
Complete Translation of Unsafe Native Code to Safe Bytecode

Brian Alliet
Rochester Institute of Technology

bja8464@cs.rit.edu

Adam Megacz
University of California, Berkeley
megacz@cs.berkeley.edu

This document was typeset using D. E. Knuth’s original
TEX, which was both compiled and executed entirely within
a Java Virtual Machine without the use of native code.

Abstract

Existing techniques for using code written in an un-
safe language within a safe virtual machine gener-
ally involve transformations from one source code lan-
guage (such as C, Pascal, or Fortran) to another (such
as Java) which is then compiled into virtual machine
bytecodes.

We present an alternative approach which translate
MIPS binaries produced by any compiler into safe vir-
tual machine bytecodes. This approach offers four key
advantages over existing techniques: it is language ag-
nostic, it offers bug-for-bug compiler compatibility, re-
quires no post-translation human intervention, and in-
troduces no build process modifications.

We also present NestedVM, an implementation of this
technique, and discuss its application to six software
packages: LINPACK (Fortran), which was used as one
of our performance tests, TEX (Pascal), which was used
to typeset this document, libjpeg, libmspack, and
FreeType (all C source), which are currently in produc-
tion use as part of the Ibex Project [?], and gcc, which
was used to compile all of the aforementioned.

Performance measurements indicate a best case perfor-
mance within 3x of native code and worst case typi-
cally within 10x, making it an attractive solution for
code which is not performance-critical.

1 Introduction

Unsafe languages such as C and C++ have been in use
much longer than any of today’s widely accepted safe
languages such as Java and C# Consequently, there
is a huge library of software written in these lan-
guages. Although safe languages offer substantial ben-
efits, their comparatively young age often puts them at
a disadvantage when breadth of existing support code
is an important criterion.

The typical solution to this dilemma is to use a native
interface such as JNI [?] or CNI [?] to invoke unsafe
code from within a virtual machine or otherwise safe
environment. Unfortunately, there are a number of
situations in which this is not an acceptable solution.
These situations can be broadly classified into two cat-
egories: security concerns and portability concerns.

Security is often a major concern when integrating
native code. Using Java as an example, JNI and
CNI are prohibited in a number of contexts, includ-
ing applet environments and servlet containers with
a SecurityManager. Additionally, even in the con-
text of trusted code, native methods invoked via JNI
are susceptible to buffer overflow and heap corruption
attacks which are not a concern for verified, bounds-
checked bytecode.

The second class of disadvantages revolves around
portability concerns; native interfaces require the na-
tive library to be compiled ahead of time for every ar-
chitecture on which it will be deployed. This is un-
acceptable for scenarios in which the full set of target
architectures is not known at deployment time. Addi-
tionally, some JVM platform variants such as J2ME [?]
simply do not offer support for native code.

The technique we present here uses typical compiler
to compile unsafe code into a MIPS binary, which is
then translated on an instruction-by-instruction basis
into Java bytecode. The technique presented here is
general; we anticipate that it can be applied to other
secure virtual machines such as Microsoft’s .NET [?],
Perl Parrot [?], or Python bytecode [?].

The remainder of this paper is divided as follows: in
the next section we review the relevant set of program
representations (safe source, unsafe source, binary, and
bytecode) and survey existing work for performing
transformations between them. In the third section we
introduce NestedVM and cover its two primary trans-
lation modes in detail. Section four describes the Nest-
edVM runtime, which plays the role of the OS ker-
nel. Section five addresses the optimizations we em-
ploy and quantifies NestedVM’s performance. Section
six reviews our experiences in applying NestedVM to
various popular software packages. We conclude with
an analysis of NestedVM’s weaknesses and potential
for future improvements.

1

2 Existing Work

The four program representations of interest in this
context, along with their specific types in the C-to-JVM
instantiation of the problem are shown in the following
diagram:

unsafe source safe source
(.c) (.java)

machine code safe bytecode
(.o) (.class)

To illustrate the context of this diagram, the following
arcs show the translations performed by a few familiar
tools:

unsafe source safe source

machine code safe bytecode

g
c
c

gc
j

j
a
v
a
c

gcj

JITs

Existing techniques for translating unsafe code into
VM bytecode generally fall into two categories, which
we expand upon in the remainder of this sec-
tion: source-to-source translation and source-to-binary
translation.

