[llvm-dev] Register data flow commits
Krzysztof Parzyszek via llvm-dev
llvm-dev at lists.llvm.org
Tue Jan 12 12:01:58 PST 2016
Hi,
I commited several patches today that implement a framework that enables
data-flow optimizations on the post-RA (post-SSA) representation. I
thought I'd say a few words about what it is. The code is currently
under lib/Target/Hexagon, but there intent for it from the beginning was
to be target-independent.
The motivation for it came from our (Hexagon) experience with customer
applications. Customers have reported several cases of suboptimal code,
often in the form of "redundant register assignment", which was
typically a result of the register allocation sequence (phi node
elimination, etc). Because of the origin of these issues the usual
SSA-based optimizations were not able to deal with it, and doing
data-flow optimizations after RA was in itself a non-trivial task.
Hence the idea of having a framework that would make such optimizations
easier to implement.
The data-flow graph that is the backbone of the framework resembles SSA,
i.e. it does contain phi nodes, and the like, but it is not a pure SSA,
since it uses physical registers, which can have any number of
definitions. The graph itself is described in detail in the comments in
RDFGraph.h.
The intended use scenario is:
1. Build the data flow graph.
2. Perform a sequence of data-flow optimizations and update the graph in
the process.
3. Update liveness.
Currently, only two optimizations are implemented:
- copy propagation, and
- dead code elimination.
The copy propagation algorithm is very simple at the moment and can only
handle COPY instructions (it calls MachineInstr::isCopy to check if an
instruction is a "copy"). It could easily be extended (via target
hooks) to recognize more advanced examples (such as reg+imm(0), for
example, or "combine" instructions in case of Hexagon). It also does
not update the DFG, which is the biggest issue right now. At the
moment, the Hexagon code that uses it simply rebuilds the DFG after copy
propagation, but this will need to change in the near future.
The dead code elimination provides two functions: collect dead nodes and
erase nodes. The simplest form of use would be to call the first, then
the second (there are comments in the sources that talk about it). The
Hexagon used has an extra step, where it looks for dead address updates
in post-increment loads/stores.
The liveness computation uses an SSA-based algorithm, although it's not
exactly the same as the one from the paper referenced in the comment in
the source. The main difference is that the RDF's DFG contains links
between defs, whereas the SSA form assumed in the paper only connects
defs to uses. The extra step in RDF is to identify phi nodes that do
not reach any non-phi uses, which adds a bit of an extra cost.
The only limitation that I am aware of, that could affect non-Hexagon
targets is that the code does not handle regmasks. There is nothing
special about them, it's just that Hexagon does not use regmasks and so
they didn't show up during the development. There is nothing
particularly hard about adding support for them.
The code was only tested on Hexagon. I haven't tried using it with any
other target.
-Krzysztof
--
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
hosted by The Linux Foundation
More information about the llvm-dev
mailing list