[llvm] [NFC][X86] Clang-format X86BaseInfo.h (PR #73274)

Shengchen Kan via llvm-commits llvm-commits at lists.llvm.org
Thu Nov 23 18:43:57 PST 2023


https://github.com/KanRobert updated https://github.com/llvm/llvm-project/pull/73274

>From 9641936969144e420bbabf4d0ab210a6d2db78b8 Mon Sep 17 00:00:00 2001
From: Shengchen Kan <shengchen.kan at intel.com>
Date: Fri, 24 Nov 2023 10:12:35 +0800
Subject: [PATCH 1/2] [NFC][X86] Clang-format X86BaseInfo.h

---
 .../lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 2660 +++++++++--------
 1 file changed, 1412 insertions(+), 1248 deletions(-)

diff --git a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index c1b98d4a4740a5f..ece8cd9cc78047a 100644
--- a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -24,1297 +24,1461 @@
 namespace llvm {
 
 namespace X86 {
-  // Enums for memory operand decoding.  Each memory operand is represented with
-  // a 5 operand sequence in the form:
-  //   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
-  // These enums help decode this.
-  enum {
-    AddrBaseReg = 0,
-    AddrScaleAmt = 1,
-    AddrIndexReg = 2,
-    AddrDisp = 3,
-
-    /// AddrSegmentReg - The operand # of the segment in the memory operand.
-    AddrSegmentReg = 4,
-
-    /// AddrNumOperands - Total number of operands in a memory reference.
-    AddrNumOperands = 5
-  };
-
-  /// AVX512 static rounding constants.  These need to match the values in
-  /// avx512fintrin.h.
-  enum STATIC_ROUNDING {
-    TO_NEAREST_INT = 0,
-    TO_NEG_INF = 1,
-    TO_POS_INF = 2,
-    TO_ZERO = 3,
-    CUR_DIRECTION = 4,
-    NO_EXC = 8
-  };
-
-  /// The constants to describe instr prefixes if there are
-  enum IPREFIXES {
-    IP_NO_PREFIX = 0,
-    IP_HAS_OP_SIZE =   1U << 0,
-    IP_HAS_AD_SIZE =   1U << 1,
-    IP_HAS_REPEAT_NE = 1U << 2,
-    IP_HAS_REPEAT =    1U << 3,
-    IP_HAS_LOCK =      1U << 4,
-    IP_HAS_NOTRACK =   1U << 5,
-    IP_USE_VEX =       1U << 6,
-    IP_USE_VEX2 =      1U << 7,
-    IP_USE_VEX3 =      1U << 8,
-    IP_USE_EVEX =      1U << 9,
-    IP_USE_DISP8 =     1U << 10,
-    IP_USE_DISP32 =    1U << 11,
-  };
-
-  enum OperandType : unsigned {
-    /// AVX512 embedded rounding control. This should only have values 0-3.
-    OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
-    OPERAND_COND_CODE,
-  };
-
-  // X86 specific condition code. These correspond to X86_*_COND in
-  // X86InstrInfo.td. They must be kept in synch.
-  enum CondCode {
-    COND_O = 0,
-    COND_NO = 1,
-    COND_B = 2,
-    COND_AE = 3,
-    COND_E = 4,
-    COND_NE = 5,
-    COND_BE = 6,
-    COND_A = 7,
-    COND_S = 8,
-    COND_NS = 9,
-    COND_P = 10,
-    COND_NP = 11,
-    COND_L = 12,
-    COND_GE = 13,
-    COND_LE = 14,
-    COND_G = 15,
-    LAST_VALID_COND = COND_G,
-
-    // Artificial condition codes. These are used by analyzeBranch
-    // to indicate a block terminated with two conditional branches that together
-    // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
-    // which can't be represented on x86 with a single condition. These
-    // are never used in MachineInstrs and are inverses of one another.
-    COND_NE_OR_P,
-    COND_E_AND_NP,
-
-    COND_INVALID
-  };
-
-  // The classification for the first instruction in macro fusion.
-  enum class FirstMacroFusionInstKind {
-    // TEST
-    Test,
-    // CMP
-    Cmp,
-    // AND
-    And,
-    // FIXME: Zen 3 support branch fusion for OR/XOR.
-    // ADD, SUB
-    AddSub,
-    // INC, DEC
-    IncDec,
-    // Not valid as a first macro fusion instruction
-    Invalid
-  };
-
-  enum class SecondMacroFusionInstKind {
-    // JA, JB and variants.
-    AB,
-    // JE, JL, JG and variants.
-    ELG,
-    // JS, JP, JO and variants
-    SPO,
-    // Not a fusible jump.
-    Invalid,
-  };
-
-  /// \returns the type of the first instruction in macro-fusion.
-  inline FirstMacroFusionInstKind
-  classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
-    switch (Opcode) {
-    default:
-      return FirstMacroFusionInstKind::Invalid;
-    // TEST
-    case X86::TEST16i16:
-    case X86::TEST16mr:
-    case X86::TEST16ri:
-    case X86::TEST16rr:
-    case X86::TEST32i32:
-    case X86::TEST32mr:
-    case X86::TEST32ri:
-    case X86::TEST32rr:
-    case X86::TEST64i32:
-    case X86::TEST64mr:
-    case X86::TEST64ri32:
-    case X86::TEST64rr:
-    case X86::TEST8i8:
-    case X86::TEST8mr:
-    case X86::TEST8ri:
-    case X86::TEST8rr:
-      return FirstMacroFusionInstKind::Test;
-    case X86::AND16i16:
-    case X86::AND16ri:
-    case X86::AND16ri8:
-    case X86::AND16rm:
-    case X86::AND16rr:
-    case X86::AND16rr_REV:
-    case X86::AND32i32:
-    case X86::AND32ri:
-    case X86::AND32ri8:
-    case X86::AND32rm:
-    case X86::AND32rr:
-    case X86::AND32rr_REV:
-    case X86::AND64i32:
-    case X86::AND64ri32:
-    case X86::AND64ri8:
-    case X86::AND64rm:
-    case X86::AND64rr:
-    case X86::AND64rr_REV:
-    case X86::AND8i8:
-    case X86::AND8ri:
-    case X86::AND8ri8:
-    case X86::AND8rm:
-    case X86::AND8rr:
-    case X86::AND8rr_REV:
-      return FirstMacroFusionInstKind::And;
-    // FIXME: Zen 3 support branch fusion for OR/XOR.
-    // CMP
-    case X86::CMP16i16:
-    case X86::CMP16mr:
-    case X86::CMP16ri:
-    case X86::CMP16ri8:
-    case X86::CMP16rm:
-    case X86::CMP16rr:
-    case X86::CMP16rr_REV:
-    case X86::CMP32i32:
-    case X86::CMP32mr:
-    case X86::CMP32ri:
-    case X86::CMP32ri8:
-    case X86::CMP32rm:
-    case X86::CMP32rr:
-    case X86::CMP32rr_REV:
-    case X86::CMP64i32:
-    case X86::CMP64mr:
-    case X86::CMP64ri32:
-    case X86::CMP64ri8:
-    case X86::CMP64rm:
-    case X86::CMP64rr:
-    case X86::CMP64rr_REV:
-    case X86::CMP8i8:
-    case X86::CMP8mr:
-    case X86::CMP8ri:
-    case X86::CMP8ri8:
-    case X86::CMP8rm:
-    case X86::CMP8rr:
-    case X86::CMP8rr_REV:
-      return FirstMacroFusionInstKind::Cmp;
-    // ADD
-    case X86::ADD16i16:
-    case X86::ADD16ri:
-    case X86::ADD16ri8:
-    case X86::ADD16rm:
-    case X86::ADD16rr:
-    case X86::ADD16rr_REV:
-    case X86::ADD32i32:
-    case X86::ADD32ri:
-    case X86::ADD32ri8:
-    case X86::ADD32rm:
-    case X86::ADD32rr:
-    case X86::ADD32rr_REV:
-    case X86::ADD64i32:
-    case X86::ADD64ri32:
-    case X86::ADD64ri8:
-    case X86::ADD64rm:
-    case X86::ADD64rr:
-    case X86::ADD64rr_REV:
-    case X86::ADD8i8:
-    case X86::ADD8ri:
-    case X86::ADD8ri8:
-    case X86::ADD8rm:
-    case X86::ADD8rr:
-    case X86::ADD8rr_REV:
-    // SUB
-    case X86::SUB16i16:
-    case X86::SUB16ri:
-    case X86::SUB16ri8:
-    case X86::SUB16rm:
-    case X86::SUB16rr:
-    case X86::SUB16rr_REV:
-    case X86::SUB32i32:
-    case X86::SUB32ri:
-    case X86::SUB32ri8:
-    case X86::SUB32rm:
-    case X86::SUB32rr:
-    case X86::SUB32rr_REV:
-    case X86::SUB64i32:
-    case X86::SUB64ri32:
-    case X86::SUB64ri8:
-    case X86::SUB64rm:
-    case X86::SUB64rr:
-    case X86::SUB64rr_REV:
-    case X86::SUB8i8:
-    case X86::SUB8ri:
-    case X86::SUB8ri8:
-    case X86::SUB8rm:
-    case X86::SUB8rr:
-    case X86::SUB8rr_REV:
-      return FirstMacroFusionInstKind::AddSub;
-    // INC
-    case X86::INC16r:
-    case X86::INC16r_alt:
-    case X86::INC32r:
-    case X86::INC32r_alt:
-    case X86::INC64r:
-    case X86::INC8r:
-    // DEC
-    case X86::DEC16r:
-    case X86::DEC16r_alt:
-    case X86::DEC32r:
-    case X86::DEC32r_alt:
-    case X86::DEC64r:
-    case X86::DEC8r:
-      return FirstMacroFusionInstKind::IncDec;
-    }
+// Enums for memory operand decoding.  Each memory operand is represented with
+// a 5 operand sequence in the form:
+//   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
+// These enums help decode this.
+enum {
+  AddrBaseReg = 0,
+  AddrScaleAmt = 1,
+  AddrIndexReg = 2,
+  AddrDisp = 3,
+
+  /// AddrSegmentReg - The operand # of the segment in the memory operand.
+  AddrSegmentReg = 4,
+
+  /// AddrNumOperands - Total number of operands in a memory reference.
+  AddrNumOperands = 5
+};
+
+/// AVX512 static rounding constants.  These need to match the values in
+/// avx512fintrin.h.
+enum STATIC_ROUNDING {
+  TO_NEAREST_INT = 0,
+  TO_NEG_INF = 1,
+  TO_POS_INF = 2,
+  TO_ZERO = 3,
+  CUR_DIRECTION = 4,
+  NO_EXC = 8
+};
+
+/// The constants to describe instr prefixes if there are
+enum IPREFIXES {
+  IP_NO_PREFIX = 0,
+  IP_HAS_OP_SIZE = 1U << 0,
+  IP_HAS_AD_SIZE = 1U << 1,
+  IP_HAS_REPEAT_NE = 1U << 2,
+  IP_HAS_REPEAT = 1U << 3,
+  IP_HAS_LOCK = 1U << 4,
+  IP_HAS_NOTRACK = 1U << 5,
+  IP_USE_VEX = 1U << 6,
+  IP_USE_VEX2 = 1U << 7,
+  IP_USE_VEX3 = 1U << 8,
+  IP_USE_EVEX = 1U << 9,
+  IP_USE_DISP8 = 1U << 10,
+  IP_USE_DISP32 = 1U << 11,
+};
+
+enum OperandType : unsigned {
+  /// AVX512 embedded rounding control. This should only have values 0-3.
+  OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
+  OPERAND_COND_CODE,
+};
+
+// X86 specific condition code. These correspond to X86_*_COND in
+// X86InstrInfo.td. They must be kept in synch.
+enum CondCode {
+  COND_O = 0,
+  COND_NO = 1,
+  COND_B = 2,
+  COND_AE = 3,
+  COND_E = 4,
+  COND_NE = 5,
+  COND_BE = 6,
+  COND_A = 7,
+  COND_S = 8,
+  COND_NS = 9,
+  COND_P = 10,
+  COND_NP = 11,
+  COND_L = 12,
+  COND_GE = 13,
+  COND_LE = 14,
+  COND_G = 15,
+  LAST_VALID_COND = COND_G,
+
+  // Artificial condition codes. These are used by analyzeBranch
+  // to indicate a block terminated with two conditional branches that together
+  // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
+  // which can't be represented on x86 with a single condition. These
+  // are never used in MachineInstrs and are inverses of one another.
+  COND_NE_OR_P,
+  COND_E_AND_NP,
+
+  COND_INVALID
+};
+
+// The classification for the first instruction in macro fusion.
+enum class FirstMacroFusionInstKind {
+  // TEST
+  Test,
+  // CMP
+  Cmp,
+  // AND
+  And,
+  // FIXME: Zen 3 support branch fusion for OR/XOR.
+  // ADD, SUB
+  AddSub,
+  // INC, DEC
+  IncDec,
+  // Not valid as a first macro fusion instruction
+  Invalid
+};
+
+enum class SecondMacroFusionInstKind {
+  // JA, JB and variants.
+  AB,
+  // JE, JL, JG and variants.
+  ELG,
+  // JS, JP, JO and variants
+  SPO,
+  // Not a fusible jump.
+  Invalid,
+};
+
+/// \returns the type of the first instruction in macro-fusion.
+inline FirstMacroFusionInstKind
+classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
+  switch (Opcode) {
+  default:
+    return FirstMacroFusionInstKind::Invalid;
+  // TEST
+  case X86::TEST16i16:
+  case X86::TEST16mr:
+  case X86::TEST16ri:
+  case X86::TEST16rr:
+  case X86::TEST32i32:
+  case X86::TEST32mr:
+  case X86::TEST32ri:
+  case X86::TEST32rr:
+  case X86::TEST64i32:
+  case X86::TEST64mr:
+  case X86::TEST64ri32:
+  case X86::TEST64rr:
+  case X86::TEST8i8:
+  case X86::TEST8mr:
+  case X86::TEST8ri:
+  case X86::TEST8rr:
+    return FirstMacroFusionInstKind::Test;
+  case X86::AND16i16:
+  case X86::AND16ri:
+  case X86::AND16ri8:
+  case X86::AND16rm:
+  case X86::AND16rr:
+  case X86::AND16rr_REV:
+  case X86::AND32i32:
+  case X86::AND32ri:
+  case X86::AND32ri8:
+  case X86::AND32rm:
+  case X86::AND32rr:
+  case X86::AND32rr_REV:
+  case X86::AND64i32:
+  case X86::AND64ri32:
+  case X86::AND64ri8:
+  case X86::AND64rm:
+  case X86::AND64rr:
+  case X86::AND64rr_REV:
+  case X86::AND8i8:
+  case X86::AND8ri:
+  case X86::AND8ri8:
+  case X86::AND8rm:
+  case X86::AND8rr:
+  case X86::AND8rr_REV:
+    return FirstMacroFusionInstKind::And;
+  // FIXME: Zen 3 support branch fusion for OR/XOR.
+  // CMP
+  case X86::CMP16i16:
+  case X86::CMP16mr:
+  case X86::CMP16ri:
+  case X86::CMP16ri8:
+  case X86::CMP16rm:
+  case X86::CMP16rr:
+  case X86::CMP16rr_REV:
+  case X86::CMP32i32:
+  case X86::CMP32mr:
+  case X86::CMP32ri:
+  case X86::CMP32ri8:
+  case X86::CMP32rm:
+  case X86::CMP32rr:
+  case X86::CMP32rr_REV:
+  case X86::CMP64i32:
+  case X86::CMP64mr:
+  case X86::CMP64ri32:
+  case X86::CMP64ri8:
+  case X86::CMP64rm:
+  case X86::CMP64rr:
+  case X86::CMP64rr_REV:
+  case X86::CMP8i8:
+  case X86::CMP8mr:
+  case X86::CMP8ri:
+  case X86::CMP8ri8:
+  case X86::CMP8rm:
+  case X86::CMP8rr:
+  case X86::CMP8rr_REV:
+    return FirstMacroFusionInstKind::Cmp;
+  // ADD
+  case X86::ADD16i16:
+  case X86::ADD16ri:
+  case X86::ADD16ri8:
+  case X86::ADD16rm:
+  case X86::ADD16rr:
+  case X86::ADD16rr_REV:
+  case X86::ADD32i32:
+  case X86::ADD32ri:
+  case X86::ADD32ri8:
+  case X86::ADD32rm:
+  case X86::ADD32rr:
+  case X86::ADD32rr_REV:
+  case X86::ADD64i32:
+  case X86::ADD64ri32:
+  case X86::ADD64ri8:
+  case X86::ADD64rm:
+  case X86::ADD64rr:
+  case X86::ADD64rr_REV:
+  case X86::ADD8i8:
+  case X86::ADD8ri:
+  case X86::ADD8ri8:
+  case X86::ADD8rm:
+  case X86::ADD8rr:
+  case X86::ADD8rr_REV:
+  // SUB
+  case X86::SUB16i16:
+  case X86::SUB16ri:
+  case X86::SUB16ri8:
+  case X86::SUB16rm:
+  case X86::SUB16rr:
+  case X86::SUB16rr_REV:
+  case X86::SUB32i32:
+  case X86::SUB32ri:
+  case X86::SUB32ri8:
+  case X86::SUB32rm:
+  case X86::SUB32rr:
+  case X86::SUB32rr_REV:
+  case X86::SUB64i32:
+  case X86::SUB64ri32:
+  case X86::SUB64ri8:
+  case X86::SUB64rm:
+  case X86::SUB64rr:
+  case X86::SUB64rr_REV:
+  case X86::SUB8i8:
+  case X86::SUB8ri:
+  case X86::SUB8ri8:
+  case X86::SUB8rm:
+  case X86::SUB8rr:
+  case X86::SUB8rr_REV:
+    return FirstMacroFusionInstKind::AddSub;
+  // INC
+  case X86::INC16r:
+  case X86::INC16r_alt:
+  case X86::INC32r:
+  case X86::INC32r_alt:
+  case X86::INC64r:
+  case X86::INC8r:
+  // DEC
+  case X86::DEC16r:
+  case X86::DEC16r_alt:
+  case X86::DEC32r:
+  case X86::DEC32r_alt:
+  case X86::DEC64r:
+  case X86::DEC8r:
+    return FirstMacroFusionInstKind::IncDec;
   }
+}
 
