[llvm] [libc] [libc][NFC] Refactor FPBits and remove LongDoubleBits specialization (PR #78192)

via llvm-commits llvm-commits at lists.llvm.org
Mon Jan 15 09:03:01 PST 2024


llvmbot wrote:


<!--LLVM PR SUMMARY COMMENT-->

@llvm/pr-subscribers-libc

Author: Guillaume Chatelet (gchatelet)

<details>
<summary>Changes</summary>



---

Patch is 41.06 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/78192.diff


8 Files Affected:

- (modified) libc/src/__support/FPUtil/FPBits.h (+284-90) 
- (modified) libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h (+1-1) 
- (removed) libc/src/__support/FPUtil/x86_64/LongDoubleBits.h (-179) 
- (modified) libc/src/__support/FPUtil/x86_64/NextAfterLongDouble.h (+4-4) 
- (modified) libc/test/src/__support/FPUtil/fpbits_test.cpp (+216) 
- (modified) libc/test/utils/FPUtil/x86_long_double_test.cpp (+6-6) 
- (modified) utils/bazel/llvm-project-overlay/libc/BUILD.bazel (-1) 
- (added) utils/bazel/llvm-project-overlay/libc/test/src/__support/FPUtil/BUILD.bazel (+42) 


``````````diff
diff --git a/libc/src/__support/FPUtil/FPBits.h b/libc/src/__support/FPUtil/FPBits.h
index 93e32ba7cc9415b..58d63a7d01fb823 100644
--- a/libc/src/__support/FPUtil/FPBits.h
+++ b/libc/src/__support/FPUtil/FPBits.h
@@ -132,6 +132,70 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   static_assert((SIG_MASK & EXP_MASK & SIGN_MASK) == 0, "masks disjoint");
   static_assert((SIG_MASK | EXP_MASK | SIGN_MASK) == FP_MASK, "masks cover");
 
+protected:
+  enum class Exp : int32_t {
+    ZERO = 0,
+    // The exponent value for denormal numbers.
+    SUBNORMAL = -EXP_BIAS,
+    // The minimum exponent value for normal numbers.
+    MIN = SUBNORMAL + 1,
+    // The maximum exponent value for normal numbers.
+    MAX = EXP_BIAS,
+    // Special value all ones.
+    INF = MAX + 1,
+    // Aliases
+    BITS_ALL_ZEROES = SUBNORMAL,
+    BITS_ALL_ONES = INF,
+  };
+
+  enum class Sig : StorageType {
+    ZERO = 0,
+    ONE = 1,
+    MSB = StorageType(1) << (SIG_LEN - 1),
+    // Aliases
+    BITS_ALL_ZEROES = ZERO,
+    BITS_ALL_ONES = SIG_MASK,
+  };
+
+  template <typename T>
+  LIBC_INLINE static constexpr auto storage_cast(T value) {
+    return static_cast<StorageType>(value);
+  }
+
+  LIBC_INLINE friend constexpr Sig operator|(const Sig a, const Sig b) {
+    return Sig{storage_cast(storage_cast(a) | storage_cast(b))};
+  }
+  LIBC_INLINE friend constexpr Sig operator^(const Sig a, const Sig b) {
+    return Sig{storage_cast(storage_cast(a) ^ storage_cast(b))};
+  }
+  LIBC_INLINE friend constexpr Sig operator>>(const Sig a, int shift) {
+    return Sig{storage_cast(storage_cast(a) >> shift)};
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(Exp exp) {
+    return storage_cast(static_cast<int32_t>(exp) + EXP_BIAS) << SIG_LEN;
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(Sig value) {
+    return storage_cast(value) & SIG_MASK;
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(Exp exp, Sig sig) {
+    return encode(exp) | encode(sig);
+  }
+
+  LIBC_INLINE static constexpr StorageType encode(bool sign, Exp exp, Sig sig) {
+    if (sign)
+      return SIGN_MASK | encode(exp, sig);
+    return encode(exp, sig);
+  }
+
+  LIBC_INLINE constexpr StorageType exp_bits() const { return bits & EXP_MASK; }
+  LIBC_INLINE constexpr StorageType sig_bits() const { return bits & SIG_MASK; }
+  LIBC_INLINE constexpr StorageType exp_sig_bits() const {
+    return bits & EXP_SIG_MASK;
+  }
+
 private:
