
YAML I/O

Introduction to YAML
Introduction to YAML I/O
Error Handling
Scalars

Built-in types
Unique types
Hex types
ScalarEnumerationTraits
BitValue
Custom Scalar

Mappings
No Normalization
Normalization
Default values
Order of Keys

Sequence
Flow Sequence

User Context Data
Output
Input

Introduction to YAML
YAML is a human readable data serialization language. The full YAML language spec can be read at
yaml.org. The simplest form of yaml is just “scalars”, “mappings”, and “sequences”. A scalar is any
number or string. A mapping is a set of key-value pairs where the key ends with a colon. For example:

a mapping
name: Tom
hat-size: 7

A sequence is a list of items where each item starts with a leading dash (‘-‘). For example:

a sequence
- x86
- x86_64
- PowerPC

You can combine mappings and sequences by indenting. For example a sequence of mappings in
which one of the mapping values is itself a sequence:

file:///Volumes/my/src/llvm/docs/_build/html/index.html
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#introduction-to-yaml
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#introduction-to-yaml-i-o
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#error-handling
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#scalars
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#built-in-types
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#unique-types
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#hex-types
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#scalarenumerationtraits
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#bitvalue
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#custom-scalar
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#mappings
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#no-normalization
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#normalization
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#default-values
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#order-of-keys
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#sequence
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#flow-sequence
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#user-context-data
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#output
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#input
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id1
http://www.yaml.org/spec/1.2/spec.html#Introduction

a sequence of mappings with one key's value being a sequence
- name: Tom
 cpus:
 - x86
 - x86_64
- name: Bob
 cpus:
 - x86
- name: Dan
 cpus:
 - PowerPC
 - x86

Sometime sequences are known to be short and the one entry per line is too verbose, so YAML offers
an alternate syntax for sequences called a “Flow Sequence” in which you put comma separated
sequence elements into square brackets. The above example could then be simplified to :

a sequence of mappings with one key's value being a flow sequence
- name: Tom
 cpus: [x86, x86_64]
- name: Bob
 cpus: [x86]
- name: Dan
 cpus: [PowerPC, x86]

Introduction to YAML I/O
The use of indenting makes the yaml easy for a human to read and understand, but having a program
read and write yaml involves a lot of tedious details. The YAML I/O library structures and simplifies
reading and writing yaml documents.

YAML I/O assumes you have some “native” data structures which you want to be able to dump as
YAML and recreate from YAML. The first step is to try writing example YAML for your data structures.
You may find after looking at possible YAML representations that a direct mapping of your data
structures to YAML is not very readable. Often the fields are not in the order that a human would find
readable. Or the same information is replicated in multiple locations, making it hard for a human to
write such YAML correctly.

In relational database theory there is a design step called normalization in which you reorganize fields
and tables. The same considerations need to go into the design of your YAML encoding. But, you may
not want to change your exisiting native data structures. Therefore, when writing out YAML there may
be a normalization step, and when reading YAML there would be a corresponding denormalization
step.

YAML I/O uses a non-invasive, traits based design. YAML I/O defines some abstract base templates.
You specialize those templates on your data types. For instance, if you have an eumerated type FooBar
you could specialize ScalarEnumerationTraits on that type and define the enumeration() method:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<FooBar> {
 static void enumeration(IO &io, FooBar &value) {
 ...
 }
};

As with all YAML I/O template specializations, the ScalarEnumerationTraits is used for both reading

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id2

and writing YAML. That is, the mapping between in-memory enum values and the YAML string
representation is only in place. This assures that the code for writing and parsing of YAML stays in
sync.

To specify a YAML mappings, you define a specialization on llvm::yaml::MapppingTraits. If your native
data structure happens to be a struct that is already normalized, then the specialization is simple. For
example:

using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

template <>
struct MapppingTraits<Person> {
 static void mapping(IO &io, Person &info) {
 io.mapRequired("name", info.name);
 io.mapOptional("hat-size", info.hatSize);
 }
};

A YAML sequence is automatically infered if you data type has begin()/end() iterators and a
push_back() method. Therefore any of the STL containers (such as std::vector<>) will automatically
translate to YAML sequences.

