
Moving LLVM Projects to GitHub
Table of Contents

Introduction
What This Proposal is Not About
Why Git, and Why GitHub?

Why Move At All?
Why Git?
Why GitHub?
On Managing Revision Numbers with Git
What About Branches and Merges?
What About Commit Emails?

Straw Man Migration Plan
Step #1 : Before The Move
Step #2 : Git Move
Step #3: Write Access Move
Step #4 : Post Move

One or Multiple Repositories?
Multirepo Variant

Umbrella Repository
Living Downstream
Multirepo Preview
Concerns
Workflows

Monorepo Variant
Building a single sub-project

Read/write sub-project mirrors
Living Downstream
Monorepo Preview
Concerns
Workflows

Multi/Mono Hybrid Variant
Concerns

Workflow Before/After
Checkout/Clone a Single Project, without Commit Access
Checkout/Clone a Single Project, with Commit Access

Currently
Multirepo Variant
Monorepo Variant

Checkout/Clone Multiple Projects, with Commit Access
Currently
Multirepo Variant
Monorepo Variant

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/index.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#introduction
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#what-this-proposal-is-not-about
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#why-git-and-why-github
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#why-move-at-all
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#why-git
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#why-github
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#on-managing-revision-numbers-with-git
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#what-about-branches-and-merges
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#what-about-commit-emails
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#straw-man-migration-plan
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#step-1-before-the-move
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#step-2-git-move
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#step-3-write-access-move
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#step-4-post-move
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#one-or-multiple-repositories
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#multirepo-variant
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#umbrella-repository
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#living-downstream
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#multirepo-preview
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#concerns
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflows
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#monorepo-variant
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#building-a-single-sub-project
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#read-write-sub-project-mirrors
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id9
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#monorepo-preview
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id12
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id13
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#multi-mono-hybrid-variant
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id14
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-before-after
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#checkout-clone-a-single-project-without-commit-access
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#checkout-clone-a-single-project-with-commit-access
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#currently
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multicheckout-nocommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-monocheckout-nocommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#checkout-clone-multiple-projects-with-commit-access
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id17
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multicheckout-multicommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-monocheckout-multicommit

Commit an API Change in LLVM and Update the Sub-projects
Branching/Stashing/Updating for Local Development or Experiments

Currently
Multirepo Variant
Monorepo Variant

Bisecting
Currently
Multirepo Variant
Monorepo Variant

References

Introduction
This is a proposal to move our current revision control system from our own hosted Subversion to Git-
Hub. Below are the financial and technical arguments as to why we are proposing such a move and
how people (and validation infrastructure) will continue to work with a Git-based LLVM.

There will be a survey pointing at this document which we’ll use to gauge the community’s reaction
and, if we collectively decide to move, the time-frame. Be sure to make your view count.

Additionally, we will discuss this during a BoF at the next US LLVM Developer meeting
(http://llvm.org/devmtg/2016-11/).

What This Proposal is Not About
Changing the development policy.

This proposal relates only to moving the hosting of our source-code repository from SVN hosted on
our own servers to Git hosted on GitHub. We are not proposing using GitHub’s issue tracker, pull-re-
quests, or code-review.

Contributers will continue to earn commit access on demand under the Developer Policy, except that
that a GitHub account will be required instead of SVN username/password-hash.

Why Git, and Why GitHub?

Why Move At All?
This discussion began because we currently host our own Subversion server and Git mirror on a vol-
untary basis. The LLVM Foundation sponsors the server and provides limited support, but there is only
so much it can do.

Volunteers are not sysadmins themselves, but compiler engineers that happen to know a thing or two
about hosting servers. We also don’t have 24/7 support, and we sometimes wake up to see that con-
tinuous integration is broken because the SVN server is either down or unresponsive.

We should take advantage of one of the services out there (GitHub, GitLab, and BitBucket, among oth-
ers) that offer better service (24/7 stability, disk space, Git server, code browsing, forking facilities,
etc) for free.

Why Git?