   LIBC_INLINE static constexpr StorageType bit_at(int position) {
     return StorageType(1) << position;
@@ -155,20 +219,6 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   LIBC_INLINE_VAR static constexpr StorageType FRACTION_MASK =
       mask_trailing_ones<StorageType, FRACTION_LEN>();
 
-  // If a number x is a NAN, then it is a quiet NAN if:
-  //   QUIET_NAN_MASK & bits(x) != 0
-  LIBC_INLINE_VAR static constexpr StorageType QUIET_NAN_MASK =
-      fp_type == FPType::X86_Binary80
-          ? bit_at(SIG_LEN - 1) | bit_at(SIG_LEN - 2) // 0b1100...
-          : bit_at(SIG_LEN - 1);                      // 0b1000...
-
-  // Mask to generate a default signaling NAN. Any NAN that is not
-  // a quiet NAN is considered a signaling NAN.
-  LIBC_INLINE_VAR static constexpr StorageType DEFAULT_SIGNALING_NAN =
-      fp_type == FPType::X86_Binary80
-          ? bit_at(SIG_LEN - 1) | bit_at(SIG_LEN - 3) // 0b1010...
-          : bit_at(SIG_LEN - 2);                      // 0b0100...
-
   // The floating point number representation as an unsigned integer.
   StorageType bits = 0;
 
@@ -220,6 +270,9 @@ struct FPRepBase : public internal::FPLayout<fp_type> {
   }
 
   LIBC_INLINE constexpr StorageType uintval() const { return bits & FP_MASK; }
+  LIBC_INLINE constexpr StorageType set_uintval(StorageType value) {
+    return bits = (value & FP_MASK);
+  }
 
   LIBC_INLINE constexpr bool is_zero() const {
     return (bits & EXP_SIG_MASK) == 0;
@@ -241,6 +294,199 @@ template <FPType fp_type> struct FPRep : public FPRepBase<fp_type> {
   using UP::FRACTION_LEN;
   using UP::FRACTION_MASK;
   using UP::MANTISSA_PRECISION;
+
+protected:
+  using typename UP::Exp;
+  using typename UP::Sig;
+  using UP::encode;
+  using UP::exp_bits;
+  using UP::exp_sig_bits;
+  using UP::sig_bits;
+
+public:
+  LIBC_INLINE constexpr bool is_nan() const {
+    return exp_sig_bits() > encode(Exp::BITS_ALL_ONES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_quiet_nan() const {
+    return exp_sig_bits() >= encode(Exp::BITS_ALL_ONES, Sig::MSB);
+  }
+  LIBC_INLINE constexpr bool is_signaling_nan() const {
+    return is_nan() && !is_quiet_nan();
+  }
+  LIBC_INLINE constexpr bool is_inf() const {
+    return exp_sig_bits() == encode(Exp::BITS_ALL_ONES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_zero() const {
+    return exp_sig_bits() == encode(Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_finite() const {
+    return exp_bits() != encode(Exp::BITS_ALL_ONES);
+  }
+  LIBC_INLINE
+  constexpr bool is_subnormal() const {
+    return exp_bits() == encode(Exp::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_normal() const {
+    return is_finite() && !is_subnormal();
+  }
+
+  LIBC_INLINE static constexpr StorageType zero(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE static constexpr StorageType one(bool sign = false) {
+    return encode(sign, Exp::ZERO, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE static constexpr StorageType min_subnormal(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::ONE);
+  }
+  LIBC_INLINE static constexpr StorageType max_subnormal(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ONES);
+  }
+  LIBC_INLINE static constexpr StorageType min_normal(bool sign = false) {
+    return encode(sign, Exp::MIN, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE static constexpr StorageType max_normal(bool sign = false) {
+    return encode(sign, Exp::MAX, Sig::BITS_ALL_ONES);
+  }
