Design Document:
Adding Register Data Flow to LLVM

Krzysztof Parzyszek

Qualcomm Innovation Center, Inc. is a member of Code Aurora Forum,
hosted by The Linux Foundation

Introduction

- Machine instruction-level optimization sequence:
« Aggressive optimizations on SSA form.
* Register allocation sequence (exiting SSA).
* Post-RA transformations on non-SSA representation.

- Few optimizations happen after register allocation:

- Many transformations that happen after RA deal with finalizing the code: pseudo-
instruction expansion, prolog/epilog insertion, packetization (on Hexagon), etc.

* Many deal with the control flow or execution flow: branch folding, if conversion, tail
duplication, post-RA scheduling, etc.

* Not many are focused on data flow: machine copy propagation.

* Post-RA data-flow opportunities:

* Register allocation process can insert register copies (phi node elimination), or
replicate instructions (rematerialization).

* Much less concern for register pressure, (no new spills, but potential interference with
post-RA scheduler).

Motivation

- Code quality concerns: redundant register assignments, unnecessary register
copies, etc.

* Optimizing these cases may require cross-block analysis.
* Some data flow optimizations may create further data flow optimization
opportunities:

* Copy propagation may create dead code.

« Code motion can make the “update” dead in load/store-with-update (e.g. pre- or post-
increment).

* Cross-block data flow analysis may be expensive: no general framework to
use.

* The goal: provide a framework that will minimize the complexity of data flow
optimizations after register allocation.

* Use a form similar to SSA.

The approach

* The framework itself is transparent:
* There are no required changes to the program representation.
 The analysis framework will not modify the program.

* Create a graph that represents the flow of data between registers:
» Structure of the graph mimics SSA: graph is created for an entire machine function.

* Graph contains nodes for register definitions and uses, edges connecting related
nodes.

- Additional nodes help represent the structure of the function: blocks and statements,
as well as the information required by SSA, such as phi nodes.

Design considerations

- Data flow graph will contain large number of nodes:
- Several thousand nodes is not uncommon.
* Large functions can have several hundred thousand nodes.
* Memory consumption is a concern.

- Reduce memory usage by avoiding pointers:
* Pointers are usually 64-bit long.
* Use 32-bit integers to identify nodes, translate between the id’s and addresses at run-
time.
* Represent all nodes through PODs:
 Simplifies memory allocation scheme required for efficient translation between
addresses and id’s.
* Represent all information as nodes:
* Besides defs and uses, basic blocks, statements, phi nodes are also nodes.
- All data is allocated using the same mechanism.

Nodes and their structure

* All nodes are derived from NodeBase:
* The only structure that defines data members: union of many layouts.
* Derived classes can only provide function definitions to operate on the appropriate
members of the union.
* There are two types of nodes: CodeNode and RefNode.

* CodeNode is a container that holds other nodes:

* Basic block, phi node, statement, as well as the function itself are all represented
through CodeNodes.

* Nodes within a container are connected by a circular linked list.

- RefNode is a node that represents a definition or a use of some entity from
the program.
* Vast majority of RefNodes are defs or uses of registers.
* Phi nodes contain RefNodes that refer to basic blocks.

SSA property

* Every node has a single reaching def.

 Given def may not be the only source of data at the point of use:
* Imprecise and shadow nodes deal with this (described later)
* Both are a deviation from the pure SSA.

* Join points are expressed through phi nodes.
* There are no phi nodes in the actual code: they only exist in the graph.

CodeNodes

* Subclasses:
* FuncNode — corresponds to the machine function.
* BlockNode — corresponds to a machine basic block.

* InstrNode — corresponds to an instruction, one of:
* PhiNode
+ StmtNode — actual machine instruction.

* Each CodeNode contains:

* Pointer to the corresponding element of the program: MachineFunction,
MachineBasicBlock, Machinelnstr, MachineOperand.

RefNodes

- Each RefNode contains:
* |Id of the reaching def node: it can be O if there is no actual reaching definition.
* Pointer to the MachineOperand to which the node corresponds, except defs and uses
in phi nodes.
* Subclasses:

* DefNode contains:
* |d of the first reached def
* |d of the first reached use
* |d of the sibling def: next def with the same (non-zero) reaching def.

* UseNode contains:
* Id of the sibling use: next use with the same (non-zero) reaching def.

- Sibling chains:
- Separate chains for defs and for uses reached by the same def.
» Terminated by a node id of 0.

Examples

Consider
Ro<def> = add Rl<use>, R2<use>

The graph representation will be:

e e T e ST

Examples

Consider
RO<def> = add Rl<use>, R2<use>
R3<def> = add RO<use>, 1

No node for the
immediate operand

L e e

Reached use

Reaching def

\ 4
Stmt }4,[Def Use

<

Statements are linked into

T~~~ a circular list within a

block node.

Graph dumps

* Node id format:

. Node id: unsigned 32-bit integer (non-zero)

—— Node kind indicator: f (function), b (block), p (phi), s
(statement), d (def), u (use).

* UseNode format:

u123<RO>(d59) :u87
P S Node id of sibling use
S Node id of reaching def
e Name of register used

.. Node |d Of the use node

Graph dumps —continued

* DefNode format:
d141<R2>(d17,d243, u155) -d117

S Node id of sibling def
. S Node id of first reached use
e Node id of first reached def
T Node id of reaching def

; .. Name Of register used

... Node |d Of the def node

* Any node id that is O will be omitted:
— Minimal def node: d123<Re>(,,):
— Minimal use node: ul23<RO>():

Shadow ref nodes

Consider the following case

R3 #0
R2 = add R4, #1
R5:4 = asl R3:2, #2

* What is the reaching def of R3:2 in the last instruction?

- Slightly different scenario from the case for imprecise nodes:
* The defs of R3 and R2 are not related: R2 and R3 do not overlap.

* There is only room in a node for one reaching def.

* If R2 is the reaching def, then the def of R3 may appear dead (and the other way around): the def-
use relationship will be missing from the graph.

* Create an extra “shadow” use node to hold the additional reaching def:
* Defs can also be “shadows”.
* There can be as many shadows as there are needed.

Shadow ref nodes —continued

* The “shadowed” node is also considered a “shadow”:
* The two uses for R3:2 (one for R2 and one for R3) will both be marked as “shadows”.

* In the original design, the “first” node was not a shadow, only the “extra” ones.

* In data-flow analysis it may be necessary to know if a node has a shadow: marking all related nodes
as shadows makes the check faster.

Shadow ref nodes: example

Consider the following case

R3 = #0
R2 = add R4, #1
R5:4 = asl R3:2, #2

* Graph representation:
« Shadow nodes marked with .

d2<R3>(..,..,U7):
d4<R2>(.,..,u8):, U5<R4>(..):
d6<R5:4>(.cyuy) i, U77”<R3:2>(d2):, u8”<R3:2>(d4):

Phi nodes

* Phi nodes do not exist in the actual code.

* Defs and uses in phi nodes cannot point to actual operands.
* The register shown in dumps comes from MachineOperand.
+ Store the actual register in the node.

* Phi nodes may form cycles.
* Some cycles in the graph may be unnecessary.
* Phi nodes are created speculatively.
* Trivially unused ones are removed in the build process.