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#commit-an-api-change-in-llvm-and-update-the-sub-projects
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#branching-stashing-updating-for-local-development-or-experiments
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id20
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multi-branching
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-mono-branching
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#bisecting
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id23
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multi-bisecting
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-mono-bisecting
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#references
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id26
http://llvm.org/devmtg/2016-11/
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id27
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id28
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id29
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id30

Many new coders nowadays start with Git, and a lot of people have never used SVN, CVS, or anything
else. Websites like GitHub have changed the landscape of open source contributions, reducing the
cost of first contribution and fostering collaboration.

Git is also the version control many LLVM developers use. Despite the sources being stored in a SVN
server, these developers are already using Git through the Git-SVN integration.

Git allows you to:

Commit, squash, merge, and fork locally without touching the remote server.
Maintain local branches, enabling multiple threads of development.
Collaborate on these branches (e.g. through your own fork of llvm on GitHub).
Inspect the repository history (blame, log, bisect) without Internet access.
Maintain remote forks and branches on Git hosting services and integrate back to the main
repository.

In addition, because Git seems to be replacing many OSS projects’ version control systems, there are
many tools that are built over Git. Future tooling may support Git first (if not only).

Why GitHub?
GitHub, like GitLab and BitBucket, provides free code hosting for open source projects. Any of these
could replace the code-hosting infrastructure that we have today.

These services also have a dedicated team to monitor, migrate, improve and distribute the contents of
the repositories depending on region and load.

GitHub has one important advantage over GitLab and BitBucket: it offers read-write SVN access to the
repository (https://github.com/blog/626-announcing-svn-support). This would enable people to
continue working post-migration as though our code were still canonically in an SVN repository.

In addition, there are already multiple LLVM mirrors on GitHub, indicating that part of our community
has already settled there.

On Managing Revision Numbers with Git
The current SVN repository hosts all the LLVM sub-projects alongside each other. A single revision
number (e.g. r123456) thus identifies a consistent version of all LLVM sub-projects.

Git does not use sequential integer revision number but instead uses a hash to identify each commit.
(Linus mentioned that the lack of such revision number is “the only real design mistake” in Git [Torval-
dRevNum].)

The loss of a sequential integer revision number has been a sticking point in past discussions about
Git:

“The ‘branch’ I most care about is mainline, and losing the ability to say ‘fixed in r1234’ (with
some sort of monotonically increasing number) would be a tragic loss.” [LattnerRevNum]
“I like those results sorted by time and the chronology should be obvious, but timestamps are
incredibly cumbersome and make it difficult to verify that a given checkout matches a given set
of results.” [TrickRevNum]
“There is still the major regression with unreadable version numbers. Given the amount of
Bugzilla traffic with ‘Fixed in...’, that’s a non-trivial issue.” [JSonnRevNum]
“Sequential IDs are important for LNT and llvmlab bisection tool.” [MatthewsRevNum].

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id31
https://github.com/blog/626-announcing-svn-support
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id32
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#torvaldrevnum
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#lattnerrevnum
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#trickrevnum
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#jsonnrevnum
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#matthewsrevnum

However, Git can emulate this increasing revision number: git rev-list –count <commit-hash>. This
identifier is unique only within a single branch, but this means the tuple (num, branch-name) uniquely
identifies a commit.

We can thus use this revision number to ensure that e.g. clang -v reports a user-friendly revision
number (e.g. master-12345 or 4.0-5321), addressing the objections raised above with respect to this
aspect of Git.

What About Branches and Merges?
In contrast to SVN, Git makes branching easy. Git’s commit history is represented as a DAG, a depar-
ture from SVN’s linear history. However, we propose to mandate making merge commits illegal in our
canonical Git repository.

Unfortunately, GitHub does not support server side hooks to enforce such a policy. We must rely on
the community to avoid pushing merge commits.

GitHub offers a feature called Status Checks: a branch protected by status checks requires commits
to be whitelisted before the push can happen. We could supply a pre-push hook on the client side that
would run and check the history, before whitelisting the commit being pushed [statuschecks]. Howev-
er this solution would be somewhat fragile (how do you update a script installed on every developer
machine?) and prevents SVN access to the repository.

