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Summary: This document presents an overview of the deterministic finite automaton (DFA)-

based packetizer in LLVM 

 

1. Introduction 

Hexagon is a Very Long Instruction Word (VLIW) architecture. On such an architecture, the 

assembly code explicitly represents the instruction level parallelism present in a program. 

Specifically, the compiler is responsible for mapping instructions to functional units. 1 On 

Hexagon, this mapping process is called packetization. To conduct packetization, the compiler 

must gather information on the hardware resources required for each emitted instruction. It must 

then use this information to ensure that there are no hardware conflicts in the packetized code. 

The compiler can packetize either during the process of instruction scheduling or after 

scheduling has occurred. 

 

2. LLVM and Packetization 

There are 3 compilation phases in LLVM: the front-end that converts source code into bitcode, 

the bitcode-to-bitcode optimizer, and the backend that converts bitcode into a target-specific 

representation. The LLVM compiler infrastructure conducts instruction selection followed by 

instruction scheduling. During scheduling, the bitcode is lowered into a directed acyclic graph 

(DAG). The edges of the DAG are annotated with latency information supplied by the target 

architecture. LLVM uses this information to create a schedule that respects the hardware 

characteristics of the target. LLVM’s scheduling pass currently lacks any infrastructure for 

packetization. While packetization can be added to the LLVM scheduler, we decided not to 

modify the scheduling pass for two reasons. First, LLVM does not have the backend hooks 

required to integrate a packetization pass with the scheduler. Therefore adding this feature 

would involve extensive modification of the scheduler code. Second, we did not want to 

introduce architecture-specific code in the scheduler. 

We thus decided to split the packetization pass into two components: 

1. A machine-independent machine resource component that computes the resources 

required for each instruction. This information is automatically generated from an 

LLVM architecture-specific table-description file. The machine resource component 

implements a DFA that tracks the resources consumed by instructions issued by the 

compiler. This component has been designed to be reused by any VLIW architecture 

that wants to support a packetization pass. 

 

                                                           
1
 This contrasts with dynamically-scheduled super-scalar architectures in which the hardware is responsible for 

extracting ILP from a program by mapping instructions to functional units at program execution time. 



2. A Hexagon-specific packetization component that queries the machine resource DFA 

to assign Hexagon instructions to packets. 

 

3. Machine Resource Component: A DFA for Packetization 

The machine resource constructs a DFA that models the resource consumption of a stream of 

instructions. On Hexagon, each instruction can be assigned to one or many functional units. To 

simplify the description of the machine resource component, the remainder of the text will focus 

on a hypothetical VLIW machine. Consider a VLIW machine that has 3 functional units: a 

Load/Store unit (LSUNIT) and two arithmetic units (ALU1 and ALU2). Arithmetic instructions can 

be scheduled on any functional unit. Memory instructions can be scheduled only on LSUINT 

 

3.1 Instruction classes 

VLIW architectures typically use the notion of instruction classes – a set of instructions that 

share the same resource consumption. For instance, on our hypothetical machine, an add and a 

subtract instruction can both be assigned to any of the 3 functional units. Thus they share the 

same instruction class: ALU_CLASS. Similarly a load and a store instruction can be assigned 

only to the LSUINT and share the same class: LS_CLASS. 

 

3.2 Description of the DFA 

A DFA consists of three major elements: states, inputs, and transitions. In the DFA constructed 

by the machine resource component, a state represents the consumption of machine resources 

by packetized instructions. Inputs in the DFA consist of the set of instruction classes. A 

transition in the DFA occurs when an instruction is added to a packet. We use existing 

infrastructure in the LLVM machine description to represent the state of functional units in the 

DFA – each unit is assigned a unique bitstring with exactly one bit set. Consider the DFA 

constructed for our hypothetical machine: 

Functional Units: 

Functional Unit Bitstring representation 

LSUNIT 0x1 

ALU1 0x2 

ALU2 0x4 

 

Instructions: 

Instruction Possible Functional Units Instruction Class 

ADD LSUNIT or ALU1 or ALU2 ALU_CLASS 

SUB LSUNIT or ALU1 or ALU2 ALU_CLASS 

LOAD LSUNIT LS_CLASS 

STORE LSUNIT LS_CLASS 

 



