[LLVMdev] Stop opt from producing 832 bit integer?

ryan baird ryanrbaird at gmail.com
Fri Aug 24 10:00:56 PDT 2012


I'm translating llvm's intermediate representation, after optimization, to
the intermediate representation of another optimizer.

One of the problems I've run into is that llvm sometimes (although rarely)
produces strangely sized integers after an opt pass with -O3 (in this
example, 832 bits).  I need to use 8, 16, or 32 bit integers for the other
intermediate language.  In short, I'm wondering if there's a way to prevent
opt from producing ridiculously sized integers, so that my code doesn't
have to deal with them.

I tried to get a small sample of code to produce this problem, so that
you'd have an example:
*
*
*void gsm_print (unsigned char *c)*
*{*
*        short   xmc[52];*

*        xmc[19]  = (*c >> 2) & 0x7;*
*        xmc[22]  = (*c >> 1) & 0x7;*
*        xmc[24]  = (*c >> 3) & 0x7;*
*        xmc[28]  = (*c++ & 0x1) << 2;*
*        xmc[29]  = (*c >> 3) & 0x7;*

*        printf("%.2d %.2d %.2d\n", xmc[19], xmc[22], xmc[24]);*
*}*

I used the following commands to produce the llvm optimized code:
clang -std=c89 -ccc-host-triple mipsel-unknown-linux -msoft-float
-ccc-clang-archs mipsel -S -emit-llvm  test-.c  -o test.cll
opt -S   -O3 test.cll -o test.ll

The 832 bit integer is introduced by OPT:

*; ModuleID = 'test.cll'*
*target datalayout =
"e-p:32:32:32-i1:8:8-i8:8:32-i16:16:32-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-n32"
*
*target triple = "mipsel-unknown-linux"*

*@.str = private unnamed_addr constant [16 x i8] c"%.2d %.2d %.2d\0A\00",
align 1*

*define void @gsm_print(i8* nocapture %c) nounwind {*
*entry:*
*  %0 = load i8* %c, align 1*
*  %conv = zext i8 %0 to i32*
*  %shr13 = lshr i32 %conv, 2*
*  %1 = zext i32 %shr13 to i832*
*  %2 = shl nuw nsw i832 %1, 304*
*  %shr314 = lshr i32 %conv, 1*
*  %and4 = and i32 %shr314, 7*
*  %3 = zext i32 %shr314 to i832*
*  %4 = shl nuw nsw i832 %3, 352*
*  %shr815 = lshr i32 %conv, 3*
*  %5 = zext i32 %shr815 to i832*
*  %6 = shl nuw nsw i832 %5, 384*
*  %and13 = shl nuw nsw i32 %conv, 2*
*  %7 = zext i32 %and13 to i832*
*  %8 = shl nuw nsw i832 %7, 448*
*  %ins9 = or i832 %6, %8*
*  %ins6 = or i832 %ins9, %4*
*  %ins3 = or i832 %ins6, %2*
*  %mask = and i832 %ins3,
2907354897182427562473109274990997453148240953923409872292419068024036200676295656363596833343228648301157852525925214200579414210641920
*
*  %sext17 = lshr exact i832 %mask, 304*
*  %conv2220 = trunc i832 %sext17 to i32*
*  %9 = lshr i832 %mask, 384*
*  %10 = trunc i832 %9 to i32*
*  %call = tail call i32 (i8*, ...)* @printf(i8* getelementptr inbounds
([16 x i8]* @.str, i32 0, i32 0), i32 %conv2220, i32 %and4, i32 %10)
nounwind*
*  ret void*
*}*

*declare i32 @printf(i8* nocapture, ...) nounwind*

Do I have to implement logic for extremely large integers, or is there a
way to limit the size of the integers that opt produces?
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://lists.llvm.org/pipermail/llvm-dev/attachments/20120824/0ce3597f/attachment.html>


More information about the llvm-dev mailing list