What About Commit Emails?
We will need a new bot to send emails for each commit. This proposal leaves the email format un-
changed besides the commit URL.

Straw Man Migration Plan

Step #1 : Before The Move
1. Update docs to mention the move, so people are aware of what is going on.
2. Set up a read-only version of the GitHub project, mirroring our current SVN repository.
3. Add the required bots to implement the commit emails, as well as the umbrella repository up-

date (if the multirepo is selected) or the read-only Git views for the sub-projects (if the monore-
po is selected).

Step #2 : Git Move
4. Update the buildbots to pick up updates and commits from the GitHub repository. Not all bots

have to migrate at this point, but it’ll help provide infrastructure testing.
5. Update Phabricator to pick up commits from the GitHub repository.
6. LNT and llvmlab have to be updated: they rely on unique monotonically increasing integer

across branch [MatthewsRevNum].
7. Instruct downstream integrators to pick up commits from the GitHub repository.
8. Review and prepare an update for the LLVM documentation.

Until this point nothing has changed for developers, it will just boil down to a lot of work for buildbot
and other infrastructure owners.

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id33
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#statuschecks
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id34
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id35
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id36
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id37
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#matthewsrevnum

The migration will pause here until all dependencies have cleared, and all problems have been solved.

Step #3: Write Access Move
9. Collect developers’ GitHub account information, and add them to the project.

10. Switch the SVN repository to read-only and allow pushes to the GitHub repository.
11. Update the documentation.
12. Mirror Git to SVN.

Step #4 : Post Move
13. Archive the SVN repository.
14. Update links on the LLVM website pointing to viewvc/klaus/phab etc. to point to GitHub instead.

One or Multiple Repositories?
There are two major variants for how to structure our Git repository: The “multirepo” and the
“monorepo”.

Multirepo Variant
This variant recommends moving each LLVM sub-project to a separate Git repository. This mimics the
existing official read-only Git repositories (e.g., http://llvm.org/git/compiler-rt.git), and creates new
canonical repositories for each sub-project.

This will allow the individual sub-projects to remain distinct: a developer interested only in compiler-
rt can checkout only this repository, build it, and work in isolation of the other sub-projects.

A key need is to be able to check out multiple projects (i.e. lldb+clang+llvm or clang+llvm+libcxx for
example) at a specific revision.

A tuple of revisions (one entry per repository) accurately describes the state across the sub-projects.
For example, a given version of clang would be <LLVM-12345, clang-5432, libcxx-123, etc.>.

Umbrella Repository

To make this more convenient, a separate umbrella repository will be provided. This repository will be
used for the sole purpose of understanding the sequence in which commits were pushed to the differ-
ent repositories and to provide a single revision number.

This umbrella repository will be read-only and continuously updated to record the above tuple. The
proposed form to record this is to use Git [submodules], possibly along with a set of scripts to help
check out a specific revision of the LLVM distribution.

A regular LLVM developer does not need to interact with the umbrella repository – the individual
repositories can be checked out independently – but you would need to use the umbrella repository to
bisect multiple sub-projects at the same time, or to check-out old revisions of LLVM with another
sub-project at a consistent state.

This umbrella repository will be updated automatically by a bot (running on notice from a webhook on
every push, and periodically) on a per commit basis: a single commit in the umbrella repository would
match a single commit in a sub-project.

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id38
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id39
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id40
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id41
http://llvm.org/git/compiler-rt.git
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id42
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#submodules

Living Downstream

Downstream SVN users can use the read/write SVN bridges with the following caveats:

Be prepared for a one-time change to the upstream revision numbers.
The upstream sub-project revision numbers will no longer be in sync.

Downstream Git users can continue without any major changes, with the minor change of upstreaming
using git push instead of git svn dcommit.

Git users also have the option of adopting an umbrella repository downstream. The tooling for the up-
stream umbrella can easily be reused for downstream needs, incorporating extra sub-projects and
branching in parallel with sub-project branches.

