Analysis: Once in block form, the compiler analyzes each block

to determine the number of machine instructions required for the block and

to collect additional information required by back end transformations.

Block Splitting: The code generator may create basic blocks that

are larger than the 128 instruction limit or contain more than 32 LSIDs. As

a pre-pass to hyperblock formation, the block splitter analyzes all the blocks

and re-forms those that violate these two constraints. For basic blocks, the
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block splitter selects a location to divide the block and inserts an unconditional

branch and label. Later passes may produce predicated hyperblocks, in which

case the block splitter performs reverse if-conversion [9, 80]. Whenever the

block splitter changes a block, the block formation algorithms must be re-

applied, and the block must be re-analyzed before being checked again for a

violation.

Before Block Splitting

L1: addi t1, t2, 1 // block has greater than 128 instructions

...

subi t3, t4, 2

...

br L2

L2: ...

After Block Splitting

L1: addi t1, t2, 1

...

br L3 // insert unconditional branch

L3: subi t3, t4, 2 // to new label

...

br L2

L2: ...
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After code generation, predication only exists to handle branching as

discussed previously. We could have eliminated the need for this block splitting

phase by modifying the code generator to keep track of the constraints in the

blocks. We chose though to keep the code generator focused on instruction

selection, and not on discerning the TRIPS specific architectural constraints.

Also, a block splitting phase is required during register allocation (to handle

blocks with spill code that violate a constraint), so we were able to resuse

existing code in the compiler.

Hyperblock Formation and Optimization: After code generation

and block splitting, the compiler tries to increase the execution window size

(for performance) by combining independent regions of code into hyperblocks

through if-conversion [2]. As part of this work we developed a hyperblock

generator that iteratively combines blocks using if-conversion, applies scalar

and predicate optimizations to the new block, and then checks for legality

with respect to the block constraints. If the block is legal, the hyperblock

generator replaces the original blocks with the new block. Blocks that violate

constraints are discarded and care is taken so that the hyperblock generator

will not attempt to merge the same blocks again. The hyperblock generator

iterates until there are no more candidate blocks to combine.

Register Allocation: After hyperblock formation, all blocks are guar-

anteed to be architecturally valid with respect to the block size and LSID

constraints. However, blocks still reference virtual registers and may exceed

the register constraints. The goal of register allocation in the TRIPS compiler
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is thus to assign all virtual registers to real registers, and to ensure that no

block after register allocation violates any of the block constraints. We use a

modified linear scan register allocator to perform the assignment. If a block

requires more than the 32 reads or 32 writes, the allocator spills (inserting

load and store instructions as required). Since spilling increases the number

of instructions and the number of LSIDs in a block, the block splitter analyzes

each block with spills to determine if either the block size or LSID constraints

are violated. If no constraint is violated then register allocation is complete

and all blocks adhere to the block constraints. However, if there is a viola-

tion due to spilling, all spill code is removed and the block splitter divides the

blocks with violations into smaller blocks, and register allocation is repeated.

Eventually register allocation will terminate since the block splitter is creating

smaller blocks with fewer instructions.

Stack Frame Generation: Once real registers are assigned the com-

piler generates the stack frame. Since the instructions in the stack frame are

always executed, the compiler can track the block constraints as instructions

are generated. If the limit for any constraint is reached then the compiler

generates a new block and continues creating the stack frame. For simplicity,

the prologue and epilogue are initially generated in their own blocks. Then the

compiler attempts to combine the prologue and epilogue with their successor

and predecessor blocks respectively [67].

Peephole Optimization: After stack frame generation, all code has

been generated, hyperblocks have been formed, and all block constraints are
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guaranteed to be satisfied. The compiler applies peephole patterns to clean

up the code and applies the block formation algorithms again to finalize the

blocks. The blocks are also analyzed so that statistics about the final code can

be generated if requested by the user.

Scheduling, Assembly, and Linking: Finally, the compiler writes

the architecturally valid blocks to a file in TRIPS Intermediate Language

(TIL) [70] form. TIL is a RISC-like intermediate representation that does

not consider physical placement of instructions. The scheduler [52] reads in

the TIL, maps TIL instructions to execution tiles, and writes out the resulting

scheduled blocks in TRIPS Assembly Language (TASL) [82]. After scheduling,

the TRIPS assembler (tas) and linker (tld) which are based upon the GNU

assembler and linker are used to create an ELF binary [83].
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Chapter 3

Forming Blocks

The block is the unit of work in an EDGE architecture. To effectively

compile to block-based targets, we must develop a representation for blocks in

the compiler, along with compiler algorithms to analyze and optimize instruc-

tions in block form. To simplify the discussions in this chapter, we assume that

we are compiling to an architecture with no block constraints. In Chapter 4

we will describe the algorithms necessary for dealing with a fixed number of

block constraints such as those imposed by the TRIPS prototype processor.

This chapter is structured as follows: first we describe the representation for

blocks in the compiler. Then, we describe how to compute liveness over this

representation as the algorithms for building block form rely on knowing what

values are live. Finally, we describe the algorithms for transforming TIL into

block form.

Figure 3.1 depicts both a C routine to compute Fibonacci numbers

and the corresponding three-address TIL code after instruction selection. At

this stage in the compiler, all instructions reference virtual registers. We re-

quire a representation that makes the block boundaries explicit, and allows the

compiler to reason about the flow of control both between blocks and within
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long fib(unsigned long n) {
if (n <= 1) {

return n;
} else {

return fib(n-1) + fib(n-2);
}

}

fib: mov t128, t3
tleui t132, t128, #1
bro_t<132> fib$4
bro_f<132> fib$1

fib$1: subi t3, t128, #1
enterb t2, fib$2
callo fib

fib$2: mov t130, t3
subi t3, t128, #2
enterb t2, fib$3
callo fib

fib$3: mov t131, t3
add t128, t130, t131
bro fib$4

fib$4: mov t3, t128
ret t2

fib$5: bro fib$4

Figure 3.1: The C source to compute a Fibonacci number and corresponding
intermediate TIL code.

blocks. A block corresponds to a region of code with a single unpredicated

entry, and either a single unpredicated exit or multiple predicated exits.1 In

TIL, a block corresponds to the instructions between two consecutive labels.

For example, the label fib in Figure 3.1 begins a block that encompasses all

the instructions up to the label fib$1. By examining the labels and branches

in the TIL, the compiler builds a block flow graph (BFG), which is equivalent

to a control flow graph for blocks.

1Blocks are not restricted by the EDGE architecture to being single entry. If inter-block
predicates were allowed, then blocks could have multiple predicated entrances. However, in
this work we only consider single entry blocks.
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The block flow graph makes the flow of control between blocks explicit,

but does not contain any information about the intra-block paths of execution

that exist in predicated code. For example, the block rooted at fib has two

possible paths of execution corresponding to the two branch instructions (bro)

predicated on opposite conditions. Previous work on compilers for predicated

VLIW machines introduced a graph based representation for predicated code,

the predicate flow graph [6]. In the predicate flow graph, instructions that cre-

ate predicates are analogous to branch instructions, and the first instruction to

use a predicate is analogous to a label. Combining these two representations we

arrive at the following three-level hierarchical graph to enable transformations

on predicated code:

Block Flow Graph (BFG): A complete BFG represents a single

procedure as a directed graph. Each node in the BFG corresponds to one

block, while each edge represents control flow between blocks. Each block is

represented as a predicate flow graph.

Predicate Flow Graph (PFG): A node in the PFG is represented as

a predicate block and each PFG edge represents control flow between predicate

blocks that will be attained using predication. The first node in each PFG is

the unpredicated entry into a block. To provide a convenient location to place

register write instructions, we add an empty, unpredicated, final merge node

to every PFG (if one does not already exist). The PFG is a directed acyclic

graph.

Predicate Block: Each predicate block is a basic block of instruc-
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mov   t128, t3
tleui p132, t128, #1

bro_t<p132> fib$4 bro_f<p132> fib$1fib

subi   t3, t128, #1
enterb t2, fib$2
callo  fib

fib$1

bro fib$4fib$5

mov t3, t128
ret t2fib$4

mov    t130, t3
subi   t3, t128, #2
enterb t2, fib$3
callo  fib

fib$2

mov t131, t3
add t128, t130, t131
bro fib$4

fib$3

p132,true p132,false

for write instructions

Figure 3.2: Complete block flow graph for the Fibonacci example in Figure 3.1.
All blocks contain a single predicate block except for the block enclosed in
dashed lines.
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tions with uniform predication; either no instructions are predicated, or all

are predicated on the same predicate.

Figure 3.2 shows a complete block flow graph for the Fibonacci example

in Figure 3.1. The predicate flow graph for block fib is enclosed in dotted lines

since it contains multiple predicate blocks. There is an empty predicate block

in this PFG as a place to insert write instructions. Every other block in the

block flow graph contains only a single predicate block.

3.1 Building the Block Flow Graph

The compiler uses a two-pass algorithm to build the block flow graph

for a procedure, starting with the linear intermediate representation (IR) of

TIL instructions immediately after code generation (Figure 2.2). On the first

pass an empty block is created for each label in the TIL and the block is

added to a hash table with the label as the key. For the Fibonacci example in

Figure 3.2, six blocks are created (fib, fib$1, etc).

The second pass adds edges between blocks by examining the instruc-

tions that cause control flow between them. These instructions consist of

conditional and unconditional branches, and function calls since a function

cannot return into the block containing the original call. An edge is added be-

tween the block containing the control flow instruction and the target block of

the instruction. We traverse the instructions in a forward pass, and whenever

we see a label, we perform a hash table lookup using the label as the key. The

block that is returned from the lookup is then used as the current block. As

33



we encounter branch and call instructions, we retrieve their target blocks from

the hash table, and add an edge in the graph between the current block and

the target block. After the block flow graph is created, the compiler creates

the predicate flow graphs for each block.

3.1.1 Removing Unreachable Blocks

As an artifact of code generation, there may be unreachable blocks in

the block flow graph. Even though these blocks will never execute, eliminating

them can reduce code size. In the Fibonacci example of Figure 3.1, fib$5

corresponds to the block following the if-then-else. Since both sides of the

if contain return statements, block fib$5 is unreachable.

The compiler removes unreachable blocks from the block flow graph

using the following algorithm:

1. Tag every block in the BFG with a 0.

2. Perform a depth first search from the root of the BFG, tagging every

block with a 1.

3. Remove any block in the BFG whose tag is not 1.

This algorithm can also provide additional information for later when

we are generating the stack frame. Consider this function which contains a

loop that never terminates:
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int foo() {

for (;;)

continue;

return 1;

}

Since the block that contains the return instruction is unreachable the

function will never return to the caller and the compiler does not need to

generate the epilogue of the stack frame for the function. When removing

unreachable blocks, the compiler can note a function does not return if the tag

for the block containing the return is set to 0.

3.2 Building the Predicate Flow Graph

Building the predicate flow graph is similar to the traditional control-

flow graph construction algorithm of identifying “leaders and labels” [21]. In

the PFG, a leader corresponds to an instruction that creates a predicate, and

a label corresponds to the first instruction that uses a predicate. Splits are

created in the PFG immediately after instructions that define predicates, and

merges are created in the graph immediately preceding unpredicated instruc-

tions. Before the compiler can construct the PFG, it must identify all the

instructions that define predicates.

TRIPS uses a dataflow predication model described in Section 1.3. In

this model any instruction that produces a value can instead produce a pred-
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icate. Predicates are routed over the operand network to their dependent

instructions just like any other value. Identifying the predicates in a block is

done with a backward pass over the instructions. For each instruction, the

instruction’s predicate field is examined, and a bit vector records any tem-

porary register name used as a predicate. Next, the instruction’s destination

register is checked. If the destination register is set in the bit vector, then the

instruction defines a predicate and is marked. When the compiler reaches a

label in the backward pass, it clears the bit vector since predicates are not live

across block boundaries.

The algorithm in Figure 3.3 constructs the PFG for a given block.

We rely on the fact that the PFG is a directed acyclic graph to simplify the

construction. The compiler first creates an unpredicated predicate block2 for

the entry to the PFG and appends the label as the first instruction. Then

for each instruction in a forward pass, the compiler destructively moves the

instruction from the linear IR to its predicate block. The predicate block

for an instruction is determined by the routine GET BLOCK(), which uses the

predicate for the instruction to lookup the predicate block in two hash tables:

one hash table contains all the predicate blocks for “true” predicates, the other

for “false” predicates. The retrieval can never fail because predicates can only

be used after they are defined (and their associated predicate blocks).

When an instruction defines a predicate, ADD EDGES() inserts the re-

2An unpredicated predicate block is a basic block. However, we make the distinction to
be clear that we are discussing predicate blocks in the PFG.

36



function CREATE_PREDICATE_FLOWGRAPH(Instruction: First)
returns PredicateBlock
Prev: First
Entry: new PredicateBlock
add First to Entry
foreach instruction I beginning with First.next

Prev.next = null
if I is label
break

endif
B = GET_BLOCK(I)
add I to B
if I defines a predicate
ADD_EDGES(B, I)

endif
Prev = I

endfor
if B is predicated

INSERT_MERGE()
endif
return Entry

endfunction CREATE_PREDICATE_FLOWGRAPH

Figure 3.3: Algorithm to transform a linear sequence of instructions into a
predicate flow graph.

quired edges in the graph. The number of edges inserted depends on the pred-

icate being created. For example, a test instruction creates a bi-directional

predicate that evaluates to either true or false. In this case, the two predicate

blocks representing the true and false paths of the predicate are retrieved from

their respective hash tables (the compiler creates the predicate blocks the first

time the predicate is used), and edges are inserted to connect them with the

37



predicate block containing the test instruction.

If an instruction is unpredicated, a new unpredicated predicate block

is created, and inserted as a merge in the PFG by adding edges to all the leaf

predicate blocks. The compiler saves the last predicate block used to append

an instruction. Before performing any hash table lookups or creating a new un-

predicated predicate block, the compiler compares the predicate for the saved

predicate block with the predicate for the instruction to be appended. This

comparison ensures that consecutive sequences of unpredicated instructions

are appended to the same predicate block and reduces the number of hash

table lookups for predicated code. Finally, an unpredicated merge is added to

the PFG if the PFG does not already end in one.

3.3 Computing Liveness

Fundamental to any compiler is the computation of live variables in a

program. At the granularity of a block, liveness is the set of variables live-

in to or live-out of a block for all paths of execution through the block. For

optimizations at a block level such as register allocation and inserting read and

write instructions, this definition of liveness where we treat blocks as large

instructions, is sufficient. However, some intra-block optimizations require

knowledge about live variables between predicate blocks and so we account

for both uses. To compute liveness for blocks, we extend backwards iterative

dataflow analysis. At a high level the algorithm is as follows:
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1. Compute the initial use(), def(), in(), out() sets for each predicate block

in every PFG in the BFG. Care must be taken when computing the initial

out() sets to account for precolored registers3 that are always live-out of

a block. The complete algorithm is given in Figure 3.5.

2. Iterate backwards. In our compiler, we only build local PFGs for each

block. During liveness analysis we construct a global PFG by building a

table that maps the label of a block to the predicate blocks that branch

to the label. As we iterate backwards, whenever we reach the label

corresponding to the entry to a PFG, we use this table to determine the

next predecessor predicate block to process.

3. When there are no more changes, we compute the use(), def(), in(),

out() sets for a block from the sets that have been computed for each

predicate block in the block’s PFG.

To understand how liveness is computed, we examine the standard it-

erative method over the BFG in Figure 3.4. The initial use(), def() sets for

this flow graph are as follows:

3A precolored register is a virtual register that has already been assigned to a machine
register.
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muli t132, t130, #1
mov  t130, t132
tlti p133, t130, #10

br_t<p133> B1 br_f<p133> B2

B0
movi t129, #1
movi t130, #1
br   B1

B1

mov    t3, t129
enterb t2, B3
call   atsu

B2

B3ret

P0

P1

P2 P3

P4

P5

P6

p133,true p133,false

Figure 3.4: Example block flow graph for computing live variables.
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use(P0) = ∅ def(P0) = {t129, t130}
use(P1) = {t130} def(P1) = {t130, t132, p133}
use(P2) = {p133} def(P2) = ∅
use(P3) = {p133} def(P3) = ∅
use(P4) = ∅ def(P4) = ∅
use(P5) = {t129} def(P5) = {t2, t3}
use(P6) = ∅ def(P6) = ∅

The final in(), out() sets for each predicate block are:

in(P0) = ∅ out(P0) = {t129, t130}
in(P1) = {t129, t130} out(P1) = {t129, t130, p133}
in(P2) = {t130, p133} out(P2) = {t130}
in(P3) = {t129, p133} out(P3) = {t129}
in(P4) = ∅ out(P4) = ∅
in(P5) = {t129} out(P5) = ∅
in(P6) = ∅ out(P6) = ∅

There is a problem with the treatment of precolored registers in the

example. In block B2, both t2 and t3 are precolored since they are arguments

to the function call and must be written to the global register file. It would

be incorrect for the register allocator to use t2 for instance, to hold a value

between block B2 and B3. The solution to this problem is to add defined pre-

colored registers to the out() sets of their containing predicate blocks when

computing the initial sets.

Once we compute liveness for each predicate block, we compute the

information for each block in the BFG (Figure 3.6). The live-ins to a block

are the same as the live-ins to the predicate block that is the entry to the

block’s PFG. The live-outs are the union of the live-outs from every predicate

block that is an exit from the block. For example, the entry to block B1 is P1
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procedure COMPUTE_INITIAL_SETS
foreach PredicateBlock in BFG

In: PredicateBlock.In
Out: PredicateBlock.Out
Uses: PredicateBlock.Uses
Defs: PredicateBlock.Defs
foreach Instruction in PredicateBlock
foreach Src in Instruction

if Src not in Defs then
add Src to In

endif
add Src to Uses

endfor
foreach Dest in Instruction

add Dest to Defs
if Dest is precolored then
add Dest to Out

endif
endfor
if Instruction is call then

add Instruction.Uses to Out
endif

endfor
endfor

endprocedure COMPUTE_INITIAL_SETS

Figure 3.5: Computing the initial sets for liveness on the BFG.
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procedure COMPUTE_FINAL_SETS
foreach Block in BFG

In: Block.In
Out: Block.Out
Use: Block.Use
Def: Block.Def
Entry: Block.PFG.Entry
foreach PredicateBlock in Block
Def OR PredicateBlock.Def
Use OR PredicateBlock.Use
if Block contains a branch then

Out OR PredicateBlock.Out
endif

endfor
In = Entry.In

endfor
endprocedure COMPUTE_FINAL_SETS

Figure 3.6: Computing the finals sets for liveness on the BFG.

and there are two exits–P2 and P3–resulting in,

in(B1) = {t129, t130} out(B1) = {t129, t130}

The interplay of predicate block P4 and the analysis deserves some

explanation. Recall that this predicate block is structural and added to the

PFG during construction to hold write instructions. At all other times this

block is empty and thus has no effect on the dataflow analysis. In fact, by

building the global PFG in step 2, the backwards analysis moves from P5

to P3 and from P1 to P2 skipping P4. Our algorithm does include P4 when

computing the initial sets, which is sufficient to compute the correct live-ins
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and live-outs when it is non-empty (such as after stack frame generation).