-  /// \returns the type of the second instruction in macro-fusion.
-  inline SecondMacroFusionInstKind
-  classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
-    if (CC == X86::COND_INVALID)
-      return SecondMacroFusionInstKind::Invalid;
-
-    switch (CC) {
-    default:
-      return SecondMacroFusionInstKind::Invalid;
-    // JE,JZ
-    case X86::COND_E:
-    // JNE,JNZ
-    case X86::COND_NE:
-    // JL,JNGE
-    case X86::COND_L:
-    // JLE,JNG
-    case X86::COND_LE:
-    // JG,JNLE
-    case X86::COND_G:
-    // JGE,JNL
-    case X86::COND_GE:
-      return SecondMacroFusionInstKind::ELG;
-    // JB,JC
-    case X86::COND_B:
-    // JNA,JBE
-    case X86::COND_BE:
-    // JA,JNBE
-    case X86::COND_A:
-    // JAE,JNC,JNB
-    case X86::COND_AE:
-      return SecondMacroFusionInstKind::AB;
-    // JS
-    case X86::COND_S:
-    // JNS
-    case X86::COND_NS:
-    // JP,JPE
-    case X86::COND_P:
-    // JNP,JPO
-    case X86::COND_NP:
-    // JO
-    case X86::COND_O:
-    // JNO
-    case X86::COND_NO:
-      return SecondMacroFusionInstKind::SPO;
-    }
+/// \returns the type of the second instruction in macro-fusion.
+inline SecondMacroFusionInstKind
+classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
+  if (CC == X86::COND_INVALID)
+    return SecondMacroFusionInstKind::Invalid;
+
+  switch (CC) {
+  default:
+    return SecondMacroFusionInstKind::Invalid;
+  // JE,JZ
+  case X86::COND_E:
+  // JNE,JNZ
+  case X86::COND_NE:
+  // JL,JNGE
+  case X86::COND_L:
+  // JLE,JNG
+  case X86::COND_LE:
+  // JG,JNLE
+  case X86::COND_G:
+  // JGE,JNL
+  case X86::COND_GE:
+    return SecondMacroFusionInstKind::ELG;
+  // JB,JC
+  case X86::COND_B:
+  // JNA,JBE
+  case X86::COND_BE:
+  // JA,JNBE
+  case X86::COND_A:
+  // JAE,JNC,JNB
+  case X86::COND_AE:
+    return SecondMacroFusionInstKind::AB;
+  // JS
+  case X86::COND_S:
+  // JNS
+  case X86::COND_NS:
+  // JP,JPE
+  case X86::COND_P:
+  // JNP,JPO
+  case X86::COND_NP:
+  // JO
+  case X86::COND_O:
+  // JNO
+  case X86::COND_NO:
+    return SecondMacroFusionInstKind::SPO;
   }
+}
 
-  /// \param FirstKind kind of the first instruction in macro fusion.
-  /// \param SecondKind kind of the second instruction in macro fusion.
-  ///
-  /// \returns true if the two instruction can be macro fused.
-  inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
-                           SecondMacroFusionInstKind SecondKind) {
-    switch (FirstKind) {
-    case X86::FirstMacroFusionInstKind::Test:
-    case X86::FirstMacroFusionInstKind::And:
-      return true;
-    case X86::FirstMacroFusionInstKind::Cmp:
-    case X86::FirstMacroFusionInstKind::AddSub:
-      return SecondKind == X86::SecondMacroFusionInstKind::AB ||
-             SecondKind == X86::SecondMacroFusionInstKind::ELG;
-    case X86::FirstMacroFusionInstKind::IncDec:
-      return SecondKind == X86::SecondMacroFusionInstKind::ELG;
-    case X86::FirstMacroFusionInstKind::Invalid:
-      return false;
-    }
-    llvm_unreachable("unknown fusion type");
+/// \param FirstKind kind of the first instruction in macro fusion.
+/// \param SecondKind kind of the second instruction in macro fusion.
+///
+/// \returns true if the two instruction can be macro fused.
+inline bool isMacroFused(FirstMacroFusionInstKind FirstKind,
+                         SecondMacroFusionInstKind SecondKind) {
+  switch (FirstKind) {
+  case X86::FirstMacroFusionInstKind::Test:
+  case X86::FirstMacroFusionInstKind::And:
+    return true;
+  case X86::FirstMacroFusionInstKind::Cmp:
+  case X86::FirstMacroFusionInstKind::AddSub:
+    return SecondKind == X86::SecondMacroFusionInstKind::AB ||
+           SecondKind == X86::SecondMacroFusionInstKind::ELG;
+  case X86::FirstMacroFusionInstKind::IncDec:
+    return SecondKind == X86::SecondMacroFusionInstKind::ELG;
+  case X86::FirstMacroFusionInstKind::Invalid:
+    return false;
   }
+  llvm_unreachable("unknown fusion type");
+}
 
-  /// Defines the possible values of the branch boundary alignment mask.
-  enum AlignBranchBoundaryKind : uint8_t {
-    AlignBranchNone = 0,
-    AlignBranchFused = 1U << 0,
-    AlignBranchJcc = 1U << 1,
-    AlignBranchJmp = 1U << 2,
-    AlignBranchCall = 1U << 3,
-    AlignBranchRet = 1U << 4,
-    AlignBranchIndirect = 1U << 5
-  };
-
-  /// Defines the encoding values for segment override prefix.
-  enum EncodingOfSegmentOverridePrefix : uint8_t {
-    CS_Encoding = 0x2E,
-    DS_Encoding = 0x3E,
-    ES_Encoding = 0x26,
-    FS_Encoding = 0x64,
-    GS_Encoding = 0x65,
-    SS_Encoding = 0x36
-  };
-
-  /// Given a segment register, return the encoding of the segment override
-  /// prefix for it.
-  inline EncodingOfSegmentOverridePrefix
-  getSegmentOverridePrefixForReg(unsigned Reg) {
-    switch (Reg) {
-    default:
-      llvm_unreachable("Unknown segment register!");
-    case X86::CS:
-      return CS_Encoding;
-    case X86::DS:
-      return DS_Encoding;
-    case X86::ES:
-      return ES_Encoding;
-    case X86::FS:
-      return FS_Encoding;
-    case X86::GS:
-      return GS_Encoding;
-    case X86::SS:
-      return SS_Encoding;
-    }
+/// Defines the possible values of the branch boundary alignment mask.
+enum AlignBranchBoundaryKind : uint8_t {
+  AlignBranchNone = 0,
+  AlignBranchFused = 1U << 0,
+  AlignBranchJcc = 1U << 1,
+  AlignBranchJmp = 1U << 2,
+  AlignBranchCall = 1U << 3,
+  AlignBranchRet = 1U << 4,
+  AlignBranchIndirect = 1U << 5
+};
+
+/// Defines the encoding values for segment override prefix.
+enum EncodingOfSegmentOverridePrefix : uint8_t {
+  CS_Encoding = 0x2E,
+  DS_Encoding = 0x3E,
+  ES_Encoding = 0x26,
+  FS_Encoding = 0x64,
+  GS_Encoding = 0x65,
+  SS_Encoding = 0x36
+};
+
+/// Given a segment register, return the encoding of the segment override
+/// prefix for it.
+inline EncodingOfSegmentOverridePrefix
+getSegmentOverridePrefixForReg(unsigned Reg) {
+  switch (Reg) {
+  default:
+    llvm_unreachable("Unknown segment register!");
+  case X86::CS:
+    return CS_Encoding;
+  case X86::DS:
+    return DS_Encoding;
+  case X86::ES:
+    return ES_Encoding;
+  case X86::FS:
+    return FS_Encoding;
+  case X86::GS:
+    return GS_Encoding;
+  case X86::SS:
+    return SS_Encoding;
   }
+}
 