Multirepo Preview

As a preview (disclaimer: this rough prototype, not polished and not representative of the final solu-
tion), you can look at the following:

Repository: https://github.com/llvm-beanz/llvm-submodules
Update bot: http://beanz-bot.com:8180/jenkins/job/submodule-update/

Concerns

Because GitHub does not allow server-side hooks, and because there is no “push
timestamp” in Git, the umbrella repository sequence isn’t totally exact: commits
from different repositories pushed around the same time can appear in different or-
ders. However, we don’t expect it to be the common case or to cause serious issues
in practice.
You can’t have a single cross-projects commit that would update both LLVM and
other sub-projects (something that can be achieved now). It would be possible to
establish a protocol whereby users add a special token to their commit messages
that causes the umbrella repo’s updater bot to group all of them into a single
revision.
Another option is to group commits that were pushed closely enough together in the
umbrella repository. This has the advantage of allowing cross-project commits, and
is less sensitive to mis-ordering commits. However, this has the potential to group
unrelated commits together, especially if the bot goes down and needs to catch up.
This variant relies on heavier tooling. But the current prototype shows that it is not
out-of-reach.
Submodules don’t have a good reputation / are complicating the command line.
However, in the proposed setup, a regular developer will seldom interact with sub-
modules directly, and certainly never update them.
Refactoring across projects is not friendly: taking some functions from clang to
make it part of a utility in libSupport wouldn’t carry the history of the code in the
llvm repo, preventing recursively applying git blame for instance. However, this is
not very different than the current state.

Workflows

Checkout/Clone a Single Project, without Commit Access.

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id43
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id44
https://github.com/llvm-beanz/llvm-submodules
http://beanz-bot.com:8180/jenkins/job/submodule-update/
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id45
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id46
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-checkout-commit

Checkout/Clone a Single Project, with Commit Access.
Checkout/Clone Multiple Projects, with Commit Access.
Commit an API Change in LLVM and Update the Sub-projects.
Branching/Stashing/Updating for Local Development or Experiments.
Bisecting.

Monorepo Variant
This variant recommends moving all LLVM sub-projects to a single Git repository, similar to
https://github.com/llvm-project/llvm-project. This would mimic an export of the current SVN reposi-
tory, with each sub-project having its own top-level directory. Not all sub-projects are used for build-
ing toolchains. In practice, www/ and test-suite/ will probably stay out of the monorepo.

Putting all sub-projects in a single checkout makes cross-project refactoring naturally simple:

New sub-projects can be trivially split out for better reuse and/or layering (e.g., to
allow libSupport and/or LIT to be used by runtimes without adding a dependency on
LLVM).
Changing an API in LLVM and upgrading the sub-projects will always be done in a
single commit, designing away a common source of temporary build breakage.
Moving code across sub-project (during refactoring for instance) in a single commit
enables accurate git blame when tracking code change history.
Tooling based on git grep works natively across sub-projects, allowing to easier
find refactoring opportunities across projects (for example reusing a datastructure
initially in LLDB by moving it into libSupport).
Having all the sources present encourages maintaining the other sub-projects when
changing API.

Finally, the monorepo maintains the property of the existing SVN repository that the sub-projects
move synchronously, and a single revision number (or commit hash) identifies the state of the devel-
opment across all projects.

Building a single sub-project

Nobody will be forced to build unnecessary projects. The exact structure is TBD, but making it trivial
to configure builds for a single sub-project (or a subset of sub-projects) is a hard requirement.

As an example, it could look like the following:

mkdir build && cd build
Configure only LLVM (default)
cmake path/to/monorepo
Configure LLVM and lld
cmake path/to/monorepo -DLLVM_ENABLE_PROJECTS=lld
Configure LLVM and clang
cmake path/to/monorepo -DLLVM_ENABLE_PROJECTS=clang

Read/write sub-project mirrors
With the Monorepo, the existing single-subproject mirrors (e.g. http://llvm.org/git/compiler-rt.git)
with git-svn read-write access would continue to be maintained: developers would continue to be able
to use the existing single-subproject git repositories as they do today, with no changes to workflow.
Everything (git fetch, git svn dcommit, etc.) could continue to work identically to how it works today.

