
Common Run-time Check Proposal

John Criswell

May 9, 2012

1 Introduction

There is growing interest in the LLVM community for creating programs with
memory-safety run-time checks. Debugging tools such as ASan and SAFECode
instrument programs with memory safety checks to locate programmer errors.
The Clang compiler inserts light-weight checks into code to find simple errors
with little overhead. Safe language implementations insert run-time checks into
code to enforce array bounds checking as required by their language specifi-
cations. Security researchers use LLVM to develop faster versions of memory
safety checks in the hopes of one day making such checks usable in production
systems.

At their core, all of these systems do the same thing: they insert run-time checks
to verify a) that getelementptr (GEP) instructions do not create buffer oveflows
and/or b) that instructions accessing memory access valid memory objects.

Since there are optimizations from which all of these tools would benefit, it
would make sense to create a common set of run-time checks for LLVM with
a common set of optimization passes to optimize the placement of the checks.
Individual tools can then specialize the checks as necessary.

2 Run-time Checks and Instrumentation

Below are the set of common run-time checks.

• lscheck (void * ptr, int length):
The lscheck call is used to instrument loads and stores to memory (includ-
ing LLVM atomic operations). It ensures that the pointer points within a
valid memory object and that the load or store will not read/write past
the end of the memory object.

1



Common Run-time Check Proposal 2

• fastlscheck (void * ptr, void * start, int objsize, int len):
The fastlscheck() function is identical to the lscheck() function in
functionality; the difference is that fastlscheck() is passed the bounds of
the memory object into which the pointer should point. It is an optimized
version of lscheck().

• gepcheck (void * src, void * dest):
The gepcheck() function takes the source pointer operand and result of
a GEP instruction; the check first determines whether the source pointer
is within a valid memory object and, if so, that the destination pointer is
within the same memory object. It is primarily used for performing array
and structure indexing checks on LLVM getelementptr instructions.

• fastgepcheck (void * src, void * dest, void * base, int objsize):
The fastgepcheck() function is a fast version of the gepcheck() func-
tion that is given the bounds of the memory object into which the GEP
source and result pointers should point.

• funccheck (void * f()):
The funccheck() function determines if a function pointer belongs to the
set of valid function pointer targets for an indirect function call. It is used
to enforce control-flow integrity.

• free check (void * p):
The free check() function checks that the pointer points to the beginning
of a valid heap object. It is used to catch invalid free calls for allocators
not known to tolerate invalid deallocation requests.

In addition to run-time checks, there are support functions that aid in imple-
menting the aforementiond checks:

• pool register heap(void * p, int size)

pool register stack(void * p, int size)

pool register global(void * p, int size):
The pool register() family of functions inform the run-time of new
memory object allocations. For some systems, these will be no-ops. For
others, the bounds information of the memory object will be registered in
a side data structure.

• pool unregister(void * p):
The pool unregister() function informs the run-time system of a mem-
ory deallocation. For some systems, it may be a no-op. For others, it
may remove the bounds information of a memory object from a side data
structure or overwrite the contents of the memory object with a special
value.



Common Run-time Check Proposal 3

• pool reregister():
The pool reregister() function unregisters a memory object and regis-
ters a new object of the specified size. It is designed to support allocators
like realloc().

3 Examples Applications

This section describes how the checks could be used in various tools.

3.1 Clang Bounds Checking

The Clang compiler can emit bounds checks when the -fbounds-checking op-
tion is used. These checks are not meant to be thorough; they merely provide
a small amount of sanity checking and security to code. They should be fast
and not cause false positives. As a result, the checks are only added to pointers
that are within the same function as the allocation sites from which the pointers
were derived.

The Clang compiler currently emits inline code using the objectsize intrinsic to
perform these checks. However, it could instead emit gepcheck calls to perform
those same checks. A generic optimization that converts calls of gepcheck to
fastgepcheck would identify those checks that can be performed quickly. A
Clang-specific pass could then remove those checks on pointers that do not refer
to locally allocated memory objects (i.e., the checks that were not converted
into fastgepcheck).