-} // end namespace X86;
+} // namespace X86
 
 /// X86II - This namespace holds all of the target specific flags that
 /// instruction info tracks.
 ///
 namespace X86II {
-  /// Target Operand Flag enum.
-  enum TOF {
-    //===------------------------------------------------------------------===//
-    // X86 Specific MachineOperand flags.
-
-    MO_NO_FLAG,
-
-    /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
-    /// relocation of:
-    ///    SYMBOL_LABEL + [. - PICBASELABEL]
-    MO_GOT_ABSOLUTE_ADDRESS,
-
-    /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
-    /// immediate should get the value of the symbol minus the PIC base label:
-    ///    SYMBOL_LABEL - PICBASELABEL
-    MO_PIC_BASE_OFFSET,
-
-    /// MO_GOT - On a symbol operand this indicates that the immediate is the
-    /// offset to the GOT entry for the symbol name from the base of the GOT.
-    ///
-    /// See the X86-64 ELF ABI supplement for more details.
-    ///    SYMBOL_LABEL @GOT
-    MO_GOT,
-
-    /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
-    /// the offset to the location of the symbol name from the base of the GOT.
-    ///
-    /// See the X86-64 ELF ABI supplement for more details.
-    ///    SYMBOL_LABEL @GOTOFF
-    MO_GOTOFF,
-
-    /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
-    /// offset to the GOT entry for the symbol name from the current code
-    /// location.
-    ///
-    /// See the X86-64 ELF ABI supplement for more details.
-    ///    SYMBOL_LABEL @GOTPCREL
-    MO_GOTPCREL,
-
-    /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
-    /// relocations are guaranteed to be emitted by the integrated assembler
-    /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
-    MO_GOTPCREL_NORELAX,
-
-    /// MO_PLT - On a symbol operand this indicates that the immediate is
-    /// offset to the PLT entry of symbol name from the current code location.
-    ///
-    /// See the X86-64 ELF ABI supplement for more details.
-    ///    SYMBOL_LABEL @PLT
-    MO_PLT,
-
-    /// MO_TLSGD - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the TLS index structure that contains
-    /// the module number and variable offset for the symbol. Used in the
-    /// general dynamic TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @TLSGD
-    MO_TLSGD,
-
-    /// MO_TLSLD - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the TLS index for the module that
-    /// contains the symbol. When this index is passed to a call to
-    /// __tls_get_addr, the function will return the base address of the TLS
-    /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @TLSLD
-    MO_TLSLD,
-
-    /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the TLS index for the module that
-    /// contains the symbol. When this index is passed to a call to
-    /// ___tls_get_addr, the function will return the base address of the TLS
-    /// block for the symbol. Used in the IA32 local dynamic TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @TLSLDM
-    MO_TLSLDM,
-
-    /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the thread-pointer offset for the
-    /// symbol. Used in the x86-64 initial exec TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @GOTTPOFF
-    MO_GOTTPOFF,
-
-    /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
-    /// the absolute address of the GOT entry with the negative thread-pointer
-    /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
-    /// model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @INDNTPOFF
-    MO_INDNTPOFF,
-
-    /// MO_TPOFF - On a symbol operand this indicates that the immediate is
-    /// the thread-pointer offset for the symbol. Used in the x86-64 local
-    /// exec TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @TPOFF
-    MO_TPOFF,
-
-    /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the TLS offset of the symbol. Used
-    /// in the local dynamic TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @DTPOFF
-    MO_DTPOFF,
-
-    /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
-    /// the negative thread-pointer offset for the symbol. Used in the IA32
-    /// local exec TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @NTPOFF
-    MO_NTPOFF,
-
-    /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
-    /// the offset of the GOT entry with the negative thread-pointer offset for
-    /// the symbol. Used in the PIC IA32 initial exec TLS access model.
-    ///
-    /// See 'ELF Handling for Thread-Local Storage' for more details.
-    ///    SYMBOL_LABEL @GOTNTPOFF
-    MO_GOTNTPOFF,
-
-    /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
-    /// reference is actually to the "__imp_FOO" symbol.  This is used for
-    /// dllimport linkage on windows.
-    MO_DLLIMPORT,
-
-    /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
-    /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
-    /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
-    MO_DARWIN_NONLAZY,
-
-    /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
-    /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
-    /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
-    MO_DARWIN_NONLAZY_PIC_BASE,
-
-    /// MO_TLVP - On a symbol operand this indicates that the immediate is
-    /// some TLS offset.
-    ///
-    /// This is the TLS offset for the Darwin TLS mechanism.
-    MO_TLVP,
-
-    /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
-    /// is some TLS offset from the picbase.
-    ///
-    /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
-    MO_TLVP_PIC_BASE,
-
-    /// MO_SECREL - On a symbol operand this indicates that the immediate is
-    /// the offset from beginning of section.
-    ///
-    /// This is the TLS offset for the COFF/Windows TLS mechanism.
-    MO_SECREL,
-
-    /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
-    /// to be an absolute symbol in range [0,128), so we can use the @ABS8
-    /// symbol modifier.
-    MO_ABS8,
-
-    /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
-    /// reference is actually to the ".refptr.FOO" symbol.  This is used for
-    /// stub symbols on windows.
-    MO_COFFSTUB,
-  };
-
-  enum : uint64_t {
-    //===------------------------------------------------------------------===//
-    // Instruction encodings.  These are the standard/most common forms for X86
-    // instructions.
-    //
-
-    // PseudoFrm - This represents an instruction that is a pseudo instruction
-    // or one that has not been implemented yet.  It is illegal to code generate
-    // it, but tolerated for intermediate implementation stages.
-    Pseudo         = 0,
-
-    /// Raw - This form is for instructions that don't have any operands, so
-    /// they are just a fixed opcode value, like 'leave'.
-    RawFrm         = 1,
-
-    /// AddRegFrm - This form is used for instructions like 'push r32' that have
-    /// their one register operand added to their opcode.
-    AddRegFrm      = 2,
-
-    /// RawFrmMemOffs - This form is for instructions that store an absolute
-    /// memory offset as an immediate with a possible segment override.
-    RawFrmMemOffs  = 3,
-
-    /// RawFrmSrc - This form is for instructions that use the source index
-    /// register SI/ESI/RSI with a possible segment override.
-    RawFrmSrc      = 4,
-
-    /// RawFrmDst - This form is for instructions that use the destination index
-    /// register DI/EDI/RDI.
-    RawFrmDst      = 5,
-
-    /// RawFrmDstSrc - This form is for instructions that use the source index
-    /// register SI/ESI/RSI with a possible segment override, and also the
-    /// destination index register DI/EDI/RDI.
-    RawFrmDstSrc   = 6,
-
-    /// RawFrmImm8 - This is used for the ENTER instruction, which has two
-    /// immediates, the first of which is a 16-bit immediate (specified by
-    /// the imm encoding) and the second is a 8-bit fixed value.
-    RawFrmImm8 = 7,
-
-    /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
-    /// immediates, the first of which is a 16 or 32-bit immediate (specified by
-    /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
-    /// manual, this operand is described as pntr16:32 and pntr16:16
-    RawFrmImm16 = 8,
-
-    /// AddCCFrm - This form is used for Jcc that encode the condition code
-    /// in the lower 4 bits of the opcode.
-    AddCCFrm = 9,
-
-    /// PrefixByte - This form is used for instructions that represent a prefix
-    /// byte like data16 or rep.
-    PrefixByte = 10,
-
-    /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
-    /// byte to specify a destination which in this case is memory and operand 3
-    /// with VEX.VVVV, and also encodes a condition code.
-    MRMDestMem4VOp3CC = 20,
-
-    /// MRM[0-7][rm] - These forms are used to represent instructions that use
-    /// a Mod/RM byte, and use the middle field to hold extended opcode
-    /// information.  In the intel manual these are represented as /0, /1, ...
-    ///
-
-    // Instructions operate on a register Reg/Opcode operand not the r/m field.
-    MRMr0 = 21,
-
-    /// MRMSrcMem - But force to use the SIB field.
-    MRMSrcMemFSIB  = 22,
-
-    /// MRMDestMem - But force to use the SIB field.
-    MRMDestMemFSIB = 23,
-
-    /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
-    /// to specify a destination, which in this case is memory.
-    ///
-    MRMDestMem     = 24,
-
-    /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
-    /// to specify a source, which in this case is memory.
-    ///
-    MRMSrcMem      = 25,
-
-    /// MRMSrcMem4VOp3 - This form is used for instructions that encode
-    /// operand 3 with VEX.VVVV and load from memory.
-    ///
-    MRMSrcMem4VOp3 = 26,
-
-    /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
-    /// byte to specify the fourth source, which in this case is memory.
-    ///
-    MRMSrcMemOp4   = 27,
-
-    /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
-    /// byte to specify the operands and also encodes a condition code.
-    ///
-    MRMSrcMemCC    = 28,
-
-    /// MRMXm - This form is used for instructions that use the Mod/RM byte
-    /// to specify a memory source, but doesn't use the middle field. And has
-    /// a condition code.
-    ///
-    MRMXmCC = 30,
-
-    /// MRMXm - This form is used for instructions that use the Mod/RM byte
-    /// to specify a memory source, but doesn't use the middle field.
-    ///
-    MRMXm = 31,
-
-    // Next, instructions that operate on a memory r/m operand...
-    MRM0m = 32,  MRM1m = 33,  MRM2m = 34,  MRM3m = 35, // Format /0 /1 /2 /3
-    MRM4m = 36,  MRM5m = 37,  MRM6m = 38,  MRM7m = 39, // Format /4 /5 /6 /7
-
-    /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
-    /// to specify a destination, which in this case is a register.
-    ///
-    MRMDestReg     = 40,
-
-    /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
-    /// to specify a source, which in this case is a register.
-    ///
-    MRMSrcReg      = 41,
-
-    /// MRMSrcReg4VOp3 - This form is used for instructions that encode
-    /// operand 3 with VEX.VVVV and do not load from memory.
-    ///
-    MRMSrcReg4VOp3 = 42,
-
-    /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
-    /// byte to specify the fourth source, which in this case is a register.
-    ///
-    MRMSrcRegOp4   = 43,
-
-    /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
-    /// byte to specify the operands and also encodes a condition code
-    ///
-    MRMSrcRegCC    = 44,
-
-    /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
-    /// to specify a register source, but doesn't use the middle field. And has
-    /// a condition code.
-    ///
-    MRMXrCC = 46,
-
-    /// MRMXr - This form is used for instructions that use the Mod/RM byte
-    /// to specify a register source, but doesn't use the middle field.
-    ///
-    MRMXr = 47,
-
-    // Instructions that operate on a register r/m operand...
-    MRM0r = 48,  MRM1r = 49,  MRM2r = 50,  MRM3r = 51, // Format /0 /1 /2 /3
-    MRM4r = 52,  MRM5r = 53,  MRM6r = 54,  MRM7r = 55, // Format /4 /5 /6 /7
-
-    // Instructions that operate that have mod=11 and an opcode but ignore r/m.
-    MRM0X = 56,  MRM1X = 57,  MRM2X = 58,  MRM3X = 59, // Format /0 /1 /2 /3
-    MRM4X = 60,  MRM5X = 61,  MRM6X = 62,  MRM7X = 63, // Format /4 /5 /6 /7
-
-    /// MRM_XX - A mod/rm byte of exactly 0xXX.
-    MRM_C0 = 64,  MRM_C1 = 65,  MRM_C2 = 66,  MRM_C3 = 67,
-    MRM_C4 = 68,  MRM_C5 = 69,  MRM_C6 = 70,  MRM_C7 = 71,
-    MRM_C8 = 72,  MRM_C9 = 73,  MRM_CA = 74,  MRM_CB = 75,
-    MRM_CC = 76,  MRM_CD = 77,  MRM_CE = 78,  MRM_CF = 79,
-    MRM_D0 = 80,  MRM_D1 = 81,  MRM_D2 = 82,  MRM_D3 = 83,
-    MRM_D4 = 84,  MRM_D5 = 85,  MRM_D6 = 86,  MRM_D7 = 87,
-    MRM_D8 = 88,  MRM_D9 = 89,  MRM_DA = 90,  MRM_DB = 91,
-    MRM_DC = 92,  MRM_DD = 93,  MRM_DE = 94,  MRM_DF = 95,
-    MRM_E0 = 96,  MRM_E1 = 97,  MRM_E2 = 98,  MRM_E3 = 99,
-    MRM_E4 = 100, MRM_E5 = 101, MRM_E6 = 102, MRM_E7 = 103,
-    MRM_E8 = 104, MRM_E9 = 105, MRM_EA = 106, MRM_EB = 107,
-    MRM_EC = 108, MRM_ED = 109, MRM_EE = 110, MRM_EF = 111,
-    MRM_F0 = 112, MRM_F1 = 113, MRM_F2 = 114, MRM_F3 = 115,
-    MRM_F4 = 116, MRM_F5 = 117, MRM_F6 = 118, MRM_F7 = 119,
-    MRM_F8 = 120, MRM_F9 = 121, MRM_FA = 122, MRM_FB = 123,
-    MRM_FC = 124, MRM_FD = 125, MRM_FE = 126, MRM_FF = 127,
-
-    FormMask       = 127,
-
-    //===------------------------------------------------------------------===//
-    // Actual flags...
-
-    // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
-    // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
-    // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
-    // prefix in 16-bit mode.
-    OpSizeShift = 7,
-    OpSizeMask = 0x3 << OpSizeShift,
-
-    OpSizeFixed  = 0 << OpSizeShift,
-    OpSize16     = 1 << OpSizeShift,
-    OpSize32     = 2 << OpSizeShift,
-
-    // AsSize - AdSizeX implies this instruction determines its need of 0x67
-    // prefix from a normal ModRM memory operand. The other types indicate that
-    // an operand is encoded with a specific width and a prefix is needed if
-    // it differs from the current mode.
-    AdSizeShift = OpSizeShift + 2,
-    AdSizeMask  = 0x3 << AdSizeShift,
-
-    AdSizeX  = 0 << AdSizeShift,
-    AdSize16 = 1 << AdSizeShift,
-    AdSize32 = 2 << AdSizeShift,
-    AdSize64 = 3 << AdSizeShift,
-
-    //===------------------------------------------------------------------===//
-    // OpPrefix - There are several prefix bytes that are used as opcode
-    // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
-    // no prefix.
-    //
-    OpPrefixShift = AdSizeShift + 2,
-    OpPrefixMask  = 0x3 << OpPrefixShift,
-
-    // PD - Prefix code for packed double precision vector floating point
-    // operations performed in the SSE registers.
-    PD = 1 << OpPrefixShift,
-
-    // XS, XD - These prefix codes are for single and double precision scalar
-    // floating point operations performed in the SSE registers.
-    XS = 2 << OpPrefixShift,  XD = 3 << OpPrefixShift,
-
-    //===------------------------------------------------------------------===//
-    // OpMap - This field determines which opcode map this instruction
-    // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
-    //
-    OpMapShift = OpPrefixShift + 2,
-    OpMapMask  = 0xF << OpMapShift,
-
-    // OB - OneByte - Set if this instruction has a one byte opcode.
-    OB = 0 << OpMapShift,
-
-    // TB - TwoByte - Set if this instruction has a two byte opcode, which
-    // starts with a 0x0F byte before the real opcode.
-    TB = 1 << OpMapShift,
-
-    // T8, TA - Prefix after the 0x0F prefix.
-    T8 = 2 << OpMapShift,  TA = 3 << OpMapShift,
-
-    // XOP8 - Prefix to include use of imm byte.
-    XOP8 = 4 << OpMapShift,
-
-    // XOP9 - Prefix to exclude use of imm byte.
-    XOP9 = 5 << OpMapShift,
-
-    // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
-    XOPA = 6 << OpMapShift,
-
-    /// ThreeDNow - This indicates that the instruction uses the
-    /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
-    /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
-    /// storing a classifier in the imm8 field.  To simplify our implementation,
-    /// we handle this by storeing the classifier in the opcode field and using
-    /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
-    ThreeDNow = 7 << OpMapShift,
-
-    // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
-    T_MAP5 = 8 << OpMapShift,
-    T_MAP6 = 9 << OpMapShift,
-    T_MAP7 = 10 << OpMapShift,
-
-    //===------------------------------------------------------------------===//
-    // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
-    // They are used to specify GPRs and SSE registers, 64-bit operand size,
-    // etc. We only cares about REX.W and REX.R bits and only the former is
-    // statically determined.
-    //
-    REXShift    = OpMapShift + 4,
-    REX_W       = 1 << REXShift,
-
-    //===------------------------------------------------------------------===//
-    // This three-bit field describes the size of an immediate operand.  Zero is
-    // unused so that we can tell if we forgot to set a value.
-    ImmShift = REXShift + 1,
-    ImmMask    = 15 << ImmShift,
-    Imm8       = 1 << ImmShift,
-    Imm8PCRel  = 2 << ImmShift,
-    Imm8Reg    = 3 << ImmShift,
-    Imm16      = 4 << ImmShift,
-    Imm16PCRel = 5 << ImmShift,
-    Imm32      = 6 << ImmShift,
-    Imm32PCRel = 7 << ImmShift,
-    Imm32S     = 8 << ImmShift,
-    Imm64      = 9 << ImmShift,
-
-    //===------------------------------------------------------------------===//
-    // FP Instruction Classification...  Zero is non-fp instruction.
-
-    // FPTypeMask - Mask for all of the FP types...
-    FPTypeShift = ImmShift + 4,
-    FPTypeMask  = 7 << FPTypeShift,
-
-    // NotFP - The default, set for instructions that do not use FP registers.
-    NotFP      = 0 << FPTypeShift,
-
-    // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
-    ZeroArgFP  = 1 << FPTypeShift,
-
-    // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
-    OneArgFP   = 2 << FPTypeShift,
-
-    // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
-    // result back to ST(0).  For example, fcos, fsqrt, etc.
-    //
-    OneArgFPRW = 3 << FPTypeShift,
-
-    // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
-    // explicit argument, storing the result to either ST(0) or the implicit
-    // argument.  For example: fadd, fsub, fmul, etc...
-    TwoArgFP   = 4 << FPTypeShift,
-
-    // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
-    // explicit argument, but have no destination.  Example: fucom, fucomi, ...
-    CompareFP  = 5 << FPTypeShift,
-
-    // CondMovFP - "2 operand" floating point conditional move instructions.
-    CondMovFP  = 6 << FPTypeShift,
-
-    // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
-    SpecialFP  = 7 << FPTypeShift,
-
-    // Lock prefix
-    LOCKShift = FPTypeShift + 3,
-    LOCK = 1 << LOCKShift,
-
-    // REP prefix
-    REPShift = LOCKShift + 1,
-    REP = 1 << REPShift,
-
-    // Execution domain for SSE instructions.
-    // 0 means normal, non-SSE instruction.
-    SSEDomainShift = REPShift + 1,
-
-    // Encoding
-    EncodingShift = SSEDomainShift + 2,
-    EncodingMask = 0x3 << EncodingShift,
-
-    // VEX - encoding using 0xC4/0xC5
-    VEX = 1 << EncodingShift,
-
-    /// XOP - Opcode prefix used by XOP instructions.
-    XOP = 2 << EncodingShift,
-
-    // VEX_EVEX - Specifies that this instruction use EVEX form which provides
-    // syntax support up to 32 512-bit register operands and up to 7 16-bit
-    // mask operands as well as source operand data swizzling/memory operand
-    // conversion, eviction hint, and rounding mode.
-    EVEX = 3 << EncodingShift,
-
-    // Opcode
-    OpcodeShift   = EncodingShift + 2,
-
-    /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
-    /// address instructions in SSE are represented as 3 address ones in AVX
-    /// and the additional register is encoded in VEX_VVVV prefix.
-    VEX_4VShift = OpcodeShift + 8,
-    VEX_4V      = 1ULL << VEX_4VShift,
-
-    /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
-    /// instruction uses 256-bit wide registers. This is usually auto detected
-    /// if a VR256 register is used, but some AVX instructions also have this
-    /// field marked when using a f256 memory references.
-    VEX_LShift = VEX_4VShift + 1,
-    VEX_L       = 1ULL << VEX_LShift,
-
-    // EVEX_K - Set if this instruction requires masking
-    EVEX_KShift = VEX_LShift + 1,
-    EVEX_K      = 1ULL << EVEX_KShift,
-
-    // EVEX_Z - Set if this instruction has EVEX.Z field set.
-    EVEX_ZShift = EVEX_KShift + 1,
-    EVEX_Z      = 1ULL << EVEX_ZShift,
-
-    // EVEX_L2 - Set if this instruction has EVEX.L' field set.
-    EVEX_L2Shift = EVEX_ZShift + 1,
-    EVEX_L2     = 1ULL << EVEX_L2Shift,
-
-    // EVEX_B - Set if this instruction has EVEX.B field set.
-    EVEX_BShift = EVEX_L2Shift + 1,
-    EVEX_B      = 1ULL << EVEX_BShift,
-
-    // The scaling factor for the AVX512's 8-bit compressed displacement.
-    CD8_Scale_Shift = EVEX_BShift + 1,
-    CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
-
-    /// Explicitly specified rounding control
-    EVEX_RCShift = CD8_Scale_Shift + 3,
-    EVEX_RC = 1ULL << EVEX_RCShift,
-
-    // NOTRACK prefix
-    NoTrackShift = EVEX_RCShift + 1,
-    NOTRACK = 1ULL << NoTrackShift,
-
-    // Force REX2/VEX/EVEX encoding
-    ExplicitOpPrefixShift = NoTrackShift + 1,
-    // For instructions that require REX2 prefix even if EGPR is not used.
-    ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
-    // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
-    // is present.
-    ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
-    // For instructions that are promoted to EVEX space for EGPR.
-    ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
-    ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
-  };
-
-  /// \returns true if the instruction with given opcode is a prefix.
-  inline bool isPrefix(uint64_t TSFlags) {
-    return (TSFlags & X86II::FormMask) == PrefixByte;
-  }
+/// Target Operand Flag enum.
+enum TOF {
+  //===------------------------------------------------------------------===//
+  // X86 Specific MachineOperand flags.
 
