Building and Executing Traces on LLVM

Daniel Nicacio
IC-UNICAMP, Brazil

April 5, 2011

1 Objective

The objective of this project is to augment LLVM with dynamic profiling ca-
pabilities. Interpreted code will be instrumented so that LLVM will be able to
dynamically find, build and execute traces of more frequently executed basic
blocks. This way, future projects can focus on implementing dynamic optimiza-
tions on those traces.

2 Motivation

Just In Time (JIT) compilers and Dynamic Binary Translators (DBT) can pro-
vide information collected at runtime. The static compiler does not have this
kind of information, so using it, new optimization opportunities comes to sur-
face. In order to have a efficient optimization system, it is essential to know
where to apply optimizations, that is, know how to obtain critic regions of code
which really sets out gain possibilities. A sequence of instructions, including
branches but not including loops, that is executed for some input data is called
a trace [5]. Dynamic systems can select traces which are heavily executed as
good spots to make optimizations. Optimizing traces is one promising way to
overcome the overhead of translating instructions to the new ISA, permitting
the new code to run faster than the original one.

In the last years, dynamic optimizations has become an interesting subject
due to its many advantages, being the research topic of some works [1, 3, 4, 8].
All these works must rely on good trace detection techniques.

At the present moment LLVM does not build and execute traces using run-
time information. We believe that a light-weight dynamic profiling will be a
valuable tool to improve LLVM performance.

3 Methodology

In this project we will implement the Most Recent Executed Tail (MRET) [2]
technique to find and build traces. On the first stage we will find basic blocks



that are targets of back edges (potential loop headers) and then instrument those
basic blocks to count how many times it is executed. Therefore, if it reaches
a threshold a function call (previously added to the basic block) is executed to
start recording the final trace. Finally the recording process ends when it goes
back to the beginning of the trace or reaches another trace.

Every time program execution reaches an address that corresponds to the
beggining of a trace it jumps to the trace instead of the original basic block.
Traces are stored together in memory; this fact alone already brings benefits to
the system, because the program execution will likely remains inside this region
of memory, taking advantage of the locality principle when fetching instructions.

4 Timeline

This project is expected to last three months, divided as follows:

e first month - instrument basic blocks to count how many times it is
executed and add a function call to trace recording.

e second month - Record traces and change original code so it can jump
to traces instead of the original basic blocks.

e third month - Measure performance of llvm when executing traces and
compare it to the original implementation. Make some tuning if necessary.

5 Biography

I am a PhD student at the University of Campinas (UNICAMP), Brazil. My
advisor is Guido Araujo, who has major experience in compilers and computer
architecture. During my research I worked with dynamic binary translators,
developing trace detection techniques and dynamic optimizations to be applied
on those traces. In this project I found out that building traces does not add
significant overhead and that code reallocation brings performance gains to the
system.

I also worked with a dynamic binary translator that used a direct mapping
technique to run PowerPC code on X86 architectures, this project also granted
me experience on dynamic environments and code instrumentation.

More recently, I have been working with Software Transactional Memory
(STM), building a light-weight user-level transaction scheduler. We achieved
great results in this project, pushing the boundaries of STM performance. Ba-
sicaly, we implemented a heuristic to predict transaction conflicts, if we find
that a transaction is likely going to abort, we switch contexts at user-level to
start executing another transaction. One major advantage of our system is that
we have complete control of which transactions are currently running and which
transaction is going to replace a doomed one.

My research has yielded two papers already published [6, 7] and I also have
two papers under review at the present moment.



I hope this project gets accepted because I believe that it will be useful for

the LLVM community. It would be a wonderful experience to work alongside
LLVM developers and to learn some practical aspects of coding for a robust
compiler such as LLVM.

References

1]

2]

V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent Dynamic
Optimization System. SIGPLAN PLDI, pages 1-12, June 2000.

Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: a trans-
parent dynamic optimization system. SIGPLAN Not., 35(5):1-12, 2000.

Kemal Ebcioglu and Erik R. Altman. Daisy: dynamic compilation for 100
In ISCA °97: Proceedings of the 24th annual international symposium on
Computer architecture, pages 26-37, New York, NY, USA, 1997. ACM.

J. Lu, H. Chen, P.-C. Yew, , and W.-C. Hsu. Design and implementation of a
lightweight dynamic optimization system. The Journal of Instruction-Level
Parallelism, 6, 2004.

Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann Publishers, 340 Pine Street , Sixth Floor, San Francisco ,
CA 94104-3205 , USA, 1997.

Daniel Niccio and Guido Arajo. Reducing false aborts in stm systems. In
Ching-Hsien Hsu, Laurence Yang, Jong Park, and Sang-Soo Yeo, editors,
Algorithms and Architectures for Parallel Processing, volume 6081 of Lecture
Notes in Computer Science, pages 499-510. Springer Berlin / Heidelberg,
2010.

Maxwell Souza, Daniel Nicdcio, and Guido Araidjo. ISAMAP: Instruction
Mapping Driven by Dynamic Binary Translation. In Mauricio Breternitz,
Robert Cohn, Erik Altman, and Youfeng Wu, editors, AMAS-BT - 8rd
Workshop on Architectural and Microarchitectural Support for Binary Trans-
lation, Saint Malo France, 2010.

D. Ung and C. Cifuentes. Optimising hot paths in a dynamic binary trans-
lator. In Workshop on Binary Translation, October 2000.



