
Hello LLVM-C!
Filip van der Meeren

As I child I loved the dutch version of the 99 bottles of beer song. Every programming
language I learned up until now have had its 99 bottles of beer song implementation. C,
Objective-C, C++, Python, Java, even SQL had and still has its own implementation of 99
bottles of beer. All stored in my personal svn.

After a while in a certain language I started extending the language from within the
language. Python has this really nice feature where you can create code dynamically and
then push it through its runtime so it ends up as your really written code.

But for a few languages I failed to implement such a feature without hacks, workarounds
etcetera. Those languages were C / Objective-C / C++, until I came across LLVM...

Exploring
LLVM i is quite large, you should really check out the entire website. But finally it all comes
down to one thing, the LLVM Core. More exactly, the LLVM-C interface to the coreii. And
that is the part where we are going to focus.

LLVM-C has a structure you must follow, just like C has one. In C you have source files, to
organize the code in manageable chunks, there counterpart in the core is a module.

Before you start programming with LLVM, you should realize that LLVM uses a Static
single assignment form (SSA). This comes down to one little thing: you can assign
something to a variable only once. If you want to assign something multiple times to the
same variable, you will have to allocate the space for it on the heap (malloc, calloc,
realloc) or stack (alloca). Luckily the core has some easy methods to invoke to make this
possible.

Hello World
Now lets start with a much used example (donʼt know why). You guessed it, we are going
to write the LLVM version of “Hello World”.

This is the C version that we will try to equal:

// C Headers
#include <stdio.h>

void
sayHelloWorld(void) {
 puts("Hello LLVM-C world!");
}

1

I will assume a few things in this tutorial, the first is that you know how to use C (if you
donʼt know how to read/write C, congratulations for getting this far without quitting). And
the second is that you know how to compile the LLVM libraries and how to use your own
compiler and linker. And I will also expect you are putting the following include statement
before using the code below.

#include <llvm-c/Core.h>

Module

As I have said before, LLVM uses modules to represent source files. So, lets create a
module:

LLVMModuleRef module;
module = LLVMModuleCreateWithName("Say hello to LLVM");

That wasnʼt to hard now was it?

Puts

Now we are going to use “puts”, in C we have the include that takes care of the fact that
the compiler/linker must know the definition of a method before it can use it. LLVM requires
the same.

int puts(const char *s);

is what we want to create. Lets start with the return type, what is int on a system. Is it a
16 bit integer, a 32 bit integer? It might be more or less. Who knows, for all we know it
might be 17 bits on a system. You never know what the compiler translates this to. So lets
be sure and retrieve the llvm-type:

LLVMTypeRef returnType = LLVMIntType(sizeof(int) * CHAR_BIT);

The statement creates a LLVMTypeRef that represents an integer with X bits, these types
are comparable with the types in C. There are a few quickies made for much the used
(LLVMInt1Type(), LLVMInt8Type(), LLVMInt16Type(), LLVMInt32Type(), LLVMInt64Type()),
but they can all be created with the one above.

For those who donʼt know what CHAR_BIT is, it is defined in <limits.h> and it contains the
number of bits in one char. Just a reminder, sizeof() returns the number of bytes for any
given type.

2

We now have a return type, lets create the entire functiontype.

LLVMTypeRef putsArguments[] = {
 LLVMPointerType(LLVMInt8Type(), 0),
};

LLVMTypeRef functionType;
functionType = LLVMFunctionType(
 /* Return type */ LLVMIntType(sizeof(int) * CHAR_BIT),
 /* Parameters */ putsArguments,
 /* Param count */ 1,
 /* Var Args ? */ false);

The code is mostly explanatory except for one small detail, LLVMPointerType. You are
able to create a pointer to any type by providing the type as the first argument and an
address space as the second parameter. You can ignore this and just provide 0 (zero).
This is the default value that is valid on most (dare I say all?) systems.

All that is left is creating the function... We have a type, all that is left is providing a name.

LLVMValueRef function;
function = LLVMAddFunction(module, "puts", functionType);

Admiring your work

If you want to see the result of your hard work or just check what it looks like in the LLVM
assembly language, just invoke the following line:

LLVMDumpModule(module);

This prints all of your LLVM assembly onto the stderr.