-  /// \returns true if the instruction with given opcode is a pseudo.
-  inline bool isPseudo(uint64_t TSFlags) {
-    return (TSFlags & X86II::FormMask) == Pseudo;
-  }
+  MO_NO_FLAG,
 
-  /// \returns the "base" X86 opcode for the specified machine
-  /// instruction.
-  inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
-    return TSFlags >> X86II::OpcodeShift;
-  }
+  /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
+  /// relocation of:
+  ///    SYMBOL_LABEL + [. - PICBASELABEL]
+  MO_GOT_ABSOLUTE_ADDRESS,
 
-  inline bool hasImm(uint64_t TSFlags) {
-    return (TSFlags & X86II::ImmMask) != 0;
-  }
+  /// MO_PIC_BASE_OFFSET - On a symbol operand this indicates that the
+  /// immediate should get the value of the symbol minus the PIC base label:
+  ///    SYMBOL_LABEL - PICBASELABEL
+  MO_PIC_BASE_OFFSET,
 
-  /// Decode the "size of immediate" field from the TSFlags field of the 
-  /// specified instruction.
-  inline unsigned getSizeOfImm(uint64_t TSFlags) {
-    switch (TSFlags & X86II::ImmMask) {
-    default: llvm_unreachable("Unknown immediate size");
-    case X86II::Imm8:
-    case X86II::Imm8PCRel:
-    case X86II::Imm8Reg:    return 1;
-    case X86II::Imm16:
-    case X86II::Imm16PCRel: return 2;
-    case X86II::Imm32:
-    case X86II::Imm32S:
-    case X86II::Imm32PCRel: return 4;
-    case X86II::Imm64:      return 8;
-    }
-  }
+  /// MO_GOT - On a symbol operand this indicates that the immediate is the
+  /// offset to the GOT entry for the symbol name from the base of the GOT.
+  ///
+  /// See the X86-64 ELF ABI supplement for more details.
+  ///    SYMBOL_LABEL @GOT
+  MO_GOT,
 
-  /// \returns true if the immediate of the specified instruction's TSFlags
-  /// indicates that it is pc relative.
-  inline bool isImmPCRel(uint64_t TSFlags) {
-    switch (TSFlags & X86II::ImmMask) {
-    default: llvm_unreachable("Unknown immediate size");
-    case X86II::Imm8PCRel:
-    case X86II::Imm16PCRel:
-    case X86II::Imm32PCRel:
-      return true;
-    case X86II::Imm8:
-    case X86II::Imm8Reg:
-    case X86II::Imm16:
-    case X86II::Imm32:
-    case X86II::Imm32S:
-    case X86II::Imm64:
-      return false;
-    }
-  }
+  /// MO_GOTOFF - On a symbol operand this indicates that the immediate is
+  /// the offset to the location of the symbol name from the base of the GOT.
+  ///
+  /// See the X86-64 ELF ABI supplement for more details.
+  ///    SYMBOL_LABEL @GOTOFF
+  MO_GOTOFF,
 
-  /// \returns true if the immediate of the specified instruction's
-  /// TSFlags indicates that it is signed.
-  inline bool isImmSigned(uint64_t TSFlags) {
-    switch (TSFlags & X86II::ImmMask) {
-    default: llvm_unreachable("Unknown immediate signedness");
-    case X86II::Imm32S:
-      return true;
-    case X86II::Imm8:
-    case X86II::Imm8PCRel:
-    case X86II::Imm8Reg:
-    case X86II::Imm16:
-    case X86II::Imm16PCRel:
-    case X86II::Imm32:
-    case X86II::Imm32PCRel:
-    case X86II::Imm64:
-      return false;
-    }
-  }
+  /// MO_GOTPCREL - On a symbol operand this indicates that the immediate is
+  /// offset to the GOT entry for the symbol name from the current code
+  /// location.
+  ///
+  /// See the X86-64 ELF ABI supplement for more details.
+  ///    SYMBOL_LABEL @GOTPCREL
+  MO_GOTPCREL,
 
-  /// Compute whether all of the def operands are repeated in the uses and
-  /// therefore should be skipped.
-  /// This determines the start of the unique operand list. We need to determine
-  /// if all of the defs have a corresponding tied operand in the uses.
-  /// Unfortunately, the tied operand information is encoded in the uses not
-  /// the defs so we have to use some heuristics to find which operands to
-  /// query.
-  inline unsigned getOperandBias(const MCInstrDesc& Desc) {
-    unsigned NumDefs = Desc.getNumDefs();
-    unsigned NumOps = Desc.getNumOperands();
-    switch (NumDefs) {
-    default: llvm_unreachable("Unexpected number of defs");
-    case 0:
-      return 0;
-    case 1:
-      // Common two addr case.
-      if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
-        return 1;
-      // Check for AVX-512 scatter which has a TIED_TO in the second to last
-      // operand.
-      if (NumOps == 8 &&
-          Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
-        return 1;
-      return 0;
-    case 2:
-      // XCHG/XADD have two destinations and two sources.
-      if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
-          Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
-        return 2;
-      // Check for gather. AVX-512 has the second tied operand early. AVX2
-      // has it as the last op.
-      if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
-          (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
-           Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
-        return 2;
-      return 0;
-    }
-  }
+  /// MO_GOTPCREL_NORELAX - Same as MO_GOTPCREL except that R_X86_64_GOTPCREL
+  /// relocations are guaranteed to be emitted by the integrated assembler
+  /// instead of the relaxable R_X86_64[_REX]_GOTPCRELX relocations.
+  MO_GOTPCREL_NORELAX,
 
-  /// The function returns the MCInst operand # for the first field of the
-  /// memory operand.  If the instruction doesn't have a
-  /// memory operand, this returns -1.
+  /// MO_PLT - On a symbol operand this indicates that the immediate is
+  /// offset to the PLT entry of symbol name from the current code location.
   ///
-  /// Note that this ignores tied operands.  If there is a tied register which
-  /// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
-  /// counted as one operand.
+  /// See the X86-64 ELF ABI supplement for more details.
+  ///    SYMBOL_LABEL @PLT
+  MO_PLT,
+
+  /// MO_TLSGD - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the TLS index structure that contains
+  /// the module number and variable offset for the symbol. Used in the
+  /// general dynamic TLS access model.
   ///
-  inline int getMemoryOperandNo(uint64_t TSFlags) {
-    bool HasVEX_4V = TSFlags & X86II::VEX_4V;
-    bool HasEVEX_K = TSFlags & X86II::EVEX_K;
-
-    switch (TSFlags & X86II::FormMask) {
-    default: llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
-    case X86II::Pseudo:
-    case X86II::RawFrm:
-    case X86II::AddRegFrm:
-    case X86II::RawFrmImm8:
-    case X86II::RawFrmImm16:
-    case X86II::RawFrmMemOffs:
-    case X86II::RawFrmSrc:
-    case X86II::RawFrmDst:
-    case X86II::RawFrmDstSrc:
-    case X86II::AddCCFrm:
-    case X86II::PrefixByte:
-      return -1;
-    case X86II::MRMDestMem:
-    case X86II::MRMDestMemFSIB:
-      return 0;
-    case X86II::MRMSrcMem:
-    case X86II::MRMSrcMemFSIB:
-      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
-      // mask register.
-      return 1 + HasVEX_4V + HasEVEX_K;
-    case X86II::MRMSrcMem4VOp3:
-      // Skip registers encoded in reg.
-      return 1 + HasEVEX_K;
-    case X86II::MRMSrcMemOp4:
-      // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
-      return 3;
-    case X86II::MRMSrcMemCC:
-    case X86II::MRMDestMem4VOp3CC:
-      // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
-      // mask register.
-      return 1;
-    case X86II::MRMDestReg:
-    case X86II::MRMSrcReg:
-    case X86II::MRMSrcReg4VOp3:
-    case X86II::MRMSrcRegOp4:
-    case X86II::MRMSrcRegCC:
-    case X86II::MRMXrCC:
-    case X86II::MRMr0:
-    case X86II::MRMXr:
-    case X86II::MRM0r: case X86II::MRM1r:
-    case X86II::MRM2r: case X86II::MRM3r:
-    case X86II::MRM4r: case X86II::MRM5r:
-    case X86II::MRM6r: case X86II::MRM7r:
-      return -1;
-    case X86II::MRM0X: case X86II::MRM1X:
-    case X86II::MRM2X: case X86II::MRM3X:
-    case X86II::MRM4X: case X86II::MRM5X:
-    case X86II::MRM6X: case X86II::MRM7X:
-      return -1;
-    case X86II::MRMXmCC:
-    case X86II::MRMXm:
-    case X86II::MRM0m: case X86II::MRM1m:
-    case X86II::MRM2m: case X86II::MRM3m:
-    case X86II::MRM4m: case X86II::MRM5m:
-    case X86II::MRM6m: case X86II::MRM7m:
-      // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
-      return 0 + HasVEX_4V + HasEVEX_K;
-    case X86II::MRM_C0: case X86II::MRM_C1: case X86II::MRM_C2:
-    case X86II::MRM_C3: case X86II::MRM_C4: case X86II::MRM_C5:
-    case X86II::MRM_C6: case X86II::MRM_C7: case X86II::MRM_C8:
-    case X86II::MRM_C9: case X86II::MRM_CA: case X86II::MRM_CB:
-    case X86II::MRM_CC: case X86II::MRM_CD: case X86II::MRM_CE:
-    case X86II::MRM_CF: case X86II::MRM_D0: case X86II::MRM_D1:
-    case X86II::MRM_D2: case X86II::MRM_D3: case X86II::MRM_D4:
-    case X86II::MRM_D5: case X86II::MRM_D6: case X86II::MRM_D7:
-    case X86II::MRM_D8: case X86II::MRM_D9: case X86II::MRM_DA:
-    case X86II::MRM_DB: case X86II::MRM_DC: case X86II::MRM_DD:
-    case X86II::MRM_DE: case X86II::MRM_DF: case X86II::MRM_E0:
-    case X86II::MRM_E1: case X86II::MRM_E2: case X86II::MRM_E3:
-    case X86II::MRM_E4: case X86II::MRM_E5: case X86II::MRM_E6:
-    case X86II::MRM_E7: case X86II::MRM_E8: case X86II::MRM_E9:
-    case X86II::MRM_EA: case X86II::MRM_EB: case X86II::MRM_EC:
-    case X86II::MRM_ED: case X86II::MRM_EE: case X86II::MRM_EF:
-    case X86II::MRM_F0: case X86II::MRM_F1: case X86II::MRM_F2:
-    case X86II::MRM_F3: case X86II::MRM_F4: case X86II::MRM_F5:
-    case X86II::MRM_F6: case X86II::MRM_F7: case X86II::MRM_F8:
-    case X86II::MRM_F9: case X86II::MRM_FA: case X86II::MRM_FB:
-    case X86II::MRM_FC: case X86II::MRM_FD: case X86II::MRM_FE:
-    case X86II::MRM_FF:
-      return -1;
-    }
-  }
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @TLSGD
+  MO_TLSGD,
+
+  /// MO_TLSLD - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the TLS index for the module that
+  /// contains the symbol. When this index is passed to a call to
+  /// __tls_get_addr, the function will return the base address of the TLS
+  /// block for the symbol. Used in the x86-64 local dynamic TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @TLSLD
+  MO_TLSLD,
+
+  /// MO_TLSLDM - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the TLS index for the module that
+  /// contains the symbol. When this index is passed to a call to
+  /// ___tls_get_addr, the function will return the base address of the TLS
+  /// block for the symbol. Used in the IA32 local dynamic TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @TLSLDM
+  MO_TLSLDM,
 