3.4 Read and Write Insertion

The first step in block formation is to add the register read and write

instructions to a block. Before register allocation read and write instructions

reference virtual registers, and after register allocation they reference physi-

cal registers. The compiler performs standard live variables analysis on the

BFG. For each register live-in to a block (and used by an instruction in the

block), the compiler inserts a read in the predicate block that is the entry to

the PFG. For each register live-out of a block (and defined by an instruction

in the block), the compiler inserts a write in the predicate block that is the

final unpredicated merge created when forming the PFG. The compiler uses

the same register for both the source and destination operands to facilitate

renaming when entering SSA form. This leads to the following dataflow equa-

tion, where i corresponds to a block in the BFG:

reads(i) = in(i) ∩ use(i)
writes(i) = out(i) ∩ def(i)

Computing liveness on the blocks in Figure 3.7(a), results in the following

use(), def() sets:

use(B0) = ∅ def(B1) = {t9}
use(B1) = ∅ def(B1) = {t8}
use(B2) = {t8, t9} def(B1) = {t2, t3}
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B0: movi t9, #4
br B1

B1: movi t8, #150
br B2

B2: subi t3, t9, t8
enterb t2, B2
call out

(a)

B0: movi t9, #4
br B1
write t9, t9

B1: movi t8, #150
br B2
write t8, t8

B2: read t9, t9
read t8, t8
sub t3, t9, t8
enterb t2, B2
call out
write t2, t2
write t3, t3

(b)

Figure 3.7: Example of adding read and write instructions to blocks.

and the following in(), out() sets:

in(B0) = ∅ out(B0) = {t9}
in(B1) = {t9} out(B1) = {t8, t9}
in(B2) = {t8, t9} out(B2) = {t2, t3}

Figure 3.7(b) gives the blocks after adding the read and write instructions:

read(B0) = ∅ write(B0) = {t9}
read(B1) = ∅ write(B1) = {t8}
read(B2) = {t8, t9} write(B2) = {t2, t3}
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B0: movi t19, #4
br B1
write t9, t19

B1: movi t18, #150
br B2
write t8, t18

B2: read t29, t9
read t28, t8
sub t13, t29, t28
enterb t12, B2
call out
write t2, t12 ; t2 is precolored
write t3, t13 ; t3 is precolored

Figure 3.8: The example from Figure 3.7(b) after SSA renaming.

3.5 Building Static Single Assignment Form

The next step after read and write insertion is to transform the block

into static single assignment form, which serves two purposes:

1. All references to global registers are removed from the compute instruc-

tions within the block, leaving only the read and write instructions to

access them.

2. Temporary registers within a block are renamed to put the block in a

pure dataflow form and facilitate conversion to target form.

Figure 3.8 illustrates (1) by showing the example in Figure 3.7(b) af-

ter SSA renaming. However, (2) requires a more detailed explanation. Fig-

ure 3.9(a) contains a block that has not been renamed. Assume for a moment
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read t7, g10
addi t8, t7, #3
mov t9, t8
slli t8, t7, #4
tgt t2, t8, t9
br_t<t2> ogai
br_f<t2> mori

(a)

R0: read I0, I2 [G10]
I0: addi #3, I1, I3 ; wrong
I1: mov I3
I2: slli #4, I3
I3: tgt I4, I5
I4: br ogai
I5: br mori

(b)

Figure 3.9: A block (a) without SSA renaming and (b) after (incorrect) con-
version to target form.

that the temporary registers are actually physical register names and not edges

in a data dependence graph. Even though t8 is defined twice, once by the addi

and again by the slli, in a processor that holds operand values in registers,

this code will execute correctly. However, in the EDGE block-based dataflow

execution model, the temporary operands actually represent dataflow edges.

When the compiler converts to target form, it will target temporaries with the

same name to the same instructions. In Figure 3.9(b), the addi instruction

would wrongly target both the mov and the tgt instructions, which will lead

to undefined behaviour at runtime. The addi should only target the mov. SSA

renaming solves this problem by assigning unique names to temporaries.

We use a standard implementation of SSA [14] with two exceptions.

The first exception deals with our treatment of copy folding when entering

SSA form. The second exception is required to maintain the predicate flow

graph.
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3.5.1 Copy Folding

When entering SSA form it is often desirable to perform copy folding

to remove unneeded copy instructions. However, in block form not all copies

can be folded. Consider the case when there is a single mov instruction that

references two global registers:

L1: mov g3, g4

br L2

Before entering SSA, the compiler inserts read and write instructions

and then uses SSA to rename the block. If we perform copy folding on this

example the mov instruction becomes a nop.

L1: read t100, g4

nop

br L2

write g3, t100

A problem arises if we want to remove the read and write instructions

from the block (perhaps for additional optimization). We would like to rename

the original mov that referenced the global registers, then remove the read

and write. But in this example, the mov instruction has been deleted by copy

folding leaving nothing to rename. Our solution is to fold only copies that do

not reference values live across block boundaries.
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3.5.2 Maintaining the Predicate Flow Graph

Each predicate block in the PFG has an associated predicate (unless

the predicate block is unpredicated) that is defined by an instruction. After

SSA renaming, the predicate blocks reference the pre-renaming predicates and

instructions no longer map correctly to the PFG. Optimizations that move

instructions between predicate blocks will not be able to use the PFG to de-

termine the moved instruction’s predicate. An extra step in SSA renaming

renames the predicate for a predicate block to maintain the PFG. After re-

naming all the instructions in a predicate block, SSA uses the rename stack to

rename the predicate for the predicate block just as it would for an instruction.

3.6 Write Nullification

The constant output constraint requires that a block produce the same

set of register writes for all paths of execution through the block to simplify the

hardware detection of block completion. In the absence of predication there

is only one path of execution through a block and this constraint is trivially

satisfied, but in predicated code there may be multiple paths of execution

each producing a different set of register writes. The compiler must ensure

that for every path that writes a global register, every other path writes the

same register. The compiler uses SSA to identify the paths that are missing

register writes.

In Figure 3.10(a), there are two paths of execution: on the {p1, true}

path t4 is produced and written to a global register, however, on the {p1, false}
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read t2, t1
read t3, t22
tgti p1, t2, #0
ld_t<p1> t4, 0(t3)
movi_f<p1> t6, #12
sd_f<p1> 8(t3), t6
phi t8, t4, t16 ; undefined
br L2
write t16, t8

(a)

read t7, t16 ; added
read t2, t1
read t3, t22
tgti p1, t2, #0
ld_t<p1> t4, 0(t3)
movi_f<p1> t6, #12
sd_f<p1> 8(t3), t6
phi t8, t4, t7
br L2
write t16, t8

(b)

Figure 3.10: A block in SSA form (a) that contains a write with an undefined
operand and (b) defining the write by reading in the original register value.

path no value is produced and sent to the write. After transforming into SSA

form, the paths that are missing definitions will have phi instructions with

operands that have not been renamed, since they were not defined. For ex-

ample the phi in Figure 3.11(a) contains an undefined operand t16. The

compiler can provide a definition for these operands using one of the following

techniques:

1. The block can read the registers for the writes that are missing defini-

tions and write the original register values back out as in Figure 3.10(b).

When the compiler inserts read and write instructions, it simply inserts

reads for all the live-ins and live-outs of a block giving every write a cor-

responding read. Any unneeded register reads will be removed from the

block by dead code elimination later. This solution generally increases
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the register pressure for a block (unless a register was already being

read), but can be used to generate correct code quickly.

2. The compiler can perform write nullification by inserting null instruc-

tions that define a null value for the register writes on the undefined

paths. The null value signals to the architecture that no value will be

produced for the register write.

To perform write nullification, the compiler searches the use-def chains

for all write instructions. If the search finds a phi instruction with an operand

that does not have a definition, the operand is nullified by inserting a null

instruction on the path missing the definition, which ensures that all paths pro-

duce the same set of register writes. However, consider the case where a block

is already reading and writing the same global register as in Figure 3.11(a). On

the {p1, false} path t24 is being read and written without any change to the

original value. When searching a write’s use-def chains, if a read instruction

is encountered, the read’s source operand is compared against the write’s

destination operand. If they match, the compiler inserts a null on this path.

Later on, if there are no uses of the read instruction, dead code elimination

will remove it from the block.

3.7 Load and Store Identifier Assignment

To guarantee sequential memory semantics, the compiler assigns a

unique ordering identifier (LSID) to each load and store in a block, and the
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read t2, t1
read t3, t22
read t12, t24 ; same as write
tgti p1, t2, #0
ld_t<p1> t4, 0(t3)
movi_t<p1> t11, #7
movi_f<p1> t6, #12
sd_f<p1> 8(t3), t6
phi t8, t4, t16 ; undefined
phi t9, t11, t12
br L2
write t16, t8
write t24, t9

(a)

read t2, t1
read t3, t22
tgti p1, t2, #0
ld_t<p1> t4, 0(t3)
movi_f<p1> t6, #12
sd_f<p1> 8(t3), t6
null_f<p1> t7 ; added
null_f<p1> t12 ; added
phi t8, t4, t7
phi t9, t11, t12
br L2
write t16, t8
write t24, t9

(b)

Figure 3.11: A block in SSA form (a) before write nullification and (b) after
write nullification.

microarchitecture ensures the same results as if loads and stores were executed

sequentially in LSID order [63]. The compiler can satisfy this constraint by

assigning a unique identifier to every load and store in reverse post order as

in Figure 3.12(a). With this assignment, the number of load-store identifiers

required for a block is equal to the total number of load and store instructions

in the block. However, the compiler can improve upon this assignment since

it is free to reuse LSIDs if it can guarantee that only one load or store will

ever fire for a given identifier. In other words, load and store instructions on

mutually exclusive paths of execution can share identifiers with the restriction

that a load and store instruction can never have the same identifier since the

hardware block termination logic uses store identifiers to detect block comple-
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S0 [0]

S1 [2]
S2 [5]

L0 [1]

L2 [4]
S5 [5]

S3 [2] S4 [2]
L1 [3]

  

S0 [0]

S1 [1]
S2 [2]

L0 [3]

L2 [7]
S5 [8]

S3 [4] S4 [5]
L1 [6]

  

P0

P1 P2

P3 P4

P5

P6

Figure 3.12: Load-store identifier assignment using (a) a maximal assignment
that gives every load and store a unique identifier and (b) a policy that shares
identifiers between stores and assigns a unique identifier to every load.

tion. If the compiler reuses LSIDs, it can include more loads and stores in a

block, increasing the block size.

Our policy for assigning LSIDs between memory instructions is based

on the following observations:

1. Every path of execution through a block must produce the same set of

store identifiers. When a store identifier appears on one path but not

another, the compiler must insert additional instructions to nullify the
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missing store identifier. Therefore, a policy that minimizes the number

of store identifiers in a block will also minimize the number of overhead

instructions that must be inserted for store nullification.

2. Inside a block we often want to unpredicate load instructions so they can

execute speculatively to hide latency. However, in the TRIPS microar-

chitecture, loads that share LSIDs cannot execute speculatively since two

or more load instructions may execute with the same LSID, in violation

of the block constraints. Therefore, we prefer a policy that gives the

compiler the maximum amount of freedom when determining what load

instructions to speculatively execute.

Both conditions can be satisfied by an algorithm that minimizes the

number of LSIDs assigned to stores and maximizes the number of LSIDs as-

signed to loads. To implement this algorithm the compiler uses a worklist that

contains the predicate blocks to process along with the next memory instruc-

tion in each predicate block to be assigned. If any one of the instructions is a

load, the compiler assigns the load the next LSID. If every one of the instruc-

tions are stores, the compiler assigns all the stores the same LSID. Whenever

an LSID is assigned, the compiler updates the next instruction to be processed

to the next load or store in the predicate block. When the compiler reaches

the end of a predicate block it places any successor predicate blocks on the

worklist if all the predecessors of a successor have been visited and assigned.

The compiler’s LSID assignment algorithm is best explained using the
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example from Figure 3.12(b). The worklist initially contains {P0,S0} and

S0 is assigned LSID 0. The two successor predicate blocks P1 and P2 are

then added to the worklist since their predecessor P0 has been processed:

{{P1,S1},{P2,L0}}. L0 is assigned LSID 1 and the successor predicate blocks

P3 and P4 are added to the worklist: {{P1,S1},{P3,S3},{P4,S4}}. Now

every instruction on the worklist is a store and they are assigned LSID 2. Since

the successor predicate block of P3 has a predecessor still being processed no

new predicate blocks are added to the worklist: {{P1,S2},{P4,L1}}. L1 is

assigned LSID 3 and now all the predecessors of P5 are complete so it can be

added: {{P1,S2},{P5,L2}}. L2 is then assigned LSID 4 and finally all the

remaining instructions are stores that are assigned LSID 5. This algorithm

provably minimizes the store identifiers because it is the same problem as

typed fusion [33].

3.8 Store Nullification

The compiler must guarantee that all paths of execution produce the

same set of store identifiers to satisfy the constant output constraint: once

the block produces all its outputs (register writes, stores, and one branch),

it completes. For every store identifier in a block, the compiler identifies the

missing identifiers on each path and inserts a nullified store–a store with a

null instruction as its operand–for the missing identifiers. Similar to write

nullification, the null value signals to the architecture that a store will not be

produced for an identifier. A nullified store takes the form:
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null t3

sd t<p1> 0(t3), t3 [2]

We call the nullified store a “dummy store”, as its only purpose is to receive

the null value. The instruction overhead for nullification excludes the compiler

from adding other, more useful instructions, to blocks.

Computing the set of store identifiers to be nullified can be framed

as a backwards dataflow problem on the PFG. For each predicate block the

compiler computes the set of store identifiers sin() and sout(). The set of

identifiers sout() of a predicate block is the union of the identifiers of all its

successor predicate blocks. The set of identifiers sin() to a predicate block is

the union of the sout() set plus any store identifiers defined in the predicate

block. After computing all the sin() and sout() sets the compiler only has to

examine the split points (predicate blocks with more than one successor) and

their successors in the PFG to determine which identifiers are missing. Any

store identifier in the split point must also be in the successor or the compiler

must insert a null in the successor:

nulls(succ) = sout(split)− sin(succ)

To determine the missing store identifiers for the PFG in Figure 3.13,

we first compute sin() and sout() for each predicate block starting with P6

and moving backwards to P0 :
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S0 [0]

S1 [1] S2 [3]

S4 [6]

S3 [5]

  

P0

P1 P2

P3 P4

P5

P6 S5 [7]

S0 [0]

S1  [1]
NS [3]
NS [5]
NS [6]

S2  [3]
NS [1]

S4 [6]

NS [5] S3 [5]

  

P0

P1 P2

P3 P4

P5

P6 S5 [7]

Figure 3.13: A predicate flow graph before and after store nullification (S =
store, NS = nullified store).

sin(P6) = {7} sout(P6) = ∅
sin(P5) = {6, 7} sout(P5) = {7}
sin(P4) = {5, 6, 7} sout(P4) = {6, 7}
sin(P3) = {6, 7} sout(P3) = {6, 7}
sin(P2) = {3, 5, 6, 7} sout(P2) = {5, 6, 7}
sin(P1) = {1, 7} sout(P1) = {7}
sin(P0) = {0, 1, 3, 5, 6, 7} sout(P0) = {1, 3, 5, 6, 7}

Then we examine the split points P0 and P2 to solve for the missing store

identifiers:
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nulls(P1) = sout(P0)− sin(P1) = {3, 5, 6}
nulls(P2) = sout(P0)− sin(P2) = {1}
nulls(P3) = sout(P2)− sin(P3) = {5}
nulls(P4) = sout(P2)− sin(P4) = ∅

Next, we insert null stores in P1 with store identifiers {3,5,6}, in P2 with

{1}, and in P3 with {5}.

3.9 Leaving SSA Form

The last step in block formation is to remove the internal phi instruc-

tions by transforming the block out of SSA form. Up until this point, phis

have been used to gate operands and maintain the dataflow semantics of the

block. Take for example the phi instruction in Figure 3.14(a). Here the phi

is selecting between the value of two operands: t2 and t6. The problem with

simply removing this phi through renaming is illustrated by the load instruc-

tion in Figure 3.14(b) . Since the load will execute unconditionally, the write

will receive a value regardless of which path of execution is taken within the

block. There is no problem for the {p1, true} path since the write should

receive the value produced by the load. However, on the {p1, false} path,

both the load and slli instructions will produce a value that is sent to the

write. The original phi instruction was used to gate the operands and select

among them, and the compiler must preserve these semantics when removing

the phi. To solve this problem when leaving SSA, form a predicated mov in-

struction is inserted into the predecessor predicate block to gate the operand

as in Figure 3.14(c).
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read t3, t22
ld t2, 0(t3)
tgti p1, t2, #0
slli_f<p1> t6, t2, #4
phi t8, t2, t6
br L2
write t16, t8

(a)

read t3, t22
ld t8, 0(t3) ; error
tgti p1, t2, #0
slli_f<p1> t8, t2, #4
br L2
write t16, t8

(b)

read t3, t22
ld t2, 0(t3)
tgti p1, t2, #0
mov_t<p1> t8, t2
slli_f<p1> t8, t2, #4
br L2
write t16, t8

(c)

Figure 3.14: A block (a) in SSA form, (b) after transforming (incorrectly) out
of SSA, and (c) after transforming (correctly) out of SSA.