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multicheckout-nocommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multicheckout-multicommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-cross-repo-commit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multi-branching
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-multi-bisecting
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id47
https://github.com/llvm-project/llvm-project
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id48
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id49
http://llvm.org/git/compiler-rt.git

The monorepo can be set-up such that the SVN revision number matches the SVN revision in the Git-
Hub SVN-bridge.

Living Downstream

Downstream SVN users can use the read/write SVN bridge. The SVN revision number can be preserved
in the monorepo, minimizing the impact.

Downstream Git users can continue without any major changes, by using the git-svn mirrors on top of
the SVN bridge.

Git users can also work upstream with monorepo even if their downstream fork has split repositories.
They can apply patches in the appropriate subdirectories of the monorepo using, e.g., git am –direc‐
tory=..., or plain diff and patch.

Alternatively, Git users can migrate their own fork to the monorepo. As a demonstration, we’ve mi-
grated the “CHERI” fork to the monorepo in two ways:

Using a script that rewrites history (including merges) so that it looks like the fork
always lived in the monorepo [LebarCHERI]. The upside of this is when you check out
an old revision, you get a copy of all llvm sub-projects at a consistent revision. (For
instance, if it’s a clang fork, when you check out an old revision you’ll get a consis-
tent version of llvm proper.) The downside is that this changes the fork’s commit
hashes.
Merging the fork into the monorepo [AminiCHERI]. This preserves the fork’s commit
hashes, but when you check out an old commit you only get the one sub-project.

Monorepo Preview

As a preview (disclaimer: this rough prototype, not polished and not representative of the final solu-
tion), you can look at the following:

Full Repository: https://github.com/joker-eph/llvm-project
Single sub-project view with SVN write access to the full repo: https://github.-
com/joker-eph/compiler-rt

Concerns

Using the monolithic repository may add overhead for those contributing to a stand-
alone sub-project, particularly on runtimes like libcxx and compiler-rt that don’t
rely on LLVM; currently, a fresh clone of libcxx is only 15MB (vs. 1GB for the
monorepo), and the commit rate of LLVM may cause more frequent git push colli-
sions when upstreaming. Affected contributors can continue to use the SVN bridge
or the single-subproject Git mirrors with git-svn for read-write. Note that this is not
a concern for downstream consumers that don’t need commit access.
Preservation of the existing read/write SVN-based workflows relies on the GitHub
SVN bridge, which is an extra dependency. Maintaining this locks us into GitHub and
could restrict future workflow changes.

Workflows

Checkout/Clone a Single Project, without Commit Access.

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id50
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#lebarcheri
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#aminicheri
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id51
https://github.com/joker-eph/llvm-project
https://github.com/joker-eph/compiler-rt
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id52
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id53
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-checkout-commit

Checkout/Clone a Single Project, with Commit Access.
Checkout/Clone Multiple Projects, with Commit Access.
Commit an API Change in LLVM and Update the Sub-projects.
Branching/Stashing/Updating for Local Development or Experiments.
Bisecting.

Multi/Mono Hybrid Variant
This variant recommends moving only the LLVM sub-projects that are rev-locked to LLVM into a
monorepo (clang, lld, lldb, ...), following the multirepo proposal for the rest. While neither variant rec-
ommends combining sub-projects like www/ and test-suite/ (which are completely standalone), this
goes further and keeps sub-projects like libcxx and compiler-rt in their own distinct repositories.

Concerns

This has most disadvantages of multirepo and monorepo, without bringing many of
the advantages.
Downstream have to upgrade to the monorepo structure, but only partially. So they
will keep the infrastructure to integrate the other separate sub-projects.
All projects that use LIT for testing are effectively rev-locked to LLVM. Furthermore,
some runtimes (like compiler-rt) are rev-locked with Clang. It’s not clear where to
draw the lines.