Once you have defined specializations for your data types, you can programmatically use YAML I/O to
write a yaml document:

using llvm::yaml::Output;

Person tom;
tom.name = "Tom";
tom.hatSize = 8;
Person dan;
dan.name = "Dan";
dan.hatSize = 7;
std::vector<Person> persons;
persons.push_back(tom);
persons.push_back(dan);

Output yout(llvm::outs());
yout << persons;

This would write the following:

- name: Tom
 hat-size: 8
- name: Dan
 hat-size: 7

And you can also read such YAML documents with the following code:

using llvm::yaml::Input;

typedef std::vector<Person> PersonList;
std::vector<PersonList> docs;

Input yin(document.getBuffer());
yin >> docs;

if (yin.error())
 return;

// Process read document
for (PersonList &pl : docs) {
 for (Person &person : pl) {
 cout << "name=" << person.name;
 }
}

One other feature of yaml is the ability to define multiple documents in a single file. That is why
reading yaml produces a vector of your document type.

Error Handling
When parsing a yaml document, if the input does not match your schema (as expressed in your
XxxTraits<> specializations). YAML I/O will print out an error message and your Input object’s error()
method will return true. For instance the following document:

- name: Tom
 shoe-size: 12
- name: Dan
 hat-size: 7

Has a key (shoe-size) that is not defined in the schema. YAML I/O will automatically generate this
error:

YAML:2:2: error: unknown key 'shoe-size'
 shoe-size: 12
 ^~~~~~~~~

Similar errors are produced for other input not conforming to the schema.

Scalars
YAML scalars are just strings (i.e. not a sequence or mapping). The YAML I/O library provides support
for translating between yaml scalars and specific C++ types.

Built-in types
The following types have built-in support in YAML I/O:

bool
float
double
StringRef
int64_t
int32_t
int16_t

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id3
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id4
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id5

int8_t
uint64_t
uint32_t
uint16_t
uint8_t

That is, you can use those types in fields of MapppingTraits or as element type in sequence. When
reading, YAML I/O will validate that the string found is convertible to that type and error out if not.

Unique types
Given that YAML I/O is trait based, the selection of how to convert your data to yaml is based on the
type of your data. But in C++ type matching, typedefs do not generate unique type names. That
means if you have two typedefs of unsigned int, to YAML I/O both types look exactly like unsigned int.
To facilitate make unique type names, YAML I/O provides a macro which is used like a typedef on
built-in types, but expands to create a class with conversion operators to and from the base type. For
example:

LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyFooFlags)
LLVM_YAML_STRONG_TYPEDEF(uint32_t, MyBarFlags)

This generates two classes MyFooFlags and MyBarFlags which you can use in your native data
structures instead of uint32_t. They are implicitly converted to and from uint32_t. The point of
creating these unique types is that you can now specify traits on them to get different YAML
conversions.

Hex types
An example use of a unique type is that YAML I/O provides fixed sized unsigned integers that are
written with YAML I/O as hexadecimal instead of the decimal format used by the built-in integer
types:

Hex64
Hex32
Hex16
Hex8

You can use llvm::yaml::Hex32 instead of uint32_t and the only different will be that when YAML I/O
writes out that type it will be formatted in hexadecimal.

ScalarEnumerationTraits
YAML I/O supports translating between in-memory enumerations and a set of string values in YAML
documents. This is done by specializing ScalarEnumerationTraits<> on your enumeration type and
define a enumeration() method. For instance, suppose you had an enumeration of CPUs and a struct
with it as a field:

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id6
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id7
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id8

enum CPUs {
 cpu_x86_64 = 5,
 cpu_x86 = 7,
 cpu_PowerPC = 8
};

struct Info {
 CPUs cpu;
 uint32_t flags;
};

