[llvm] [VPlan] Introduce ComputeReductionResult VPInstruction opcode. (PR #70253)

Florian Hahn via llvm-commits llvm-commits at lists.llvm.org
Wed Jan 3 13:03:52 PST 2024


================
@@ -3643,169 +3614,6 @@ void InnerLoopVectorizer::fixFixedOrderRecurrence(
   Phi->setName("scalar.recur");
 }
 
-void InnerLoopVectorizer::fixReduction(VPReductionPHIRecipe *PhiR,
-                                       VPTransformState &State) {
-  PHINode *OrigPhi = cast<PHINode>(PhiR->getUnderlyingValue());
-  // Get it's reduction variable descriptor.
-  assert(Legal->isReductionVariable(OrigPhi) &&
-         "Unable to find the reduction variable");
-  const RecurrenceDescriptor &RdxDesc = PhiR->getRecurrenceDescriptor();
-
-  RecurKind RK = RdxDesc.getRecurrenceKind();
-  TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue();
-  Instruction *LoopExitInst = RdxDesc.getLoopExitInstr();
-  if (auto *I = dyn_cast<Instruction>(&*ReductionStartValue))
-    State.setDebugLocFrom(I->getDebugLoc());
-
-  VPValue *LoopExitInstDef = PhiR->getBackedgeValue();
-
-  // Before each round, move the insertion point right between
-  // the PHIs and the values we are going to write.
-  // This allows us to write both PHINodes and the extractelement
-  // instructions.
-  Builder.SetInsertPoint(LoopMiddleBlock,
-                         LoopMiddleBlock->getFirstInsertionPt());
-
-  State.setDebugLocFrom(LoopExitInst->getDebugLoc());
-
-  Type *PhiTy = OrigPhi->getType();
-  // If tail is folded by masking, the vector value to leave the loop should be
-  // a Select choosing between the vectorized LoopExitInst and vectorized Phi,
-  // instead of the former. For an inloop reduction the reduction will already
-  // be predicated, and does not need to be handled here.
-  if (Cost->foldTailByMasking() && !PhiR->isInLoop()) {
-    VPValue *Def = nullptr;
-    for (VPUser *U : LoopExitInstDef->users()) {
-      auto *S = dyn_cast<VPInstruction>(U);
-      if (S && S->getOpcode() == Instruction::Select) {
-        Def = S;
-        break;
-      }
-    }
-    if (Def)
-      LoopExitInstDef = Def;
-  }
-
-  VectorParts RdxParts(UF);
-  for (unsigned Part = 0; Part < UF; ++Part)
-    RdxParts[Part] = State.get(LoopExitInstDef, Part);
-
-  // If the vector reduction can be performed in a smaller type, we truncate
-  // then extend the loop exit value to enable InstCombine to evaluate the
-  // entire expression in the smaller type.
-  if (VF.isVector() && PhiTy != RdxDesc.getRecurrenceType()) {
-    Builder.SetInsertPoint(LoopMiddleBlock,
-                           LoopMiddleBlock->getFirstInsertionPt());
-    Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF);
-    for (unsigned Part = 0; Part < UF; ++Part) {
-      RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy);
-    }
-  }
-
-  // Reduce all of the unrolled parts into a single vector.
-  Value *ReducedPartRdx = RdxParts[0];
-  unsigned Op = RecurrenceDescriptor::getOpcode(RK);
-
-  // The middle block terminator has already been assigned a DebugLoc here (the
-  // OrigLoop's single latch terminator). We want the whole middle block to
-  // appear to execute on this line because: (a) it is all compiler generated,
-  // (b) these instructions are always executed after evaluating the latch
-  // conditional branch, and (c) other passes may add new predecessors which
-  // terminate on this line. This is the easiest way to ensure we don't
-  // accidentally cause an extra step back into the loop while debugging.
-  State.setDebugLocFrom(LoopMiddleBlock->getTerminator()->getDebugLoc());
-  if (PhiR->isOrdered())