For phi instructions that define predicates, there is no need to insert

a mov instruction. Therefore, we always rename phi instructions that define

predicates. We defer the renaming until after all phis (non-predicate and pred-

icate defining) have been removed from a block. Then, we choose one of the

phi’s operands and use this temporary register to rename all the instructions

in the block that define any of the operands referenced by the phi. At this

time we also rename the predicates for each predicate block to maintain the

PFG.

3.10 Related Work

EDGE architectures are a hybrid of dataflow and sequential machines,

using dataflow within a block, conventional register semantics across blocks,

and conventional memory semantics throughout. An EDGE compiler thus

differs significantly from compilers for pure dataflow machines [4, 25], since
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PredicatePhis: List of phi instructions that define predicates

procedure REMOVE_PHIS(PredicateBlock: PB)
foreach Instruction I in PB

if I is not a Phi instruction then
break ; phis always come first

endif
if I defines a predicate then
add I to PredicatePhis

else
foreach SrcOperand Src in I

if RENAME_PHI_OPERAND(Src) returns false
insert Copy instruction in PB.Predecessor

endif
endfor

endif
remove I from PB

endfor
foreach PredicateBlock PBD in DominatorTree of PB

REMOVE_PHIS(PBD)
endfor

endprocedure REMOVE_PHIS

Figure 3.15: Algorithm to remove phi instructions when transforming out of
SSA form.
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dataflow machines limited the programming model to a functional one where

programs cannot produce multiple memory values to the same location, re-

lieving the compiler and architecture of the memory disambiguation problem.

There has been recent work on compilers for dataflow-like architec-

tures similar to TRIPS [12, 15, 17]. The most closely related is the CASH

compiler that targets a substrate called ASH (application-specific hardware).

Like the TRIPS compiler, CASH’s Pegasus intermediate representation targets

a predicated hyperblock form translated into an internal SSA representation,

compiling small C and FORTRAN programs. Many of the instruction-level

transformations, using Pegasus, are applicable to TRIPS. Two major differ-

ences between the TRIPS and CASH compilers are the hardware targets and

the block restrictions. The CASH compiler targets a hardware synthesis tool

flow, whereas the TRIPS compiler targets a specified ISA running on a fixed

microarchitecture. Therefore, the CASH compiler can produce mostly un-

constrained blocks, except for chip area constraints. The difference between

unbounded graphs for a co-designed substrate (Pegasus/ASH) versus limited

graphs for a fixed substrate (EDGE ISAs) dramatically changes the compila-

tion problem.

The WaveScalar architecture [73] forms “waves” that are similar to

hyperblocks except for the mechanism that executes subsequent graphs (poly-

path wave execution rather than a single speculative flow of control). A sec-

ond, more minor difference is the architectural mechanism used to enforce

sequential memory semantics (instruction pointers in WaveScalar as opposed
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to load-store sequence numbers in TRIPS). The third major difference with

the TRIPS architecture is that WaveScalar publications advocate dynamic,

run-time placement of instructions [72, 73], as opposed to the static TRIPS

approach of mapping compiler-assigned instruction numbers to specific ALUs,

thus permitting the compiler to optimize for operand routing distance [52].

Previous work on compilers for predicated VLIW machines introduced

the predicate flow graph (PFG) [6]. In this work, like ours, predicates are

treated as intra-block values, which simplifies the construction of the PFG.

We give an alternate construction algorithm for the PFG, and unlike previous

work, use the PFG as the back end’s internal representation for lowering and

optimizing predicated blocks.

3.11 Summary

By organizing instructions into blocks, the TRIPS microarchitecture

supports out-of-order execution of both instructions within blocks and across

blocks, without requiring associative tags to compare incoming operands for

block temporaries. However, too few restrictions on blocks would require more

complicated hardware (e.g., if a block could emit a different number of outputs

each time it executed). A long-term goal is to find the right compiler-hardware

sweet spot in the architectural definition of a block; one that permits the

compiler to form large, full blocks, without requiring unnecessarily complex

hardware. We attempted to find that balance in TRIPS when choosing the

architectural constraints on blocks.
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In this chapter, we described the compiler’s intermediate representation

for blocks and the algorithms for forming blocks with respect to the TRIPS

ISA. In the next chapter, we describe the phases of the compiler that can

violate one of the block constraints and how the compiler handles these illegal

blocks.
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Chapter 4

Satisfying Block Constraints

The block formation algorithms described in Chapter 3 solve the prob-

lem of mapping a sequence of instructions into block form. However, they do

not address what to do when a block violates one of the architectural block

constraints. In this chapter we describe the algorithms for analyzing block

constraints, and how the block splitter reforms blocks that violate these con-

straints. We then show how the combination of these two techniques is inte-

grated into the compiler to support phases that have the potential to produce

illegal blocks.

Any phase of the compiler that changes the contents of a block runs

the risk of making a legal block illegal. In the TRIPS compiler, we require

that once a constraint is satisfied any subsequent phase that modifies a block

must guarantee that the previously satisfied constraints remain satisfied. Com-

piler phases can use the block splitter to provide the guarantee or enforce the

constraints themselves. The first phase in the TRIPS back end is code gen-

eration which may produce blocks that contain more than 128 instructions

or 32 LSIDs. Immediately after code generation, the block splitter satisfies

these two constraints. From this point on in the compiler any phase that
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changes a block must guarantee that these constraints are satisfied. After

the initial block splitting phase the compiler performs hyperblock formation.

The hyperblock generator combines blocks together using if-conversion and

must not produce blocks with more than 128 instructions or 32 LSIDs. How

the hyperblock generator meets these requirements is discussed in Chapter 5.

Next, register allocation is performed to satisfy the register constraint–there

are four register banks that can each issue eight read and eight write instruc-

tions per block. The register allocator inserts spill code into blocks if a register

assignment cannot be found that satisfies the register constraint. Since spill

code increases the number of instructions in a block, as well as the number of

load/store identifiers used, blocks with spills are analyzed by the block split-

ter and reformed as necessary. After register allocation completes all block

constraints are guaranteed to be satisfied. Finally, the compiler generates the

stack frame and this phase must guarantee that none of the block constraints

are violated upon completion.

4.1 Block Analysis

A block is legal when it satisfies all block constraints. The compiler

provides an analysis phase to determine the legality of blocks and methods to

identify when and what constraints are violated. Blocks are lowered gradually

after code generation to their final form and each step of the lowering requires

more of the block constraints to be satisfied. As transformations are applied to

blocks the compiler must discern whether the transformations are legal with
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respect to the block constraints. Once the compiler has fixed a constraint

(for example, block size is fixed after hyperblock formation completes), then

future transformations are required to enforce the constraint. Therefore, the

compiler is structured into phases (Figure 2.2), with each phase satisfying the

same or progressively more block constraints. Since blocks change whenever

transformations are applied, each phase must re-compute the block constraints

and perform block analysis to discern block legality.

Any block can be analyzed by first performing block formation (Chap-

ter 3), analyzing the block, and then returning the block to its pre-analysis

form. Returning a block to pre-analysis form is accomplished by removing

the register read and write instructions and any instructions inserted for write

and store nullification. At a high level, determining if a block is legal involves

computing the number of machine instructions in the block (complicated by

the fact that there is not always a one-to-one mapping between the compiler’s

intermediate representation and machine instructions), and computing a sum-

mation of the constraints. The block analysis phase in the TRIPS compiler

computes the following information for each block from its constituent predi-

cate blocks:

Machine Instructions: A machine instruction is an instruction in

the TRIPS ISA. Often the compiler will use pseudo instructions that are later

lowered to machine instructions. For example, the TRIPS compiler provides

a pseudo instruction for a 64-bit immediate move, which depending on the

size of the immediate requires between one and four machine instructions.
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In this case, the block analysis phase will examine the size of the immediate

to determine how many machine instructions are required. Sometimes, the

number of machine instructions cannot be determined because the final form of

the instruction is unknown. For example, until register allocation is performed

the size of a stack displacement is unknown. In this case, the block analysis

phase will analyze instructions conservatively to provide a worst-case bound.

Fanout Instructions: Since there is limited encoding space in instruc-

tion formats for target operands, the compiler builds a fanout tree using copy

instructions to distribute an instruction’s result to its consumer instructions.

In the TRIPS compiler, fanout trees are added during instruction scheduling

since the optimal tree is often dependent on the schedule. Therefore, the to-

tal number of instructions in a block is the sum of the machine instructions

plus any missing fanout instructions that would be inserted during scheduling.

Block analysis computes the number of fanout instructions using the same al-

gorithms employed by the scheduler when possible or with a conservative but

correct approximation when not.

Load/Store Instructions: The compiler computes the number of

load and store identifier for each predicate block and the overall highest iden-

tifier for the entire block. As an aid to the block splitter during register

allocation, the compiler also computes the number of machine instructions

needed to represent memory instructions that are used for register spilling.

The compiler also notes if a block contains dummy store instructions inserted

for store nullification.
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Register Usage: We have structured the compiler such that the regis-

ter constraints are ignored by phases running before register allocation. After

register allocation, we compute the total number of register reads and writes

in a block, along with the number of slots used in each register bank.

Branch Instructions: The TRIPS ISA has different types of branch

instructions. Block analysis provides information on which predicate blocks

contain branches since these denote the exits from the block. It also provides

higher level information on the types of branches in the block. Specifically we

denote when a block contains a branch that is part of a switch statement, has

a function call, or is a return from a function call. This information is used by

block splitting and hyperblock formation. For example, hyperblock formation

cannot merge two blocks if there is a call from one to the other.

4.1.1 Computing Fanout

Determining the number of machine instructions in a block is rela-

tively straightforward once missing instructions have been inserted by block

formation. However, computing the fanout in a block is complicated by the

fact that fanout instructions are not added until scheduling. TRIPS supports

three move instructions: MOV2, MOV3, and MOV4, that can target two,

three, or four instructions respectively, with potentially longer latencies and

more restrictions on how they can be used. Which instruction the scheduler

uses is based on the dataflow graph. For example, the MOV4 instruction re-

quires all targets to reside in certain execution tiles and only during scheduling

68



read t132, t7
read t133, t1
addi t134, t133, #96 
tlti p135, t132, #10

ld_t<p135> t140, 0(t134)
sd_t<p135> 8(t140), t134
addi_t<p135> t142, t132, #1

P0

P2

P3

mov_f<p135> t142, t132 

br t134
write t7, t142

P1

p135,true p135,false

Figure 4.1: Fanout example

can the compiler determine if it can use a MOV4. Therefore, we compute the

number of fanout instructions in a block using only MOV2 and MOV3 instruc-

tions, potentially reducing block efficiency, but this overestimate is correct and

conservative.

MOV2 instructions can target at most two operands. This is the most

flexible move instruction since there are no restrictions on the target operand

type with the drawback of supporting the fewest targets. The MOV3 instruc-

tion can target three operands with the restriction that the operands must all

be of the same type. For example, a MOV3 can target the predicate operand

of three different instructions but not the predicate operand of one instruction

and the left operand of two others. The amount of fanout required depends on

the type of move instruction used. If only MOV2s are used then the number
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Operand Targets Uses Mov3 Possible
t132 2 3 Yes
t133 2 1 Yes
t134 1 3 No
p135 1 4 Yes
t140 1 1 Yes
t142 1,2 1 Yes,Yes

Table 4.1: Computing the amount of fanout in a block.

of MOV2s required is uses minus targets. If a MOV3 instruction can be used,

the TRIPS scheduler will use a combination of MOV2 and MOV3 instructions

where the MOV3 instructions are at the bottom of a balanced tree.

Table 4.1 summarizes the information necessary to compute the number

of fanout instructions for the block in Figure 4.1. This table gives the number

of targets supported by each instruction that defines an operand. For example,

immediate instructions (addi, tlti) and load instructions (ld) in the TRIPS

ISA can target a single consumer [46]. The table also lists the number of uses

for an operand. The compiler must insert fanout whenever the number of uses

exceeds the number of available targets. The final column denotes whether

or not a MOV3 instruction can transfer an operand from its producers to its

consumers.

Since we account for the instructions inserted for fanout at predicate

block boundaries, we must decide how to associate the fanout with the pred-

icate blocks. One possibility is the fanout for an operand is added to the

predicate block containing the instruction that defines the operand. The other
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Predicate Machine Definition Use
Block Instructions Fanout Size Fanout Size

P0 2 4 6 0 2
P1 3 0 3 2 5
P2 1 0 1 2 3
P3 0 0 0 0 0

Table 4.2: Fanout can be associated with uses or definitions in the predicate
flow graph.

option is to account for fanout in the predicate block that contains the con-

sumer instruction.

Table 4.2 shows the fanout and predicate block sizes using the different

strategies for Figure 4.1. When the move instructions for fanout are added

to the predicate blocks that define the operands, P0 appears twice as large

compared to P1, even though P1 has more machine instructions. This leads

to poor decisions during analyses based on block size such as block splitting.

When the fanout is accounted for in the predicate blocks that contain the

consumer instructions, it is more evenly distributed throughout the predicate

blocks. Both methods compute the same total block size, however we use

the latter since it is balanced. Once block sizes are accurately estimated, a

mechanism is still needed to handle blocks that violate the block constraints.

4.2 Block Splitting

Any phase of the compiler that changes the instructions in a block has

the potential to violate one of the block constraints. For example, instruction
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selection might create a long sequence of code over the 128-instruction limit,

or the register allocator might spill, adding additional load and store instruc-

tions that exceed the 32 load/store identifier limit. The compiler provides

a framework for block splitting that can reshape illegal blocks with respect

to the block size and load/store identifier constraints into legal blocks. The

block splitter reforms a block by splitting it into multiple legal blocks by either

cutting unpredicated regions of code, or reverse if-converting [80] predicated

regions.

The TRIPS compiler uses block splitting in two ways: (1) as a pre-pass

to hyperblock formation, and (2) during register allocation to split blocks with

spill code that have violated one of the block constraints. Block splitting is

the dual of hyperblock formation. In hyperblock formation, the compiler tries

to identify regions of code to if-convert and place inside the same block. In

block splitting, the compiler tries to identify regions of code to remove from a

block and place inside another block. Since developing heuristics for both is

challenging, we realized we could simplify the compiler by starting hyperblock

formation with legal blocks. We also found that it was simpler to make good

decisions about where to split basic blocks versus reasoning about complex

regions of predicated code. Therefore, we structured the compiler to perform

block splitting immediately after code generation as a pre-pass to hyperblock

formation, so all blocks being input in to the hyperblock generator are legal.

In the case of register allocation, the block splitter has to split only the blocks

that the register allocator has spilled in and have a violation. Since spilling in

72



    

P6 P7

P8 P9

P11

    

P0

P1 P2

P3 P4

P10

P5

25

25

  35 55

20

10

15

5 15

15

30 20

    

P6 P7

P8

    

P0

P1 P2

P3 P4

P5’’

26

25

  36

56

20

5

16

5 15

15

30 20

    
P5’

6

1

P9

P10

P11

P12

P13

(a)

(b)

Figure 4.2: Example of a block (a) before and (b) after block splitting. The
number of instructions in each predicate block are shown in the nodes. The
shading represents predicate blocks that are created or modified by splitting.
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the compiler is rare, the fraction of blocks that must be analyzed and reformed

is small.

Figure 4.2 shows a block before and after block splitting. The original

block contains 260 instructions and must be divided into a minimum of 3

blocks. To form one legal block, predicate block P5 is cut into two five-

instruction predicate blocks P5′ and P5′′. A branch instruction is added to

P5′ to P5′′ increasing the block size for P5′ to 6 instructions. Then all of

the predicate blocks from the root of the PFG to P5′ become one new block.

Next, the block splitter chooses to reverse if-convert P9 by removing all the

predicates from the instructions in the predicate block. Since P7 and P9

both branch to P10, P10 cannot reside in the same block as either of these

predicate blocks. Therefore, the block splitter must move P10 (and by the

same reasoning P11) into its own block. Branches are added to P7 and P9

that branch to the new block containing P10, to P8 and P10 to the new block

containing P11, and a new predicate block P12 is created with a branch to

the block containing P9. Also, an empty unpredicated merge P13 is added

to maintain the structure of the PFG. The block splitter then checks all the

blocks again for legality and iterates if there are any illegal blocks. After block

splitting the original illegal block has been split into 5 legal blocks.

4.2.1 Where to Split a Block?

The block splitter must choose where to split a block. In Figure 4.2

when P9 was chosen as a split point this choice resulted in P10 and P11 being
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reverse if-converted and moved into new blocks. If P8 could be used as the

split point instead then the block splitter would not have needed to reverse

if-convert P10 resulting in four blocks instead of five. Since blocks are padded

with NOPs if they do not contain 128 instructions there is a penalty for under

filled blocks in the TRIPS prototype. Block splitting should therefore strive

to produce the minimum number of splits.1 A second consideration is whether

or not instructions should be packed in blocks or split evenly among blocks.

For example, a 300 instruction block can be split into three blocks with 128,

128, and 44 instructions each or split evenly into three 100 instruction blocks.

We prefer to split blocks evenly since this leaves some room for spills and

optimizations that increase block size and also simplifies scheduling as there

are fewer instructions to place.

We split a PFG starting at the root and working breadth first by level.

We compute a running total, and continue to the next predicate block only

if the current one does not violate the size and LSID constraints. Once we

reach a predicate block that causes the block to become illegal we examine

all the predicate blocks in the current level and use the following heuristics to

determine where to split:

• Last legal unpredicated predicate block. Unpredicated code is easier to

split than predicated code. Also, unpredicated code does not result in

cascading splitting of other predicate blocks. The compiler records the

1For TRIPS, minimum # of splits = (block size + 127) / 128
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last predicate block found with unpredicated code that was legal when

added to the block (i.e. P5 in Figure 4.2), and uses it as the location for

splitting if the block size including the predicate block is larger than or

equal to the average split size.2

• Illegal unpredicated predicate block. If the current level in the PFG only

contains a single unpredicated predicate block, and adding the predicate

block to the PFG would cause it to become illegal, the block splitter uses

this predicate block as the split point.