Figure 1 shows the resulting DFA constructed for this machine. In the DFA, each state contains 

the possible consumption of functional units by instructions. Each transition represents the 

addition of an instruction belonging to a particular instruction class to a packet. The initial state 

denotes an empty packet with no machine resources consumed. For instance, consider State 1 

which models the effect of adding an ALU_CLASS instruction to an empty packet. Since an 

ALU_CLASS instruction can be assigned to any functional unit, State 1 represents the possible 

consumption of LSUNIT (0x1), ALU1 (0x2), or ALU2 (0x4). If an instruction class cannot be 

added to the packet, the DFA does not contain the corresponding transition. For instance, in 

State 5, the LSUNIT has been consumed by an instruction. Therefore, there is no valid 

transition from State 5 on an input of LS_CLASS. 

3.3 Constructing the DFA in LLVM 

The DFA for a target architecture can be constructed while building LLVM. We modified the 

TableGen component of LLVM to parse the machine fragments that describe the functional 

units present on a target. The DFA is then constructed iteratively using the algorithm outlined in 

Figure 2. At the end of the construction process, we generate a sparse representation of a table 

T with n rows and m columns along with an API that can be used to query the availability of 

functional units during packetization. Rows in  table T represent states and columns represent 

inputs to the DFA. Thus the table entry on row i and column j contains the resulting state if a 

transition is made from state i on input j.  Since table T typically contains a large number of 

invalid states, we emit a sparse representation of the table. Specifically, the DFA generator 

emits two tables – DFAStateEntryTable and DFAStateInputTable. Entry k in 

DFAStateEntryTable is an index into DFAStateInputTable. It indicates which element in 

DFAStateInputTable contains the first transition for state number k. DFAStateInputTable 

contains a set of tuples (l, m)  where m is the new state reached (i.e., the transition) on input l. 

 

 

3.4 Packetization component: Using the DFA to conduct packetization 

The generated API in encapsulated in a C++ class – DFAPacketizer.h – and contains the 

following methods: 

 

 void clearResources(): Resets the DFA to the initial state 

 bool canReserveResources(MachineInstr* MI): This method returns true if MI can be 

added to the packet 

 void reserveResources(MachineInstr* MI): Adds instruction MI to the packet and sets the 

DFA to the corresponding state 

We added a Hexagon-specific packetization pass that iterates through the instructions in a basic 

block after the LLVM DAG scheduling phase has occurred. The packetization algorithm begins 

with an empty packet and iteratively attempts to add an instruction to the packet by querying the 

DFA and checking for dependences between the candidate instruction and all other instructions 

in the packet. If an instruction can be added, the DFA is transitioned to the appropriate state. If a 

instruction cannot be added, the DFA is reset to the initial state and a new empty packet is 

created. The algorithm continues until it encounters the end of the basic block. 



Initial State
{0x0}

State 7
{0x1}

State 1
{0x1, 

0x2, 0x4}

ALU_CLASS State 8 
{0x3, 0x5}

State 2
{0x3, 0x5, 

0x6}

State 5
{0x3, 0x5}

ALU_CLASS State 9
{0x7}

ALU_CLASS State 3
{0x7}

ALU_CLASS State 6
{0x7}

State 4
{0x7}

Figure 1: DFA for a hypothetical machine with 3 functional units 



Function CreateDFA() 

   for all instruction classes C: 

      Record the resources consumed by class C in list R 

Create a new DFA D with an initial State I 

Worklist = {I} 

while Worklist is not empty: 

   CurrentState = Pop first element from Worklist 

   if (Transition from CurrentState on InsnClass does not exist): 

     if (ValidTransition(CurrentState, InsnClass, NewConsumption)): 

       Add a new state, NewState, to DFA D with resource consumption = NewConsumption 

       Add a new transition to DFA D from CurrentState to NewState on Input InsnClass 

       Add NewState to the end of Worklist 

 

Function ValidTransition(CurrentState, InsnClass, NewConsumption) 

NewConsumption = {} 

for all resource states R in CurrentState: 

   s = sizeof(InsnClass) * 8 

   for i from 0 to s: 

      if ((0x1 << i) & InsnClass): 

         Consumption = R | (0x1 << i) 

         if (Consumption != R) 

This indicates that at least one resource can be used to accommodate an  

instruction of class InsnClass in CurrentState 

if (we haven’t encountered Consumption before): 

   Add Consumption to NewConsumption 

 

Figure 2: Pseudo-code for DFA construction algorithm 