2.1 Source-to-Source Translation

The most common technique employed is partial
translation from unsafe source code to safe source
code:

unsafe source safe source

machine code safe bytecode

source-to

source

j
a
v
a
c

A number of existing systems employ this technique;
they can be divided into two categories: those which
perform a partial translation which is completed by a
human, and those which perform a total translation
but fail (yield an error) on a large class of input pro-
grams.

2.1.1 Human-Assisted Translation

Jazillian [?] is a commercial solution which pro-
duces extremely readable Java source code from C

source code, but only translates a small portion
of the C language. Jazillian is unique in that
in addition to language migration, it also performs
API migration; for example, Jazillian is intelligent
enough to translate “char* s1 = strcpy(s2)”
into “String s1 = s2”. Unfortunately such deep
analysis is intractable for most of the C language
and standard library; indeed, Jazillian’s documenta-
tion notes that “This is not your father’s language trans-
lator... Jazillian does not always produce code that works
correctly.”

MoHCA-Java [?] is the other major tool in this category,
and steps beyond Jazillian by providing tools for anal-
ysis of the source C++ abstract syntax tree. Addition-
ally, MoHCA-Java’s analysis engine is extensible, mak-
ing it a platform for constructing application-specific
translators rather than a single translation tool. How-
ever, MoHCA-Java does not always generate complete
Java code for all of the C++ programs which it accepts.

2.1.2 Partial-Domain Translation

The c2j [?], c2j++, Cappucinno [?], and Ephedra [?]
systems each provide support for complete translation
of a subset of the source language (C or C++). Each of
the four tools supports a progressively greater subset
than the one preceding it; however none covers the en-
tire input language.

Ephedra, the most advanced of the four, supports most
of the C++ language, and claims to produce “human
readable” Java code as output. Notable omissions from
the input domain include support for fully general
pointer arithmetic, casting between unrelated types,
and reading from a union via a different member than
the one most recently written.

Unfortunately, when the program being translated is
large and complex, it is quite likely that it will use an
unsupported feature in at least one place. In the ab-
sence of a programmer who understands the source
program, a single anomaly is often enough to render
the entire translation process useless. As a result, these
tools are mainly useful as an aid to programmers who
could normally perform the conversion themselves,
but want to save time by automating most of the pro-
cess.

2.2 Source-to-Binary Translation

Source-to-binary translation involves a compiler for
the unsafe language which has been modified to emit
safe bytecode.

unsafe source safe source

machine code safe bytecode

source-to-binary

2

An experimental “JVM backend” for the gcc compiler,
known as egcs-jvm [?], attempts this approach. Since
gcc employs a highly modular architecture, it is pos-
sible to add RTL code generators for nonstandard pro-
cessors. However, gcc’s parsing, RTL generation, and
optimization layers make fundamental assumptions
(such as the availability of pointer math) which can-
not be directly supported; thus the compiler still fails
for a substantial class of input programs.

A Java backend for the lcc compiler [?], known as
lcc-java, is also available. Although this system is
quite clean and elegantly designed, it lacks any form
of system library (libc), so very few C programs will
run without custom modification (which would cause
them to diverge from the upstream sources). The mem-
ory model employed by lcc-java is also somewhat
awkward; a separate int[] is maintained for the stack
and heap, leading to difficulties mingling pointers to
these two memory regions. Additionally, the heap is a
single int[], which means that it must be copied in
order to be expanded, and prevents lcc-java from
taking advantage of NullPointerException check-
ing, which costs nothing in the “common case” since
nearly all JVMs use the host CPU’s MMU to detect this
condition.

3 NestedVM

The principal difference between NestedVM and other
approaches is that NestedVM does not attempt to deal
with source code as an input, instead opting for binary-
to-source and binary-to-binary translation. This offers
three immediate advantages:

• Language Agnosticism

Because NestedVM does not attempt to imple-
ment the parsing and code generation steps of
compilation, it is freed from the extremely com-
plex task of faithfully implementing languages
which are often not fully or formally specified
(such as C and C++), and is able to support any
language for which a MIPS-targeted compiler ex-
ists.

• Bug-for-bug compiler compatibility

Since NestedVM uses the compiler’s output as its
own input, it ensures that programs which are in-
advertently dependent on the vagaries of a par-
ticular compiler can still be used.

• No build process modifications

NestedVM does not modify existing build pro-
cesses, which can be extremely complex and de-
pendent on strange preprocessor usage as well as
the complex interplay between compiler switches
and header file locations.