• First illegal predicate block in the level. It may be possible to include

some subset of the predicate blocks in a level of the PFG and have the

block remain legal. We examine each predicate block in the level and

compute the size of the block and the maximum LSID if the predicate

block where included (excluding other predicate blocks in the level). If

a predicate block is found that causes the block to become illegal we use

it as the split point since we know it cannot possibly be added to the

block.

• Predicate block with multiple successors. If all the predicate blocks in the

level can individually be added to the block we must choose one predicate

block as the split point. If we split before a predicate block with multiple

successors we can potentially (a) avoid the cascading reverse if-conversion

problem, and (b) capture an entire hammock in a single block.

2Average split size = total block size / minimum # of splits
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Figure 4.3: Block splitting algorithm.

• Largest predicate block. If none of the predicate blocks match the pre-

vious heuristics, the block splitter chooses the predicate block with the

largest block size.

4.2.2 How to Split a Block?

Block splitting begins by analyzing all the blocks in the BFG. The anal-

ysis phase transforms all the blocks into block form (Chapter 3) to determine

if a block violates the block size or LSID constraints. If all the blocks are

legal, block splitting is complete. Otherwise, for each illegal block, the block

splitter finds a split point in the block’s PFG using the previously discussed

heuristics, and reverse if-converts or cuts the predicate block. The compiler

iterates until there are no violations and after block splitting completes, all of

the blocks are guaranteed to meet the block size and LSID constraints, but

not the register constraints.
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Cutting: Block splitting will only cut a predicate block when it is the

only predicate block in the PFG. If the block splitter chooses an unpredicated

predicate block that occurs in the middle of the PFG (i.e. P5 in Figure 4.2)

as the split point, it is reverse if-converted into a new block instead of being

cut. Predicate blocks are cut based on block size and LSID. If there are more

than 32 LSIDs but the block size is legal, the splitter cuts after the instruction

with the 32nd LSID in the predicate block. If the LSIDs are legal then the

predicate block is cut in half based on the size. If both the LSIDs and block

size are illegal the splitter cuts at whichever point is reached first in a forward

pass of the instructions. The compiler uses the block analysis from Section 4.1

to compute the size, taking into account the number of real instructions and

fanout. Once an instruction is found that can be used as a split point, the block

splitter creates a new block and label, and moves the instructions beginning

with the split point after the label. Then a branch is added in the original

block to the new label.

Reverse If-conversion: Given a predicate block to reverse if-convert,

reverse if-conversion creates a new block beginning with the predicate block,

removes the predicates from the instructions in the predicate block, adds a

label to the beginning of the instructions, and inserts branches to the label

in the original block. This process is complicated by the fact that reverse if-

conversion can lead to additional predicate blocks being reverse if-converted.

In Figure 4.2, P10 is on the path of execution for both P7 and P9. When P9

is reverse if-converted, if P10 is placed into the same block as P9, then P7
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must some how be able to jump into the middle of the new block, without the

instructions in P9 executing. Since the compiler does not support hyperblock

re-entry [5] this is impossible and P10 must also be reverse if-converted. An

alternative to reverse if-converting P10 is to tail duplicate the instructions into

P7. However, we leave such decisions up to the hyperblock formation phase

which has the mechanism and heuristics to implement them.

To determine which predicate blocks must be reverse if-converted, the

compiler performs a depth-first search from the split point adding predicate

blocks to be reverse if-converted to a worklist. For each predicate block PB in

the search, if a predecessor of PB has not been visited, or if a predecessor of

PB is on the worklist, and PB has more than one predecessor, PB is added

to the worklist. Next, the predicate blocks on the worklist are ordered based

on their depth from the root of the PFG using a breadth first search. If the

current predicate block visited by the search is contained in the worklist, it is

removed and pushed on a stack. Once done, the predicate blocks are reverse

if-converted in the order they are popped off the stack.

4.3 Register Allocation

Just like a RISC register allocator, an EDGE allocator assigns virtual

registers to physical registers or spills to memory. However, unlike a conven-

tional allocator, it need not assign those virtual registers whose live ranges are

contained wholly within a block. Since most operands have a low degree of

fanout, with short live ranges [41], this feature of the ISA reduces the number
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Figure 4.4: Register allocation.

of reads and writes to general-purpose registers by replacing them with direct

instruction communication; reservation stations store and forward values in

the hardware.

For TRIPS, there are 128 registers divided into four register banks

with 32 registers apiece. Each block is limited to eight register reads and eight

writes per register bank (for a total of 32 register reads and 32 writes) to

simplify the block renaming/forwarding logic. The hardware register naming

convention maps register names R0 to R127 to banks by interleaving them on

the low-order bits of the register name. These features require additional state

to track and enforce register bank constraints.

The TRIPS compiler uses a modified linear-scan register allocator [22,

57, 59, 68, 75]. Live ranges are computed on a block (BFG node) granularity

where a virtual register is live if and only if it is defined and used in different

blocks. The allocator gives priority to each virtual register based on its defini-
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tions, uses, and spill costs. Subsequently, the allocator assigns virtual registers

to physical registers or spills each live range in priority order. Spilling intro-

duces load and store instructions, and thus may cause a block to violate the

block size or LSID constraints. The block splitter therefore reexamines every

block in which the allocator inserted spill code. If any block is illegal, the com-

piler removes the spill code from the blocks, splits each block with a violation,

and then repeats register allocation. Iterative block splitting is guaranteed to

terminate eventually since it strictly reduces the number of instructions in a

block. With the large register file and reduced number of live ranges that must

be register allocated due to the EDGE block model, the allocator rarely spills.

However, more aggressive block formation may expose the need for additional

enhancements or a graph coloring allocator that may spill less [75].

4.3.1 Assigning Physical Registers

To determine the assignment order, we compute the strength of each

live range, and assign those with higher strengths first. We use an ordered

list of available physical registers for each live range and assign caller saved

registers before callee saved registers. The allocator selects a physical register

from this list and checks if it would cause any constituent block to exceed its

bank limitation. If not, it assigns the register to the live range. Otherwise,

it excludes all registers from this bank from the list, and tries again until it

finds an assignment or exhausts the list. When the allocator cannot satisfy

the banking constraints in all blocks it must spill.
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The order in which virtual registers are allocated to physical registers is

important. One possibility is to allocate virtual registers with the shortest live

ranges first since spilling them is less likely to be effective. In Figure 4.5, there

are three live ranges, L1,L2, and L3 where the length of the bars correspond

to the length of the live ranges. A shortest first policy would allocate L2,

followed by L3, and L1. Consider what happens when one of the live ranges

is spilled. There are five blocks in the figure with the size of the blocks noted

at the top. If L3 is spilled for example into the 125 instruction block, and

the block exceeds the 128 instruction limit, it will be split. This not only

affects the quality of the code as blocks are padded with NOPs, but increases

the time required for register allocation since splitting forces the allocator to

run again. An alternative to the shortest first policy is to order live ranges

based on the constraints of the blocks. For example, if the live ranges in the

figure are assigned by the size of the blocks they span, the assignment order

would be L3, L1, L2. This policy though favors long live ranges. Instead, we

compute strength using the length of the live range biased by the size of the

blocks spanned by the live range.

V R = V irtualRegister

UD = blocks that use or define V irtualRegister

Strength(V R) = 1.0 / length +
∑

i∈UD

1.0 / (MaxBlockSize−BlockSizei)

Using this heuristic the strengths of L1, L2, and L3 are 0.30, 0.53, and

0.69 respectively. L3 is allocated first, followed by L2, and L1. Notice that

even though L1 and L2 span a block with 90 instructions, since the block is
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Figure 4.5: An example of three overlapping live ranges. The numbers on the
top are the size of the blocks spanned by the live ranges.

not close to the 128 instruction limit, the bias to the strength is small. This is

exactly right as we only want to give priority to live ranges that span blocks

that are close to the block size limit. We can further extend the heuristic to

account for live ranges that span blocks that are close to the LSID limit.3

4.4 Stack Frame Generation

Once register allocation is complete the stack frame is generated. Ex-

cept for the block constraints, generating the stack frame for TRIPS is no

different than any other architecture and complete details can be found in the

TRIPS ABI [69]. Care must be taken though to emit only legal blocks. As

the instructions comprising the stack frame are unconditionally executed, the

block constraints can be tracked as the instructions for the stack frame are

generated. For TRIPS, the compiler only needs to track the register and LSID

constraints since those will be reached before the block size constraint. When

3Length includes all blocks that the live range crosses, where as the block constraints
only consider blocks that use or define the virtual register.
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mov SPcaller, SPcallee

addi SPcallee, SPcallee, #256
sd 0(SPcallee), SPcaller

sd 8(SPcallee), LR
sd 108(SPcaller), R12 ; Bank 0
sd 116(SPcaller), R16 ; Bank 0
sd 124(SPcaller), R20 ; Bank 0
sd 132(SPcaller), R24 ; Bank 0
sd 140(SPcaller), R28 ; Bank 0
sd 148(SPcaller), R32 ; Bank 0
sd 156(SPcaller), R36 ; Bank 0
sd 160(SPcaller), R40 ; Bank 0
sd 164(SPcaller), R44 ; Bank 0 Violation

mov SPcaller, SPcallee

addi SPcallee, SPcallee, #256
sd 0(SPcallee), SPcaller

sd 8(SPcallee), LR
sd 108(SPcaller), R12
sd 116(SPcaller), R16
sd 124(SPcaller), R20
sd 132(SPcaller), R24
sd 140(SPcaller), R28
sd 148(SPcaller), R32
sd 156(SPcaller), R36
sd 160(SPcaller), R40
mov R40, SPcaller

br masaaki$prlg$1

masaaki$prlg$1:
mov SPcaller, R40
sd 164(SPcaller), R44

Figure 4.6: Example of a stack frame with a bank violation.

a violation is detected the compiler creates a new block and continues gener-

ating the stack frame in this block. The compiler initially places the prologue

and epilogue code in two separate blocks from the rest of the function. After

the stack frame is generated, the compiler tries to merge the prologue with its

succeeding predicate block and the epilogue with its preceding predicate block

in the PFG to improve performance [67].
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4.4.1 Splitting the Stack Frame

To track the register usage, the compiler models the reads and writes

with an array of size equal to the number of banks. Before appending an

instruction to the block, the compiler computes the register bank used by the

instruction’s operands, and uses the bank as an index to the array. If the total

number of accesses to the bank is fewer than the total number of supported

accesses for a block (in the case of TRIPS eight accesses per bank), the number

of bank accesses is incremented in the array, and the instruction is appended

to the block. Otherwise, if the number of bank accesses is equal to the number

supported by the block, appending the instruction would violate the register

block constraint, and the compiler splits the block at the last instruction and

appends the violating instruction to the new block. The compiler handles

LSIDs at the same time as global registers by tracking the highest LSID in the

block. Since the load and store instructions in the stack frame are uncondi-

tionally executed, the highest LSID used is equal to the total number of load

and store instructions in the block.

When the stack frame is split, the compiler can use the last saved non-

volatile register to communicate the updated stack pointer across blocks. A

mov instruction is appended to the end of the original block that copies the

updated stack pointer to the last saved non-volatile register. Then a second

mov is appended to the beginning of the new block that copies the non-volatile

register back to the caller’s stack pointer.

The example in Figure 4.6 is a typical function prologue where several
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non-volatile registers are saved. R12 is stored to the stack and is the first access

to bank zero (determined by 12 mod 4 assuming 4 register banks). Next, R16

is stored, followed by R20 and so on. If there is support for eight accesses per

bank as in TRIPS, then R40 is the last register that can be saved to the stack.

The use of R44 would exceed the number of bank accesses and therefore a new

block is created. A branch to the new block is added to the original block

along with a copy to save the stack pointer. Then the stack pointer is restored

in the new block and R44 is saved.

4.5 Related Work

Compilers for VLIW machines applied reverse if-conversion to balance

the amount of speculative execution and to achieve the benefits of a larger

window for ILP optimization and scheduling, even in the absence of hardware

support for predication [6, 9, 80]. EDGE compilers can also utilize reverse if-

conversion for these purposes, but more importantly rely on it to transform

illegal blocks into legal ones during block splitting.

Banked register files have been employed in both embedded proces-

sors and DSPs [30] to reduce energy requirements and the complexity of by-

passing. Generally, a functional unit is associated with a register bank, and

non-associated register bank accesses require that the data be moved to the as-

sociated bank. This data movement is often compiler managed, complicating

register allocation [26, 55]. The TRIPS ISA instead provides uniform access

to all banks, but restricts the number of bank accesses per block. When a
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block begins execution, the register read instructions fire (one per bank per

cycle) and the interconnect routes their values to their target instructions in

the E-tiles, taking one cycle per Manhattan-distance hop.

The direct instruction communication used between instructions within

blocks, converts live ranges that would otherwise require registers, into intra-

block dataflow edges. Since most operands have a low degree of fanout, with

short live ranges [41], a block-based execution model uses fewer registers than

a conventional architecture. Other architectural models have been proposed

which capitalize on this observation. Braids [76] are compiler-formed dataflow

graphs similar to blocks. Unlike blocks though, which use predication to ag-

gregate instructions from multiple basic blocks, braids encapsulate subgraphs

of basic blocks that are executed within a traditional out-of-order pipeline.

4.6 Summary

Code generation, register allocation, and stack frame generation can all

produce illegal blocks that violate one or more of the ISA block constraints.

The compiler provides an analysis phase for determining the legality of blocks

with respect to the block constraints, and a block splitting framework for

reforming illegal blocks into legal ones. Both block analysis and block splitting

rely on the block formation algorithms introduced in Chapter 3.

This chapter described the techniques for analyzing and reforming il-

legal blocks produced by various phases of the compiler. The combination

of Chapters 3 and 4 provide enough details to build an EDGE compiler that
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produces correct and legal code. In the next chapter, we describe how the

compiler optimizes predicated blocks to improve performance.
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Chapter 5

Optimizing Predicated Blocks

An EDGE architecture performs best if the compiler minimizes the

number of blocks and fills each one with useful instructions. In the absence

of predication, a block is simply a basic block. However, to maximize perfor-

mance, the compiler forms hyperblocks by combining regions of the control

flow graph using if-conversion [2]. Hyperblocks provide the compiler with a

larger scheduling window and enable additional opportunities for optimization.

In this chapter we describe iterative hyperblock formation, which incorporates

hyperblock formation and optimizations into a unified framework [42]. Then

we present several dataflow predication optimizations applied during iterative

hyperblock formation to mitigate predication overheads, improve the overall

code quality, and enable additional if-conversion [71]. First, predicate fanout

reduction removes predicates based on intra-block dependence chains. Second,

path-sensitive predicate removal removes predicates from instructions that de-

fine inter-block values. Finally, dead code elimination and dead predicate block

elimination are applied to remove useless instructions and predicate blocks.
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5.1 Iterative Hyperblock Formation

The work on hyperblocks builds on previous work on compiling pred-

icated hyperblocks for VLIW machines [7, 9, 43, 45, 54]. VLIW architectures

build hyperblocks to maximize exposure of independent instructions for long-

word packing. When forming hyperblocks, VLIW compilers scrutinize depen-

dence height in less frequently accessed basic blocks, since that height puts

a lower bound on the VLIW schedule. In TRIPS, hyperblocks differ in two

ways: first, the four block restrictions limit the hyperblocks that can legally be

formed; second, while both classes of architectures want hyperblocks to be full

of many useful, independent instructions, dependence height down untaken

paths is a non-issue for TRIPS blocks, since blocks can be committed and

deallocated as soon as all of their outputs are received. In VLIW machines

the constituent instructions within the VLIW instruction must all be inde-

pendent, and thus the goal of hyperblock formation is to create and combine

independent instructions. The constituent instructions in a block, conversely,

can be dependent, so the goal of hyperblock formation in an EDGE architec-

ture is to expose many “good” instructions to the window for power-efficient

scheduling.

5.1.1 Where to Perform Hyperblock Formation?

Originally, we developed a hyperblock generator that ran before code

generation on a high-level target independent form. We allowed the hyper-

block generator to form arbitrarily large hyperblocks that were only limited
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by the structural constraints of the control flow graph. We found that the gen-

erated blocks were often illegal and had to be reformed by the block splitter.

The block splitter ended up performing much of the same work required by a

backend hyperblock formation phase. Next, we tried to limit the amount of

block splitting by estimating the block constraints from the target independent

IR. The resulting hyperblocks were still imperfect. When we underestimated

the blocks constraints, the blocks were illegal and had to be reformed in the

backend by the block splitter. When we overestimated, we found the blocks

were underutilized. To address both of these problems, we decided to imple-

ment the hyperblock generator as a target dependent phase of the compiler

that worked on the actual machine instructions.

5.1.2 Phase Ordering

The next problem we had to solve was a phase ordering problem. When

a block is optimized before hyperblock formation, blocks often contain too few

instructions for effective optimization. Integer codes are often cited to contain

on average five instructions per basic block, and block-based optimizations will

certainly be ineffective with such small blocks.. However, when optimizations

are applied after hyperblock formation, the optimizations may reduce a block

constraint enough that further opportunities for if-conversion are exposed. We

would then like to re-run hyperblock formation, but re-running the phase may

lead to additional opportunities for optimization. This phase ordering prob-

lem is not uncommon in compilers. The solution most often taken is to find
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some fixed order for optimization that gives on average the best results across

a range of workloads and accept that some opportunity for optimization may

be lost. We take a different approach. Since blocks have fixed size, the scope

of block based optimization is in fact small and running optimizations multiple

times has little impact on over compile time. Therefore, we use an iterative hy-

perblock generator, that incrementally forms and optimizes blocks until there

are no more opportunities for hyperblock formation and optimization.

5.1.3 Merging Blocks

Figure 5.1 shows the algorithm for iterative hyperblock formation [42,

68]. To begin, the compiler selects two blocks from the block flow graph

(BFG) and merges them together. Next, the compiler optimizes the newly

formed block since optimization may change the block’s instructions causing an

illegal block to become legal. For example, if dead code elimination is applied

to a block with 130 instructions, and the number of instructions in the block

is reduced to 120 instructions, the hyperblock generator has produced a legal

block. On the other hand, optimizations that duplicate instructions such as tail

duplication, loop unrolling, or inlining increase the number of instructions in a

block, and may cause a legal block to become illegal. After optimization, the

block formation algorithms from Chapter 3 are applied again and the block is

analyzed as in Chapter 4 to determine if it violates the block size or load-store

identifier constraints.1 Before hyperblock formation begins, we require that all

1Register constraints are handled during register allocation.
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Figure 5.1: Iterative hyperblock formation algorithm.

blocks are architecturally legal with respect to these two constraints (enforced

by a block splitting phase preceding hyperblock formation). Therefore, if the

analysis determines that a block is illegal, it is a result of hyperblock formation.