Workflow Before/After
This section goes through a few examples of workflows, intended to illustrate how end-users or de-
velopers would interact with the repository for various use-cases.

Checkout/Clone a Single Project, without Commit Access
Except the URL, nothing changes. The possibilities today are:

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
or with Git
git clone http://llvm.org/git/llvm.git

After the move to GitHub, you would do either:

git clone https://github.com/llvm-project/llvm.git
or using the GitHub svn native bridge
svn co https://github.com/llvm-project/llvm/trunk

The above works for both the monorepo and the multirepo, as we’ll maintain the existing read-only
views of the individual sub-projects.

Checkout/Clone a Single Project, with Commit Access

Currently

direct SVN checkout
svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm
or using the read-only Git view, with git-svn

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-monocheckout-nocommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-monocheckout-multicommit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-cross-repo-commit
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-mono-branching
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#workflow-mono-bisecting
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id54
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id55
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id56
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id57
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id58
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id59

git clone http://llvm.org/git/llvm.git
cd llvm
git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l # -l avoids fetching ahead of the git mirror.

Commits are performed using svn commit or with the sequence git commit and git svn dcommit.

Multirepo Variant

With the multirepo variant, nothing changes but the URL, and commits can be performed using svn
commit or git commit and git push:

git clone https://github.com/llvm/llvm.git llvm
or using the GitHub svn native bridge
svn co https://github.com/llvm/llvm/trunk/ llvm

Monorepo Variant

With the monorepo variant, there are a few options, depending on your constraints. First, you could
just clone the full repository:

git clone https://github.com/llvm/llvm-projects.git llvm
or using the GitHub svn native bridge
svn co https://github.com/llvm/llvm-projects/trunk/ llvm

At this point you have every sub-project (llvm, clang, lld, lldb, ...), which doesn’t imply you have to
build all of them. You can still build only compiler-rt for instance. In this way it’s not different from
someone who would check out all the projects with SVN today.

You can commit as normal using git commit and git push or svn commit, and read the history for a
single project (git log libcxx for example).

Secondly, there are a few options to avoid checking out all the sources.

Using the GitHub SVN bridge

The GitHub SVN native bridge allows to checkout a subdirectory directly:

svn co https://github.com/llvm/llvm-projects/trunk/compiler-rt compiler-rt —
username=...

This checks out only compiler-rt and provides commit access using “svn commit”, in the same way as
it would do today.

Using a Subproject Git Nirror

You can use git-svn and one of the sub-project mirrors:

Clone from the single read-only Git repo
git clone http://llvm.org/git/llvm.git
cd llvm
Configure the SVN remote and initialize the svn metadata
$ git svn init https://github.com/joker-eph/llvm-project/trunk/llvm —username=...
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l

In this case the repository contains only a single sub-project, and commits can be made using git

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id60
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id61
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#build-single-project
https://github.com/llvm/llvm-projects/trunk/compiler-rt

svn dcommit, again exactly as we do today.

Using a Sparse Checkouts

You can hide the other directories using a Git sparse checkout:

git config core.sparseCheckout true
echo /compiler-rt > .git/info/sparse-checkout
git read-tree -mu HEAD

The data for all sub-projects is still in your .git directory, but in your checkout, you only see compil‐
er-rt. Before you push, you’ll need to fetch and rebase (git pull –rebase) as usual.

Note that when you fetch you’ll likely pull in changes to sub-projects you don’t care about. If you are
using spasre checkout, the files from other projects won’t appear on your disk. The only effect is that
your commit hash changes.

You can check whether the changes in the last fetch are relevant to your commit by running:

git log origin/master@{1}..origin/master -- libcxx

This command can be hidden in a script so that git llvmpush would perform all these steps, fail only
if such a dependent change exists, and show immediately the change that prevented the push. An im-
mediate repeat of the command would (almost) certainly result in a successful push. Note that today
with SVN or git-svn, this step is not possible since the “rebase” implicitly happens while committing
(unless a conflict occurs).

