Path Profiling in LLVM

Adam Preuss*
Dept. of Computing Sciences
University of Alberta
apreuss @ualberta.ca

August 22,2010

1 Introduction

The objective of this submission is to incorporate an
efficient implementation of path profiling (PP) into
the LLVM compiler. PP is a method of feedback di-
rected optimization (FDO) that monitors the execu-
tion sequence of a function’s basic blocks with re-
spect to a control flow graph (CFG). A compiler op-
timizer can perform better transformations with the
benefit of path execution frequency.

PP incurs a performance overhead because the
use of profiling information is a multi—step process.
First, an instrumentation pass must analyze the CFG
of a program, associating numbers with potential
paths. It must then insert additional instructions to
monitor each possible path. The program must be
executed to gather the frequency of each path and,
finally, the original code must go through an opti-
mization pass based on the information gathered by
the PP instructions.

Currently, LLVM contains instrumentation passes
for block profiling (BP) and edge profiling (EP),
as well as an interface that allows the optimization
passes to access the profiling information. The PP
instrumentation pass builds on some of the existing
profiling utilities. However, to avoid the additional
overhead of unnecessary computational methods in
an existing interface, the new path profiler defines

*This development of path profiling for LLVM was funded in
part by the Natural Science and Engineering Research Council
of Canada through two Undergraduate Student Research Awards
(URSAs). The first was granted in 2009 to Slobodan Pejic and
the second in 2010 to Adam Preuss.

a new interface for FDO passes. This interface ac-
cesses the accumulated PP data. Path numbering
(PN) is based on the algorithm proposed by Ball and
Larus [1], which transforms a function’s CFG into a
directed acyclic graph (DAG) and assigns each path
a unique number.

The PP for LLVM was developed under the su-
pervision of Professor José Nelson Amaral and un-
der the advisement of Paul Berube. Slobodan Pejic
began work on this project in the summer of 2009,
designing a layout and writing the PP instrumenta-
tion pass. Adam Preuss has completed and tested the
project, making modifications to the existing instru-
mentation pass and reimplementing the path-profile
interface.

2 User Information

Each aspect of PP is made available through LLVM’s
optimization tool opt. Before running any passes,
all object files that are part of the program must be
linked into a single LLVM bitcode file. As a pre-
caution, the instrumentation pass performs a check
to ensure that it does not insert PP instructions into
modules without an entry point (i.e. a main func-
tion).

By default, the path profiler does not insert instru-
mentation to handle incomplete paths in those meth-
ods with early or unexpected termination (for in-
stance, a call to exit ()). In some cases, PP may not
produce accurate edge profiles. Specifying the com-
mand line option process-early-termination in

opt -insert-path-profiling -dot-pathdag -o example.bc example.pp.bc

llvm-1d -native -o example example.pp.bc

./example -llvmprof-out example.llvmprof.out

Figure 1: Sample commands to obtain a path profile

opt example.bc --o /dev/null -path-profile-loader -path-profile-verifier \
-path-profile-loader-file example.llvmprof.out \
-path-profile-verifier-output example.edgefrompath.llvmprof.out
cmp example.edgefrompath.out example.edge.llvmprof.out

Figure 2: Sample commands to load and verify a path profile

both the instrumentation and verification phases
modifies the path numbering scheme to handle early
termination, subsequently allowing path profiles to
produce exact edge frequencies. This may incur a
significant overhead depending on the position and
frequency of method calls in a program. The im-
plementation of early termination processing is dis-
cussed in section 3. All other command-line flags
specific to PP are explained in the following sub-
sections:

2.1 Obtaining Path Profiles

The PP instrumentation pass is invoked with the
command-line option insert-path-profiling.
Should a user wish to view the derived DAGs of
each function in the instrumented program, the op-
tion dot-pathdag may be specified. The optimizer
outputs a DAG of each graph in a .dot file [2]
named pathdag.<function-name>.dot. Once an
instrumented program has been obtained, it must
be executed to generate the PP information. The
output file name containing PP information may be
specified with 1lvmprof-out <filename>; other-
wise, it defaults to 11vmprof.out. An example of
the instrumentation/execution phase for the program
example.bc is shown in figure 1.

2.2 Loading Path Profiles

PP information must be readily available to future
FDO passes. A path—profiling loader (PPL) pass

must exist to satisfy its potential dependents. The
PPL defines an interface, such that other passes may
have access to specific PP information. Invocation of
the PPL is accomplished with the command-line op-
tion path-profile-loader, with an optional argu-
ment, path-profile-loader-file <filename>,
specifying the file with PP information. By default,
the PP filename is 11vmprof.out.

2.3 Verification

A verification pass was created to help instill confi-
dence in LLVM developers that the information gen-
erated by PP is accurate. The path—profiling veri-
fier (PPV) analyzes information provided by the PPL.
and derives an edge profile, creating a file that can
be compared with the output of LLVM’s edge pro-
filer. A byte-per-byte comparison showing that the
two files are identical should build confidence that
PP is producing information that is consistent with
the independently developed edge profiler. Although
the PPV runs through LLVM’s optimizer, it does not
perform any code transformations.

The PPV pass may be invoked with the
command-line option path-profile-verifier
Additionally, an EP output file name
may be specified with the argument
path-profile-verifier-output <filename>.
By default, this file name is
edgefrompath.llvmprof.out. A combined
example of the PPL and PPV passes is shown in
figure 2. This example assumes that the unin-

strumented bitcode file is named example.bc,
and that PP and EP information are available in
files named example.path.llvmprof.out and
example.edge.llvmprof.out, respectively.