The block is discarded and the compiler marks the original blocks in the BFG

so that it does not attempt to merge them again. If the block is legal, the

compiler updates the BFG, replacing the original blocks with the merged block,

and the hyperblock generator iterates until complete.2

Selecting which blocks to merge is challenging. A good policy will try

to fill blocks with many useful instructions while balancing the utilization

of compute resources. We explored a variety of policies for selecting blocks

during hyperblock formation [42]. One policy that performs well is to select

2The hyperblock generator works at the block level, not the predicate block, or instruction
level.
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blocks using a breadth-first traversal of the BFG, and combine each BFG

node greedily with as many of its children as will fit. This allows the compiler

to include multiple paths of execution in a block, increasing the amount of

instruction level parallelism, and when there is enough room, include entire

hammocks in single blocks.

To implement a greedy breadth-first policy, the traversal begins at the

root BFG node. When the compiler visits a BFG node it tries to merge the

node with a child node unless:

1. The parent node ends with a function call. In the TRIPS architecture,

function calls must end inclusion down one control path to avoid jumping

into the middle of a block.

2. The child node has other BFG node predecessors. Without tail duplica-

tion, the compiler cannot merge children with multiple incoming edges.

After selecting a child block, the compiler makes a copy of the blocks

to merge. Merging then proceeds depending on whether or not the parent has

multiple exits to the child. If there is a single exit from the parent block to the

child (i.e. blocks B0 and B1 in Figure 5.2), the compiler combines the blocks

as follows:

1. The branch instruction leading from the exit predicate block in the par-

ent to the child block is removed, along with the label in the root of the

child’s PFG.
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Figure 5.2: A block flow graph before and after hyperblock formation. Blocks
to be combined are denoted by dotted lines. B2 contains a call that returns
to B4, while B5 and B6 have multiple successors that prevent merging.

2. The instructions from the child’s root predicate block are then copied

into the parent’s exit predicate block.

3. If the exit predicate block is predicated, the same predicate is added to

the copied instructions.

4. If the root predicate block in the child’s PFG has outgoing edges, these

become the outgoing edges of the parent’s exit predicate block.

However, if there are multiple exits from the parent block to the child block,
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the compiler combines the blocks as follows:

1. The branch instruction leading from the exit predicate block in the par-

ent to the child block is removed, along with the label in the root of the

child’s PFG.

2. If there are exits in the parent block that are not to the child, then a

new predicate is created using a move immediate instruction in each of

the exit predicate blocks to the child, and the predicate is added to the

instructions in the root of the child’s PFG.3

3. The child’s PFG is moved so that it is a successor of all the predicate

blocks in the parent with exits to the child.

Figure 5.2 shows a block flow graph before and after iterative hyper-

block formation. The compiler starts with the root of the BFG, and attempts

to combine B0 with B1. The combined block B0′ is legal and replaces B0 and

B1 in the BFG. B2 is then selected for merging with B0′ and the combined

block B0′′ is legal and replaces B0′ and B2 in the BFG. The compiler now

chooses B3, which is a child of B0′′, however the merged block is too large

(165 instructions) and is discarded. The compiler tries B0′′ and B4 but there

is a call instruction in B0′′ (originally in B2) that prevents merging. Since

there are no more children of B0′′ to merge, the compiler moves to the next

3A wired-or can also be used but only when predicates have matching conditions: i.e.
{p135, true} OR {p136, true} but not {p135, true} OR {p136, false}.
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level in the graph and begins again with B3. B3 has a single child B5, but

since there are multiple incoming edges to B5, the compiler cannot merge the

blocks. There are no more children of B3 to try and the compiler moves on

to B4. Merging B4 and B6 fails because of the multiple incoming edges to

B6 and the level is done. B5 is then selected in the next level and fails to be

merged with B6. B6 has no children and hyperblock formation is complete.

5.2 Predicate Fanout Reduction

A dataflow predicating compiler can apply both implicit predication

and speculative hoisting to reduce predicate fanout, thus eliminating unnec-

essary predication and avoiding the insertion of move instructions that would

otherwise be required to forward predicates to their consumers [71]. For ex-

ample, in Figure 5.3(a), tgti is an immediate test instruction that defines

predicate t3. If the compiler does not apply predicate fanout reduction then

every instruction in predicate blocks {t3, true} and {t3, false} must be predi-

cated, resulting in seven uses of t3. In the TRIPS ISA, immediate instructions

only support a single target, requiring the compiler to insert four move in-

structions (using MOV2s) to fanout the predicate to its consumers.

The compiler performs predicate fanout reduction by either predicating

instructions at the top of dependence chains (Figure 5.3(a)), or by predicating

instructions at the bottom of dependence chains (Figure 5.3(b)). Predicating

at the top, forces all predicates to resolve before any predicated instructions

can execute. This strategy results in the longest critical path, as every pred-
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read t1, g1
read t2, g2
tgti t3, t2, #1

slli_t<t3> t4, t1, #4
addi       t5, t4, #1
muli       t6, t5, #9
br_t<t3>   L2

movi_f<t3> t7, #128
add        t6, t7, t1
br_f<t3>   L3

write g2, t6

(a)

read t1, g1
read t2, g2
tgti t3, t2, #1

slli       t4, t1, #4
addi       t5, t4, #1
muli_t<t3> t6, t5, #9
br_t<t3>   L2

movi      t7, #128
add_f<t3> t6, t7, t1
br_f<t3>  L3

write g2, t6

(b)

t3,true

t3,true t3,false

t3,false

Figure 5.3: A block after predicate fanout reduction. In (a) the top of each
dependence chain is guarded by a predicate, while in (b) the bottom of each
dependence chain is guarded by a predicate.
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icate must fully resolve before execution down a dependence chain can con-

tinue. The lack of speculation though may lead to reduced energy utilization.

Predicating at the bottom, allows the compiler to shorten the critical path,

and increase the amount of speculative execution within a block, which may

lead to higher performance. For both cases, predicate fanout reduction is ap-

plied using the PFG in static single assignment form. The compiler is free

to apply implicit predication and/or hoisting to remove a predicate from any

instruction, including instructions that may raise exceptions (subject to the

restrictions discussed in Chapter 1).

5.2.1 Predicating the Top of Dependence Chains

To predicate the top of a dependence chain, the compiler examines each

predicate block in the PFG. If the predicate block is unpredicated, the compiler

continues to the next predicate block. Otherwise, the compiler identifies the

instructions that are not at the top of a dependence chain as these are the

instructions that can be unpredicated.

To identify candidate instructions, the compiler examines every non-phi

instruction in a predicate block. For each candidate, the compiler uses use-

def information to retrieve the instructions that define a candidate’s source

operands. The candidate is added to a work list to be unpredicated when the

following conditions are all met by any one of the source operands’ defining

instructions: (1) the defining instruction is predicated, (2) does not define

the predicate for the candidate instruction, and (3) is in the same predicate
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block as the candidate. Once all the instructions in a block are examined, the

compiler removes the predicates from the instructions in the work list.

Figure 5.3(a) shows a block after predicate fanout reduction, guard-

ing the top of dependence chains. The predicates have been removed from

the addi, muli, and add instructions. The predicates must be left on the

slli, movi and branch instructions because they represent the tops of the

dependence chains in the block.

5.2.2 Predicating the Bottom of Dependence Chains

To predicate the bottom of a dependence chain, the compiler removes

a predicate from an instruction if all of the following conditions are met:

1. The instruction is not a branch or store. Removing the predicate from

a branch will lead to incorrect execution when the branch should not

have been taken. Likewise, removing the predicate from a store will lead

to undefined behavior as the likely outcome is that two stores with the

same load-store identifier will execute.

2. The instruction does not define a predicate. Speculative execution of a

predicate will trigger speculative execution of all the instructions that

are predicated on this predicate. Instructions on the non-speculative

path may target instructions on the speculative path leading to some

instructions receiving operands twice, which has undefined behavior.

3. The instruction does not define an operand of a SSA phi instruction. Phi
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instructions represent locations in the block where multiple values merge

and are selected from. If an instruction that defines a phi’s operand

executes speculatively, the phi will forward the speculative value to its

consumers. When the non-speculative value finally reaches the phi, the

phi and its dependent instructions will need to re-execute. There is no

support for such an execution model in the TRIPS processor.

Figure 5.3(b) shows a block after predicate fanout reduction, guarding

the bottom of dependence chains. The predicates used by the slli addi, and

movi instructions have been removed. The predicates must be left on the muli,

add and branch instructions because they produce block outputs.

5.2.3 Speculative Loads

Predicating the bottoms of dependence chains allows instructions with-

out external side effects to execute speculatively. However, the compiler must

be careful when applying this optimization to load instructions because the

TRIPS ISA requires every load-store identifier produced from a block to be

unique. Two load instructions that share an LSID, and both execute, will

result in undefined runtime behavior. The compiler must guarantee that a

load does not share an LSID with another load, before allowing the load to

execute speculatively, or use an LSID assignment algorithm (such as the ones

presented in Section 3.7) that assigns every load a unique identifier.

If a load cannot be unpredicated, for example, the load defines the

operand of a phi instruction, we would still like to speculatively execute the
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load. The compiler can insert a conditional move instruction after any load

that cannot be unpredicated, and then remove the predicate from the load.

5.3 Path-Sensitive Predicate Removal

The TRIPS ISA requires that all paths through a block produce the

same set of register writes. If an instruction defines a register that is live-out

from a block on one path but not another, the compiler must insert additional

instructions to produce a definition for the register on all paths. The compiler

can either read in the register that is live-out and copy this value on the paths

without a definition, or insert null instructions to nullify the write on these

paths.

For example, in Figure 5.3(a), g1 and g2 are both live-out. The com-

piler therefore inserts three additional mov instructions to write the original

values of g1 and g2 back on the paths without the definitions. Two move in-

structions in the {t3, true} and {t7, true} predicate blocks set the temporary

register t6 for g2. One move instruction in the {t3, false} predicate block

sets the temporary register t5 for g1. However, the compiler does not need to

preserve these registers on paths where they are not live-out.

Path-sensitive predicate removal is an optimization that promotes in-

structions that define values live-out of a block to execute unconditionally.

This optimization reduces the amount of predicate fanout, decreases the over-

head for satisfying the constant output constraint for writes (either by reduc-

ing the number of null instructions or the register pressure for reading in the
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register), and increases speculation through early resolution of inter-block de-

pendences. Potentially drawbacks though are the increased energy utilization

and contention from additional speculation when applied to instructions off

the critical path.

An instruction is a candidate for this optimization when the following

conditions are met:

1. The instruction defines a register that is live-out from a block and the

register is not live-out on every path. There is some path of execution in

which the value in the register does not matter since the register is not

read by the successor blocks.

2. The instruction dominates the exits from the block in which the register

is live-out. If the instruction does not dominate all the exits that pro-

duce an actual value, then there is some other instruction in the block

that writes to the same register. Allowing any of these instructions to

unconditionally execute will most likely result in multiple instructions

producing a value for the same register write.

3. The instruction cannot raise an exception. Since the value produced

by the instruction will be written unconditionally to the register file

regardless of the path of execution, there is no way to gate an exception

on the paths for which the register is unused. Allowing instructions to

produce exceptions (such as divide) on speculative paths violates the

exception model (Section 1.3).
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mov_t<p100> t80, t91
br_t<p100> L2

P0

P1 P2

P3

read t90, g9
read t91, g17
teqi p100, t90, #0

P5

P4

write g17, t80 

g17 not live-out

p100,true p100,false

p200,true p200,false

addi_t<p100> t150, t90, #1
tgti_f<p100> p200, t150, #1

mov_f<p200> t80, t91
br_f<p200> L3

ld_f<p100> t80, 16(t90) [0]
br_f<p100> L4

br_t<p100> L2

P0

P1 P2

P3

read t90, g9
teqi p100, t90, #0
ld   t80, 16(t90) [0]

P5

P4

write g17, t80 

p100,true p100,false

p200,true p200,false

addi_t<p100> t150, t90, #1
tgti_f<p100> p200, t150, #1

br_f<p200> L3 br_f<p100> L4

(a)

(b)

Figure 5.4: In (a) g17 is only live-out from the exit in P4. After applying
path-sensitive predicate removal in (b), the load is promoted to execute un-
conditionally allowing one read and two mov instructions to be removed.
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Any candidate instruction found may be promoted to execute uncondi-

tionally, and implies that the instructions that define the candidate’s operands,

excluding any instructions that define predicates, must also be promoted. The

instructions that are part of this recursive promotion must follow the three

rules outlined above.

In Figure 5.4(a), g17 is not live-out from the exits in P1 and P3. The

compiler still has to write some value for g17 though on these paths, and in the

example reads in the original value of g17 and inserts two conditional moves to

forward the value to the write. Since the value that is in register g17 is only live

when the exit from P4 is taken, the compiler applies path-sensitive predicate

removal to write the same value on all paths as shown in Figure 5.4(b). The

ld instruction is promoted to the dominating predicate block P0, causing it to

be executed unconditionally, and enabling the compiler to remove both move

instructions in P1 and P3 along with the register read in P0.

5.4 Dead Code Elimination

After optimizations are applied to blocks, instructions can become

dead, such that an instruction is never executed or the result of the com-

putation is unused. Dead code elimination removes these useless instructions

from a block. The compiler performs dead code elimination in SSA form using

the standard mark and sweep algorithm [49]. However, one change is needed

to support the dataflow predication model of blocks.

The block in Figure 5.5 contains a phi instruction in P3. When trans-

105



movi  t877, #2147483647 
divi  t878, t877, #7
extsw t879, t878

P0

P1 P2

P3 phi t864, t879, t865
        ...

read t865, t8
tlti p135, t865, #10

mov_f<p135> t864, t865

mov_t<p135> t864, t879

dead

p135,true p135,false

Figure 5.5: Example showing how dead code elimination can incorrectly re-
move the test instruction which defines a predicate (p135), resulting in uses
of undefined temporaries after SSA phi removal.

forming out of SSA form back to normal form, the phi instruction will be

removed and mov instructions will be inserted in P1 and P2. The move in-

structions will be predicated on p135 which is created by the test instruction

in P0. Before leaving SSA form, no instructions in the block use p135. If

dead code elimination is run on this block, the test instruction that defines

p135 will appear dead and be removed. Then during phi removal, the mov

instructions will use a predicate that is undefined.

To solve this problem, when the compiler marks useful instructions

during dead code elimination, if any useful instruction is a phi, the instructions
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that define the predicates for the phi’s predecessor predicate blocks are also

marked as useful. For example, in Figure 5.5, when the compiler marks the

phi as useful, the test instruction that defines the predicate for P1 and P2 is

also marked as useful.

5.5 Dead Predicate Block Elimination

When dead code elimination is able to remove the instruction that

defines a predicate, the predicate blocks that utilize this predicate also become

dead. Dead predicate block elimination is an optimization that identifies and

removes dead predicate blocks from the predicate flow graph. The optimization

is run after dead code elimination, whenever dead code elimination removes

an instruction that defines a predicate.

To identify dead predicate blocks, the compiler traverse the PFG, and

adds any empty predicate blocks that are also predicated to a work list. Then

for each predicate block in the work list, the compiler uses use-def information

to retrieve the instruction that defines the predicate for the predicate block.

If the defining instruction is null, the predicate block is dead and the compiler

removes the predicate block from the PFG.

In Figure 5.6, predicate blocks P3 and P4 are dead. The compiler

searches the PFG and adds P2, P3, and P4 to the work list because they

are all empty and predicated. Next, P2 is examined and the instruction that

defines p100 is retrieved and found to be non-null, signifying P2 is not dead.

Next, P3 is checked and the instruction that defines its predicate is null so P3
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movi t101, #DECAFBAD 
shli t102, t101, #4
sd_t<p100> 0(t90), t102

P0

P1 P2

P3

read t90, t9
tgti p100, t90, #7

P5

P4

br  L2

dead predicate blocks

p100,true p100,false

p?,true p?,false

Figure 5.6: After dead code elimination is run, predicate blocks P2, P3, and
P4 are empty. Dead predicate block elimination will remove P3 and P4, but
P2 is required to maintain the predicate flow graph.

is dead and removed from the PFG. Finally, P4 is checked and found to be

dead and removed.

5.6 Related Work

The work on hyperblocks builds on previous work on compiling pred-

icated hyperblocks for VLIW machines [7, 9, 43, 45, 54]. VLIW architectures

build hyperblocks to maximize exposure of independent instructions for long-

word packing. When forming hyperblocks, VLIW compilers scrutinize depen-
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dence height in less frequently accessed basic blocks, since that height puts

a lower bound on the VLIW schedule. In TRIPS, hyperblocks differ in two

ways: first, the four block restrictions limit the hyperblocks that can legally be

formed; second, while both classes of architectures want hyperblocks to be full

of many useful, independent instructions, dependence height down untaken

paths is a non-issue for TRIPS blocks, since blocks can be committed and

deallocated as soon as all of their outputs are received.

Architectures have used predication since the 1970s. The CRAY-1 im-

plemented predication in the form of vector masks [61] to guard individual

vector operations. Predicated execution became more prevalent in VLIW ma-

chines in the 1980s and 1990s. The Multiflow Trace machines supported partial

predication using the select instruction [40]. The Cydra 5 [58] and the IA-64

Intel Itanium processors’ ISAs include a predicate operand with every instruc-

tion. Several RISC architectures also support some predicated execution; the

in-order ARM processor predicates most instructions, but the out-of-order

Alpha and SPARC V9 architectures limit predication to conditional move in-

structions.

Predication research has generally fallen into two categories: ISA and

microarchitecture support for efficient execution, and compiler algorithms and

optimizations to use and exploit predication. Allen et al. first described if-

conversion to convert control dependences to data dependences [2]. Mahlke

et al. proposed the use of hyperblocks as an effective compiler structure for

performing predication and exposing scheduling regions to the compiler [45].
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Researchers have also shown that predication is effective for enabling software

pipelining on loops with control structures [24,79].