-  /// \returns true if the register is a XMM.
-  inline bool isXMMReg(unsigned RegNo) {
-    assert(X86::XMM15 - X86::XMM0 == 15 &&
-           "XMM0-15 registers are not continuous");
-    assert(X86::XMM31 - X86::XMM16 == 15 &&
-           "XMM16-31 registers are not continuous");
-    return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
-           (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
-  }
+  /// MO_GOTTPOFF - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the thread-pointer offset for the
+  /// symbol. Used in the x86-64 initial exec TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @GOTTPOFF
+  MO_GOTTPOFF,
+
+  /// MO_INDNTPOFF - On a symbol operand this indicates that the immediate is
+  /// the absolute address of the GOT entry with the negative thread-pointer
+  /// offset for the symbol. Used in the non-PIC IA32 initial exec TLS access
+  /// model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @INDNTPOFF
+  MO_INDNTPOFF,
 
-  /// \returns true if the register is a YMM.
-  inline bool isYMMReg(unsigned RegNo) {
-    assert(X86::YMM15 - X86::YMM0 == 15 &&
-           "YMM0-15 registers are not continuous");
-    assert(X86::YMM31 - X86::YMM16 == 15 &&
-           "YMM16-31 registers are not continuous");
-    return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
-           (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
-  }
+  /// MO_TPOFF - On a symbol operand this indicates that the immediate is
+  /// the thread-pointer offset for the symbol. Used in the x86-64 local
+  /// exec TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @TPOFF
+  MO_TPOFF,
+
+  /// MO_DTPOFF - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the TLS offset of the symbol. Used
+  /// in the local dynamic TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @DTPOFF
+  MO_DTPOFF,
+
+  /// MO_NTPOFF - On a symbol operand this indicates that the immediate is
+  /// the negative thread-pointer offset for the symbol. Used in the IA32
+  /// local exec TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @NTPOFF
+  MO_NTPOFF,
+
+  /// MO_GOTNTPOFF - On a symbol operand this indicates that the immediate is
+  /// the offset of the GOT entry with the negative thread-pointer offset for
+  /// the symbol. Used in the PIC IA32 initial exec TLS access model.
+  ///
+  /// See 'ELF Handling for Thread-Local Storage' for more details.
+  ///    SYMBOL_LABEL @GOTNTPOFF
+  MO_GOTNTPOFF,
+
+  /// MO_DLLIMPORT - On a symbol operand "FOO", this indicates that the
+  /// reference is actually to the "__imp_FOO" symbol.  This is used for
+  /// dllimport linkage on windows.
+  MO_DLLIMPORT,
+
+  /// MO_DARWIN_NONLAZY - On a symbol operand "FOO", this indicates that the
+  /// reference is actually to the "FOO$non_lazy_ptr" symbol, which is a
+  /// non-PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+  MO_DARWIN_NONLAZY,
+
+  /// MO_DARWIN_NONLAZY_PIC_BASE - On a symbol operand "FOO", this indicates
+  /// that the reference is actually to "FOO$non_lazy_ptr - PICBASE", which is
+  /// a PIC-base-relative reference to a non-hidden dyld lazy pointer stub.
+  MO_DARWIN_NONLAZY_PIC_BASE,
+
+  /// MO_TLVP - On a symbol operand this indicates that the immediate is
+  /// some TLS offset.
+  ///
+  /// This is the TLS offset for the Darwin TLS mechanism.
+  MO_TLVP,
+
+  /// MO_TLVP_PIC_BASE - On a symbol operand this indicates that the immediate
+  /// is some TLS offset from the picbase.
+  ///
+  /// This is the 32-bit TLS offset for Darwin TLS in PIC mode.
+  MO_TLVP_PIC_BASE,
+
+  /// MO_SECREL - On a symbol operand this indicates that the immediate is
+  /// the offset from beginning of section.
+  ///
+  /// This is the TLS offset for the COFF/Windows TLS mechanism.
+  MO_SECREL,
+
+  /// MO_ABS8 - On a symbol operand this indicates that the symbol is known
+  /// to be an absolute symbol in range [0,128), so we can use the @ABS8
+  /// symbol modifier.
+  MO_ABS8,
+
+  /// MO_COFFSTUB - On a symbol operand "FOO", this indicates that the
+  /// reference is actually to the ".refptr.FOO" symbol.  This is used for
+  /// stub symbols on windows.
+  MO_COFFSTUB,
+};
+
+enum : uint64_t {
+  //===------------------------------------------------------------------===//
+  // Instruction encodings.  These are the standard/most common forms for X86
+  // instructions.
+  //
+
+  // PseudoFrm - This represents an instruction that is a pseudo instruction
+  // or one that has not been implemented yet.  It is illegal to code generate
+  // it, but tolerated for intermediate implementation stages.
+  Pseudo = 0,
+
+  /// Raw - This form is for instructions that don't have any operands, so
+  /// they are just a fixed opcode value, like 'leave'.
+  RawFrm = 1,
+
+  /// AddRegFrm - This form is used for instructions like 'push r32' that have
+  /// their one register operand added to their opcode.
+  AddRegFrm = 2,
+
+  /// RawFrmMemOffs - This form is for instructions that store an absolute
+  /// memory offset as an immediate with a possible segment override.
+  RawFrmMemOffs = 3,
+
+  /// RawFrmSrc - This form is for instructions that use the source index
+  /// register SI/ESI/RSI with a possible segment override.
+  RawFrmSrc = 4,
+
+  /// RawFrmDst - This form is for instructions that use the destination index
+  /// register DI/EDI/RDI.
+  RawFrmDst = 5,
+
+  /// RawFrmDstSrc - This form is for instructions that use the source index
+  /// register SI/ESI/RSI with a possible segment override, and also the
+  /// destination index register DI/EDI/RDI.
+  RawFrmDstSrc = 6,
+
+  /// RawFrmImm8 - This is used for the ENTER instruction, which has two
+  /// immediates, the first of which is a 16-bit immediate (specified by
+  /// the imm encoding) and the second is a 8-bit fixed value.
+  RawFrmImm8 = 7,
+
+  /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
+  /// immediates, the first of which is a 16 or 32-bit immediate (specified by
+  /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
+  /// manual, this operand is described as pntr16:32 and pntr16:16
+  RawFrmImm16 = 8,
+
+  /// AddCCFrm - This form is used for Jcc that encode the condition code
+  /// in the lower 4 bits of the opcode.
+  AddCCFrm = 9,
+
+  /// PrefixByte - This form is used for instructions that represent a prefix
+  /// byte like data16 or rep.
+  PrefixByte = 10,
+
+  /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
+  /// byte to specify a destination which in this case is memory and operand 3
+  /// with VEX.VVVV, and also encodes a condition code.
+  MRMDestMem4VOp3CC = 20,
+
+  /// MRM[0-7][rm] - These forms are used to represent instructions that use
+  /// a Mod/RM byte, and use the middle field to hold extended opcode
+  /// information.  In the intel manual these are represented as /0, /1, ...
+  ///
+
+  // Instructions operate on a register Reg/Opcode operand not the r/m field.
+  MRMr0 = 21,
+
+  /// MRMSrcMem - But force to use the SIB field.
+  MRMSrcMemFSIB = 22,
+
+  /// MRMDestMem - But force to use the SIB field.
+  MRMDestMemFSIB = 23,
+
+  /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
+  /// to specify a destination, which in this case is memory.
+  ///
+  MRMDestMem = 24,
+
+  /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
+  /// to specify a source, which in this case is memory.
+  ///
+  MRMSrcMem = 25,
+
+  /// MRMSrcMem4VOp3 - This form is used for instructions that encode
+  /// operand 3 with VEX.VVVV and load from memory.
+  ///
+  MRMSrcMem4VOp3 = 26,
+
+  /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
+  /// byte to specify the fourth source, which in this case is memory.
+  ///
+  MRMSrcMemOp4 = 27,
+
+  /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
+  /// byte to specify the operands and also encodes a condition code.
+  ///
+  MRMSrcMemCC = 28,
 