Checkout/Clone Multiple Projects, with Commit Access
Let’s look how to assemble llvm+clang+libcxx at a given revision.

Currently

svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm -r $REVISION
cd llvm/tools
svn co http://llvm.org/svn/llvm-project/clang/trunk clang -r $REVISION
cd ../projects
svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx -r $REVISION

Or using git-svn:

git clone http://llvm.org/git/llvm.git
cd llvm/
git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l
git checkout `git svn find-rev -B r258109`
cd tools
git clone http://llvm.org/git/clang.git
cd clang/
git svn init https://llvm.org/svn/llvm-project/clang/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master
git svn rebase -l
git checkout `git svn find-rev -B r258109`
cd ../../projects/
git clone http://llvm.org/git/libcxx.git
cd libcxx
git svn init https://llvm.org/svn/llvm-project/libcxx/trunk --username=<username>
git config svn-remote.svn.fetch :refs/remotes/origin/master

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id62
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id63

git svn rebase -l
git checkout `git svn find-rev -B r258109`

Note that the list would be longer with more sub-projects.

Multirepo Variant

With the multirepo variant, the umbrella repository will be used. This is where the mapping from a
single revision number to the individual repositories revisions is stored.:

git clone https://github.com/llvm-beanz/llvm-submodules
cd llvm-submodules
git checkout $REVISION
git submodule init
git submodule update clang llvm libcxx
the list of sub-project is optional, `git submodule update` would get them all.

At this point the clang, llvm, and libcxx individual repositories are cloned and stored alongside each
other. There are CMake flags to describe the directory structure; alternatively, you can just symlink
clang to llvm/tools/clang, etc.

Another option is to checkout repositories based on the commit timestamp:

git checkout `git rev-list -n 1 --before="2009-07-27 13:37" master`

Monorepo Variant

The repository contains natively the source for every sub-projects at the right revision, which makes
this straightforward:

git clone https://github.com/llvm/llvm-projects.git llvm-projects
cd llvm-projects
git checkout $REVISION

As before, at this point clang, llvm, and libcxx are stored in directories alongside each other.

Commit an API Change in LLVM and Update the Sub-projects
Today this is possible, even though not common (at least not documented) for subversion users and
for git-svn users. For example, few Git users try to update LLD or Clang in the same commit as they
change an LLVM API.

The multirepo variant does not address this: one would have to commit and push separately in every
individual repository. It would be possible to establish a protocol whereby users add a special token to
their commit messages that causes the umbrella repo’s updater bot to group all of them into a single
revision.

The monorepo variant handles this natively.

Branching/Stashing/Updating for Local Development or Experiments

Currently

SVN does not allow this use case, but developers that are currently using git-svn can do it. Let’s look

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id64
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id65
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id66
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id67
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id68

in practice what it means when dealing with multiple sub-projects.

To update the repository to tip of trunk:

git pull
cd tools/clang
git pull
cd ../../projects/libcxx
git pull

To create a new branch:

git checkout -b MyBranch
cd tools/clang
git checkout -b MyBranch
cd ../../projects/libcxx
git checkout -b MyBranch

To switch branches:

git checkout AnotherBranch
cd tools/clang
git checkout AnotherBranch
cd ../../projects/libcxx
git checkout AnotherBranch

Multirepo Variant

The multirepo works the same as the current Git workflow: every command needs to be applied to
each of the individual repositories. However, the umbrella repository makes this easy using git sub‐
module foreach to replicate a command on all the individual repositories (or submodules in this case):

To create a new branch:

git submodule foreach git checkout -b MyBranch

To switch branches:

git submodule foreach git checkout AnotherBranch

Monorepo Variant

Regular Git commands are sufficient, because everything is in a single repository:

To update the repository to tip of trunk:

git pull

To create a new branch:

git checkout -b MyBranch

To switch branches:

git checkout AnotherBranch

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id69
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id70

Bisecting
Assuming a developer is looking for a bug in clang (or lld, or lldb, ...).