-    ReducedPartRdx = RdxParts[UF - 1];
-  else {
-    // Floating-point operations should have some FMF to enable the reduction.
-    IRBuilderBase::FastMathFlagGuard FMFG(Builder);
-    Builder.setFastMathFlags(RdxDesc.getFastMathFlags());
-    for (unsigned Part = 1; Part < UF; ++Part) {
-      Value *RdxPart = RdxParts[Part];
-      if (Op != Instruction::ICmp && Op != Instruction::FCmp)
-        ReducedPartRdx = Builder.CreateBinOp(
-            (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx");
-      else if (RecurrenceDescriptor::isAnyOfRecurrenceKind(RK))
-        ReducedPartRdx = createAnyOfOp(Builder, ReductionStartValue, RK,
-                                       ReducedPartRdx, RdxPart);
-      else
-        ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart);
-    }
-  }
-
-  // Create the reduction after the loop. Note that inloop reductions create the
-  // target reduction in the loop using a Reduction recipe.
-  if (VF.isVector() && !PhiR->isInLoop()) {
-    ReducedPartRdx =
-        createTargetReduction(Builder, RdxDesc, ReducedPartRdx, OrigPhi);
-    // If the reduction can be performed in a smaller type, we need to extend
-    // the reduction to the wider type before we branch to the original loop.
-    if (PhiTy != RdxDesc.getRecurrenceType())
-      ReducedPartRdx = RdxDesc.isSigned()
-                           ? Builder.CreateSExt(ReducedPartRdx, PhiTy)
-                           : Builder.CreateZExt(ReducedPartRdx, PhiTy);
-  }
-
-  PHINode *ResumePhi =
-      dyn_cast<PHINode>(PhiR->getStartValue()->getUnderlyingValue());
-
-  // Create a phi node that merges control-flow from the backedge-taken check
-  // block and the middle block.
-  PHINode *BCBlockPhi = PHINode::Create(PhiTy, 2, "bc.merge.rdx",
-                                        LoopScalarPreHeader->getTerminator());
-
-  // If we are fixing reductions in the epilogue loop then we should already
-  // have created a bc.merge.rdx Phi after the main vector body. Ensure that
-  // we carry over the incoming values correctly.
-  for (auto *Incoming : predecessors(LoopScalarPreHeader)) {
-    if (Incoming == LoopMiddleBlock)
-      BCBlockPhi->addIncoming(ReducedPartRdx, Incoming);
-    else if (ResumePhi && llvm::is_contained(ResumePhi->blocks(), Incoming))
-      BCBlockPhi->addIncoming(ResumePhi->getIncomingValueForBlock(Incoming),
-                              Incoming);
-    else
-      BCBlockPhi->addIncoming(ReductionStartValue, Incoming);
-  }
-
-  // Set the resume value for this reduction
-  ReductionResumeValues.insert({&RdxDesc, BCBlockPhi});
-
-  // If there were stores of the reduction value to a uniform memory address
-  // inside the loop, create the final store here.
-  if (StoreInst *SI = RdxDesc.IntermediateStore) {
-    StoreInst *NewSI =
-        Builder.CreateAlignedStore(ReducedPartRdx, SI->getPointerOperand(),
-                                   SI->getAlign());
-    propagateMetadata(NewSI, SI);
-
-    // If the reduction value is used in other places,
-    // then let the code below create PHI's for that.
-  }
-
-  // Now, we need to fix the users of the reduction variable
-  // inside and outside of the scalar remainder loop.
-
-  // We know that the loop is in LCSSA form. We need to update the PHI nodes
-  // in the exit blocks.  See comment on analogous loop in
-  // fixFixedOrderRecurrence for a more complete explaination of the logic.
----------------
fhahn wrote:

No, VPLiveOut will now take care of this

https://github.com/llvm/llvm-project/pull/70253


More information about the llvm-commits mailing list