+  LIBC_INLINE static constexpr StorageType inf(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ONES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE static constexpr StorageType build_nan(bool sign = false,
+                                                     StorageType v = 0) {
+    return encode(sign, Exp::BITS_ALL_ONES, (v ? Sig{v} : (Sig::MSB >> 1)));
+  }
+  LIBC_INLINE static constexpr StorageType build_quiet_nan(bool sign = false,
+                                                           StorageType v = 0) {
+    return encode(sign, Exp::BITS_ALL_ONES, Sig::MSB | Sig{v});
+  }
+
+  // The function return mantissa with the implicit bit set iff the current
+  // value is a valid normal number.
+  LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
+    if (is_subnormal())
+      return sig_bits();
+    return (StorageType(1) << UP::SIG_LEN) | sig_bits();
+  }
+};
+
+// Specialization for the X86 Extended Precision type.
+template <>
+struct FPRep<FPType::X86_Binary80> : public FPRepBase<FPType::X86_Binary80> {
+  using UP = FPRepBase<FPType::X86_Binary80>;
+  using typename UP::StorageType;
+  using UP::FRACTION_LEN;
+  using UP::FRACTION_MASK;
+  using UP::MANTISSA_PRECISION;
+
+protected:
+  using typename UP::Exp;
+  using typename UP::Sig;
+  using UP::encode;
+
+public:
+  // The x86 80 bit float represents the leading digit of the mantissa
+  // explicitly. This is the mask for that bit.
+  static constexpr StorageType EXPLICIT_BIT_MASK = StorageType(1)
+                                                   << FRACTION_LEN;
+  // The X80 significand is made of an explicit bit and the fractional part.
+  static_assert((EXPLICIT_BIT_MASK & FRACTION_MASK) == 0,
+                "the explicit bit and the fractional part should not overlap");
+  static_assert((EXPLICIT_BIT_MASK | FRACTION_MASK) == SIG_MASK,
+                "the explicit bit and the fractional part should cover the "
+                "whole significand");
+
+  LIBC_INLINE constexpr bool is_nan() const {
+    // Most encoding forms from the table found in
+    // https://en.wikipedia.org/wiki/Extended_precision#x86_extended_precision_format
+    // are interpreted as NaN.
+    // More precisely :
+    // - Pseudo-Infinity
+    // - Pseudo Not a Number
+    // - Signalling Not a Number
+    // - Floating-point Indefinite
+    // - Quiet Not a Number
+    // - Unnormal
+    // This can be reduced to the following logic:
+    if (exp_bits() == encode(Exp::BITS_ALL_ONES))
+      return !is_inf();
+    if (exp_bits() != encode(Exp::BITS_ALL_ZEROES))
+      return (sig_bits() & encode(Sig::MSB)) == 0;
+    return false;
+  }
+  LIBC_INLINE constexpr bool is_quiet_nan() const {
+    return exp_sig_bits() >=
+           encode(Exp::BITS_ALL_ONES, Sig::MSB | (Sig::MSB >> 1));
+  }
+  LIBC_INLINE constexpr bool is_signaling_nan() const {
+    return is_nan() && !is_quiet_nan();
+  }
+  LIBC_INLINE constexpr bool is_inf() const {
+    return exp_sig_bits() == encode(Exp::BITS_ALL_ONES, Sig::MSB);
+  }
+  LIBC_INLINE constexpr bool is_zero() const {
+    return exp_sig_bits() == encode(Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_finite() const {
+    return !is_inf() && !is_nan();
+  }
+  LIBC_INLINE
+  constexpr bool is_subnormal() const {
+    return exp_sig_bits() > encode(Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE constexpr bool is_normal() const {
+    const auto exp = exp_bits();
+    if (exp == encode(Exp::BITS_ALL_ZEROES) ||
+        exp == encode(Exp::BITS_ALL_ONES))