To support reading and writing of this enumeration, you can define a ScalarEnumerationTraits
specialization on CPUs, which can then be used as a field type:

using llvm::yaml::ScalarEnumerationTraits;
using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

template <>
struct ScalarEnumerationTraits<CPUs> {
 static void enumeration(IO &io, CPUs &value) {
 io.enumCase(value, "x86_64", cpu_x86_64);
 io.enumCase(value, "x86", cpu_x86);
 io.enumCase(value, "PowerPC", cpu_PowerPC);
 }
};

template <>
struct MapppingTraits<Info> {
 static void mapping(IO &io, Info &info) {
 io.mapRequired("cpu", info.cpu);
 io.mapOptional("flags", info.flags, 0);
 }
};

When reading YAML, if the string found does not match any of the the strings specified by enumCase()
methods, an error is automatically generated. When writing YAML, if the value being written does not
match any of the values specified by the enumCase() methods, a runtime assertion is triggered.

BitValue
Another common data structure in C++ is a field where each bit has a unique meaning. This is often
used in a “flags” field. YAML I/O has support for converting such fields to a flow sequence. For
instance suppose you had the following bit flags defined:

enum {
 flagsPointy = 1
 flagsHollow = 2
 flagsFlat = 4
 flagsRound = 8
};

LLVM_YAML_UNIQUE_TYPE(MyFlags, uint32_t)

To support reading and writing of MyFlags, you specialize ScalarBitSetTraits<> on MyFlags and
provide the bit values and their names.

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id9

using llvm::yaml::ScalarBitSetTraits;
using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

template <>
struct ScalarBitSetTraits<MyFlags> {
 static void bitset(IO &io, MyFlags &value) {
 io.bitSetCase(value, "hollow", flagHollow);
 io.bitSetCase(value, "flat", flagFlat);
 io.bitSetCase(value, "round", flagRound);
 io.bitSetCase(value, "pointy", flagPointy);
 }
};

struct Info {
 StringRef name;
 MyFlags flags;
};

template <>
struct MapppingTraits<Info> {
 static void mapping(IO &io, Info& info) {
 io.mapRequired("name", info.name);
 io.mapRequired("flags", info.flags);
 }
};

With the above, YAML I/O (when writing) will test mask each value in the bitset trait against the flags
field, and each that matches will cause the corresponding string to be added to the flow sequence.
The opposite is done when reading and any unknown string values will result in a error. With the
above schema, a same valid yaml document is:

name: Tom
flags: [pointy, flat]

Custom Scalar
Sometimes for readability a scalar needs to be formatted in a custom way. For instance your internal
data structure may use a integer for time (seconds since some epoch), but in yaml it would be much
nicer to express that integer in some time format (e.g. 4-May-2012 10:30pm). YAML I/O has a way to
support custom formatting and parsing of scalar types by specializing ScalarTraits<> on your data
type. When writing, YAML I/O will provide the native type and your specialization must create a
temporary llvm::StringRef. When reading, YAML I/O will provide a llvm::StringRef of scalar and your
specialization must convert that to your native data type. An outline of a custom scalar type looks like:

using llvm::yaml::ScalarTraits;
using llvm::yaml::IO;

template <>
struct ScalarTraits<MyCustomType> {
 static void output(const T &value, llvm::raw_ostream &out) {
 out << value; // do custom formatting here
 }
 static StringRef input(StringRef scalar, T &value) {
 // do custom parsing here. Return the empty string on success,
 // or an error message on failure.
 return StringRef();
 }
};

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id10

Mappings
To be translated to or from a YAML mapping for your type T you must specialize
llvm::yaml::MapppingTraits on T and implement the “void mapping(IO &io, T&)” method. If your native
data structures use pointers to a class everywhere, you can specialize on the class pointer. Examples:

using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

// Example of struct Foo which is used by value
template <>
struct MapppingTraits<Foo> {
 static void mapping(IO &io, Foo &foo) {
 io.mapOptional("size", foo.size);
 ...
 }
};

// Example of struct Bar which is natively always a pointer
template <>
struct MapppingTraits<Bar*> {
 static void mapping(IO &io, Bar *&bar) {
 io.mapOptional("size", bar->size);
 ...
 }
};

No Normalization
The mapping() method is responsible, if needed, for normalizing and denormalizing. In a simple case
where the native data structure requires no normalization, the mapping method just uses
mapOptional() or mapRequired() to bind the struct’s fields to yaml key names. For example:

using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

template <>
struct MapppingTraits<Person> {
 static void mapping(IO &io, Person &info) {
 io.mapRequired("name", info.name);
 io.mapOptional("hat-size", info.hatSize);
 }
};

Normalization
When [de]normalization is required, the mapping() method needs a way to access normalized values
as fields. To help with this, there is a template MappingNormalization<> which you can then use to
automatically do the normalization and denormalization. The template is used to create a local
variable in your mapping() method which contains the normalized keys.