NestedVM’s approach carries a fourth benefit as well,
arising from its totality:

• No post-translation human intervention

NestedVM offers total support for all non-
privileged instructions, registers, and resources

found on a MIPS R2000 CPU, including the
add/multiply unit and floating point coprocessor.
As such, it constitutes a total function mapping
from the entire domain of (non-kernel-mode) pro-
grams onto (a subset of) the semantics of the Java
Virtual Machine. This ensures that the translation
process is fully automated and always succeeds
for valid input binaries.

This last point has important software engineering im-
plications. If post-translation human intervention is
required, then the human becomes part of the build pro-
cess. This means that if a third party library used in the
project needs to be upgraded, a human must intervene
in the rebuild process. In addition to slowing the pro-
cess and introducing opportunities for error, this task
often requires specialized knowledge which becomes
tied to the particular individual performing this task,
rather than being encoded in build scripts which per-
sist throughout the lifetime of the project.

3.1 Mapping the R2000 onto the JVM

We chose MIPS as a source format for three reasons:
the availability of tools to compile legacy code into
MIPS binaries, the many similarities between the MIPS
ISA and the Java Virtual Machine, and the relatively
high degree of program structure that can be inferred
from ABI-adherent binaries.

The MIPS architecture has been around for quite some
time, and is well supported by the GNU Compiler Col-
lection, which is capable of compiling C, C++, Java,
Fortran, Pascal, and Objective C into MIPS binaries.

The MIPS R2000 ISA bears many similarities to the
Java Virtual Machine. Most of the instructions in the
original MIPS ISA operate only on 32-bit aligned mem-
ory locations. This allows NestedVM to represent
memory as a Java int[][] array indexed by page (the
top n bits of the address) and offset (the remaining bits)
without introducing additional overhead. MIPS’s non-
aligned memory load instructions are only rarely emit-
ted by most compilers since they carry a performance
penalty on physical MIPS implementations.

Our choice of a paged representation for memory car-
ries only a small performance disadvantage:

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

libmspacklibfreetypeLibjpeg

S
ec

on
ds

Application

Paged vs Flat Memory Access

Paged
Flat

Additionally, this representation lets us to take ad-
vantage of the fact that on most JVM’s, checking for

3

a NullPointerException carries no performance
penalty unless the exception is thrown (the host CPU’s
MMU is generally used to detect this condition). This
allows us to lazily expand the MIPS memory space as
it is used. Additionally, we maintain two page arrays,
one which is used for read operations and another for
writes. Most of the time these page arrays will have
identical entries; however, we can simulate a portion
of the MIPS MMU functionality by setting the appro-
priate entry in the write page table to null, thereby
write protecting the page while still allowing reads.

Unlike its predecessor, the R2000 supports 32-bit by 32-
bit multiply and divide instructions as well as a single
and double precision floating point unit. These capa-
bilities map nicely onto Java’s arithmetic instructions
and int, long, float, and double types.

Although MIPS offers unsigned arithmetic and Java
does not, few MIPS instructions actually depend on
non-two’s-complement handling of integer math. In
the few situations where these instructions are encoun-
tered, the unsigned int is cast (bitwise) to a Java
long, the operation is performed, and the result is cast
back. On host architectures offering 64-bit arithmetic
this operation carries no performance penalty.

In addition to its similarities to the JVM, the MIPS ISA
and ABI convey quite a bit of information about pro-
gram structure. This information can be used for opti-
mization purposes:

• The structure of MIPS branching and jump in-
structions make it easy to infer the set of likely
target instructions.

• The MIPS ABI specifies particular registers as
caller-save and callee-save, as well as designating
a register for the return address after a function
call. This allows NestedVM to optimize many op-
erations for the common case of ABI-adherent bi-
naries.

• All MIPS instructions are exactly 32 bits long.

3.2 Binary-to-Source Mode

The simplest operational mode for NestedVM is
binary-to-source translation. In this mode, NestedVM
translates MIPS binaries into Java source code, which
is then fed to a Java compiler in order to produce byte-
code files:

unsafe source safe source

machine code safe bytecode

g
c
c

j
a
v
a
cNe

st
ed
VM

Translating unsafe code for use within a JVM proceeds
as follows:

1. The unsafe source code is compiled to a statically
linked binary, including any libraries (including
libc) it needs.

2. NestedVM is invoked on the statically linked bi-
nary, and emits a .java file.

3. The resulting .java code is compiled into a
.class file using jikes or javac.

4. At runtime, the host Java code invokes the run()
method on the generated class. This is equivalent
to the main() entry point.