-  /// \returns true if the register is a ZMM.
-  inline bool isZMMReg(unsigned RegNo) {
-    assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous");
-    return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
+  /// MRMXm - This form is used for instructions that use the Mod/RM byte
+  /// to specify a memory source, but doesn't use the middle field. And has
+  /// a condition code.
+  ///
+  MRMXmCC = 30,
+
+  /// MRMXm - This form is used for instructions that use the Mod/RM byte
+  /// to specify a memory source, but doesn't use the middle field.
+  ///
+  MRMXm = 31,
+
+  // Next, instructions that operate on a memory r/m operand...
+  MRM0m = 32,
+  MRM1m = 33,
+  MRM2m = 34,
+  MRM3m = 35, // Format /0 /1 /2 /3
+  MRM4m = 36,
+  MRM5m = 37,
+  MRM6m = 38,
+  MRM7m = 39, // Format /4 /5 /6 /7
+
+  /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
+  /// to specify a destination, which in this case is a register.
+  ///
+  MRMDestReg = 40,
+
+  /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
+  /// to specify a source, which in this case is a register.
+  ///
+  MRMSrcReg = 41,
+
+  /// MRMSrcReg4VOp3 - This form is used for instructions that encode
+  /// operand 3 with VEX.VVVV and do not load from memory.
+  ///
+  MRMSrcReg4VOp3 = 42,
+
+  /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
+  /// byte to specify the fourth source, which in this case is a register.
+  ///
+  MRMSrcRegOp4 = 43,
+
+  /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
+  /// byte to specify the operands and also encodes a condition code
+  ///
+  MRMSrcRegCC = 44,
+
+  /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
+  /// to specify a register source, but doesn't use the middle field. And has
+  /// a condition code.
+  ///
+  MRMXrCC = 46,
+
+  /// MRMXr - This form is used for instructions that use the Mod/RM byte
+  /// to specify a register source, but doesn't use the middle field.
+  ///
+  MRMXr = 47,
+
+  // Instructions that operate on a register r/m operand...
+  MRM0r = 48,
+  MRM1r = 49,
+  MRM2r = 50,
+  MRM3r = 51, // Format /0 /1 /2 /3
+  MRM4r = 52,
+  MRM5r = 53,
+  MRM6r = 54,
+  MRM7r = 55, // Format /4 /5 /6 /7
+
+  // Instructions that operate that have mod=11 and an opcode but ignore r/m.
+  MRM0X = 56,
+  MRM1X = 57,
+  MRM2X = 58,
+  MRM3X = 59, // Format /0 /1 /2 /3
+  MRM4X = 60,
+  MRM5X = 61,
+  MRM6X = 62,
+  MRM7X = 63, // Format /4 /5 /6 /7
+
+  /// MRM_XX - A mod/rm byte of exactly 0xXX.
+  MRM_C0 = 64,
+  MRM_C1 = 65,
+  MRM_C2 = 66,
+  MRM_C3 = 67,
+  MRM_C4 = 68,
+  MRM_C5 = 69,
+  MRM_C6 = 70,
+  MRM_C7 = 71,
+  MRM_C8 = 72,
+  MRM_C9 = 73,
+  MRM_CA = 74,
+  MRM_CB = 75,
+  MRM_CC = 76,
+  MRM_CD = 77,
+  MRM_CE = 78,
+  MRM_CF = 79,
+  MRM_D0 = 80,
+  MRM_D1 = 81,
+  MRM_D2 = 82,
+  MRM_D3 = 83,
+  MRM_D4 = 84,
+  MRM_D5 = 85,
+  MRM_D6 = 86,
+  MRM_D7 = 87,
+  MRM_D8 = 88,
+  MRM_D9 = 89,
+  MRM_DA = 90,
+  MRM_DB = 91,
+  MRM_DC = 92,
+  MRM_DD = 93,
+  MRM_DE = 94,
+  MRM_DF = 95,
+  MRM_E0 = 96,
+  MRM_E1 = 97,
+  MRM_E2 = 98,
+  MRM_E3 = 99,
+  MRM_E4 = 100,
+  MRM_E5 = 101,
+  MRM_E6 = 102,
+  MRM_E7 = 103,
+  MRM_E8 = 104,
+  MRM_E9 = 105,
+  MRM_EA = 106,
+  MRM_EB = 107,
+  MRM_EC = 108,
+  MRM_ED = 109,
+  MRM_EE = 110,
+  MRM_EF = 111,
+  MRM_F0 = 112,
+  MRM_F1 = 113,
+  MRM_F2 = 114,
+  MRM_F3 = 115,
+  MRM_F4 = 116,
+  MRM_F5 = 117,
+  MRM_F6 = 118,
+  MRM_F7 = 119,
+  MRM_F8 = 120,
+  MRM_F9 = 121,
+  MRM_FA = 122,
+  MRM_FB = 123,
+  MRM_FC = 124,
+  MRM_FD = 125,
+  MRM_FE = 126,
+  MRM_FF = 127,
+
+  FormMask = 127,
+
+  //===------------------------------------------------------------------===//
+  // Actual flags...
+
+  // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+  // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+  // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+  // prefix in 16-bit mode.
+  OpSizeShift = 7,
+  OpSizeMask = 0x3 << OpSizeShift,
+
+  OpSizeFixed = 0 << OpSizeShift,
+  OpSize16 = 1 << OpSizeShift,
+  OpSize32 = 2 << OpSizeShift,
+
+  // AsSize - AdSizeX implies this instruction determines its need of 0x67
+  // prefix from a normal ModRM memory operand. The other types indicate that
+  // an operand is encoded with a specific width and a prefix is needed if
+  // it differs from the current mode.
+  AdSizeShift = OpSizeShift + 2,
+  AdSizeMask = 0x3 << AdSizeShift,
+
+  AdSizeX = 0 << AdSizeShift,
+  AdSize16 = 1 << AdSizeShift,
+  AdSize32 = 2 << AdSizeShift,
+  AdSize64 = 3 << AdSizeShift,
+
+  //===------------------------------------------------------------------===//
+  // OpPrefix - There are several prefix bytes that are used as opcode
+  // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+  // no prefix.
+  //
+  OpPrefixShift = AdSizeShift + 2,
+  OpPrefixMask = 0x3 << OpPrefixShift,
+
+  // PD - Prefix code for packed double precision vector floating point
+  // operations performed in the SSE registers.
+  PD = 1 << OpPrefixShift,
+
+  // XS, XD - These prefix codes are for single and double precision scalar
+  // floating point operations performed in the SSE registers.
+  XS = 2 << OpPrefixShift,
+  XD = 3 << OpPrefixShift,
+
+  //===------------------------------------------------------------------===//
+  // OpMap - This field determines which opcode map this instruction
+  // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
+  //
+  OpMapShift = OpPrefixShift + 2,
+  OpMapMask = 0xF << OpMapShift,
+
+  // OB - OneByte - Set if this instruction has a one byte opcode.
+  OB = 0 << OpMapShift,
+
+  // TB - TwoByte - Set if this instruction has a two byte opcode, which
+  // starts with a 0x0F byte before the real opcode.
+  TB = 1 << OpMapShift,
+
+  // T8, TA - Prefix after the 0x0F prefix.
+  T8 = 2 << OpMapShift,
+  TA = 3 << OpMapShift,
+
+  // XOP8 - Prefix to include use of imm byte.
+  XOP8 = 4 << OpMapShift,
+
+  // XOP9 - Prefix to exclude use of imm byte.
+  XOP9 = 5 << OpMapShift,
+
+  // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+  XOPA = 6 << OpMapShift,
+
+  /// ThreeDNow - This indicates that the instruction uses the
+  /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
+  /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
+  /// storing a classifier in the imm8 field.  To simplify our implementation,
+  /// we handle this by storeing the classifier in the opcode field and using
+  /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
+  ThreeDNow = 7 << OpMapShift,
+
+  // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
+  T_MAP5 = 8 << OpMapShift,
+  T_MAP6 = 9 << OpMapShift,
+  T_MAP7 = 10 << OpMapShift,
+
+  //===------------------------------------------------------------------===//
+  // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+  // They are used to specify GPRs and SSE registers, 64-bit operand size,
+  // etc. We only cares about REX.W and REX.R bits and only the former is
+  // statically determined.
+  //
+  REXShift = OpMapShift + 4,
+  REX_W = 1 << REXShift,
+
+  //===------------------------------------------------------------------===//
+  // This three-bit field describes the size of an immediate operand.  Zero is
+  // unused so that we can tell if we forgot to set a value.
+  ImmShift = REXShift + 1,
+  ImmMask = 15 << ImmShift,
+  Imm8 = 1 << ImmShift,
+  Imm8PCRel = 2 << ImmShift,
+  Imm8Reg = 3 << ImmShift,
+  Imm16 = 4 << ImmShift,
+  Imm16PCRel = 5 << ImmShift,
+  Imm32 = 6 << ImmShift,
+  Imm32PCRel = 7 << ImmShift,
+  Imm32S = 8 << ImmShift,
+  Imm64 = 9 << ImmShift,
+
+  //===------------------------------------------------------------------===//
+  // FP Instruction Classification...  Zero is non-fp instruction.
+
+  // FPTypeMask - Mask for all of the FP types...
+  FPTypeShift = ImmShift + 4,
+  FPTypeMask = 7 << FPTypeShift,
+
+  // NotFP - The default, set for instructions that do not use FP registers.
+  NotFP = 0 << FPTypeShift,
+
+  // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+  ZeroArgFP = 1 << FPTypeShift,
+
+  // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+  OneArgFP = 2 << FPTypeShift,
+
+  // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+  // result back to ST(0).  For example, fcos, fsqrt, etc.
+  //
+  OneArgFPRW = 3 << FPTypeShift,
+
+  // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+  // explicit argument, storing the result to either ST(0) or the implicit
+  // argument.  For example: fadd, fsub, fmul, etc...
+  TwoArgFP = 4 << FPTypeShift,
+
+  // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+  // explicit argument, but have no destination.  Example: fucom, fucomi, ...
+  CompareFP = 5 << FPTypeShift,
+
+  // CondMovFP - "2 operand" floating point conditional move instructions.
+  CondMovFP = 6 << FPTypeShift,
+
+  // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
+  SpecialFP = 7 << FPTypeShift,
+
+  // Lock prefix
+  LOCKShift = FPTypeShift + 3,
+  LOCK = 1 << LOCKShift,
+
+  // REP prefix
+  REPShift = LOCKShift + 1,
+  REP = 1 << REPShift,
+
+  // Execution domain for SSE instructions.
+  // 0 means normal, non-SSE instruction.
+  SSEDomainShift = REPShift + 1,
+
+  // Encoding
+  EncodingShift = SSEDomainShift + 2,
+  EncodingMask = 0x3 << EncodingShift,
+
+  // VEX - encoding using 0xC4/0xC5
+  VEX = 1 << EncodingShift,
+
+  /// XOP - Opcode prefix used by XOP instructions.
+  XOP = 2 << EncodingShift,
+
+  // VEX_EVEX - Specifies that this instruction use EVEX form which provides
+  // syntax support up to 32 512-bit register operands and up to 7 16-bit
+  // mask operands as well as source operand data swizzling/memory operand
+  // conversion, eviction hint, and rounding mode.
+  EVEX = 3 << EncodingShift,
+
+  // Opcode
+  OpcodeShift = EncodingShift + 2,
+
+  /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
+  /// address instructions in SSE are represented as 3 address ones in AVX
+  /// and the additional register is encoded in VEX_VVVV prefix.
+  VEX_4VShift = OpcodeShift + 8,
+  VEX_4V = 1ULL << VEX_4VShift,
+
+  /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
+  /// instruction uses 256-bit wide registers. This is usually auto detected
+  /// if a VR256 register is used, but some AVX instructions also have this
+  /// field marked when using a f256 memory references.
+  VEX_LShift = VEX_4VShift + 1,
+  VEX_L = 1ULL << VEX_LShift,
+
+  // EVEX_K - Set if this instruction requires masking
+  EVEX_KShift = VEX_LShift + 1,
+  EVEX_K = 1ULL << EVEX_KShift,
+
+  // EVEX_Z - Set if this instruction has EVEX.Z field set.
+  EVEX_ZShift = EVEX_KShift + 1,
+  EVEX_Z = 1ULL << EVEX_ZShift,
+
+  // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+  EVEX_L2Shift = EVEX_ZShift + 1,
+  EVEX_L2 = 1ULL << EVEX_L2Shift,
+
+  // EVEX_B - Set if this instruction has EVEX.B field set.
+  EVEX_BShift = EVEX_L2Shift + 1,
+  EVEX_B = 1ULL << EVEX_BShift,
+
+  // The scaling factor for the AVX512's 8-bit compressed displacement.
+  CD8_Scale_Shift = EVEX_BShift + 1,
+  CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
+
+  /// Explicitly specified rounding control
+  EVEX_RCShift = CD8_Scale_Shift + 3,
+  EVEX_RC = 1ULL << EVEX_RCShift,
+
+  // NOTRACK prefix
+  NoTrackShift = EVEX_RCShift + 1,
+  NOTRACK = 1ULL << NoTrackShift,
+
+  // Force REX2/VEX/EVEX encoding
+  ExplicitOpPrefixShift = NoTrackShift + 1,
+  // For instructions that require REX2 prefix even if EGPR is not used.
+  ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
+  // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
+  // is present.
+  ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
+  // For instructions that are promoted to EVEX space for EGPR.
+  ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
+  ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
+};
+
+/// \returns true if the instruction with given opcode is a prefix.
+inline bool isPrefix(uint64_t TSFlags) {
+  return (TSFlags & X86II::FormMask) == PrefixByte;
+}
+
+/// \returns true if the instruction with given opcode is a pseudo.
+inline bool isPseudo(uint64_t TSFlags) {
+  return (TSFlags & X86II::FormMask) == Pseudo;
+}
+
+/// \returns the "base" X86 opcode for the specified machine
+/// instruction.
+inline uint8_t getBaseOpcodeFor(uint64_t TSFlags) {
+  return TSFlags >> X86II::OpcodeShift;
+}
+
+inline bool hasImm(uint64_t TSFlags) { return (TSFlags & X86II::ImmMask) != 0; }
+
+/// Decode the "size of immediate" field from the TSFlags field of the
+/// specified instruction.
+inline unsigned getSizeOfImm(uint64_t TSFlags) {
+  switch (TSFlags & X86II::ImmMask) {
+  default:
+    llvm_unreachable("Unknown immediate size");
+  case X86II::Imm8:
+  case X86II::Imm8PCRel:
+  case X86II::Imm8Reg:
+    return 1;
+  case X86II::Imm16:
+  case X86II::Imm16PCRel:
+    return 2;
+  case X86II::Imm32:
+  case X86II::Imm32S:
+  case X86II::Imm32PCRel:
+    return 4;
+  case X86II::Imm64:
+    return 8;
   }
+}
 
-  /// \returns true if \p RegNo is an apx extended register.
-  inline bool isApxExtendedReg(unsigned RegNo) {
-    assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous");
-    return RegNo >= X86::R16 && RegNo <= X86::R31WH;
+/// \returns true if the immediate of the specified instruction's TSFlags
+/// indicates that it is pc relative.
+inline bool isImmPCRel(uint64_t TSFlags) {
+  switch (TSFlags & X86II::ImmMask) {
+  default:
+    llvm_unreachable("Unknown immediate size");
+  case X86II::Imm8PCRel:
+  case X86II::Imm16PCRel:
+  case X86II::Imm32PCRel:
+    return true;
+  case X86II::Imm8:
+  case X86II::Imm8Reg:
+  case X86II::Imm16:
+  case X86II::Imm32:
+  case X86II::Imm32S:
+  case X86II::Imm64:
+    return false;
   }
+}
 
-  /// \returns true if the MachineOperand is a x86-64 extended (r8 or
-  /// higher) register,  e.g. r8, xmm8, xmm13, etc.
-  inline bool isX86_64ExtendedReg(unsigned RegNo) {
-    if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
-        (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
-        (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
-        (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
-        (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
-      return true;
-
-    if (isApxExtendedReg(RegNo))
-      return true;
-
-    switch (RegNo) {
-    default: break;
-    case X86::R8:    case X86::R9:    case X86::R10:   case X86::R11:
-    case X86::R12:   case X86::R13:   case X86::R14:   case X86::R15:
-    case X86::R8D:   case X86::R9D:   case X86::R10D:  case X86::R11D:
-    case X86::R12D:  case X86::R13D:  case X86::R14D:  case X86::R15D:
-    case X86::R8W:   case X86::R9W:   case X86::R10W:  case X86::R11W:
-    case X86::R12W:  case X86::R13W:  case X86::R14W:  case X86::R15W:
-    case X86::R8B:   case X86::R9B:   case X86::R10B:  case X86::R11B:
-    case X86::R12B:  case X86::R13B:  case X86::R14B:  case X86::R15B:
-    case X86::CR8:   case X86::CR9:   case X86::CR10:  case X86::CR11:
-    case X86::CR12:  case X86::CR13:  case X86::CR14:  case X86::CR15:
-    case X86::DR8:   case X86::DR9:   case X86::DR10:  case X86::DR11:
-    case X86::DR12:  case X86::DR13:  case X86::DR14:  case X86::DR15:
-      return true;
-    }
+/// \returns true if the immediate of the specified instruction's
+/// TSFlags indicates that it is signed.
+inline bool isImmSigned(uint64_t TSFlags) {
+  switch (TSFlags & X86II::ImmMask) {
+  default:
+    llvm_unreachable("Unknown immediate signedness");
+  case X86II::Imm32S:
+    return true;
+  case X86II::Imm8:
+  case X86II::Imm8PCRel:
+  case X86II::Imm8Reg:
+  case X86II::Imm16:
+  case X86II::Imm16PCRel:
+  case X86II::Imm32:
+  case X86II::Imm32PCRel:
+  case X86II::Imm64:
     return false;
   }
+}
 
-  inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
-    uint64_t TSFlags = Desc.TSFlags;
-    uint64_t Encoding = TSFlags & EncodingMask;
-    // EVEX can always use egpr.
-    if (Encoding == X86II::EVEX)
-      return true;
-
-    // To be conservative, egpr is not used for all pseudo instructions
-    // because we are not sure what instruction it will become.
-    // FIXME: Could we improve it in X86ExpandPseudo?
-    if (isPseudo(TSFlags))
-      return false;
-
-    // MAP OB/TB in legacy encoding space can always use egpr except
-    // XSAVE*/XRSTOR*.
-    unsigned Opcode = Desc.Opcode;
-    switch (Opcode) {
-    default:
-      break;
-    case X86::XSAVE:
-    case X86::XSAVE64:
-    case X86::XSAVEOPT:
-    case X86::XSAVEOPT64:
-    case X86::XSAVEC:
-    case X86::XSAVEC64:
-    case X86::XSAVES:
-    case X86::XSAVES64:
-    case X86::XRSTOR:
-    case X86::XRSTOR64:
-    case X86::XRSTORS:
-    case X86::XRSTORS64:
-      return false;
-    }
-    uint64_t OpMap = TSFlags & X86II::OpMapMask;
-    return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
+/// Compute whether all of the def operands are repeated in the uses and
+/// therefore should be skipped.
+/// This determines the start of the unique operand list. We need to determine
+/// if all of the defs have a corresponding tied operand in the uses.
+/// Unfortunately, the tied operand information is encoded in the uses not
+/// the defs so we have to use some heuristics to find which operands to
+/// query.
+inline unsigned getOperandBias(const MCInstrDesc &Desc) {
+  unsigned NumDefs = Desc.getNumDefs();
+  unsigned NumOps = Desc.getNumOperands();
+  switch (NumDefs) {
+  default:
+    llvm_unreachable("Unexpected number of defs");
+  case 0:
+    return 0;
+  case 1:
+    // Common two addr case.
+    if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) == 0)
+      return 1;
+    // Check for AVX-512 scatter which has a TIED_TO in the second to last
+    // operand.
+    if (NumOps == 8 && Desc.getOperandConstraint(6, MCOI::TIED_TO) == 0)
+      return 1;
+    return 0;
+  case 2:
+    // XCHG/XADD have two destinations and two sources.
+    if (NumOps >= 4 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+        Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1)
+      return 2;
+    // Check for gather. AVX-512 has the second tied operand early. AVX2
+    // has it as the last op.
+    if (NumOps == 9 && Desc.getOperandConstraint(2, MCOI::TIED_TO) == 0 &&
+        (Desc.getOperandConstraint(3, MCOI::TIED_TO) == 1 ||
+         Desc.getOperandConstraint(8, MCOI::TIED_TO) == 1))
+      return 2;
+    return 0;
   }
+}
 