Suppose you have native data type Polar which specifies a position in polar coordinates (distance,
angle) but you’ve decided the normalized YAML for should be in x,y coordinates. You can define a
MapppingTraits that does the [de]normalization.

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id11
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id12
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id13

using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

struct Polar {
 float distance;
 float angle;
};

template <>
struct MapppingTraits<Polar> {

 class NormalizedPolar {
 public:
 NormalizedPolar(IO &io)
 : x(0.0), y(0.0) {
 }
 NormalizedPolar(IO &, Polar &polar)
 : x(polar.distance * cos(polar.angle)),
 y(polar.distance * sin(polar.angle)) {
 }
 Polar denormalize(IO &) {
 return Polar(sqrt(x*x+y*y, arctan(x,y));
 }

 float x;
 float y;
 };

 static void mapping(IO &io, Polar &polar) {
 MappingNormalization<NormalizedPolar, Polar> keys(io, polar);

 io.mapRequired("x", keys->x);
 io.mapRequired("y", keys->y);
 }
};

When writing YAML, the local variable “keys” will be a stack allocated instance of NormalizedPolar,
constructed from the suppled polar object which initializes it x and y fields. The mapRequired()
methods then write out the x and y values as key/value pairs.

When reading YAML, the local variable “keys” will be a stack allocated instance of NormalizedPolar,
constructed by the empty constructor. The mapRequired methods will find the matching key in the
YAML document and fill in the x and y fields of the NormalizedPolar object keys. At the end of the
mapping() method when the local keys variable goes out of scope, the denormalize() method will
automatically be called to convert the read values back to polar coordinates, and then assigned back
to the second parameter to mapping().

In some cases, the normalized class may be a subclass of the native type and could be returned by the
denormalize() method, except that the temporary normalized instance is stack allocated. In these
cases the utility template MappingNormalizationHeap<> can be used instead. It just like
MappingNormalization<> except that it heap allocates the normalized object when reading yaml. It
never destroyes the normalized object. The denormalize() method can this return “this”.

Default values
Within a mapping() method, calls to io.mapRequired() mean that that key is required to exist when
parsing YAML documents, otherwise YAML I/O will issue an error.

On the other hand, keys registered with io.mapOptional() are allowed to not exist in the YAML
document being read. So what value is put in the field for those optional keys? There are two steps to
how those optional fields are filled in. First, the second parameter to the mapping() method is a

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id14

reference to a native class. That native class must have a default constructor. What ever value the
default constructor initially sets for an optional field will be that field’s value. Second, the
mapOptional() method has an optional third parameter. If provided it is the value that mapOptional()
should set that field to if the yaml document does not have that key.

There is one important difference between those two ways (default constructor and third parameter to
mapOptional). When YAML I/O generates a yaml document, if the mapOptional() third parameter is
used, if the actual value being written is the same as (using ==) the default value, then that key/value
is not written.

Order of Keys
When writing out a YAML document, the keys are written in the order that the calls to
mapRequired()/mapOptional() are made in the mapping() method. This gives you a chance to write the
fields in an order that a human reader of the YAML document would find natural. This may be
different that the order of the fields in the native class.