3.3 Binary-to-Binary Mode

After implementing the binary-to-source compiler, a
binary-to-binary translation mode was added.

unsafe source safe source

machine code safe bytecode
g
c
c

NestedVM

This mode has several advantages:

• There are quite a few interesting bytecode se-
quences that cannot be generated as a result of
compiling Java source code.

• Directly generating .class files Eliminates the
time-consuming javac step.

• Direct compilation to .class files opens up
the interesting possibility of dynamically trans-
lating MIPS binaries and loading them via
ClassLoader.fromBytes() at deployment
time, eliminating the need to compile binaries
ahead of time.

4 The NestedVM Runtime

The NestedVM runtime fills the role typically assumed
by an OS Kernel. Communication between MIPS code
and the runtime is mediated by the SYSCALL instruc-
tion, just as the libc-kernel interface is on other MIPS
implementations.

Two implementations of the runtime are offered; a sim-
ple runtime with the minimum support required to
comply with ANSI C, and a more sophisticated run-
time which emulates a large portion of the POSIX API.

4.1 The ANSI C Runtime

The ANSI C runtime offers typical file I/O operations
including open(), close(), read(), write(), and
seek(). File descriptors are implemented much as

4

private final static int r0 = 0;
private int r1, r2, r3, /* ... */ r30;
private int r31 = 0xdeadbeef;
private int pc = ENTRY_POINT;

public void run() {
while (true)

switch(pc) {
case 0x10000: r29 = r29 - 32;
case 0x10004: r1 = r4 + r5;
case 0x10008: if (r1 == r6) {

/* delay slot */
r1 = r1 + 1;
pc = 0x10018:
continue; }

case 0x1000C: r1 = r1 + 1;
case 0x10010: r31 = 0x10018;

pc = 0x10210;
continue;

case 0x10014: /* nop */
case 0x10018: pc = r31; continue;
...
case 0xdeadbeef: System.exit(1);

...

public void run_0x10000() {
while (true) switch(pc) {

case 0x10000: ...
case 0x10004: ...
case 0x10010: r31 = 0x10018;

pc = 0x10210;
continue;

....

pubic void run_0x10200() {
while (true) switch(pc) {

case 0x10200: ...
case 0x10204: ...

....

public void trampoline() {
while (true) switch(pc&0xfffffe00) {

case 0x10000: run_0x10000(); break;
case 0x10200: run_0x10200(); break;
case 0xdeadbe00: ...

....

Figure 1: Trampoline transformation necessitated by Java’s 64kb method size limit

they are in OS kernels; a table of open files is main-
tained and descriptors act as an index into that ta-
ble. Each file descriptor is represented as a Java
RandomAccessFile in order to match the semantics
of seek().

Process-level memory management is done through
the sbrk() system call, which extends the process
heap by adding more pages to the memory page ta-
ble. Fast memory clear and copy operations can be per-
formed with memset() and memcpy(), which invoke
the Java System.arraycopy()method.

The exit() call records the process’ exit status, marks
the VM instance as terminated and halts execution.
The pause() syscall implements a crude form of Java-
MIPS communication by returning control to the Java
code which spawned the MIPS process.

4.2 The Unix Runtime

The Unix runtime extends the simple ANSI C file
I/O model to include a unified-root filesystem, device
nodes, and fcntl()APIs. Device nodes are generally
simulated by mapping reads, writes, and fcntl()s on
the device to the appropriate Java API.

MIPS processes can “mount” other filesystems within
the virtual filesystem made visible to the MIPS pro-
cess. Each filesystem is implemented by a Java class,
which could, for example, offer access to the host
filesystem (including state(), lstat(), mkdir, and
unlink(), and getdents()), the contents of a zip
archive, or even a remote HTTP server.

The fork() call is implemented in an elegant manner
by calling the Java clone() method (deep copy) on
the VM object itself. The new instance is then added to
a static process table to facilitate interprocess commu-
nication.

The exec() method actually loads a MIPS binary
image from the filesystem, feeds it to the MIPS-to-

bytecode translator, and then loads the resulting byte-
code on the fly using ClassLoader.loadBytes().