+      return false;
+    return get_implicit_bit();
+  }
+
+  LIBC_INLINE static constexpr StorageType zero(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ZEROES);
+  }
+  LIBC_INLINE static constexpr StorageType one(bool sign = false) {
+    return encode(sign, Exp::ZERO, Sig::MSB);
+  }
+  LIBC_INLINE static constexpr StorageType min_subnormal(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::ONE);
+  }
+  LIBC_INLINE static constexpr StorageType max_subnormal(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ZEROES, Sig::BITS_ALL_ONES ^ Sig::MSB);
+  }
+  LIBC_INLINE static constexpr StorageType min_normal(bool sign = false) {
+    return encode(sign, Exp::MIN, Sig::MSB);
+  }
+  LIBC_INLINE static constexpr StorageType max_normal(bool sign = false) {
+    return encode(sign, Exp::MAX, Sig::BITS_ALL_ONES);
+  }
+  LIBC_INLINE static constexpr StorageType inf(bool sign = false) {
+    return encode(sign, Exp::BITS_ALL_ONES, Sig::MSB);
+  }
+  LIBC_INLINE static constexpr StorageType build_nan(bool sign = false,
+                                                     StorageType v = 0) {
+    return encode(sign, Exp::BITS_ALL_ONES,
+                  Sig::MSB | (v ? Sig{v} : (Sig::MSB >> 2)));
+  }
+  LIBC_INLINE static constexpr StorageType build_quiet_nan(bool sign = false,
+                                                           StorageType v = 0) {
+    return encode(sign, Exp::BITS_ALL_ONES,
+                  Sig::MSB | (Sig::MSB >> 1) | Sig{v});
+  }
+
+  LIBC_INLINE constexpr StorageType get_explicit_mantissa() const {
+    return sig_bits();
+  }
+
+  // The following functions are specific to this implementation.
+  // TODO: Remove if possible.
+  LIBC_INLINE constexpr bool get_implicit_bit() const {
+    return bits & EXPLICIT_BIT_MASK;
+  }
+
+  LIBC_INLINE constexpr void set_implicit_bit(bool implicitVal) {
+    if (get_implicit_bit() != implicitVal)
+      bits ^= EXPLICIT_BIT_MASK;
+  }
 };
 
 } // namespace internal
@@ -276,47 +522,29 @@ template <typename T> LIBC_INLINE static constexpr FPType get_fp_type() {
     static_assert(cpp::always_false<UnqualT>, "Unsupported type");
 }
 
-// A generic class to represent single precision, double precision, and quad
-// precision IEEE 754 floating point formats.
+// A generic class to represent floating point formats.
 // On most platforms, the 'float' type corresponds to single precision floating
 // point numbers, the 'double' type corresponds to double precision floating
 // point numers, and the 'long double' type corresponds to the quad precision
 // floating numbers. On x86 platforms however, the 'long double' type maps to
-// an x87 floating point format. This format is an IEEE 754 extension format.
-// It is handled as an explicit specialization of this class.
+// an x87 floating point format.
 template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
   static_assert(cpp::is_floating_point_v<T>,
                 "FPBits instantiated with invalid type.");
   using UP = internal::FPRep<get_fp_type<T>()>;
-
-private:
-  using UP::EXP_SIG_MASK;
-  using UP::QUIET_NAN_MASK;
-  using UP::SIG_LEN;
-  using UP::SIG_MASK;
-
-public:
+  using Rep = UP;
   using StorageType = typename UP::StorageType;
+
   using UP::bits;
-  using UP::EXP_BIAS;
   using UP::EXP_LEN;
-  using UP::EXP_MASK;
-  using UP::EXP_MASK_SHIFT;
-  using UP::FRACTION_LEN;
-  using UP::FRACTION_MASK;
-  using UP::SIGN_MASK;
-  using UP::TOTAL_LEN;
   using UP::UP;
 
-  using UP::get_biased_exponent;
