
Krzysztof Parzyszek
Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
hosted by The Linux Foundation

Design Document:

Adding Register Data Flow to LLVM

Introduction

� Machine instruction-level optimization sequence:

� Aggressive optimizations on SSA form.

� Register allocation sequence (exiting SSA).

� Post-RA transformations on non-SSA representation.

� Few optimizations happen after register allocation:

� Many transformations that happen after RA deal with finalizing the code: pseudo-
instruction expansion, prolog/epilog insertion, packetization (on Hexagon), etc.

� Many deal with the control flow or execution flow: branch folding, if conversion, tail
duplication, post-RA scheduling, etc.

� Not many are focused on data flow: machine copy propagation.

� Post-RA data-flow opportunities:

� Register allocation process can insert register copies (phi node elimination), or
replicate instructions (rematerialization).

� Much less concern for register pressure, (no new spills, but potential interference with
post-RA scheduler).

Motivation

� Code quality concerns: redundant register assignments, unnecessary register
copies, etc.

� Optimizing these cases may require cross-block analysis.

� Some data flow optimizations may create further data flow optimization
opportunities:

� Copy propagation may create dead code.

� Code motion can make the “update” dead in load/store-with-update (e.g. pre- or post-
increment).

� Cross-block data flow analysis may be expensive: no general framework to
use.

� The goal: provide a framework that will minimize the complexity of data flow
optimizations after register allocation.

� Use a form similar to SSA.

The approach

� The framework itself is transparent:

� There are no required changes to the program representation.

� The analysis framework will not modify the program.

� Create a graph that represents the flow of data between registers:

� Structure of the graph mimics SSA: graph is created for an entire machine function.

� Graph contains nodes for register definitions and uses, edges connecting related
nodes.

� Additional nodes help represent the structure of the function: blocks and statements,
as well as the information required by SSA, such as phi nodes.

Design considerations

� Data flow graph will contain large number of nodes:

� Several thousand nodes is not uncommon.

� Large functions can have several hundred thousand nodes.

� Memory consumption is a concern.

� Reduce memory usage by avoiding pointers:

� Pointers are usually 64-bit long.

� Use 32-bit integers to identify nodes, translate between the id’s and addresses at run-
time.

� Represent all nodes through PODs:

� Simplifies memory allocation scheme required for efficient translation between
addresses and id’s.

� Represent all information as nodes:

� Besides defs and uses, basic blocks, statements, phi nodes are also nodes.

� All data is allocated using the same mechanism.

Nodes and their structure

� All nodes are derived from NodeBase:

� The only structure that defines data members: union of many layouts.

� Derived classes can only provide function definitions to operate on the appropriate
members of the union.

� There are two types of nodes: CodeNode and RefNode.

� CodeNode is a container that holds other nodes:

� Basic block, phi node, statement, as well as the function itself are all represented
through CodeNodes.

� Nodes within a container are connected by a circular linked list.

� RefNode is a node that represents a definition or a use of some entity from
the program.

� Vast majority of RefNodes are defs or uses of registers.

� Phi nodes contain RefNodes that refer to basic blocks.

SSA property

� Every node has a single reaching def.

� Given def may not be the only source of data at the point of use:

� Imprecise and shadow nodes deal with this (described later)

� Both are a deviation from the pure SSA.

� Join points are expressed through phi nodes.

� There are no phi nodes in the actual code: they only exist in the graph.

CodeNodes

� Subclasses:

� FuncNode – corresponds to the machine function.

� BlockNode – corresponds to a machine basic block.

� InstrNode – corresponds to an instruction, one of:

� PhiNode

� StmtNode – actual machine instruction.

� Each CodeNode contains:

� Pointer to the corresponding element of the program: MachineFunction,
MachineBasicBlock, MachineInstr, MachineOperand.

RefNodes

� Each RefNode contains:

� Id of the reaching def node: it can be 0 if there is no actual reaching definition.

� Pointer to the MachineOperand to which the node corresponds, except defs and uses
in phi nodes.

� Subclasses:

� DefNode contains:

� Id of the first reached def

� Id of the first reached use

� Id of the sibling def: next def with the same (non-zero) reaching def.

� UseNode contains:

� Id of the sibling use: next use with the same (non-zero) reaching def.

� Sibling chains:

� Separate chains for defs and for uses reached by the same def.

� Terminated by a node id of 0.

Examples

Consider

R0<def> = add R1<use>, R2<use>

The graph representation will be:

Stmt UseUseDef

Examples

Consider

R0<def> = add R1<use>, R2<use>

R3<def> = add R0<use>, 1

Reached use

Reaching def

Statements are linked into

a circular list within a

block node.

Stmt UseUseDef

Stmt UseDef

No node for the

immediate operand

Graph dumps

� Node id format:

• UseNode format:

p321

Node id: unsigned 32-bit integer (non-zero)

Node kind indicator: f (function), b (block), p (phi), s

(statement), d (def), u (use).

u123<R0>(d59):u87

Node id of sibling use

Node id of reaching def

Name of register used

Node id of the use node

Graph dumps —continued

� DefNode format:

• Any node id that is 0 will be omitted:

– Minimal def node: d123<R0>(,,):

– Minimal use node: u123<R0>():

d141<R2>(d17,d243,u155):d117

Node id of sibling def

Node id of reaching def

Node id of first reached def

Node id of first reached use

Node id of the def node

Name of register used

Shadow ref nodes

� What is the reaching def of R3:2 in the last instruction?

� Slightly different scenario from the case for imprecise nodes:

� The defs of R3 and R2 are not related: R2 and R3 do not overlap.

� There is only room in a node for one reaching def.

� If R2 is the reaching def, then the def of R3 may appear dead (and the other way around): the def-
use relationship will be missing from the graph.

� Create an extra “shadow” use node to hold the additional reaching def:

� Defs can also be “shadows”.

� There can be as many shadows as there are needed.

Consider the following case

R3 = #0 ; load 0 into R3

R2 = add R4, #1 ; add 1 to R4, store result in R2

R5:4 = asl R3:2, #2 ; shift pair R3:R2 left by 2 bits

Shadow ref nodes —continued

� The “shadowed” node is also considered a “shadow”:

� The two uses for R3:2 (one for R2 and one for R3) will both be marked as “shadows”.

� In the original design, the “first” node was not a shadow, only the “extra” ones.

� In data-flow analysis it may be necessary to know if a node has a shadow: marking all related nodes
as shadows makes the check faster.

Shadow ref nodes: example

� Graph representation:

� Shadow nodes marked with “.

Consider the following case

R3 = #0 ; load 0 into R3

R2 = add R4, #1 ; add 1 to R4, store result in R2

R5:4 = asl R3:2, #2 ; shift pair R3:R2 left by 2 bits

d2<R3>(…,…,u7):

d4<R2>(…,…,u8):, u5<R4>(…):

d6<R5:4>(…,…,…):, u7”<R3:2>(d2):, u8”<R3:2>(d4):

Phi nodes

� Phi nodes do not exist in the actual code.

� Defs and uses in phi nodes cannot point to actual operands.

� The register shown in dumps comes from MachineOperand.

� Store the actual register in the node.

� Phi nodes may form cycles.

� Some cycles in the graph may be unnecessary.

� Phi nodes are created speculatively.

� Trivially unused ones are removed in the build process.