Several solutions have been proposed to alleviate the overheads of pred-

ication in VLIW architectures and to a limited extent, in dynamic superscalar

architectures. For VLIWs, August et al. propose a framework that mitigates

fetch and execution overhead by balancing control speculation and predica-

tion [9]. In out-of-order processors, researchers have proposed predicate pre-

diction, which predicts the resolution of the predicate in the dispatch logic [18],

wish branches, which enable the hardware to dynamically and selectively em-

ploy predicated execution [37], and predicate slip, which delays the use of the

guard predicate until commit [78].

Conventional architectures typically save the results of instructions that

define predicates in either the general purpose register space or in a private

predicate namespace. In addition to specifying two (or more) data source

operands, a predicated instruction must also specify its predicate operand. In

IA-64, the predicate operand consumes six bits of each instruction. Due to this

encoding pressure, some architectures use predication only in a small number

of instructions (ARM is a notable exception). For example, Alpha and SPARC

V9 architectures offer a single conditional move operation for use in simple con-

trol constructs. To extend predication to other instructions, Pnevmatikatos et

al. propose using the GUARD instruction [56]. This instruction, in conjunc-

tion with a predicate register file, specifies which instruction to guard among

the set of successor instructions.
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To generate predicates for instructions inside complex control struc-

tures, the compiler must invert and merge predicates generated along each

if-converted branch. A long predicate computation chain, in addition to in-

creasing instruction overhead, may end up on the program critical path. Re-

searchers have addressed this problem in different ways: by generating comple-

mentary predicates [32], by using wired operators [32], and by program decision

logic minimization [8].

Of the conventional architectures, VLIW architectures benefit from low-

overhead predication, but lose performance because falsely predicated instruc-

tions can lengthen the critical path of execution. Superscalar processors have

not benefited from predication due to the complexity of its implementation

in an out-of-order microarchitecture. Less conventional architectures, such

as historical dataflow machines, have combined only partial predication with

dynamic scheduling.

Dataflow predication, as instantiated in the TRIPS architecture, dif-

fers from previous partially predicated dataflow architectures in three major

ways [4, 25, 74]: First, predicates may directly guard individual instructions,

avoiding the need for gate or switch instructions. Second, any instruction can

generate a predicate merely by targeting the predicate operand of another in-

struction. Third, instructions may receive multiple predicate operands before

firing. These three features enable dense encoding, as each 32-bit instruction

requires only two bits to specify whether it is predicated. They also enable ef-

ficient compound predicate computation, since dataflow predication supports
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the disjunction of an arbitrary number of predicates, and since predicate-

producing instructions may themselves be predicated. Finally, they support

implicit predication, since only the input instructions to a dataflow graph need

to be predicated to implicitly predicate the entire graph.

Dataflow predication allows the compiler to increase the amount of

speculation within and between blocks. Speculative loads are one such op-

timization that have been successfully employed in both VLIW and RISC

architectures to hide memory latency [19, 51]. The previous techniques for

load speculation fall into two categories: those that are architecturally hid-

den (dependence prediction [50]) and those that are exposed by the ISA to

the compiler through additional load instructions [19, 31, 48]. The work on

compiler support for speculative loads has focused on moving loads above

conditional branches (control speculation) and store instructions (data spec-

ulation). These techniques rely on the ability to ignore or discard the effects

of a misspeculation. Rogers and Li propose the use of poison bits [60], while

work on predicated VLIWs have utilized special compiler inserted check in-

structions [31].

One drawback of speculative loads in previous models is the increased

register pressure due to the loading of speculative values. Another problem is

the architectural and/or compiler support required to support misspeculation.

In an EDGE architecture like TRIPS that supports a dataflow predication

model [71], neither of these issues arise. Instructions communicate directly

instead of through registers, while the dataflow predication model allows for
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misspeculations to be filtered out by taking advantage of the existing predica-

tion support in TRIPS.

5.7 Summary

The block-atomic execution model used by EDGE architectures pro-

vides potential performance and energy advantages compared to traditional

ISAs, but also presents new compilation challenges. In particular, the compiler

must generate full blocks of useful instructions but still obey the block con-

straints imposed by the ISA. To alleviate the tension between optimization and

producing legal blocks, this chapter introduces iterative hyperblock formation,

which incrementally forms and optimizes blocks. During iterative hyperblock

formation, the compiler applies both scalar and predicate optimizations to im-

prove the code quality of blocks, which in turn provides further opportunities

for if-converting and merging blocks.

Because EDGE architectures employ direct producer/consumer bypass-

ing instead of automatically broadcasting instruction results through a com-

mon register file, delivering a single predicate to many predicated instructions

may incur significant overhead. For example, if a basic block is predicated on

some predicate p, a naive implementation predicates every instruction in that

basic block on p. Due to instruction size limitations, instructions that gener-

ate predicates have only one or two targets. Consequently, a naive compiler

would build a software fanout tree that distributes the predicate to all the

instructions, increasing dependence height and adding overhead to the block.
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A dataflow predicating compiler can eliminate most of these predicates by

applying the predicate fanout reduction techniques described in this chapter.

In the next chapter, we evaluate the the complexity of the compiler flow

developed in this dissertation, and the quality of the code produced using the

optimizations from this chapter. We also perform an evaluation of the some

of the design decisions made in the TRIPS ISA.
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Chapter 6

Evaluation

This chapter evaluates the compiler using experimental results from

the TRIPS prototype processor and tsim-arch, the TRIPS ISA functional

simulator. We use 21 of the 26 SPEC2000 benchmarks (the five remaining

benchmarks are FORTRAN90 and C++ which Scale does not support). We

break the evaluation into three parts. First, we present the compile time for

the SPEC2000 benchmarks to evaluate the complexity of the compiler flow

developed in this research. Next, we evaluate the block constraints imposed

by the TRIPS ISA to determine if they are reasonable choices and identify ar-

eas for improvement. To reduce the execution time for these experiments we

use the MinneSPEC inputs [38]. Finally, we evaluate the performance of the

optimizations presented in Chapter 5 using the SPEC2000 reference inputs.

The TRIPS prototype processor is a 170M transistor, 130nm ASIC chip,

with two processor cores both running at 366MHz. Each core contains a 64KB

L1 instruction cache, 32KB L1 data cache, and is capable of sustaining 16

instructions per cycle. Table 6.1 lists more details off the processor parameters.

Previous work [28] places the performance of the TRIPS prototype, measured

in cycles, between an Intel Pentium 4 and Intel Core2 processor.
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Processor Parameter Configuration
L1 Instruction Cache Four 16KB banks, 2-way set associate, 1 port

per bank
L1 Data Cache Four 8KB banks, 2-way set associate, 1 port

per bank
Registers 4 register banks, 32 registers per bank, 1 port

per bank
Instruction Fetch 16 instructions per cycle
Instruction Issue 16 instructions per cycle
Instruction Commit 16 instructions per cycle
Load and Store Ports 4 effective load and store ports
Control Flow Predication Predictor using exit histories to predicate

the next block, employing a tournament lo-
cal/gshare predictor similar to the Alpha
21264 with 9K, 16K, and 12K bits in the lo-
cal, global, and tournament exit predictors,
respectively

L2 Cache 1 MB L2 cache, with 5 on-chip network ports
to access the L2 cache banks

Table 6.1: TRIPS Processor Parameters

Table 6.2 lists the compiler optimizations used for the evaluation. Op-

timization level -O3 uses basic blocks as the basis for the architectural blocks,

and enables all high-level transformations in the compiler including inlining,

loop unrolling and scalar optimizations. Optimization level -O4 uses hyper-

blocks in place of basic blocks and includes all the optimizations from -O3

as well as back end optimizations that utilize the dataflow predication model.

Unless otherwise noted, all results presented in this chapter are for hyperblocks

compiled with full optimization (-O4).
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Optimization Level -O3 -O4
Inlining (10% bloat) AST X X
Loop Unrolling HIR X X
Dead Variable Elimination HIR X X
Basic Block Load and Store Elimination HIR X X
Expression Tree Height Reduction HIR X X
Global Value Numbering HIR X X
Copy Propagation HIR X X
Array Access Strength Reduction HIR X X
Sparse Conditional Constant Propagation HIR X X
Global Variable Replacement HIR X X
Loop Invariant Code Motion HIR X X
Structure Fields In Registers HIR X X
Useless Copy Removal HIR X X
Loop Test at End HIR X X
Hyperblock Formation Backend X
Predicate Fanout Reduction (Bottom) Backend X
Speculative Loads Backend X
Dead Code Elimination Backend X X
Dead Predicate Block Elimination Backend X X

Table 6.2: Compiler optimizations are performed on the abstract syntax tree
(AST), high-level target independent IR (HIR), and on blocks (backend). The
two optimization levels are -O3 (basic blocks) and -O4 (hyperblocks).
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6.1 Compile Time

We measure compile time for the SPEC2000 benchmarks on Linux using

an unloaded Dell Workstation with a 3GHz Intel Xeon processor, 1MB of L2

cache, and 2GB of main memory. The Java runtime used is Java SE 6 from

Sun Microsystems (version 1.6.0 11).

Table 6.3 gives the breakdown of compile time for each of the bench-

marks compiled at -O4. The work in this thesis is measured by the column

labeled “backend” and accounts for 3-17% of the overall compile time. The

scheduler is measured separately and accounts for between 71-95% of the over-

all compile time.

The percentage of time spent in the individual back end phases is similar

across benchmarks. Therefore, in Figure 6.1 we only show the breakdown of

the average time spent in the back end, excluding the time spent scheduling.

We divide the time into the following categories: code generation, building

the block flow graph and predicate flow graphs, performing block splitting

before hyperblock formation, hyperblock formation and optimization, register

allocation and stack frame generation, and other.

Code generation accounts for approximately 3.7% of the time spent in

the back end. Since our code generator is hand written, reducing this time is

unlikely, and this phase makes a good comparison point for the complexity of

other phases.

Immediately following code generation the compiler builds the block
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Benchmark Total Frontend Optimizer Backend Scheduler
(sec.) (%) (%) (%) (%)

ammp 201 2.6 2.0 4.6 89.4
applu 86 1.0 9.7 5.0 82.2
apsi 231 0.7 5.6 5.9 84.6
art 40 3.6 3.1 6.0 84.8
bzip2 71 2.1 4.9 6.0 84.8
crafty 276 2.8 5.8 11.8 74.8
equake 30 3.4 12.8 7.1 73.0
gap 1821 0.6 0.8 3.2 94.5
gcc 1656 1.9 4.7 16.6 71.4
gzip 102 2.9 2.0 4.5 88.7
mcf 38 7.3 2.0 3.7 84.7
mesa 1127 1.9 2.6 9.5 83.8
mgrid 31 1.6 13.1 5.7 76.7
parser 216 1.8 1.5 5.2 89.7
perl 754 2.8 4.3 13.1 74.2
sixtrack 1531 0.9 10.1 12.6 71.5
swim 17 2.6 6.6 5.5 80.8
twolf 804 1.2 1.2 3.4 93.3
vortex 366 4.9 1.5 6.2 85.4
vpr 187 2.3 2.1 5.0 88.7
wupwise 53 3.1 2.5 4.7 86.0

Table 6.3: Breakdown of compile time with full optimization (-O4). The time
spent in the back end does not include the scheduler which is shown separately.
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3.7% 0.7%

12.3%

51.4%

7.1%

24.8%
Code Generation

BFG/PFG Construction

Block Splitting (pre-pass)

Hyperblock Formation and Optimization

Register Allocation

Other

Figure 6.1: Breakdown of the average back end compile time (excluding
scheduling).

flow graph and predicate flow graphs, requiring 0.7% of the back end time.

Both of these algorithms are light-weight as they examine each instruction

only once to build the graphs.

Next, the block splitter runs to prepare for hyperblock formation. This

phase is a good measure of the complexity of the block formation algorithms

from Chapter 3 since block splitting must analyze each block, which requires

entering block form. On average 12.3% of the time in the back end is spent in

block splitting.

The hyperblock formation and optimization phase accounts for the

largest percent of time at 51.4%. This large percentage makes sense since

the block formation algorithms and predicate optimizations are applied every

time two blocks are merged. Still the average overall compile time spent in
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this phase is only 25 seconds.

Register allocation and stack frame generation accounts for 7.1% of the

back end time. Since most benchmarks do not have spills the block splitting

and analysis phases never run. When they do run the number of blocks with

spills that are illegal and require splitting is low. However, splitting does force

the register allocator to run again which increases compile time. If we used a

graph coloring allocator, any spill would result in the allocator running again.

Therefore, the re-allocation time is a slight drawback when using linear scanner

but would be required anyway with graph coloring.

The remainder of the time is shown as “other” and represents the time

spent applying peephole optimizations, expanding pseudo instructions into

machines instructions, and writing the TIL file to disk.

6.2 Block Constraints

In this section, we evaluate the four block constraints imposed by the

TRIPS EDGE ISA on the compiler: maximum of 128 compute instructions

per block, 32 load-store identifiers per block, eight register reads and eight

registers writes to each of four banks per block, and constant output (each

block must always generate a constant number of register writes and stores,

plus exactly one branch). We use the TRIPS prototype processor to measure

cycle counts for each benchmark, and the TRIPS function-level simulator tsim-

arch to produce a block profile that captures the number of blocks and the

dynamic number of non-speculative instructions that execute.
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6.2.1 Block Size

Table 6.4 shows the average number of instructions per block when us-

ing basic blocks and hyperblocks. These numbers are for committed instruc-

tions and do not include speculative instructions with non-matching predi-

cates. Basic blocks have on average 14 dynamic instructions per block while

hyperblocks double the dynamic block size to 30. With hyperblocks, parser has

the smallest average dynamic block size of 14, and effectively utilizes only 11%

of the instruction window. Mgrid has the largest dynamic block size with 44

instructions and utilizes 34% of the available instruction window. To continue

to increase block sizes, the compiler must apply optimizations that remove

structural constraints and limit hyperblock formation (such as performing tail

duplication to remove merges in the block flow graph, or peeling loops in the

backend to provide additional instructions to merge).

To determine if the 128 instruction limit was an appropriate choice for

the block size of the TRIPS prototype, we compiled to an hypothetical ISA

with support for an unlimited number of instructions per block and measured

the size of each block immediately after hyperblock formation. Then we sorted

the blocks by power-of-two block sizes and computed the total number of blocks

in each bin. For example, if a block had 300 instructions, the block would be

added to the bin for 512 instruction blocks.

Figure 6.2 shows the distribution of block sizes for each benchmark.

The largest block size required was 1024 instructions, while the smallest block

size required was a single instruction. Using 128 instruction blocks captures
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Benchmark Dynamic Block Size Increase
Basic Blocks Hyperblocks Factor

ammp 5 24 4.8
applu 27 48 1.8
apsi 39 49 1.3
art 10 43 4.3
bzip2 11 25 2.3
crafty 10 29 2.9
equake 11 26 2.4
gap 9 21 2.3
gcc 8 20 2.5
gzip 10 36 3.6
mcf 7 32 4.6
mesa 15 25 1.7
mgrid 44 44 1.0
parser 5 14 2.8
perl 10 17 1.7
sixtrack 14 28 2.0
swim 23 41 1.8
twolf 9 28 3.1
vortex 7 20 2.9
vpr 10 28 2.8
wupwise 16 36 2.3
average 14 30 2.1

Table 6.4: The average dynamic block sizes for the SPEC2000 benchmarks
when compiled with basic blocks (-O3) and hyperblocks (-O4).
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Figure 6.2: Breakdown of the block sizes when compiling to the TRIPS ISA
with support for 1024 instruction blocks.

between 96-100% of all blocks formed by the compiler. While 64 instruction

blocks capture 93-100% and 32 instruction blocks 84-99%. The results show

that the current 128 instruction limit is aggressive for the percentage of blocks

that require 128 instructions, however 64 instruction blocks would be too small.

Since there is a range of block sizes produced for each benchmark, future EDGE

architectures may want to support variable sized blocks to allow the compiler

to take advantage of this variation.

6.2.2 Load-Store Identifiers

Load-store identifiers limit the number of memory instructions the com-

piler can place in a block, which affects the blocks produced by the code gen-

erator, the hyperblock generator, and the register allocator during spilling. To

124



-0.40

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

R
el

at
iv

e 
Sp

e
ed

u
p

 (
cy

cl
e

s)

8 LSIDs 16 LSIDs

Figure 6.3: Speedup comparing 8 and 16 load-store identifiers to 32 LSIDs.

quantify the impact on performance of the load-store identifier constraint we

compiled each benchmark using a maximum of 8 and 16 LSIDs then ran the

resulting binaries on the TRIPS prototype.

Figure 6.3 shows the speedup in cycles compared to a baseline of 32

load-store identifiers. Using 16 LSIDs causes the benchmarks to slowdown be-

tween 1-14% with an average slowdown of 1%. When utilizing eight LSIDs the

slowdown ranges from 2-37% with an average slowdown of 20%. Performance

on a whole does not degrade terribly with 16 LSIDs but equake, gcc, perl, and

vpr all benefit from the larger 32 LSIDs limit. Eight identifiers though is too

restrictive with substantial performance loss.

Next, we performed the same experiment for load-store identifiers as we

did for block size to explore the distribution of identifiers when compiling to

an hypothetical ISA that supports an unlimited number of LSIDs. Figure 6.4
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Figure 6.4: Breakdown of the load-store identifiers used when compiling to the
TRIPS ISA with support for 256 load-store identifiers.

gives the results. Using 32 load-store identifiers captures between 96-100% of

the blocks produced. While 16 LSIDs capture between 94-100% and 8 LSIDs

between 92-99% of the blocks. Very few blocks require more than 32 LSIDs

and these results support 32 LSIDs as an appropriate number.

6.2.3 Register Spills

We evaluate the number of spills when using 128 registers, and the

number of iterations of the register allocator due to splitting blocks with spills.