Currently

SVN does not have builtin bisection support, but the single revision across sub-projects makes it pos-
sible to script around.

Using the existing Git read-only view of the repositories, it is possible to use the native Git bisection
script over the llvm repository, and use some scripting to synchronize the clang repository to match
the llvm revision.

Multirepo Variant

With the multi-repositories variant, the cross-repository synchronization is achieved using the um-
brella repository. This repository contains only submodules for the other sub-projects. The native Git
bisection can be used on the umbrella repository directly. A subtlety is that the bisect script itself
needs to make sure the submodules are updated accordingly.

For example, to find which commit introduces a regression where clang-3.9 crashes but not clang-3.8
passes, one should be able to simply do:

git bisect start release_39 release_38
git bisect run ./bisect_script.sh

With the bisect_script.sh script being:

#!/bin/sh
cd $UMBRELLA_DIRECTORY
git submodule update llvm clang libcxx #....
cd $BUILD_DIR

ninja clang || exit 125 # an exit code of 125 asks "git bisect"
 # to "skip" the current commit

./bin/clang some_crash_test.cpp

When the git bisect run command returns, the umbrella repository is set to the state where the re-
gression is introduced. The commit diff in the umbrella indicate which submodule was updated, and
the last commit in this sub-projects is the one that the bisect found.

Monorepo Variant

Bisecting on the monorepo is straightforward, and very similar to the above, except that the bisection
script does not need to include the git submodule update step.

The same example, finding which commit introduces a regression where clang-3.9 crashes but not
clang-3.8 passes, will look like:

git bisect start release_39 release_38
git bisect run ./bisect_script.sh

With the bisect_script.sh script being:

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id71
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id72
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id73
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id74

#!/bin/sh
cd $BUILD_DIR

ninja clang || exit 125 # an exit code of 125 asks "git bisect"
 # to "skip" the current commit

./bin/clang some_crash_test.cpp

Also, since the monorepo handles commits update across multiple projects, you’re less like to en-
counter a build failure where a commit change an API in LLVM and another later one “fixes” the build
in clang.

References
[LattnerRevNum] Chris Lattner, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041739.html
[TrickRevNum] Andrew Trick, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041721.html
[JSonnRevNum] Joerg Sonnenberg, http://lists.llvm.org/pipermail/llvm-dev/2011-July/041688.html
[TorvaldRevNum] Linus Torvald, http://git.661346.n2.nabble.com/Git-commit-generation-

numbers-td6584414.html
[MatthewsRevNum] (1, 2) Chris Matthews, http://lists.llvm.org/pipermail/cfe-dev/2016-

July/049886.html
[submodules] Git submodules, https://git-scm.com/book/en/v2/Git-Tools-Submodules)
[statuschecks] GitHub status-checks, https://help.github.com/articles/about-required-status-

checks/
[LebarCHERI] Port CHERI to a single repository rewriting history,

http://lists.llvm.org/pipermail/llvm-dev/2016-July/102787.html
[AminiCHERI] Port CHERI to a single repository preserving history,

http://lists.llvm.org/pipermail/llvm-dev/2016-July/102804.html

file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id75
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id2
http://lists.llvm.org/pipermail/llvm-dev/2011-July/041739.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id3
http://lists.llvm.org/pipermail/llvm-dev/2011-July/041721.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id4
http://lists.llvm.org/pipermail/llvm-dev/2011-July/041688.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id1
http://git.661346.n2.nabble.com/Git-commit-generation-numbers-td6584414.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id5
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id7
http://lists.llvm.org/pipermail/cfe-dev/2016-July/049886.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id8
https://git-scm.com/book/en/v2/Git-Tools-Submodules
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id6
https://help.github.com/articles/about-required-status-checks/
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id10
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102787.html
file:///Users/mehdi_amini/projects/vanilla/llvm/githubmove/build/docs/html/Proposals/GitHubMove.html#id11
http://lists.llvm.org/pipermail/llvm-dev/2016-July/102804.html