The waitpid() API allows a parent process to block
pending the completion of a child process, which is
modeled quite easily with the Java wait() method.
The pipe() system call permits parent-to-child IPC
just as on a normal Unix system.

Simple networking support is provided by the
opensocket(), listensocket(), and accept()
methods, which are not yet fully compatible with the
standard Berkeley sockets API.

4.3 Security Concerns

NestedVM processes are completely isolated from the
outside world except for the SYSCALL instruction. As
previously mentioned, the programmer can choose
from various runtime implementations which trans-
late these invocations into operations in the outside
world. By default, none of these implementations al-
lows file or network I/O; this must be explicitly en-
abled, typically on a per-file basis.

Wild writes within the MIPS VM have no effect on
the larger JVM or the host OS; they can only cause
the SYSCALL instruction to be invoked. A judicious
choice of which system calls to enable offers extremely
strong security; for example, the libjpeg library does
not need any host services whatsoever – its sole task
is to decompress one image (which is pre-written into
memory before it starts up), write the decompressed
image to another part of memory, and exit. With
all system calls disabled, libjpeg will function cor-
rectly, and even if it is compromised (for example by
a maliciously-constructed invalid image), the only ef-
fect it can have on the host is to generate an incorrect
decompressed image.

5

4.4 Threading

The NestedVM runtime currently does not sup-
port threading. Providing robust support for “true
threads”, whereby each MIPS thread maps to a Java
thread is probably not possible as the Java Memory
Model [?], since all MIPS memory is stored in a set of
int[]’s and the Java Memory Model does not permit
varying treatment or coherency policies at the granu-
larity of a single array element.

While this presents a major barrier for applications that
use sophisticated locking schemes such as hash synchro-
nization and depend on atomic memory operations,
it is probably possible to apply this threading model
to “well behaved” multithreaded applications which
make no concurrency assumptions other than those ex-
plicitly offered by OS-provided semaphores and mu-
texes.

Complex synchronization and incorrectly synchro-
nized applications can be supported by implementing
a variant of user threads within a single Java thread by
providing a timer interrupt (via a Java asynchronous
exception). Unfortunately this requires that the com-
piled binary be able to restart at any arbitrary instruc-
tion address, which would require a case statement
for every instruction (rather than every jump target),
which would degrade performance and increase the
size of the resulting class file.

5 Optimization and Performance

5.1 Binary-to-Source Mode

Generating Java source code instead of bytecode frees
NestedVM from having to perform simple constant
propagation optimizations, as most Java compilers al-
ready do this. A recurring example is the treatment of
the r0 register, which is fixed as 0 in the MIPS ISA.

Lacking the ability to generate specially optimized
bytecode sequences, a straightforward mapping of the
general purpose hardware registers to 32 int fields
turned out to be optimal. Using local variables for reg-
isters did not offer much of a performance advantage,
presumably since the JVM’s JIT is intelligent enough to
register-allocate temporaries for fields.

 0

 1

 2

 3

 4

 5

libmspacklibfreetypelibjpeg

S
ec

on
ds

Application

Fields vs Local Variables

Fields Only
Some Local Vars

All Local Vars

Unfortunately, Java imposes a 64kb limit on the size of
the bytecode for a single method. This presents a prob-
lem for NestedVM, and necessitates a trampoline trans-
formation, as shown in Figure ??. With this trampoline
in place, large binaries can be handled without much
difficulty – fortunately, there is no corresponding limit
on the size of a classfile as a whole.

One difficulty that arose as a result of using the tram-
poline transformation was the fact that javac and
jikes are unable to properly optimize its switch state-
ments. For example, the following code is compiled
into a comparatively inefficient LOOKUPSWITCH:

switch(pc&0xffffff00) {
case 0x00000100: run_100(); break;
case 0x00000200: run_200(); break;
case 0x00000300: run_300(); break;

}

Whereas the next block of code code optimized into a
TABLESWITCH:

switch(pc>>>8) {
case 0x1: run_100();
case 0x2: run_200();
case 0x3: run_300();

}

This problem was surmounted by switching on a
denser set of case values, which is more amenable to
the TABLESWITCH structure. This change alone nearly
doubled the speed of the compiled binary.

The next performance improvement came from tuning
the size of the methods invoked from the trampoline.
Trial and error led to the conclusion that HotSpot [?] –
the most widely deployed JVM – performs best when
128 MIPS instructions are mapped to each method.