When the register allocator cannot assign a register to a live range the live

range must be spilled. The choices of which live ranges to spill affects program

performance because registers have lower access times than memory. Spilling

also increases the size of blocks and can result in blocks being split when they
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Benchmark Shortest Shortest+Size
Live ranges Spills Live ranges Spills

ammp 2 40 2 6
applu 184 642 187 500
apsi 21 98 21 77
equake 6 39 6 18
mesa 99 429 101 254
mgrid 3 17 3 9
sixtrack 18 156 23 81

Table 6.5: The benchmarks with spills, the number of live ranges spilled, and
the total number of load and store instructions inserted when using a policy
that assigns shortest live ranges first versus a policy that prioritizes live ranges
based on block size.

exceed the block size or load-store identifier constraint.

Only seven of the 21 benchmarks have spills. Table 6.5 gives the number

of spills using two assignment policies. The first policy orders live ranges based

on their length and assigns the shortest live ranges first (shortest). The second

policy orders live ranges by their length and by the number of instructions

in the blocks that use or define the live range (shortest+size). The column

labeled “live ranges” gives the number of live ranges in each benchmark that

were spilled. The column labeled “spills” gives the total number of load and

store instructions inserted to spill the live range. These results show that

the two heuristics spill almost the same number of live ranges, however the

policy that accounts for block size inserts half the number of load and store

instructions. The fewer instructions inserted, the less likely the block splitter

must run.
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Benchmark Functions Iterations
Total w/ Spills Min Mean Max

ammp 181 1 1 1.0 1
applu 16 7 1 1.6 3
apsi 97 4 1 1.3 2
equake 28 1 2 2.0 2
mesa 1107 4 1 2.0 3
mgrid 12 3 3 3.0 3
sixtrack 241 4 1 1.8 3

Table 6.6: The number of functions with spills along with the number of times
the register allocator must run because of spilling using an assignment policy
that accounts for block size.

We use a global register allocator (i.e. register allocation is performed

once per function). If there are no spills, or any blocks with spills are legal,

then register allocation is complete. However, when blocks with spills are

illegal the function must be reallocated. Table 6.6 shows the total number

of functions in each benchmark, and the number of functions that have spills

using the assignment policy that assigns live ranges based on length and block

size. The table gives the minimum (min), mean, and maximum (max) number

of times the register allocator ran for the functions with spills. When the

register allocator runs once and completes that is counted as one iteration in

the table. The results show that the number of functions with spills is low,

and that when the register allocator does spill, the allocator never runs more

than three times.
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Benchmark 128 Registers 64 Registers 32 Registers
(cycles) (increase) (increase)

ammp 111294525 1.00 0.99
applu 29800174 1.03 1.06
apsi 99378361 1.00 1.00
crafty 267076938 - 0.99
equake 915040171 1.05 1.01
gap 164267736 - 1.00
gcc 329818233 - 1.00
gzip 830679466 - 1.01
mesa 8065919659 0.89 0.89
mgrid 9299123735 1.04 3.59
parser 619210532 - 1.01
perl 667597502 - 1.12
sixtrack 5511148173 1.17 1.03
swim 62525435 - 1.01
twolf 208664357 - 1.03
vortex 308241323 - 1.02
vpr 30112006 - 1.11
wupwise 13890658362 - 0.98

Table 6.7: The change in cycles for the benchmarks with spills when using 32
and 64 registers compared to 128 registers.

6.2.4 Register File Size

To measure the affects of the register file size on program performance,

each benchmark was compiled with 32 and 64 registers. The binaries were

then run on the TRIPS prototype and compared against the cycle counts for

128 registers. Table 6.7 shows the number of cycles for 128 registers and the

increase or decrease in cycles when changing the register file size.

When using 64 registers, seven benchmarks have spills (the same bench-
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marks that spill with 128 registers). Performance with 64 registers is similar

to 128 registers. Mesa though is 11% faster, while sixtrack is 17% slower.

The speedup in mesa is due to a 50% decrease in L1 instruction cache misses.

While sixtrack’s slowdown is because of a 2x increase in pipeline flushes due

to dependence violations from the spill instructions.

With 32 registers eleven additional benchmarks have spills (18 total),

however the number of additional spills is small, and in most cases performance

matches 128 registers. Exceptions though are applu, mesa, mgrid, perl, and

vpr, which are all slower when using 32 registers. Performance for mgrid is

notably worse with 32 registers. With 128 registers mgrid already suffers from

high register pressure and reducing the register file size to 32 causes mgrid to

take almost four times longer to execute. There are 32% more block commits,

55x the number of block flushes, and four times as many blocks fetched due

to spilling.

6.2.5 Nullification

The constant output constraint requires that all paths of execution

through a block produce the same set of register writes and store identifiers.

Recall that the ISA provides a null instruction to support this requirement.

Write instructions are nullified by inserting a single null, and store instructions

are nullified by inserting a null instruction along with a “dummy” store that

is assigned the LSID to nullify. These instructions add overhead to the block

by utilizing space that could otherwise be used for compute instructions. In
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Figure 6.5: The percentage of static compute instructions required for store
and write nullification.

this section we quantify the amount of overhead.

Static Overhead: Figure 6.5 shows the number of instructions added

by the compiler to nullify register writes and store instructions as a percent-

age of the total number of static compute instructions. We calculate the

percentages from the instructions in the TIL files for each benchmark before

scheduling. These numbers exclude fanout instructions that will be inserted

by the scheduler and are thus overly conservative since the additional moves

will increase the number of non-null compute instructions lowering the per-

centages. Additionally, these numbers do not include any libraries or runtime

sources.

The number of null instructions required to support write nullification

ranges from between 1.07% and 5.35% of the average static instructions per
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Figure 6.6: The dynamic percentage of nullified stores and nullified register
writes. Every nullified store is a “dummy” store that also requires a null
instruction. Every nullified register write represents a single null instruction.

block. While for store nullification the compiler inserted nulls are on average

0.15% to 3.29% of the instructions per block, and the “dummy” stores are an

additional 0.37% to 6.54%. In total the overhead for nullification is between

1.59% and 12.43% when measured statically and accounts for 4 instructions

or less on average.

Dynamic Overhead: Figure 6.6 gives the number of executed (non-

speculative) “dummy” stores instructions and nulls for register writes. In the

worst case there will also be one null instruction executed for each dummy

store, although the compiler is often able to use the same null for multiple

stores. The number of dummy store instructions nullified ranges from between

0.02% and 2.22% of the total dynamic instruction mix. While 0.16% to 6.32%

of the dynamic instructions are nulls to support write nullification. In total the
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Figure 6.7: Speedup when using write nullification normalized against a base-
line of reading in the register and forwarding the original value to the write.

dynamic overhead for nullification is between 0.19% and 6.61% with an average

of 2.33%. In terms of actual instructions, the average number of committed

dummy stores and nulls for register writes per block is 2 instructions or less.

The static overhead of nullification is on average double the dynamic

instruction overhead (2 versus 4 instructions). When accounting for the addi-

tional (worst case) number of null instructions required for store nullification,

the average dynamic overhead is closer to 3 instructions per block.

Forwarding the Original Register Value: Instead of nullifying

write instructions, the compiler can read in the original register value and

write this value out on the path that would otherwise require a null. Reading

in the original value trades instruction overhead (by reducing in the num-

ber of null and fanout instructions inserted), for register pressure (due to the
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Figure 6.8: Reduction in register reads when using write nullification.

increased number of register reads required). Figure 6.7 gives the speedup (cy-

cles) when using write nullification compared to a baseline of reading in the

original value. Most benchmarks have low enough register pressure (Table 6.7)

that reading in the original value does not severely degrade performance. How-

ever, write nullification does provide on average a 7% reduction in cycles (2%

geometric). Mgrid especially benefits from write nullification because without

it the compiler is forced to spill from the increased register pressure. Spilling

results in a 30% increase in the number of double-word load instructions and

a 119% increase in the number of double-word store instructions for a total

increase in executed instructions of 37%.

Figure 6.8 gives the reduction in read instructions when using write

nullification compared to reading in the original register value. Write nullifi-

cation reduces up to 27% of the register reads from the benchmarks with an
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average reduction of 10%. Mgrid has an increase in the number of read instruc-

tions when using write nullification due to the compilers ability to increase the

number of instructions per block, which increases the number of register reads.

Write nullification thus reduces reads to the power-hungry shared register file.

6.3 Performance

This section evaluates the performance of optimizing predicated blocks

against a baseline of basic blocks (-O3) using the SPEC reference inputs with

the following four optimizations:

• hyperblocks: Enables hyperblock formation but no additional predicate

optimizations.

• top: Enables hyperblock formation and predicate fanout reduction using

the tops of dependence chains.

• bottom: Enables hyperblock formation and predicate fanout reduction

using the bottoms of dependence chains. Loads though are not allowed

to execute speculatively.

• bottom+speculative loads: Enables hyperblock formation, predicate fanout

reduction (bottom), and allows loads to execute speculatively.

We discuss the geometric speedup in this section for the results shown

in Figure 6.9. Both hyperblock formation and predicate fanout reduction (top)
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Figure 6.9: Speedup.

provide on average a 24% increase in performance. Predicating the bottoms

of dependence chains increases performance 2% on average over hyperblocks

alone to 26%. Bottom compared to top provides 1-2% improvement in per-

formance except on ammp and art where bottom outperforms by 5% and

16% respectively. An advantage though of bottom is that loads can execute

speculatively, which increases performance 4% on average over hyperblock for-

mation alone to 28%. Performance on ammp, bzip2, gcc, mcf, and mesa all

have marked increases in performance when loads execute speculatively. The

benefits of predication are multifold: increased instruction window utilization,

reduction in the number of blocks (static) executed, reduced branch mispre-

dictions, and improved I-cache performance.
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Figure 6.10: Fetched and committed instructions per block (bottom with spec-
ulative loads).

Top and bottom tradeoff energy utilization for speculative execution.

One way to measure this tradeoff is to examine the difference between fetched

and committed instructions. The number of instructions executed using top

will be similar to the number of instructions committed. The instructions

executed by bottom will be closer to the number of fetched instructions due

to speculation.

Figure 6.10 gives the number of fetched and committed instructions

per block for bottom (with speculative loads), and Figure 6.11 shows the same

results for top. These results are for the MinneSPEC inputs. Both fetch on

average 40 instructions per block. Bottom commits 30 instructions per block

and top commits 28 instructions per block. This difference in committed

instructions signifies that bottom is able to reduce the predicate fanout more

than top, enabling additional hyperblock formation. The difference between
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Figure 6.11: Fetched and committed instructions per block (top).

fetched and committed instructions ranges from 1-18 instructions for bottom

and 1-17 instructions for top.

6.4 Summary

This chapter presented results to evaluate the complexity of the algo-

rithms developed in this thesis, the tension between the compiler and the block

constraints of the TRIPS ISA, and the performance of the current compiler

flow when compiling to the TRIPS prototype processor. The results show that

the compiler is meeting the new challenge of compiling to the TRIPS EDGE

ISA, and achieves 28% geometric speedup on average with full optimizations

compared to a baseline of basic blocks alone.

Results support that the 128 instruction limit is an appropriate block

size, but future work must focus on increasing the number of instructions per
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block to effectively utilize the entire instruction window. Improvements may

come from additional work on the hyperblock generator, such as merging pred-

icate blocks or individual instructions, or from classical VLIW optimizations to

increase the amount of instruction level parallelism. Fewer than 32 load-store

identifiers is insufficient to support the number of memory instructions per

block, while results show that more than 32 LSIDs would over-provision the

resource. Additionally, 128 global registers is too many and could be reduced

to 64. Next generation EDGE ISAs may want to explore ways to remove or

reduce the block constraints. For example, supporting variable size blocks,

or relaxing the constraints on load-store identifier sharing through the use

of unordered load-store queues [66]. Removing the register banks and allow-

ing every block to read and write every global register would also reduce the

constraints on the register allocator and scheduler.
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Chapter 7

Conclusion

Explicit Data Graph Execution (EDGE) architectures renegotiate the

boundary between hardware and software to expose and exploit concurrency.

EDGE architectures utilize a block-atomic execution model in which instruc-

tions communicate directly and execute in dataflow order. This execution

paradigm has two potential advantages over traditional, single-instruction-

granularity architectures. First, out-of-order execution has the potential to

be more power efficient than in RISC/CISC ISAs, since the hardware is not

required to derive inter-instruction dependences within a block. Second, exe-

cuting at the granularity of blocks amortizes the overhead of instruction dis-

patch and mapping (register file accesses, branch prediction, and instruction

cache lookups) over a large number of instructions, reducing both energy con-

sumption and enabling higher instruction-level concurrency. However, these

potential advantages come at the cost of additional responsibilities for the com-

piler, which are (1) forming dense blocks that obey the structural requirements

specified by the ISA, and (2) encoding the dependences in the instructions and

placing the instructions to minimize inter-ALU communication latencies.

Dataflow predication exploits ISA features, microarchitectural mecha-
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nisms, and compiler algorithms to reduce predication overheads in an EDGE

ISA while maintaining low-complexity out-of-order issue. In VLIW architec-

tures, the execution overhead of falsely predicated instructions limits the com-

pilers ability to perform aggressive predication. In superscalar architectures,

the hardware complexity and ISA encoding difficulties inhibit the incorpora-

tion of full predication. Dataflow predication avoids both of these limitations,

while reducing the predicate encoding space consumed to two bits per instruc-

tion. However, dataflow predication incurs the costs of fanning out predicates

to many consumers.

7.1 Moving Forward

The TRIPS compiler project was a first step in developing the compiler

support for EDGE ISAs. Much of our research has focused on the algorithms

for forming legal blocks with respect to the block constraints to achieve correct

execution. When we first began the TRIPS project it was not clear where the

block constraints should be fixed. We knew we wanted to be aggressive but

at the same time realistic. The results from this research show that we came

close. However, the 128 instruction limit has been challenging for the compiler

to meet and additional research is needed to move the compiler closer to pro-

ducing full blocks of useful instructions. Future research directions thus center

on improving the existing compiler phases, developing new optimizations that

utilize the dataflow predication model, and refining the ISA to reduce the

overhead of the block model.
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7.1.1 Compiler Opportunities

Future compiler opportunities in general are all geared towards increas-

ing block size and improving the efficiency of the executed code. The first area

of improvement is the hyperblock generator. The back end hyperblock gener-

ator was developed after most of the other back end compiler phases. Out of

convenience we used the same intermediate representation that was developed

for supporting the block constraints–namely the block flow graph with indi-

vidual predicate flow graphs for each block. What we found though is that

blocks are too coarse a granularity for effective hyperblock formation. If the

hyperblock generator instead selected individual instructions to if-convert and

merge (or even predicate blocks), this would allow for a tighter packing, which

should translate into an increase in the number of instructions per block and

a reduction in the number of executed blocks.

There are other optimizations that can work synergistically with hy-

perblock formation to enable additional block merging. Any structural hazard

in the program limits the hyperblock generators ability to merge blocks (i.e.,

function calls, loop back edges, and merge points). Function calls can be

eliminated by aggressive inlining. We do support function inlining but good

heuristics are notoriously hard to develop. If inlining were performed in the

back end, knowledge of block constraints could be used to drive the inliner.

There are a variety of simple loop transformations that can be applied in the

back end to reduce or eliminate back edges. Loops with known bounds can

be flattened and completely removed from the program. Iterations from loops
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can be peeled, or loops whose bodies are contained within a single block could

be unrolled until one of the block constraints was reached. More sophisticated

loop transformations derived from work on automatic vectorization [3] could

be applied to reduce the number of loops. Finally, merges can be eliminated

with tail duplication. Once the compiler produces denser blocks, a next step is

to improve the fraction of useful instructions in blocks. Edge or path profiling

could guide the hyperblock generator when selecting regions for inclusion.

7.1.2 Architectural Refinements

Any block constraint that can be reduced or eliminated will improve the

compilers ability to form blocks. Having a large fixed block size is currently the

the most challenging constraint for the compiler. If the ISA supported variable

size blocks, the compiler would have additional freedom when forming blocks,

resulting in a higher likelihood of utilizing the entire instruction window. The

register constraints also limit the compiler. Even though TRIPS supports 128

global registers, each block can only read and write 32 registers (eight reads

or writes from four banks each). These restrictions were necessary to support

a large register file, but results from this research show that a smaller register

file of 64 registers performs equally well. If the register file size is reduced then

both of these constraints could be eliminated.

The limited encoding space in instruction formats for instruction tar-

gets requires the compiler to build fanout trees to distribute operands to their

consumers. Fanout instructions introduce overhead, as they occupy space in
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the block that could be used for compute instructions, and increase the de-

pendence height on the critical path. Using a broadcast network to distribute

operands that have a high degree of fanout may be one solution. Instruction

formats already contain a target field which encodes the target of the operand

(either left, right, or predicate operand or global register write). The target

field could be expanded to encode a broadcast channel identifier. Then a field

to select the broadcast channel to receive an operand on could be added to

each instruction format. Preliminary research has shown that broadcast chan-

nel support in EDGE ISAs utilize lower energy than the equivalent fanout

tree, and provide a slight improvement to performance [39].

The biggest overhead of predication may eventually be the fraction of

mispredicated instructions in the window, which reduce the effective window

size. At any given moment in a program s execution, there are three classes of

instructions in the window: useful instructions that are correctly predicated,

useless instructions that are falsely predicated, and instructions past a branch

misprediction, all of which are useless. Each window size has a sweet spot

between no predication (pure superscalar) and all predication (pure dataflow)

for maximum parallelism. If instruction window sizes continue to increase,

however, the relative costs of increased predication will continue to decline,

pushing the ideal balance toward more aggressive predication. It is possible

that the long term solution to branch mispredictions will not be more accurate

predictors, but conversion of most unpredictable branches to predicates in

extremely large instruction windows. For this solution to be viable, some form
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of predicate predication [18] will likely be necessary to reduce the increases in

dependence heights, caused by predication, down the true paths of execution.

With the end of technology scaling in sight, future architectures must

strive to improve energy efficiency by exploiting parallelism. The compiler will

play an even more crucial role as these architectures re-negotiate the boundary

between hardware and software. ISA’s such as EDGE, which build upon the

strengths of both hardware and software, already offer one potential solution.
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Appendix A

TRIPS Application Binary Interface

This appendix describes the application binary interface for the TRIPS

prototype processor. The goal of this document is to provide a consistent stan-

dard for vendors and researchers to follow. No thought has been given to any

other language besides C and FORTRAN. You are encouraged to build upon

and expand this document for other languages such as C++ and Java. For

additional information relevant to the TRIPS Application Binary Interface,

please consult the following manuals:

• TRIPS Processor Reference Manual

• TRIPS Intermediate Language (TIL) Manual

• TRIPS Assembly Language (TASL) Manual

• TRIPS Object File Format (TOFF) Specification

A.1 Architectural Description

For a complete architectural description, refer to the TRIPS Processor

Reference Manual.
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A.1.1 Registers

The TRIPS architecture provides 128 general purpose registers (GPRs).