-  using UP::is_zero;
   // Constants.
   static constexpr int MAX_BIASED_EXPONENT = (1 << EXP_LEN) - 1;
-  static constexpr StorageType MIN_SUBNORMAL = StorageType(1);
-  static constexpr StorageType MAX_SUBNORMAL = FRACTION_MASK;
-  static constexpr StorageType MIN_NORMAL = (StorageType(1) << FRACTION_LEN);
-  static constexpr StorageType MAX_NORMAL =
-      (StorageType(MAX_BIASED_EXPONENT - 1) << SIG_LEN) | SIG_MASK;
+  static constexpr StorageType MIN_NORMAL = UP::min_normal(false);
+  static constexpr StorageType MAX_NORMAL = UP::max_normal(false);
+  static constexpr StorageType MIN_SUBNORMAL = UP::min_subnormal(false);
+  static constexpr StorageType MAX_SUBNORMAL = UP::max_subnormal(false);
 
   // Constructors.
   LIBC_INLINE constexpr FPBits() = default;
@@ -338,88 +566,56 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
 
   LIBC_INLINE constexpr explicit operator T() const { return get_val(); }
 
-  // The function return mantissa with the implicit bit set iff the current
-  // value is a valid normal number.
-  LIBC_INLINE constexpr StorageType get_explicit_mantissa() {
-    return ((get_biased_exponent() > 0 && !is_inf_or_nan())
-                ? (FRACTION_MASK + 1)
-                : 0) |
-           (FRACTION_MASK & bits);
-  }
-
-  LIBC_INLINE constexpr bool is_inf() const {
-    return (bits & EXP_SIG_MASK) == EXP_MASK;
-  }
-
-  LIBC_INLINE constexpr bool is_nan() const {
-    return (bits & EXP_SIG_MASK) > EXP_MASK;
-  }
-
-  LIBC_INLINE constexpr bool is_quiet_nan() const {
-    return (bits & EXP_SIG_MASK) >= (EXP_MASK | QUIET_NAN_MASK);
-  }
-
-  LIBC_INLINE constexpr bool is_inf_or_nan() const {
-    return (bits & EXP_MASK) == EXP_MASK;
-  }
+  LIBC_INLINE constexpr bool is_inf_or_nan() const { return !UP::is_finite(); }
 
   LIBC_INLINE constexpr FPBits abs() const {
-    return FPBits(bits & EXP_SIG_MASK);
+    return FPBits(bits & UP::EXP_SIG_MASK);
   }
 
   // Methods below this are used by tests.
 
   LIBC_INLINE static constexpr T zero(bool sign = false) {
-    StorageType rep = (sign ? SIGN_MASK : StorageType(0)) // sign
-                      | 0                                 // exponent
-                      | 0;                                // mantissa
-    return FPBits(rep).get_val();
+    return FPBits(UP::zero(sign)).get_val();
   }
 
   LIBC_INLINE static constexpr T neg_zero() { return zero(true); }
 
   LIBC_INLINE static constexpr T inf(bool sign = false) {
-    StorageType rep = (sign ? SIGN_MASK : StorageType(0)) // sign
-                      | EXP_MASK                          // exponent
-                      | 0;                                // mantissa
-    return FPBits(rep).get_val();
+    return FPBits(UP::inf(sign)).get_val();
   }
 
   LIBC_INLINE static constexpr T neg_inf() { return inf(true); }
 
   LIBC_INLINE static constexpr T min_normal() {
-    return FPBits(MIN_NORMAL).get_val();
+    return FPBits(UP::min_normal(false)).get_val();
   }
 
   LIBC_INLINE static constexpr T max_normal() {
-    return FPBits(MAX_NORMAL).get_val();
+    return FPBits(UP::max_normal(false)).get_val();
   }
 
   LIBC_INLINE static constexpr T min_denormal() {
-    return FPBits(MIN_SUBNORMAL).get_val();
+    return FPBits(UP::min_subnormal(false)).get_val();
   }
 
   LIBC_INLINE static constexpr T max_denormal() {
-    return FPBits(MAX_SUBNORMAL).get_val();
+    return FPBits(UP::max_subnormal(false)).get_val();
   }
 
   LIBC_INLINE static constexpr T build_nan(StorageType v) {