 0

 1

 2

 3

 4

 5

 6

3264128256

S
ec

on
ds

Max Instructions Per Method

Optimal Max Instructions Per Method

libjpeg
libfreetype
libmspack

This phenomenon is due to two factors:

• While the trampoline method’s switch state-
ment can be coded as a TABLESWITCH, the
switch statement within the individual methods
is to sparse to encode this way.

• Hybrid Interpretive-JIT compilers such as
HotSpot generally favor smaller methods since
they are easier to compile and are better can-
didates for compilation in “normal” programs
(unlike NestedVM programs).

After tuning method sizes, our next performance
boost came from eliminating extraneous case branches,
which yielded approximately a 10%-25% performance

6

improvement. Having case statements before each in-
struction prevents JIT compilers from being able to op-
timize across instruction boundaries, since control flow
can enter the body of a switch statement at any of the
cases. In order to eliminate unnecessary case state-
ments we needed to identify all possible jump targets.
Jump targets can come from three sources:

• The .text segment

Every instruction in the text segment is scanned,
and every branch instruction’s destination is
added to the list of possible branch targets. In ad-
dition, the address1 of any function that sets the
link register is added to the list. Finally, combina-
tions of LUI (Load Upper Immediate) and ADDIU
(Add Immediate Unsigned) are scanned for pos-
sible addresses in the .text segment since this
combination of instructions is often used to load
a 32-bit word into a register.

• The .data segment

When compiling switch statements, compilers
often use a jump table stored in the .data seg-
ment. Unfortunately they typically do not iden-
tify these jump tables in any way. Therefore, the
entire .data segment is conservatively scanned
for possible addresses in the .text segment.

• The symbol table

The symbol table is used primarily as a backup
source of jump targets. Scanning the .text
and .data segments should identify any possible
jump targets; however, adding all function sym-
bols in the ELF symbol table also catches func-
tions that are never called directly from the MIPS
binary, such as those invoked only via the Nest-
edVM runtime’s call() method.

Despite all the above optimizations, one insurmount-
able obstacle remained: the Java .class file format
limits the constant pool to 65535 entries. Every in-
teger literal greater than 32767 requires an entry in
this pool, and each branch instruction generates one
of these.

One suboptimal solution was to express con-
stants as offsets from a few central values; for
example “pc = N 0x00010000 + 0x10” (where
N 0x000100000 is a non-final field to prevent javac
from inlining it). This was sufficient to get reasonably
large binaries to compile, and caused only a small
(approximately 5%) performance degradation and a
similarly small increase in the size of the .class file.
However, as we will see in the next section, compiling
directly to .class files (without the intermediate
.java file) eliminates this problem entirely.

5.2 Binary-to-Binary Mode

Compiling directly to bytecode offers a substantial per-
formance gain:

1actually addr+8

 0

 1

 2

 3

 4

 5

libmspacklibfreetypeLibjpeg

S
ec

on
ds

Application

JavaSource vs Classfile

JavaSource
ClassFile

Most of this improvement comes from the handling of
branch instructions and from taking advantage of the
JVM stack to eliminate unnecessary LOADs and STOREs
to local variables.

The first optimization gained by direct bytecode gener-
ation came from the use of the JVM GOTO instruction.
Despite the fact that the Java language does not have a
goto keyword, the VM does in fact have a correspond-
ing instruction which is used quite heavily by javac.
NestedVM’s binary-to-binary mode exploits this in-
struction to avoid emitting inefficient switch..case
structures.

Related to the GOTO instruction is branch statement
optimization. When emitting source code, NestedVM
translates branches into Java source code like this:

if (condition) {
pc = TARGET;
continue;

}

This requires a branch in the JVM regardless of whether
the MIPS branch is actually taken. If condition is
false the JVM has to jump over the code to set pc and
go back to the switch statement; if condition is true
the JVM has to jump to the switch block. By gen-
erating bytecode directly, NestedVM is able to emit a
JVM bytecode branching directly to the address corre-
sponding to the target of the MIPS branch. In the case
where the branch is not taken the JVM doesn’t branch
at all.

A side effect of the previous two optimizations is a
solution to the excess constant pool entries problem.
When jumps are implemented as GOTOs and branches
are taken directly, the pc field does not need to be set.
This eliminates a huge number of constant pool en-
tries. The .class file constant pool size limit is still
present, but it is less likely to be encountered.