-  /// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
-  /// registers, e.g. zmm21, etc.
-  static inline bool is32ExtendedReg(unsigned RegNo) {
-    return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
-            (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
-            (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
+/// The function returns the MCInst operand # for the first field of the
+/// memory operand.  If the instruction doesn't have a
+/// memory operand, this returns -1.
+///
+/// Note that this ignores tied operands.  If there is a tied register which
+/// is duplicated in the MCInst (e.g. "EAX = addl EAX, [mem]") it is only
+/// counted as one operand.
+///
+inline int getMemoryOperandNo(uint64_t TSFlags) {
+  bool HasVEX_4V = TSFlags & X86II::VEX_4V;
+  bool HasEVEX_K = TSFlags & X86II::EVEX_K;
+
+  switch (TSFlags & X86II::FormMask) {
+  default:
+    llvm_unreachable("Unknown FormMask value in getMemoryOperandNo!");
+  case X86II::Pseudo:
+  case X86II::RawFrm:
+  case X86II::AddRegFrm:
+  case X86II::RawFrmImm8:
+  case X86II::RawFrmImm16:
+  case X86II::RawFrmMemOffs:
+  case X86II::RawFrmSrc:
+  case X86II::RawFrmDst:
+  case X86II::RawFrmDstSrc:
+  case X86II::AddCCFrm:
+  case X86II::PrefixByte:
+    return -1;
+  case X86II::MRMDestMem:
+  case X86II::MRMDestMemFSIB:
+    return 0;
+  case X86II::MRMSrcMem:
+  case X86II::MRMSrcMemFSIB:
+    // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+    // mask register.
+    return 1 + HasVEX_4V + HasEVEX_K;
+  case X86II::MRMSrcMem4VOp3:
+    // Skip registers encoded in reg.
+    return 1 + HasEVEX_K;
+  case X86II::MRMSrcMemOp4:
+    // Skip registers encoded in reg, VEX_VVVV, and I8IMM.
+    return 3;
+  case X86II::MRMSrcMemCC:
+  case X86II::MRMDestMem4VOp3CC:
+    // Start from 1, skip any registers encoded in VEX_VVVV or I8IMM, or a
+    // mask register.
+    return 1;
+  case X86II::MRMDestReg:
+  case X86II::MRMSrcReg:
+  case X86II::MRMSrcReg4VOp3:
+  case X86II::MRMSrcRegOp4:
+  case X86II::MRMSrcRegCC:
+  case X86II::MRMXrCC:
+  case X86II::MRMr0:
+  case X86II::MRMXr:
+  case X86II::MRM0r:
+  case X86II::MRM1r:
+  case X86II::MRM2r:
+  case X86II::MRM3r:
+  case X86II::MRM4r:
+  case X86II::MRM5r:
+  case X86II::MRM6r:
+  case X86II::MRM7r:
+    return -1;
+  case X86II::MRM0X:
+  case X86II::MRM1X:
+  case X86II::MRM2X:
+  case X86II::MRM3X:
+  case X86II::MRM4X:
+  case X86II::MRM5X:
+  case X86II::MRM6X:
+  case X86II::MRM7X:
+    return -1;
+  case X86II::MRMXmCC:
+  case X86II::MRMXm:
+  case X86II::MRM0m:
+  case X86II::MRM1m:
+  case X86II::MRM2m:
+  case X86II::MRM3m:
+  case X86II::MRM4m:
+  case X86II::MRM5m:
+  case X86II::MRM6m:
+  case X86II::MRM7m:
+    // Start from 0, skip registers encoded in VEX_VVVV or a mask register.
+    return 0 + HasVEX_4V + HasEVEX_K;
+  case X86II::MRM_C0:
+  case X86II::MRM_C1:
+  case X86II::MRM_C2:
+  case X86II::MRM_C3:
+  case X86II::MRM_C4:
+  case X86II::MRM_C5:
+  case X86II::MRM_C6:
+  case X86II::MRM_C7:
+  case X86II::MRM_C8:
+  case X86II::MRM_C9:
+  case X86II::MRM_CA:
+  case X86II::MRM_CB:
+  case X86II::MRM_CC:
+  case X86II::MRM_CD:
+  case X86II::MRM_CE:
+  case X86II::MRM_CF:
+  case X86II::MRM_D0:
+  case X86II::MRM_D1:
+  case X86II::MRM_D2:
+  case X86II::MRM_D3:
+  case X86II::MRM_D4:
+  case X86II::MRM_D5:
+  case X86II::MRM_D6:
+  case X86II::MRM_D7:
+  case X86II::MRM_D8:
+  case X86II::MRM_D9:
+  case X86II::MRM_DA:
+  case X86II::MRM_DB:
+  case X86II::MRM_DC:
+  case X86II::MRM_DD:
+  case X86II::MRM_DE:
+  case X86II::MRM_DF:
+  case X86II::MRM_E0:
+  case X86II::MRM_E1:
+  case X86II::MRM_E2:
+  case X86II::MRM_E3:
+  case X86II::MRM_E4:
+  case X86II::MRM_E5:
+  case X86II::MRM_E6:
+  case X86II::MRM_E7:
+  case X86II::MRM_E8:
+  case X86II::MRM_E9:
+  case X86II::MRM_EA:
+  case X86II::MRM_EB:
+  case X86II::MRM_EC:
+  case X86II::MRM_ED:
+  case X86II::MRM_EE:
+  case X86II::MRM_EF:
+  case X86II::MRM_F0:
+  case X86II::MRM_F1:
+  case X86II::MRM_F2:
+  case X86II::MRM_F3:
+  case X86II::MRM_F4:
+  case X86II::MRM_F5:
+  case X86II::MRM_F6:
+  case X86II::MRM_F7:
+  case X86II::MRM_F8:
+  case X86II::MRM_F9:
+  case X86II::MRM_FA:
+  case X86II::MRM_FB:
+  case X86II::MRM_FC:
+  case X86II::MRM_FD:
+  case X86II::MRM_FE:
+  case X86II::MRM_FF:
+    return -1;
   }
+}
 
+/// \returns true if the register is a XMM.
+inline bool isXMMReg(unsigned RegNo) {
+  assert(X86::XMM15 - X86::XMM0 == 15 &&
+         "XMM0-15 registers are not continuous");
+  assert(X86::XMM31 - X86::XMM16 == 15 &&
+         "XMM16-31 registers are not continuous");
+  return (RegNo >= X86::XMM0 && RegNo <= X86::XMM15) ||
+         (RegNo >= X86::XMM16 && RegNo <= X86::XMM31);
+}
 
-  inline bool isX86_64NonExtLowByteReg(unsigned reg) {
-    return (reg == X86::SPL || reg == X86::BPL ||
-            reg == X86::SIL || reg == X86::DIL);
-  }
+/// \returns true if the register is a YMM.
+inline bool isYMMReg(unsigned RegNo) {
+  assert(X86::YMM15 - X86::YMM0 == 15 &&
+         "YMM0-15 registers are not continuous");
+  assert(X86::YMM31 - X86::YMM16 == 15 &&
+         "YMM16-31 registers are not continuous");
+  return (RegNo >= X86::YMM0 && RegNo <= X86::YMM15) ||
+         (RegNo >= X86::YMM16 && RegNo <= X86::YMM31);
+}
+
+/// \returns true if the register is a ZMM.
+inline bool isZMMReg(unsigned RegNo) {
+  assert(X86::ZMM31 - X86::ZMM0 == 31 && "ZMM registers are not continuous");
+  return RegNo >= X86::ZMM0 && RegNo <= X86::ZMM31;
+}
+
+/// \returns true if \p RegNo is an apx extended register.
+inline bool isApxExtendedReg(unsigned RegNo) {
+  assert(X86::R31WH - X86::R16 == 95 && "EGPRs are not continuous");
+  return RegNo >= X86::R16 && RegNo <= X86::R31WH;
+}
 
-  /// \returns true if this is a masked instruction.
-  inline bool isKMasked(uint64_t TSFlags) {
-    return (TSFlags & X86II::EVEX_K) != 0;
+/// \returns true if the MachineOperand is a x86-64 extended (r8 or
+/// higher) register,  e.g. r8, xmm8, xmm13, etc.
+inline bool isX86_64ExtendedReg(unsigned RegNo) {
+  if ((RegNo >= X86::XMM8 && RegNo <= X86::XMM15) ||
+      (RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
+      (RegNo >= X86::YMM8 && RegNo <= X86::YMM15) ||
+      (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
+      (RegNo >= X86::ZMM8 && RegNo <= X86::ZMM31))
+    return true;
+
+  if (isApxExtendedReg(RegNo))
+    return true;
+
+  switch (RegNo) {
+  default:
+    break;
+  case X86::R8:
+  case X86::R9:
+  case X86::R10:
+  case X86::R11:
+  case X86::R12:
+  case X86::R13:
+  case X86::R14:
+  case X86::R15:
+  case X86::R8D:
+  case X86::R9D:
+  case X86::R10D:
+  case X86::R11D:
+  case X86::R12D:
+  case X86::R13D:
+  case X86::R14D:
+  case X86::R15D:
+  case X86::R8W:
+  case X86::R9W:
+  case X86::R10W:
+  case X86::R11W:
+  case X86::R12W:
+  case X86::R13W:
+  case X86::R14W:
+  case X86::R15W:
+  case X86::R8B:
+  case X86::R9B:
+  case X86::R10B:
+  case X86::R11B:
+  case X86::R12B:
+  case X86::R13B:
+  case X86::R14B:
+  case X86::R15B:
+  case X86::CR8:
+  case X86::CR9:
+  case X86::CR10:
+  case X86::CR11:
+  case X86::CR12:
+  case X86::CR13:
+  case X86::CR14:
+  case X86::CR15:
+  case X86::DR8:
+  case X86::DR9:
+  case X86::DR10:
+  case X86::DR11:
+  case X86::DR12:
+  case X86::DR13:
+  case X86::DR14:
+  case X86::DR15:
+    return true;
   }
+  return false;
+}
+
+inline bool canUseApxExtendedReg(const MCInstrDesc &Desc) {
+  uint64_t TSFlags = Desc.TSFlags;
+  uint64_t Encoding = TSFlags & EncodingMask;
+  // EVEX can always use egpr.
+  if (Encoding == X86II::EVEX)
+    return true;
+
+  // To be conservative, egpr is not used for all pseudo instructions
+  // because we are not sure what instruction it will become.
+  // FIXME: Could we improve it in X86ExpandPseudo?
+  if (isPseudo(TSFlags))
+    return false;
 
-  /// \returns true if this is a merge masked instruction.
-  inline bool isKMergeMasked(uint64_t TSFlags) {
-    return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
+  // MAP OB/TB in legacy encoding space can always use egpr except
+  // XSAVE*/XRSTOR*.
+  unsigned Opcode = Desc.Opcode;
+  switch (Opcode) {
+  default:
+    break;
+  case X86::XSAVE:
+  case X86::XSAVE64:
+  case X86::XSAVEOPT:
+  case X86::XSAVEOPT64:
+  case X86::XSAVEC:
+  case X86::XSAVEC64:
+  case X86::XSAVES:
+  case X86::XSAVES64:
+  case X86::XRSTOR:
+  case X86::XRSTOR64:
+  case X86::XRSTORS:
+  case X86::XRSTORS64:
+    return false;
   }
+  uint64_t OpMap = TSFlags & X86II::OpMapMask;
+  return !Encoding && (OpMap == X86II::OB || OpMap == X86II::TB);
+}
+
+/// \returns true if the MemoryOperand is a 32 extended (zmm16 or higher)
+/// registers, e.g. zmm21, etc.
+static inline bool is32ExtendedReg(unsigned RegNo) {
+  return ((RegNo >= X86::XMM16 && RegNo <= X86::XMM31) ||
+          (RegNo >= X86::YMM16 && RegNo <= X86::YMM31) ||
+          (RegNo >= X86::ZMM16 && RegNo <= X86::ZMM31));
+}
+
+inline bool isX86_64NonExtLowByteReg(unsigned reg) {
+  return (reg == X86::SPL || reg == X86::BPL || reg == X86::SIL ||
+          reg == X86::DIL);
+}
+
+/// \returns true if this is a masked instruction.
+inline bool isKMasked(uint64_t TSFlags) {
+  return (TSFlags & X86II::EVEX_K) != 0;
+}
+
+/// \returns true if this is a merge masked instruction.
+inline bool isKMergeMasked(uint64_t TSFlags) {
+  return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
 }
+} // namespace X86II
 
-} // end namespace llvm;
+} // namespace llvm
 
 #endif

>From 7bbc88c50fde77f30b8c1ad2f40d4af74b067f88 Mon Sep 17 00:00:00 2001
From: Shengchen Kan <shengchen.kan at intel.com>
Date: Fri, 24 Nov 2023 10:43:36 +0800
Subject: [PATCH 2/2] refine comments