By convention GPRs are named R0 - R127. The architecture makes no dis-

tinction between floating point and general purpose registers. The TRIPS

architecture does not define any special purpose control registers which are

accessible through the instruction set.

A.1.2 Fundamental Types

Table A.1 shows the TRIPS equivalents for ANSI C fundamental types

along with their sizes and alignments. Fundamental types are always aligned

on natural boundaries. The TRIPS architecture supports 64, 32, 16 and 8-

bit load and store operations. All data is in big endian byte order. For the

purposes of this document, we define the following types:

• doubleword – A doubleword is 64-bits and the least significant 3-bits of

the address of a doubleword in memory are always zero.

• word – A word is 32-bits and the least significant 2-bits of the address

of a word in memory are always zero.

• halfword – A halfword is 16-bits and the least significant bit of the address

of a halfword in memory is always zero.

• byte – A byte is 8-bits.
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ANSI C Size (bytes) Alignment (bytes)
char 1 1
unsigned char 1 1
signed char 1 1
short 2 2
unsigned short 2 2
signed short 2 2
int 4 4
unsigned int 4 4
signed int 4 4
enum 4 4
long 8 8
unsigned long 8 8
signed long 8 8
long long 8 8
unsigned long long 8 8
signed long long 8 8
float 4 4
double 8 8
long double 8 8

Table A.1: TRIPS Fundamental Types
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Compound Type Alignment
Arrays Same as individual elements
Unions Most restrictive alignment of members
Structures Same as unions
Bit fields Same as individual elements

Table A.2: Alignment of Compound Types

A.1.3 Compound Types

The alignment requirements for arrays, structures, unions and bit fields

are summarized in Table A.2. Arrays are aligned according to the alignment

of their individual elements. For example,

char ac[10]; /* aligned on 1-byte */

short as[10]; /* aligned on 2-bytes */

float af[10]; /* aligned on 4-bytes */

Structures and unions are aligned according to their most restrictive

element. Padding should be added to the end of the structure or union to make

its size a multiple of the alignment. Fields within structures and unions are

aligned according to the field’s type with the exception of bit fields. Padding

should be added between fields to ensure alignment. For example,

struct s1 {

char bc[9]; /* aligned on 1-byte */

short bs; /* aligned on 2-bytes */

int bi; /* aligned on 4-bytes */
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char bc2[9]; /* aligned on 1-byte */

};

The individual elements bc and bc2 are aligned on 1-byte boundaries.

The elements bs and bi are aligned on a 2-byte and 4-byte boundaries respec-

tively. A 1-byte pad will be added between bc and bs in order to align bs on a

2-byte boundary. Since int is the most restrictive element of the structure, a

3-byte pad would be added to the end of the structure to align it on a 4-byte

boundary.

The maximum size of a bit field is 64-bits. Bit fields cannot be split over

a 64-bit boundary. Zero-width bit fields pad to the next 32-bits, regardless of

the type of the bit field. No other restriction applies to bit field alignment.

However, bit fields impose alignment restrictions on their enclosing structure

or union according to the fundamental type of the bit field.

A.2 Function Calling Conventions

A.2.1 Register Conventions

Table A.3 defines the register conventions for the TRIPS architecture.

There is no distinction between floating point and integer values for the pur-

pose of the conventions.

Registers R0, R1 (stack pointer), R2 (return address) and R12–R69

are callee-save or non-volatile, which means that the compiler preserves their

values across function calls. Any function which uses any register in this class
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Register Usage and Description Lifetime
R0 System Call Identifier for SCALL Callee-save
R1 Stack Pointer Callee-save
R2 Return Address Register Callee-save
R3 Arguments and Return Values Caller-save
R4 Arguments and Return Values Caller-save
R5 - R10 Arguments Caller-save
R11 Reserved for Environment Pointer Caller-save
R12 Frame Pointer or Local Variable Callee-save
R13 - R69 Local Variables Callee-save
R70 - R127 Local Variables Caller-save

Table A.3: Register Conventions

must save the value before changing it, and restore it before the function

returns.

The remaining registers, R3–R11 and R70–R127, are caller-save or

volatile, which means that they can be overwritten by a called function. The

compiler will ensure that any function which uses any register in this class

must save the value before calling another function, and restore it after that

function returns, if that value is to be reused after the call.

Register R1 (SP) contains the function’s stack pointer. It is the respon-

sibility of the function to decrement the stack pointer by the size of its stack

frame upon entry in the function prologue and increment the stack pointer by

the size of its stack frame upon exit in the function epilogue. To support the

debugger, the compiler stores the caller’s stack pointer in the link area as a

back chain pointer, prior to decrementing the stack pointer register (SP) in

the prologue.
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If a function uses alloca, which allocates space for the user on the stack,

register R12 (FP) is used to access the function’s stack frame while allowing

the stack pointer (R1) to be changed by alloca. Upon entry to such a function,

the address in R1 is first decremented and then this address is copied into R12.

Then register R12 is copied back into R1 just before register R1 is incremented

on the function’s return.

Register R2 contains the function’s return address upon entry. It is

the responsibility of the function to preserve its return address so that it may

return to its caller. If the function calls no other functions, it may do this by

keeping its return address in R2. Otherwise, it must save the return address

in the link area.

A.2.2 Stack Frame Layout

Each function has a stack frame on the runtime stack which grows

downward from high addresses. Figure A.1 shows the stack frame organization.

Note that the figure shows low memory addresses at the top and high addresses

at the bottom. From low to high addresses, the stack frame for a function

(callee) contains:

• Fixed Size Link Area

• Argument Save Area

• Local Variables
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• Register Save Area

A.2.2.1 Link Area

This fixed size area holds (a) the address of the caller’s stack frame and

(b) the callee’s return address (Figure A.2):

• The first doubleword (lowest address in the callee’s stack frame) contains

the caller’s stack pointer value, sometimes called the “back chain”. The

first stack frame (that is, the stack frame of the start function) will have

a back chain value of 0.

• The second doubleword contains the callee’s return address, which is

set by the caller before branching to the function. If debugging is not

required, this doubleword may be left undefined in order to avoid a store

to memory.

If a function dynamically allocates space on the stack (e.g., alloca()),

then the allocated space must be between the link area and the argument

save area. This means that the link area must be moved when the

allocation is performed. The stack pointer register must always point to

the link area.

Figure A.3 shows the use of back chain pointers to traverse the stack

frames.
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Arguments set by Caller
and used by Callee.

Caller’s Stack Pointer (SP)

before call to Callee.

Callee’s Stack Pointer (SP)
after prolog is executed.

Callee saves saves
Caller’s non−volatile registers.

Arguments set by Callee
and used by Callee’s callee.

Caller’s local variables

Caller’s Link Area

Callee’s Link Area

Low Address

High Address

Callee’s local variables

Register Save Area

Argument Save Area

Argument Save Area

Figure A.1: Stack Frame Layout
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(SP ) Back chain pointer (i.e., stack frame address of caller)
(SP ) + 8 Callee’s return address

Figure A.2: Link Area After Callee Prologue

A.2.2.2 Argument Save Area

This variable size area is large enough to hold all of the arguments that

a routine may pass to any of the routines that it calls as determined by:

• A minimum of MAX_ARG_REGS (8) doublewords is usually reserved for

the argument save area because the caller can not know if it is calling a

routine that uses va_start. See section A.2.5.

• For a “leaf routine” this area may contain 0 doublewords. When a rou-

tine calls a function it places the first MAX_ARG_REGS doublewords of

arguments in the argument registers (R3 . . . R10). Any additional dou-

blewords of arguments are placed starting in doubleword 8 of the argu-

ment save area. Each argument is placed in at least one register or in

at least one doubleword in the argument save area. Arguments larger

than a doubleword may be split between a register and the argument

save area. The least significant 3-bits of the address of any argument in

the argument save area are zero.

A.2.2.3 Local Variables

Any local variables of a callee that must reside in memory are placed

in the local variable area. The least significant 3-bits of the address of any
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All stack items are aligned on high virtual memory
8-byte boundaries. environment = 0xFFFFFFFF

and
argv strings

argument save area

return address = 0
sp of _start() back chain pointer=0

register save area

local variable area Stack grows down.

argument save area

return address Fixed size
sp of main() back chain pointer link area of main()

register save area

local variable area

argument save area

return address link area of func()
sp of func() back chain pointer

register save area

local variable area

return address link area of leaf()
sp of leaf() back chain pointer

unused stack
area

Application bss
and data area

low memory

 Loader places data beginning at 0x80000000.

Figure A.3: TRIPS Stack Linkages
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variable are always zero. The size of the area may be zero.

A.2.2.4 Register Save Area

The register save area holds the contents of any of the callee-save regis-

ters that the callee modifies. Registers are saved to increasing addresses. For

example, if the callee modifies only the callee-save registers R60 and R62 then

the register save area will be 16 bytes. Register R60 will be stored at offset

0 and register R62 will be stored at offset 8 into the register save area. The

least significant 3-bits of the address of any register in the register save area

are zero. The size of the area may be zero.

A.2.2.5 Requirements

The following requirements apply to the stack frame:

• The least significant 4-bits of the value in the stack pointer register (SP)

shall always be zero.

• The stack pointer shall point to the last word of the current stack frame.

Thus, (SP) is the address of the “back chain” word of the link area. The

stack shall grow downward, that is, toward lower addresses.

• The stack pointer shall be decremented by the called function in its

prologue and restored prior to return.

• Before a function changes the value in any callee-save general register,

Rn, it shall save the value in Rn in the register save area.
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A.2.3 Parameter Passing

Both scalar and compound type parameters are passed in registers R3

through R10. Parameters shall be assigned consecutively to registers so that

R3 contains the first function parameter. Assuming that the first argument

is 8 bytes or less, R4 contains the second. This continues until all argument

registers are occupied. If there are not enough registers for the entire parameter

list then the parameters overflow in consecutive order onto the argument save

area of the stack.

Scalars less than 64-bits are right justified within the register. The

caller must not assign more than a single scalar argument to a register.

Compound types (C structs) larger than 64-bits are packed into con-

secutive registers. Compound types less than 64-bits are placed within the

register in the position that allows a simple store to place them in memory

aligned upon a doubleword boundary (see Figure A.4).

The argument save area is located at a fixed offset of ARG_SAVE_OFFSET

(24) bytes from the stack pointer, and is reserved in each stack frame for use

as an argument list. A minimum of MAX_ARG_REGS (8) doublewords is reserved

if the routine calls another routine. The size of this area must be sufficient to

hold the longest argument list being passed by the function which owns the

stack frame. Although not all arguments for a particular call are located in

storage, consider them to be forming a list in this area, with each argument

occupying one or more doublewords. If more arguments are passed than can
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Figure A.4: Passing C Structs
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be stored in registers, the remaining arguments are stored in the argument

save area.

The rules for parameter passing are as follows:

• Each argument is mapped to as many doublewords of the argument save

area as are required to hold its value.

1. Single precision floating point values are mapped to a single dou-

bleword.

2. Double precision floating point values are mapped to a single dou-

bleword.

3. Simple integer types (char, short, int, long, enum) are mapped to

a single doubleword. Value shorter than a doubleword are sign or

zero extended as necessary.

4. Pointers are mapped to a single doubleword.

5. Aggregates and unions passed by value are mapped to as many

doublewords of the argument save area as the value uses in memory.

6. Other scalar values, such as FORTRAN complex numbers, are

mapped to the number of doublewords required by their size.

• If the callee has a known prototype, arguments are converted to the type

of the corresponding parameter before being mapped into the parameter

save area. For example, if a long is used as an argument to a float double
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parameter, the value is converted to double-precision and mapped to a

doubleword in the argument save area.

• The first MAX_ARG_REGS (8) doublewords mapped to the argument save

area are never stored in the argument save area by the calling function.

Instead, these doublewords are passed in registers as described above.

• Argument values beyond the first eight doublewords must be stored in

the argument save area following the first eight doublewords. The first

eight doublewords in the argument save area are reserved for the initial

arguments, even though they are passed in registers.

• General registers are used to pass some values. The first eight double-

words mapped to the argument save area correspond to the register R3

through R10. If the arguments are mapped to fewer than eight double-

words of the argument save area, registers corresponding to those unused

doublewords are not used.

• If the callee takes the address of any of its parameters that are passed

in registers, then those parameters must be stored by the callee into the

argument save area.

Note: if the compilation unit for the caller contains a function proto-

type, but the callee has a mismatching definition, and if the callee takes the

address of any of its parameters, the wrong values may be stored in the first

eight doublewords of the argument save area.
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A.2.4 Return Values

Functions shall return values of type float, double, int, long, enum,

short, and char, or a pointer to any type, as unsigned or signed integers as

appropriate, zero- or sign-extended to 64-bits if necessary, in R3.

Aggregates or unions of any length shall be returned in a storage buffer

allocated by the caller. The caller will pass the address of this buffer as a

hidden first argument in R3, causing the first explicit argument to be passed

in R4. This hidden argument is treated as a normal formal parameter, and

corresponds to the first doubleword of the parameter save area.

Functions shall return complex floating point scalar values of size 16-

bytes or less in registers R3 (real-part) and R4 (imaginary part).

A.2.5 Variable Arguments

If the callee uses va_start it is the callee’s responsibility to store the

registers R3 through R10 in the argument save area. The remaining arguments

are stored by the caller.

The va_start operation causes the address of the specified parameter

to be stored in the doubleword allocated for the va_list variable. As each

argument is accessed by va_arg this address is incremented by the proper

multiple of 8. There is no provision in this specification that defines how a

“variable argument” function can determine the number of arguments that

were passed to it.
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A.3 Runtime Support Functions

A.3.1 Application Memory Organization

The TRIPS prototype runtime system lays out virtual memory for ap-

plications from high virtual addresses to low virtual addresses as follows:

• environment – At the “top”, or highest address, of application memory

is the program environment, which is passed through to the program

loader in the **envp string array, by the call to the program’s main()

routine.

• stack – Beneath the program environment area is the stack, which grows

“downward” in 8-byte decrements, toward lower addresses.

• heap – The heap, placed on top of the program’s text and data segments,

grows upward by means of the brk() system call.

• bss – The unitialized data section, for variables tagged with the .comm

directive, sets the boundary between the program text and data area

and the heap area.

• initialized data – The program’s read/write initialized data section ap-

pears at lower addresses than the .bss area.

• read-only data – This area is reserved for initialized data that is marked

by the compiler with the .rdata directive as read-only.

• program text – At the lowest program addresses are the code blocks

comprising the program’s executable section.
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Register Description
R1 The initial stack pointer, aligned to a 16-byte boundary.
R3 argc–the number of program arguments.
R4 argv–the array of NULL-terminated argument strings.
R5 envp–the array of NULL-terminated environment strings.

Table A.4: Registers Initialized by the Loader

A.3.2 Process Initialization

Application behavior at startup on a TRIPS processor is modeled on

PowerPC conventions [84]. For an application whose entry point is defined as:

int main(int argc, char ** argv, char ** envp)

Table A.4 lists the contents of registers when the loader returns control

to the system software. The contents of other registers are unspecified. It is

the responsibility of the application to save those values that will be needed

later.

The loader will push the argument count, argument values, and en-

vironment strings as the first items on the user-stack, starting at the top of

application memory. Next, the loader will push the addresses of those strings

onto the stack. Hence, R1 will point to the stack address just below the values

supplied from the environment and arguments to the program, whose value is

a NULL pointer.
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A.3.3 System Calls

System call support on the TRIPS prototype simulators is provided

through the SCALL instruction. As defined in the TRIPS Processor Reference

Manual, when a SCALL instruction is executed, a System Call Exception

will occur after the program block with the SCALL commits. The TRIPS

prototype simulators provide a runtime exception handler that determines the

type of system call and services the request.

To invoke a system call, the identifier for the call is placed in R0. The

return address and arguments for the call are passed in R2 and R3–R10 in

accordance with the function calling conventions, and upon completion, the

result code is returned in R3. If the system call was serviced successfully, the

value returned in R3 will be 0. Otherwise, R4 will contain the value of errno

from the simulator’s host environment. Note that if no error has occurred, the

value of R4 will be undefined upon return from a system call.

The TRIPS prototype simulators currently provide support-by-proxy

for the system services listed in Table A.5. These services are defined in the

/usr/include/sys/syscalls.h TRIPS system header file.

A.4 Standards Compliance

This section documents any deviation from the relevant standards in

use for the TRIPS system. This section discusses only known deviations for

which no compliance is planned. All other deviations should be regarded as
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Service Identifier
exit 1
read 3
write 4
open 5
close 6
creat 8
unlink 10
time 13
lseek 19
brk 45
gettimeofday 78
stat 106
lstat 107
fstat 108

Table A.5: System Call Identifiers

bugs in the relevant software or hardware. The relevant standards are:

• ANSITM X3.159-1989 1989 C Programming Language

• ISO/IEC 9899 1999 C Programming Language

• ANSITM X3.9-1978 Fortran 77 Programming Language

• IEEE 754-1985 and IEEE 854-1987 Floating Point Representation

A.4.1 C Standards

A.4.1.1 Calling Conventions

As TRIPS does not support operations on 32-bit IEEE single precision

floating point values, single precision floating point values are always passed
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as double precision arguments to called subroutines. See Section 3.3.2.2 of the

ANSITM X3.159-1989 standard and Sections 6.5.2.2 and 6.9.1 of the ISO/IEC

9899 standard.

A.4.2 F77 Standards

The TRIPS compiler does not support the “assigned goto” capability

as specified in Section 11.3 of the ANSITM X3.9-1978 standard.

A.4.3 Floating Point Representation

See the “TRIPS Processor Architecture Manual: Version 1.2: Tech

Report TR-05-19 (03/10/05)” for information on this subject.
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