Implementation of the MIPS delay slot offers another
opportunity for bytecode-level optimization. In or-
der to take advantage of instructions already in the
pipeline, the MIPS ISA specifies that the instruction af-
ter a jump or branch is always executed, even if the
jump/branch is taken. This instruction is referred to
as the “delay slot2.” The instruction in the delay slot
is actually executed before the branch is taken. To fur-

2Newer MIPS CPUs have pipelines that are much larger than early
MIPS CPUs, so they have to discard instructions anyways

7

ther complicate matters, values from the register file
are loaded before the delay slot is executed.

Fortunately there is a very elegant solution to this
problem when directly emitting bytecode. When a
branch instruction is encountered, the registers needed
for the comparison are pushed onto the stack to pre-
pare for the JVM branch instruction. Then, after the val-
ues are on the stack the delay slot instruction is emit-
ted, followed by the actual JVM branch instruction. Be-
cause the values were pushed to the stack before the
delay slot was executed, any changes the delay slot in-
struction makes to the registers are not visible to the
branch bytecode.

One final advantage of emitting bytecode is a reduc-
tion in the size of the ultimate .class file. All the op-
timizations above lead to more compact bytecode as a
beneficial side effect in addition, NestedVM performs
a few additional size optimizations.

When encountering the following switch block, both
javac and jikes generate redundant bytecode.

switch(pc>>>8) {
case 0x1: run_1(); break;
case 0x2: run_2(); break
...
case 0x100: run_100(); break;

}

The first bytecode in each case arm in the switch state-
ment is ALOAD 0 to prepare for a INVOKESPECIAL
call. By simply lifting this bytecode outside of the
switch statement, each case arm shrinks by one in-
struction.

The net result is quite reasonably sized .class files:

 0

 100

 200

 300

 400

 500

LibMSPackBoehm-GCFreetypeDJpeg

S
iz

e
(k

ilo
by

te
s)

Application

Size of MIPS Binary vs Java Bytecode

Class
MIPS Binary

Compressed Class
Compressed MIPS

5.3 Compiler Flags

Although NestedVM perfectly emulates a MIPS R2000
CPU, its performance profile is nothing like that of
actual silicon. In particular, gcc makes several op-
timizations that increase performance on an actually
MIPS CPU but actually decrease the performance of
NestedVM-generated bytecode. We found the follow-
ing compiler options generally improve performance
when using gcc as the source-to-MIPS compiler:

• -falign-functions

Normally a function’s location in memory has no
effect on its execution speed. However, in the

NestedVM binary translator, the .text segment
is split on power-of-two boundaries due to the
trampoline. If a function starts near the end of
one of these boundaries, a performance critical
part of the function winds up spanning two Java
methods. Telling gcc to align all functions along
these boundaries decreases the chance of this sort
of splitting.

• -fno-rename-registers

On an actual silicon chip, using additional regis-
ters carries no performance penalty (as long as
none are spilled to the stack). However, when
generating bytecode, using fewer “registers” helps
the JVM optimize the machine code it generates
by simplifying the constraints it needs to deal
with. Disabling register renaming has this effect.

• -fno-schedule-insns

Results of MIPS load operations are not available
until two instructions after the load. Without the
-fno-schedule-insns instruction, gcc will
attempt to reorder instructions to do other useful
work during this period of unavailability. Nest-
edVM is under no such constraint, and removing
this reordering typically results in simpler byte-
code.

• -mmemcpy

Enabling this instruction causes gcc to use the
system memcpy() routine instead of generating
loads and stores. As explained in the previ-
ous section, the NestedVM runtime implements
memcpy() using System.arraycopy(), which
is substantially more efficient.

• -ffunction-sections -fdata-sections

These two options are used in conjunction with
the --gc-sections linker option, prompting
the linker to more aggressively prune dead code.

The following chart quantifies the performance gain
conferred by each of the major optimizations outlined
in this section:

 0

 1

 2

 3

 4

 5

Binary
-to-

Binary

CombinedTABLE
SWITCH

GCC
Optimizations

Prune CasesNone

S
ec

on
ds

Effects of Optimizations on Binary-to-Souce and Binary-to-Binary Compilers

5.4 Overall Performance

All times are measured in seconds. All tests were per-
formed on a dual 1Ghz Macintosh G4 running Apple’s

8

latest JVM (Sun HotSpot JDK 1.4.1). Each test was run
8 times within a single VM. The highest and lowest
times were removed and the remaining 6 were aver-
aged. In each case only the first run differed signifi-
cantly from the rest.

