So I've been using LLVM for about 4 years now, and I've posted a lot on this list about specific issues. What I would like to do is step back for a moment and give my "big picture" assessment of LLVM overall, particularly with respect to developing a "managed" language like Java / C# or my own language, Tart.<div>


<br></div><div>Obviously, I feel that LLVM is the best choice out there, otherwise I would of switched to using other alternatives long ago. At the same time, however, I've observed that the great majority of experimental languages - Groovy, Scala, and many others - are built on top of the Java virtual machine, which seems to be the platform of choice for language experimenters. In a similar vein, if you spend any time studying the academic research on garbage collection algorithms, you'll see that the JVM also appears to be the platform of choice here as well.<br>


<div><br></div><div>One question to ask is, what factors would weigh heavily in the decision to choose the JVM over LLVM when implementing a managed language? On the positive side, LLVM's mature and simple APIs make it a breeze to manipulate types and functions, and it's modular architecture means I can use the parts I want without being forced to use parts I don't need. And the ability to go straight to machine code means that I don't need to ship a complex virtual machine with my executables.</div>


<div><br></div><div>I would also like to list the areas where I <u>don't need help</u> from LLVM - that is, these are things I can easily handle myself in the frontend:</div><div><ul><li>Dynamic dispatch and virtual methods / multi-methods</li>

<li>Boxing and unboxing of value types</li><li>Reflection</li><li>Memory management</li></ul><div>I mention these items for two reasons: First, because these are services that <i>would</i> be provided by a JVM, and I want people to know that the lack of these items in LLVM does not in any way count as a detriment. And secondly, because I've occasionally heard people on this list ask for features like these, and I think it would be a waste of time to spend effort implementing something that the frontend can easily handle.</div>

</div><div><br></div><div>Next, I want to list the areas where I think LLVM is lacking:</div><div><br></div><div>The first issue is more of a community-related one, which is that IMHO LLVM doesn't have a lot of forward momentum in the experimental languages space. The vast majority of contributions to the LLVM code base fall into three categories: Clang-related work, ports to new backends, and optimization research. Parts of LLVM which don't fall into these categories - like garbage collection for example - tend to languish.</div>

<div><br></div><div>Note that this is not a criticism, but merely an observation - if it were a criticism I'd have to blame myself as much as anyone else. There are good reasons why things are as they are - the few people like myself who are working on non-C-like languages generally don't have the energy to both work on their front ends and at the same time do any serious amount of work on the LLVM infrastructure. (You all saw what happened with the union types fiasco - I contributed all of the front-end parts for declaring and serializing unions, in the hopes that someone more knowledgeable would pick up the effort of implementing them on the code generation side - but that never happened and the feature got removed after six months of no progress.)</div>

<meta http-equiv="content-type" content="text/html; charset=utf-8"><div><br></div><div>I think that LLVM's best hope in this department is that one of these experimental languages becomes popular enough to attract a serious contributor base of it's own, and that some of that effort can bleed off into improving LLVM. Some of that was actually starting to happen in the case of unladen-swallow, before that project was shut down.</div>

<div><br></div><div>The rest of my issues are more specific:</div><div><br></div><div><b>Garbage collection is still way too difficult</b>. The biggest problem is the inability to track SSA values - it requires the frontend to generate very inefficient and error-prone code, manually spilling SSA values to the stack around nearly every function call. I've written proposals for improving the situation, which I won't repeat here - but realistically there's no way that I am ever going to have time learn to enough about LLVM's code generation passes to implement something like this myself.</div>

<div><br></div><div>Another area which I'd like to see supported is stack walking - that is, starting from the current call frame, iterate through all of the call frames above it. Currently the only way to do this is via platform-specific assembly language - I'd think it would be relatively simple to make an intrinsic that does this. (Note that the current stack intrinsics are unusable, because they are (a) unreliable, and (b) inefficient. Taking an integer index of a stack frame as a parameter is not the right way to do it.)</div>

<div><br></div><div>I have to say, if there's any single issue that could make me give up on LLVM and switch over to using something like a JVM, it would be this - because as far as I can tell, LLVM's garbage collection features are in exactly the same state they were in when I started working with LLVM four years ago.</div>

<div><br></div><div><b>Generating debug info</b> is another area which is very hard to use. The new DIBuilder class was a significant improvement, but the whole area is still very complex, it's extremely easy to make mistakes and then spend days or weeks trying to figure out what went wrong - there's no type safety or validation that can prevent you from making such mistakes. Over the last 4 years I've spent many man-months of time wrestling with DWARF.</div>

<div><br></div><div>(One also wonders if DWARF is even the right answer. Especially compared to the JVM - the Java debuggers are able to derive much of their information from the reflection and class metadata that's already there in the class files, so from that perspective DWARF adds a huge amount of overhead.)</div>

<div><br></div><div><b>Platform ABI limitations</b> - Currently LLVM requires the frontend developer to know quite a lot about the platform ABI - for example whether you are allowed to pass a struct of a certain size as a value type rather than as a reference. The thing is, experimental languages like mine generally don't care so much about ABI compatibility - sure, we'd like to be able to call C library functions once in a while (and we don't mind doing the extra work in those cases), but most of the time we just want to pass a data type around and expect it to work. Requiring the use of different techniques on different platforms makes the situation considerably more complex.</div>

<div><br></div><div><b>Light-weight coroutines</b> would be a "nice to have", as would better <b>concurrency primitives</b>. These are things I could do on my own, but it would be better, I think, to have them in LLVM - because in my view of the world, anything that requires lots of architecture-specific knowledge ideally belongs on the LLVM side of the line.</div>

<div><br></div><div>There's been a lot of discussion about divide-by-zero errors and other <b>non-declared exceptions</b>. Having this available would be a great help.</div><div><br></div><div><b>Named structure types</b> - as per Chris's proposal - would be a major simplification, as it would allow declaration of pointer fields without having to import the code that defines the structure of the thing that the pointer is pointing to.</div>

<div><br></div><div>Anyway that's pretty much my list of big-ticket items. As you can see, anyone who cares about these issues would have to think very hard before choosing LLVM over the JVM as an implementation platform.</div>

<div><br></div><div>-- <br>-- Talin<br>
</div></div>