This would enable Clang’s run-time checks to be optimized using the same opti-
mizations that are being developed for ASan and SAFECode. These optimiza-
tions can remove checks on trivially safe GEPs, hoist checks out of monotonic
loops, and prove GEPs safe statically using static array bounds checking.

3.2 ASan

The Address Sanitizer (ASan) is a memory safety error debugging tool that
has been integrated into LLVM. It is primarily designed to detect invalid loads
and stores and uses various unsound run-time techniques to detect and report
array bounds violations and dangling pointer uses. ASan does this by using a
side data structure (called the shadow memory) to record whether a memory
address belongs to a valid memory object. Checks on loads and stores examine
the shadow memory to see if a memory address belongs to a valid memory
object.

Using the proposed common infrastructure, ASan would use a shared LLVM in-



Common Run-time Check Proposal 4

strumentation pass to instrument all load, store, and atomic intrinsic operations
with lscheck calls. Additionally, it would use another generic instrumentation
pass to insert pool register and pool unregister calls.

Common optimization passes would optimize these run-time checks. Such opti-
mizations might hoist checks out of loops, convert lscheck checks to fastlscheck
checks, or remove checks that will always pass at run-time. Optimizations to
remove pool register calls would also improve performance; memory objects
that are always accessed in a safe manner would not need to be registered.

Note that many of these optimizations are the same ones that would optimize
the Clang bounds checks. In fact, a program could be compiled with both the
ASan and Clang run-time checks, and a common set of optimizations would
optimize the checks from both.

Naturally, ASan’s implementation of the run-time checks would need to be spe-
cialized. ASan’s implementation of lscheck would need to check to see if the
pointer used by the load or store points into a valid memory object by consult-
ing the shadow memory. For speed, ASan would want the implementation of
lscheck inlined, so an ASan-specific transform pass might transform calls to
lscheck into inline code that performs the check. ASan might also transform
pool register calls. The pool register stack call, for example, might be
used to tell ASan where to insert guard memory around stack objects; calls
to pool register heap may just be removed since ASan opts to use its own
malloc() implementation to update shadow memory on allocation and deallo-
cation.

3.3 SAFECode

The SAFECode compiler is an extension of Clang that instruments code with
memory safety checks; its checks are designed to be sound and to catch in-
valid loads and stores, array and structure indexing violations, indirect function
pointer violations, and uninitialized pointer uses. SAFECode is able to employ
optimizations such as automatic pool allocation and type-safe load/store check
elimination to reduce performance overhead.

A unique feature of SAFECode is that it can permit out-of-bounds pointers so
long as they are not used in a memory access operation. To do this, SAFECode
changes out-of-bound pointers into special values called rewrite pointers that
point to unmapped memory. If the out-of-bound pointer is ever used to access
memory, either a lscheck will detect the error, or an MMU fault will detect
the error.

Similar to ASan, SAFECode would instrument code using generic instrumen-
tation passes. It would use one pass to insert lscheck calls, another to insert
gepcheck calls, a third to insert funccheck calls, and a fourth pass to insert



Common Run-time Check Proposal 5

free check calls. Like ASan and Clang, SAFECode would optimize the run-
time checks using the generic run-time check optimization passes. Note that
optimization passes for SAFECode would benefit both ASan and Clang since
SAFECode uses a superset of the checks that ASan and Clang use.

Like ASan, SAFECode would need to specialize the run-time checks. SAFE-
Code uses multiple side data structures to track exact object bounds meta-data,
so it would need to add parameters to the lscheck and gepcheck checks. To
support the out-of-bound pointer rewriting feature, SAFECode’s implementa-
tion of gepcheck would not terminate the program when an indexing error is
detected; a gepcheck that passes would return the dest parameter while a
gepcheck that fails would return a rewrite pointer. A special transform pass
would replace the use of a pointer checked with gepcheck with the return value
of the gepcheck call. In this way, if a gepcheck fails, the program continue to
run, but if the return value is out-of-bounds, it will be detected when it is used
for a load or store.