-    StorageType rep = 0                      // sign
-                      | EXP_MASK             // exponent
-                      | (v & FRACTION_MASK); // mantissa
-    return FPBits(rep).get_val();
+    return FPBits(UP::build_nan(false, v)).get_val();
   }
 
   LIBC_INLINE static constexpr T build_quiet_nan(StorageType v) {
-    return build_nan(QUIET_NAN_MASK | v);
+    return FPBits(UP::build_quiet_nan(false, v)).get_val();
   }
 
   LIBC_INLINE static constexpr FPBits<T>
   create_value(bool sign, StorageType biased_exp, StorageType mantissa) {
-    StorageType rep = (sign ? SIGN_MASK : StorageType(0))           // sign
-                      | ((biased_exp << EXP_MASK_SHIFT) & EXP_MASK) // exponent
-                      | (mantissa & FRACTION_MASK);                 // mantissa
-    return FPBits(rep);
+    static_assert(get_fp_type<T>() != FPType::X86_Binary80,
+                  "This function is not tested for X86 Extended Precision");
+    return FPBits(UP::encode(sign, typename UP::Exp(biased_exp - UP::EXP_BIAS),
+                             typename UP::Sig(mantissa)));
   }
 
   // The function convert integer number and unbiased exponent to proper float
@@ -434,6 +630,8 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
   //   5) Number is unsigned, so the result can be only positive.
   LIBC_INLINE static constexpr FPBits<T> make_value(StorageType number,
                                                     int ep) {
+    static_assert(get_fp_type<T>() != FPType::X86_Binary80,
+                  "This function is not tested for X86 Extended Precision");
     FPBits<T> result;
     // offset: +1 for sign, but -1 for implicit first bit
     int lz = cpp::countl_zero(number) - EXP_LEN;
@@ -454,8 +652,4 @@ template <typename T> struct FPBits : public internal::FPRep<get_fp_type<T>()> {
 } // namespace fputil
 } // namespace LIBC_NAMESPACE
 
-#ifdef LIBC_LONG_DOUBLE_IS_X86_FLOAT80
-#include "x86_64/LongDoubleBits.h"
-#endif
-
 #endif // LLVM_LIBC_SRC___SUPPORT_FPUTIL_FPBITS_H
diff --git a/libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h b/libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h
index 257c02e17d0045c..8815a18cfbc393b 100644
--- a/libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h
+++ b/libc/src/__support/FPUtil/generic/sqrt_80_bit_long_double.h
@@ -131,7 +131,7 @@ LIBC_INLINE long double sqrt(long double x) {
     out.set_implicit_bit(1);
     out.set_mantissa((y & (ONE - 1)));
 
-    return out;
+    return out.get_val();
   }
 }
 #endif // LIBC_LONG_DOUBLE_IS_X86_FLOAT80
diff --git a/libc/src/__support/FPUtil/x86_64/LongDoubleBits.h b/libc/src/__support/FPUtil/x86_64/LongDoubleBits.h
deleted file mode 100644
index c18abcee77ea50d..000000000000000
--- a/libc/src/__support/FPUtil/x86_64/LongDoubleBits.h
+++ /dev/null
@@ -1,179 +0,0 @@
-//===-- Bit representation of x86 long double numbers -----------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_LONGDOUBLEBITS_H
-#define LLVM_LIBC_SRC___SUPPORT_FPUTIL_X86_64_LONGDOUBLEBITS_H
-
-#include "src/__support/CPP/bit.h"
-#include "src/__support/UInt128.h"
-#include "src/__support/common.h"
-#include "src/__support/macros/attributes.h" // LIBC_INLINE
-#include "src/__support/macros/properties/architectures.h"
-
-#if !defined(LIBC_TARGET_ARCH_IS_X86)
-#error "Invalid include"
-#endif
-
-#include "src...
[truncated]

``````````

</details>


https://github.com/llvm/llvm-project/pull/78192


More information about the llvm-commits mailing list