When reading in a YAML document, the keys in the document can be in any order, but they are
processed in the order that the calls to mapRequired()/mapOptional() are made in the mapping()
method. That enables some interesting functionality. For instance, if the first field bound is the cpu
and the second field bound is flags, and the flags are cpu specific, you can programmatically switch
how the flags are converted to and from YAML based on the cpu. This works for both reading and
writing. For example:

using llvm::yaml::MapppingTraits;
using llvm::yaml::IO;

struct Info {
 CPUs cpu;
 uint32_t flags;
};

template <>
struct MapppingTraits<Info> {
 static void mapping(IO &io, Info &info) {
 io.mapRequired("cpu", info.cpu);
 // flags must come after cpu for this to work when reading yaml
 if (info.cpu == cpu_x86_64)
 io.mapRequired("flags", *(My86_64Flags*)info.flags);
 else
 io.mapRequired("flags", *(My86Flags*)info.flags);
 }
};

Sequence
Any type that conforms to having begin(), end(), and push_back() methods is automatically classified
as a sequence. Thus, most STL containers will automatically be YAML sequences.

Flow Sequence
A YAML “flow sequence” is a squence that when written to YAML it uses the inline notation (e.g [foo,
bar]). You can force a sequence to be formatted as a flow sequence by adding “static const bool flow
= true;” to the class. For instance:

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id15
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id16
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id17

struct IntVector : public std::vector<int> {
 // The existence of this member causes YAML I/O to use a flow sequence
 static const bool flow = true;
};

With the above, if you used IntVector as the data type in your native data strucutures, then then when
converted to YAML, a flow sequence of integers will be used (e.g. [10, -3, 4]).

User Context Data
When an llvm::yaml::Input or llvm::yaml::Output object is created their constructors take an optional
“context” parameter. This is a pointer to whatever state information you might need.

For instance, in a previous example we showed how the conversion type for a flags field could be
determined at runtime based on the value of another field in the mapping. But what if an inner
mapping needs to know some field value of an outer mapping? That is where the “context” parameter
comes in. You can set values in the context in the outer map’s mapping() method and retrieve those
values in the inner map’s mapping() method.

The context value is just a void*. All your traits which use the context and operate on your native data
types, need to agree what the context value actually is. It could be a pointer to an object or struct
which your various traits use to shared context sensitive information.

Output
The llvm::yaml::Output class is used to generate a YAML document from your in-memory data
structures, using traits defined on your data types. To instantiate an Output object you need an
llvm::raw_ostream, and optionally a context pointer:

class Output : public IO {
public:
 Output(llvm::raw_ostream &, void *context=NULL);

Once you have an Output object, you can use the C++ stream operator on it to write your native data
as YAML. One thing to recall is that a YAML file can contain multiple “documents”. If the top level data
structure you are streaming as yaml is a mapping, then Output assumes you are generating one
document and wraps the mapping output with “---” and trailing “...”.

using llvm::yaml::Output;

void dumpMyMapDoc(const MyMapType &info) {
 Output yout(llvm::outs());
 yout << info;
}

The above could produce output like:

name: Tom
hat-size: 7
...

On the other hand, if the top level data structure you are streaming as yaml is a sequence, Output
assumes that each element of the sequence is a document. In order to generate a single document
that is itself a sequence, you need to wrap the data in another sequence.

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id18
file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id19

using llvm::yaml::Output;

void dumpMySequenceDoc(const MySequenceType &info) {
 // Wrap in another sequence to disambiguate that MySequenceType is
 // not itself a sequence of documents.
 std::vector<MySequenceType> docList;
 docList.push_back(info);

 Output yout(llvm::outs());
 yout << docList;
}

The above could produce output like:

- name: Tom
 talent: singing
- name: Bob
 talent: golf
...

Input
The llvm::yaml::Input class is used to parse a YAML document into your native data structures. To
instantiate an Input object you need a StringRef to the entire yaml file, and optionally a context
pointer:

class Input : public IO {
public:
 Input(StringRef inputContent, void *context=NULL);

Once you have an Input object, you can use the C++ stream operator to read a document sequence,
and be sure to check the Input’s error() method to see if there was an error parsing. For example:

 using llvm::yaml::Input;

 Input yin(mb.getBuffer());

 std::vector<MyMapType> myMapList;

 // Parse the YAML file
 yin >> myMapList;

 // Check for error
 if (yin.error())
 return;

// If needed, verify there was exactly one document in the file
if (myMapList.size() != 1)
 return;

file:///Volumes/my/src/llvm/docs/_build/html/YamlIO.html#id20