Checking your work

If you are doubtful that what you create is valid LLVM assembly. You should validate your
module. This is by no means a requirement, but it is nice to know even in production code.

char * errMsg = NULL;
if(LLVMVerifyModule(module, LLVMAbortProcessAction, &errMsg) == 0)
{
 /* valid module! */
}

If the module isnʼt value it will have a message attached to it, the message will be stored
into the char* variable you provided. This has to be freed after you no longer need it by a
call to LLVMDisposeMessage(char*).

You can change the LLVMAbortProcessAction (guess what that option will do ;-)) with
LLVMPrintMessageAction (prints to stderr) and LLVMReturnStatusAction that just returns
without doing any extras. Any message can be retrieved by checking the errMsg.

3

The same method also exists for checking single functions:

LLVMVerifyFunction(function, LLVMPrintMessageAction);

It also returns 0 (zero) after a valid function. It isnʼt that useful, except for debugging
purposes. But it is nice to know.

Hello LLVM method

A prototype alone isnʼt that useful. Lets create a function that calls it...

LLVMTypeRef functionType;
LLVMValueRef function;
functionType = LLVMFunctionType(/* Return type */ LLVMVoidType(),
 /* Parameters */ NULL,
 /* Param count */ 0,
 /* Var Args ? */ false);

// Add it to the module, with a name.
function = LLVMAddFunction(module, "sayHelloWorld", functionType);

All we are missing now is a body. I hope you have created C code with a lot of labels and
goto statements. Because every branch in your code will become a block (donʼt worry
much about this that is for the following chapter).

Lets give our function its first block:

LLVMBasicBlockRef block = LLVMAppendBasicBlock(function, "aName");

The block can have a name, or you can leave it blank, you can give a function a thousand
blocks with the same name. LLVM will make sure that each of them gets a postfix
appended to avoid name-collisions.

Create a builder (that can optionally be reused for multiple blocks) to give the blocks some
content.

LLVMBuilderRef builder = LLVMCreateBuilder();
/* using the builder */
LLVMDisposeBuilder(builder);

During the builders existence you can place it at the beginning of a block or the end.

LLVMPositionBuilderAtEnd(builder, block);

4

And whenever you are positioned in a block, you can invoke LLVMBuildXXX methods. So
lets do this:

LLVMValueRef callArguments[] = {
 LLVMBuildGlobalStringPtr(builder, "Hello LLVM-C world!", ""),
};

LLVMBuildCall(builder, putsFunction, callArguments, 1, "");
LLVMBuildRetVoid(builder);

What does the code above? It creates a call to the putsFunction prototype you have
defined earlier. LLVMs JIT will resolve any method that you havenʼt provided.

Each block has to have a branch to another block or an return. But that will become much
clearer in the next chapter.

There you are, your entire module is up! And now just get it running.

Running your first hello

I will explain the following in more detail in the chapters that will follow. But just to provide
you with some satisfaction from what you have accomplished so far. Lets run your
dynamically created function.

#include <llvm-c/ExecutionEngine.h>

LLVMInitializeNativeTarget();
LLVMLinkInJIT();

LLVMExecutionEngineRef engine;
void (*myHello)(void);
if(LLVMCreateJITCompilerForModule(&myEngine,
 module, 0, NULL) == 0) {

 myHello = (void (*)(void))LLVMGetPointerToGlobal(engine,
 sayHelloFunctionValueRef);
 myHello();
}

Wow, that chuck was impressive. Now what did I do ? I created a Just In Time compiler,
something that Java and dotNet do: compile the function from the minute it is used, not a
second earlier. Then I ask the engine for a pointer to my method. LLVM compiles my
method and returns a pointer to it.

All you then have to do, is invoke your freshly created method!

Have fun experimenting with LLVM-C ! Keep checking these pages, because the next
chapter will create 99 bottles of beer in LLVM.

5

6

i http://llvm.org/

ii If you want to use C++, I suggest you take a look at the C++ tutorials. The C skills are transferable, but it is
still a huge difference.

http://llvm.org
http://llvm.org