The libjpeg test consisted of decoding a 1280x1024
jpeg and writing a tga. The mspack test con-
sisted of extracting all members from arial32.exe,
comic32.exe, times32.exe, and verdan32.exe.
The libfreetype test consisted of rendering ASCII
characters 32-127 of Comic.TTF at sizes from 8 to 48
incrementing by 4 for a total of 950 glyphs.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

NestedVMNestedVM -> GCJNative

S
ec

on
ds

Native/GCJ/Hotspot Boehm-GC (gctest)

 0

 0.5

 1

 1.5

 2

 2.5

HotspotNestedVM -> GCJNative

S
ec

on
ds

Native vs GCJ vs Hotspot

libjpeg
libfreetype
libmspack

 0

 0.5

 1

 1.5

 2

 2.5

NestedVMNative

S
ec

on
ds

IO Performance (Copy 100mb of Data)

6 Sample Applications

6.1 FreeType, libmspack, and libjpeg

The Ibex Project utilizes three libraries for which no
Java-only equivalent exists. The first is the FreeType

font library, which parses, hints, and rasterizes True-
Type and Postscript fonts with exceptional quality.
The project also needed an open source JPEG decom-
presser; surprisingly, none exist for Java. While en-
coders are plentiful, decoders are rare, since Sun’s J2SE
VM includes a native method to invoke libjpeg.

These three libraries make minimal use of the standard
library and OS services, and are all written in very
portable ANSI C code, which made them easy targets
for initial development.

6.2 The GNU Compiler Collection

Our next target, gcc, was initially chosen in order to
relieve developers from the time-consuming and com-
plex task of building a compiler themselves; The Ibex
Project requires a specially configured and patched
version of gcc and its ahead-of-time Java compiler
(gcj) which is cumbersome to build.

Gcc was the first “major” application NestedVM was
used on, and drove the development of most of the sys-
tem library interface development; particularly sup-
port for fork() and exec(), which require the Nest-
edVM Runtime to perform binary-to-bytecode transla-
tion on the fly.

Gcc also makes extensive use of 64-bit integers (long
long), which – for performance reasons – are typically
manipulated using nonobvious instruction sequences
on the 32-bit MIPS architecture. Dealing with these op-
erations uncovered a number of bugs in the translator.

Despite our original goal, we have not yet been able
to translate the C++ or Java front-ends, as the resulting
binary produces a trampoline which exceeds the maxi-
mum size of a single method. Future work will explore
a multi-level trampoline to address this issue.

6.3 TEXand LINPACK

In order to distinguish NestedVM from other single-
language translators for the JVM, we undertook the
task of translating TEX (written in Pascal) and the For-
tran source code for LINPACK into Java bytecodes.

Although actually producing the initial MIPS bina-
ries from the TEX source code turned out to be an ex-
ceptionally tedious and frustrating task, the resulting
binary translated and executed perfectly on the first
run, as did LINPACK. Our reward for this effort was
typesetting our presentation of NestedVM using Nest-
edVM itself. We have also had initial successes run-
ning TEX in a Java Applet, and intend to produce a jar
for embedding TEX code (“TEXlets”) in web pages with-
out the use of a post-processing tool.

The LINPACK benchmark called our attention to
Java’s lack of an API for checking the “cpu time” of a
process. Unfortunately we had to substitute wall-clock
time on an otherwise-quiescent machine as an approx-
imation.

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

NestedVMNestedVM -> GCJNative

S
ec

on
ds

Native/GCJ/Hotspot Linpack

7 Conclusion

We have presented a novel technique for using li-
braries written in unsafe languages within a safe vir-
tual machine without resorting to native interfaces. We
have implemented this technique in NestedVM and
demonstrated its utility by translating six popular soft-
ware applications.

7.1 Future Directions

Although we have only implemented it for the Java
Virtual Machine, our technique generalizes to other
safe bytecode architectures. In particular we would
like to demonstrate this generality by re-targeting the
translator to the Microsoft Intermediate Language [?].

Additionally, we would like to explore other uses for
dynamic loading of translated MIPS binaries by com-
bining NestedVM (which itself is written in Java) and
the ClassLoader.defineClass()mechanism.

7.2 Availability

NestedVM is available under an open source license,
and can be obtained from

http://nestedvm.ibex.org

10