For cmp to detect an exact match, the program bi-
naries for PP and EP must be identically named be-
cause command-line arguments at runtime are stored
in the profiling files.

The verification pass was tested on a multitude
of different programs and inputs, including many in
the SPEC CPU2006 suite; all native edge profiles
matched the path-derived profiles. Note that when
performing verifications, if path or edge counters
overflow, it is likely that the edge profile will not be
a perfect match.

3 Implementation

The PP addition to LLVM has been implemented
in three (mostly independent) modules: instrumen-
tation, runtime and analysis. All three modules share
the same code for PN logic - a set of classes to rep-
resent nodes, edges and DAGs - but each module
can be run independently. The path identification
and numbering algorithms are intended to assign un-
signed integer values to paths and to convert a func-
tion’s CFG into a DAG, thus eliminating the possibil-
ity of infinite paths in a procedure [1]. If the number
of potential paths becomes very large, the PN logic
splits DAGs to produce shorter paths (Currently, the
splitting threshhold is set to 100,000,000). Other-
wise, for certain DAGs, the total number of potential
paths can quickly exceed the integer width.

3.1 Unexpected Procedure Termination

Early or unexpected termination of functions further
complicate the implementation of PP, which can re-
sult in the loss of path execution counts. If a function
does not return, the path counters of all functions in
the call chain may be lost. The path profiler can op-
tionally assign additional unique paths from function
entry points to each function call present in the CFG.
Thus, if a function does not return, path counting in-
formation will not be lost.

The introduction of these new potential paths in-
curs a runtime overhead. Before each function call,
there must be a path increment in the event that said
function does not return. If it returns, then the pre-
vious incrementation is corrected and normal execu-
tion continues.

3.2 Instrumentation

This phase can be considered a code—transformation
pass. It derives a new set of classes from those
used for PN, incorporating additional specific proce-
dures for the instrumentation process. Once a DAG
has been derived from the CFG, the placement of
path counters in a bitcode file is reorganized to pro-
duce the lowest runtime overhead. The reorgani-
zation is accomplished by minimizing the number
of additional instructions along any particular path
[3]. Critical edges are split to accommodate the re-
quirements of instrumentation, ensuring a proper PN
scheme. One must take care to use the original unin-
strumented bitcode file when loading PP informa-
tion, because the instrumented CFG may not be a
perfect match.

3.3 Runtime

At runtime, the profiling external library is respon-
sible for intermediate PP storage and, upon program
termination, for writing the path profiles to file. For
maximum processing and memory efficiency, exe-
cuted path counts are stored in arrays for those func-
tions with small potential path counts, and hash ta-
bles for large ones. In the event of arithmetic over-
flow, path counts are capped at the maximum inte-
ger width. If a path count exceeds the integer width,
the profiler has provided enough information to deem
this a hot path.

The following table outlines the file format for
path profiles:

PathInfo
Function Number

Number of Functions
Number of Path Entries

Path Number Path Counter
Path Number Path Counter
PathInfo Number of Functions
Function Number | Number of Path Entries
Path Number Path Counter
Path Number Path Counter

3.4 Analysis

The PPL interface is implemented as an analysis pass
and is designed separately from the generic profile-
loader interface to reduce both processing and mem-
ory overhead. Further, PP information supersedes EP
and BP. The verification pass demonstrates that EP
can be precisely derived from PP. Though not im-
plemented, the same can be said for BP. LLVM cur-
rently has no optimization passes that use PP, thus it
is difficult to conclude what kind of queries will be
made to the PP interface. As the use of PP in LLVM
evolves, the PP interface can be changed to attend to
new needs of the code generator.

For analysis, path numbers and their respective
frequencies are loaded into memory. Should an op-
timizer pass require PP information, any path can
be generated “on the fly”, by traversing the DAG of
the function of interest, because the path number is
known [1].

4 Future Work

The following is a list of features not yet supported
by this implementation of PP. If a program makes
use of such features, instrumenting code with PP
could produce undesired results.

e c++ exceptions

e longJjmp (), setjmp (), and other similar func-
tions

e signals

e multithreaded processes whose threads share a
common address space (this would be easy to
implement by moving path counter increment
functions into critical sections)

e programs without a main function

5 Conclusion

The objective of this submission is to incorporate an
efficient implementation of PP into the LLVM com-
piler. The PP instrumentation and interface is the
first step toward using path profiles for FDO in the
LLVM compiler. As optimization passes begin to
use PP information in code transformations, it will
become clear what specific path-related queries are
required; the PP interface can easily be extended to
meet these requirements. This submission to LLVM
contains all of the components required to instrument
a program with PP instructions, gather path profiles
derived from program execution, and load profiles
back into the optimizer for use in future passes. A
verification pass is included to show that the PP re-
sults are consistent with the results obtained by the
independently developed edge profiler.

References

[1] Thomas Ball, James R. Larus. Efficient path
profiling. International Symposium on Microar-
chitecture: Proceedings of the 29th annual
ACM/IEEE international symposium on Mi-
croarchitecture, Paris, France, pages 46 — 57,
1996.

[2] http://www.graphviz.org/

Thomas Ball. Efficiently counting program
events with support for on-line queries. In ACM
Transactions on Programming Languages and
Systems (TOPLAS), 16(5): 1399-1410, Septem-
ber 1994.