---
 .../lib/Target/X86/MCTargetDesc/X86BaseInfo.h | 376 ++++++------------
 1 file changed, 120 insertions(+), 256 deletions(-)

diff --git a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
index ece8cd9cc78047a..d83fa9e705c3f30 100644
--- a/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
+++ b/llvm/lib/Target/X86/MCTargetDesc/X86BaseInfo.h
@@ -24,24 +24,20 @@
 namespace llvm {
 
 namespace X86 {
-// Enums for memory operand decoding.  Each memory operand is represented with
-// a 5 operand sequence in the form:
-//   [BaseReg, ScaleAmt, IndexReg, Disp, Segment]
-// These enums help decode this.
+// Enums for memory operand decoding. Each memory operand is represented with
+// a 5 operand sequence in the form: [Base, Scale, Index, Disp, Segment]
 enum {
   AddrBaseReg = 0,
   AddrScaleAmt = 1,
   AddrIndexReg = 2,
   AddrDisp = 3,
-
-  /// AddrSegmentReg - The operand # of the segment in the memory operand.
+  // The operand # of the segment in the memory operand.
   AddrSegmentReg = 4,
-
-  /// AddrNumOperands - Total number of operands in a memory reference.
+  // Total number of operands in a memory reference.
   AddrNumOperands = 5
 };
 
-/// AVX512 static rounding constants.  These need to match the values in
+/// AVX512 static rounding constants. These need to match the values in
 /// avx512fintrin.h.
 enum STATIC_ROUNDING {
   TO_NEAREST_INT = 0,
@@ -70,7 +66,7 @@ enum IPREFIXES {
 };
 
 enum OperandType : unsigned {
-  /// AVX512 embedded rounding control. This should only have values 0-3.
+  // AVX512 embedded rounding control. This should only have values 0-3.
   OPERAND_ROUNDING_CONTROL = MCOI::OPERAND_FIRST_TARGET,
   OPERAND_COND_CODE,
 };
@@ -95,7 +91,6 @@ enum CondCode {
   COND_LE = 14,
   COND_G = 15,
   LAST_VALID_COND = COND_G,
-
   // Artificial condition codes. These are used by analyzeBranch
   // to indicate a block terminated with two conditional branches that together
   // form a compound condition. They occur in code using FCMP_OEQ or FCMP_UNE,
@@ -103,39 +98,29 @@ enum CondCode {
   // are never used in MachineInstrs and are inverses of one another.
   COND_NE_OR_P,
   COND_E_AND_NP,
-
   COND_INVALID
 };
 
 // The classification for the first instruction in macro fusion.
+// FIXME: Zen 3 support branch fusion for OR/XOR.
 enum class FirstMacroFusionInstKind {
-  // TEST
-  Test,
-  // CMP
-  Cmp,
-  // AND
-  And,
-  // FIXME: Zen 3 support branch fusion for OR/XOR.
-  // ADD, SUB
-  AddSub,
-  // INC, DEC
-  IncDec,
-  // Not valid as a first macro fusion instruction
-  Invalid
+  Test,   // TEST
+  Cmp,    // CMP
+  And,    // AND
+  AddSub, // ADD, SUB
+  IncDec, // INC, DEC
+  Invalid // Not valid as a first macro fusion instruction
 };
 
 enum class SecondMacroFusionInstKind {
-  // JA, JB and variants.
-  AB,
-  // JE, JL, JG and variants.
-  ELG,
-  // JS, JP, JO and variants
-  SPO,
-  // Not a fusible jump.
-  Invalid,
+  AB,      // JA, JB and variants
+  ELG,     // JE, JL, JG and variants
+  SPO,     // JS, JP, JO and variants
+  Invalid, // Not a fusible jump.
 };
 
 /// \returns the type of the first instruction in macro-fusion.
+// FIXME: Zen 3 support branch fusion for OR/XOR.
 inline FirstMacroFusionInstKind
 classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
   switch (Opcode) {
@@ -184,7 +169,6 @@ classifyFirstOpcodeInMacroFusion(unsigned Opcode) {
   case X86::AND8rr:
   case X86::AND8rr_REV:
     return FirstMacroFusionInstKind::And;
-  // FIXME: Zen 3 support branch fusion for OR/XOR.
   // CMP
   case X86::CMP16i16:
   case X86::CMP16mr:
@@ -289,44 +273,27 @@ inline SecondMacroFusionInstKind
 classifySecondCondCodeInMacroFusion(X86::CondCode CC) {
   if (CC == X86::COND_INVALID)
     return SecondMacroFusionInstKind::Invalid;
-
   switch (CC) {
   default:
     return SecondMacroFusionInstKind::Invalid;
-  // JE,JZ
-  case X86::COND_E:
-  // JNE,JNZ
-  case X86::COND_NE:
-  // JL,JNGE
-  case X86::COND_L:
-  // JLE,JNG
-  case X86::COND_LE:
-  // JG,JNLE
-  case X86::COND_G:
-  // JGE,JNL
-  case X86::COND_GE:
+  case X86::COND_E:  // JE,JZ
+  case X86::COND_NE: // JNE,JNZ
+  case X86::COND_L:  // JL,JNGE
+  case X86::COND_LE: // JLE,JNG
+  case X86::COND_G:  // JG,JNLE
+  case X86::COND_GE: // JGE,JNL
     return SecondMacroFusionInstKind::ELG;
-  // JB,JC
-  case X86::COND_B:
-  // JNA,JBE
-  case X86::COND_BE:
-  // JA,JNBE
-  case X86::COND_A:
-  // JAE,JNC,JNB
-  case X86::COND_AE:
+  case X86::COND_B:  // JB,JC
+  case X86::COND_BE: // JNA,JBE
+  case X86::COND_A:  // JA,JNBE
+  case X86::COND_AE: // JAE,JNC,JNB
     return SecondMacroFusionInstKind::AB;
-  // JS
-  case X86::COND_S:
-  // JNS
-  case X86::COND_NS:
-  // JP,JPE
-  case X86::COND_P:
-  // JNP,JPO
-  case X86::COND_NP:
-  // JO
-  case X86::COND_O:
-  // JNO
-  case X86::COND_NO:
+  case X86::COND_S:  // JS
+  case X86::COND_NS: // JNS
+  case X86::COND_P:  // JP,JPE
+  case X86::COND_NP: // JNP,JPO
+  case X86::COND_O:  // JO
+  case X86::COND_NO: // JNO
     return SecondMacroFusionInstKind::SPO;
   }
 }
@@ -406,7 +373,6 @@ namespace X86II {
 enum TOF {
   //===------------------------------------------------------------------===//
   // X86 Specific MachineOperand flags.
-
   MO_NO_FLAG,
 
   /// MO_GOT_ABSOLUTE_ADDRESS - On a symbol operand, this represents a
@@ -580,177 +546,129 @@ enum : uint64_t {
   // Instruction encodings.  These are the standard/most common forms for X86
   // instructions.
   //
-
   // PseudoFrm - This represents an instruction that is a pseudo instruction
   // or one that has not been implemented yet.  It is illegal to code generate
   // it, but tolerated for intermediate implementation stages.
   Pseudo = 0,
-
   /// Raw - This form is for instructions that don't have any operands, so
   /// they are just a fixed opcode value, like 'leave'.
   RawFrm = 1,
-
   /// AddRegFrm - This form is used for instructions like 'push r32' that have
   /// their one register operand added to their opcode.
   AddRegFrm = 2,
-
   /// RawFrmMemOffs - This form is for instructions that store an absolute
   /// memory offset as an immediate with a possible segment override.
   RawFrmMemOffs = 3,
-
   /// RawFrmSrc - This form is for instructions that use the source index
   /// register SI/ESI/RSI with a possible segment override.
   RawFrmSrc = 4,
-
   /// RawFrmDst - This form is for instructions that use the destination index
   /// register DI/EDI/RDI.
   RawFrmDst = 5,
-
   /// RawFrmDstSrc - This form is for instructions that use the source index
   /// register SI/ESI/RSI with a possible segment override, and also the
   /// destination index register DI/EDI/RDI.
   RawFrmDstSrc = 6,
-
   /// RawFrmImm8 - This is used for the ENTER instruction, which has two
   /// immediates, the first of which is a 16-bit immediate (specified by
   /// the imm encoding) and the second is a 8-bit fixed value.
   RawFrmImm8 = 7,
-
   /// RawFrmImm16 - This is used for CALL FAR instructions, which have two
   /// immediates, the first of which is a 16 or 32-bit immediate (specified by
   /// the imm encoding) and the second is a 16-bit fixed value.  In the AMD
   /// manual, this operand is described as pntr16:32 and pntr16:16
   RawFrmImm16 = 8,
-
   /// AddCCFrm - This form is used for Jcc that encode the condition code
   /// in the lower 4 bits of the opcode.
   AddCCFrm = 9,
-
   /// PrefixByte - This form is used for instructions that represent a prefix
   /// byte like data16 or rep.
   PrefixByte = 10,
-
   /// MRMDestMem4VOp3CC - This form is used for instructions that use the Mod/RM
   /// byte to specify a destination which in this case is memory and operand 3
   /// with VEX.VVVV, and also encodes a condition code.
   MRMDestMem4VOp3CC = 20,
-
   /// MRM[0-7][rm] - These forms are used to represent instructions that use
   /// a Mod/RM byte, and use the middle field to hold extended opcode
   /// information.  In the intel manual these are represented as /0, /1, ...
   ///
-
   // Instructions operate on a register Reg/Opcode operand not the r/m field.
   MRMr0 = 21,
-
   /// MRMSrcMem - But force to use the SIB field.
   MRMSrcMemFSIB = 22,
-
   /// MRMDestMem - But force to use the SIB field.
   MRMDestMemFSIB = 23,
-
   /// MRMDestMem - This form is used for instructions that use the Mod/RM byte
   /// to specify a destination, which in this case is memory.
-  ///
   MRMDestMem = 24,
-
   /// MRMSrcMem - This form is used for instructions that use the Mod/RM byte
   /// to specify a source, which in this case is memory.
-  ///
   MRMSrcMem = 25,
-
   /// MRMSrcMem4VOp3 - This form is used for instructions that encode
   /// operand 3 with VEX.VVVV and load from memory.
-  ///
   MRMSrcMem4VOp3 = 26,
-
   /// MRMSrcMemOp4 - This form is used for instructions that use the Mod/RM
   /// byte to specify the fourth source, which in this case is memory.
-  ///
   MRMSrcMemOp4 = 27,
-
   /// MRMSrcMemCC - This form is used for instructions that use the Mod/RM
   /// byte to specify the operands and also encodes a condition code.
-  ///
   MRMSrcMemCC = 28,
-
   /// MRMXm - This form is used for instructions that use the Mod/RM byte
   /// to specify a memory source, but doesn't use the middle field. And has
   /// a condition code.
-  ///
   MRMXmCC = 30,
-
   /// MRMXm - This form is used for instructions that use the Mod/RM byte
   /// to specify a memory source, but doesn't use the middle field.
-  ///
   MRMXm = 31,
-
   // Next, instructions that operate on a memory r/m operand...
-  MRM0m = 32,
-  MRM1m = 33,
-  MRM2m = 34,
-  MRM3m = 35, // Format /0 /1 /2 /3
-  MRM4m = 36,
-  MRM5m = 37,
-  MRM6m = 38,
-  MRM7m = 39, // Format /4 /5 /6 /7
-
+  MRM0m = 32, // Format /0
+  MRM1m = 33, // Format /1
+  MRM2m = 34, // Format /2
+  MRM3m = 35, // Format /3
+  MRM4m = 36, // Format /4
+  MRM5m = 37, // Format /5
+  MRM6m = 38, // Format /6
+  MRM7m = 39, // Format /7
   /// MRMDestReg - This form is used for instructions that use the Mod/RM byte
   /// to specify a destination, which in this case is a register.
-  ///
   MRMDestReg = 40,
-
   /// MRMSrcReg - This form is used for instructions that use the Mod/RM byte
   /// to specify a source, which in this case is a register.
-  ///
   MRMSrcReg = 41,
-
   /// MRMSrcReg4VOp3 - This form is used for instructions that encode
   /// operand 3 with VEX.VVVV and do not load from memory.
-  ///
   MRMSrcReg4VOp3 = 42,
-
   /// MRMSrcRegOp4 - This form is used for instructions that use the Mod/RM
   /// byte to specify the fourth source, which in this case is a register.
-  ///
   MRMSrcRegOp4 = 43,
-
   /// MRMSrcRegCC - This form is used for instructions that use the Mod/RM
   /// byte to specify the operands and also encodes a condition code
-  ///
   MRMSrcRegCC = 44,
-
   /// MRMXCCr - This form is used for instructions that use the Mod/RM byte
   /// to specify a register source, but doesn't use the middle field. And has
   /// a condition code.
-  ///
   MRMXrCC = 46,
-
   /// MRMXr - This form is used for instructions that use the Mod/RM byte
   /// to specify a register source, but doesn't use the middle field.
-  ///
   MRMXr = 47,
-
   // Instructions that operate on a register r/m operand...
-  MRM0r = 48,
-  MRM1r = 49,
-  MRM2r = 50,
-  MRM3r = 51, // Format /0 /1 /2 /3
-  MRM4r = 52,
-  MRM5r = 53,
-  MRM6r = 54,
-  MRM7r = 55, // Format /4 /5 /6 /7
-
+  MRM0r = 48, // Format /0
+  MRM1r = 49, // Format /1
+  MRM2r = 50, // Format /2
+  MRM3r = 51, // Format /3
+  MRM4r = 52, // Format /4
+  MRM5r = 53, // Format /5
+  MRM6r = 54, // Format /6
+  MRM7r = 55, // Format /7
   // Instructions that operate that have mod=11 and an opcode but ignore r/m.
-  MRM0X = 56,
-  MRM1X = 57,
-  MRM2X = 58,
-  MRM3X = 59, // Format /0 /1 /2 /3
-  MRM4X = 60,
-  MRM5X = 61,
-  MRM6X = 62,
-  MRM7X = 63, // Format /4 /5 /6 /7
-
+  MRM0X = 56, // Format /0
+  MRM1X = 57, // Format /1
+  MRM2X = 58, // Format /2
+  MRM3X = 59, // Format /3
+  MRM4X = 60, // Format /4
+  MRM5X = 61, // Format /5
+  MRM6X = 62, // Format /6
+  MRM7X = 63, // Format /7
   /// MRM_XX - A mod/rm byte of exactly 0xXX.
   MRM_C0 = 64,
   MRM_C1 = 65,
@@ -816,79 +734,60 @@ enum : uint64_t {
   MRM_FD = 125,
   MRM_FE = 126,
   MRM_FF = 127,
-
   FormMask = 127,
-
   //===------------------------------------------------------------------===//
   // Actual flags...
-
-  // OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
-  // OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
-  // 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
-  // prefix in 16-bit mode.
+  /// OpSize - OpSizeFixed implies instruction never needs a 0x66 prefix.
+  /// OpSize16 means this is a 16-bit instruction and needs 0x66 prefix in
+  /// 32-bit mode. OpSize32 means this is a 32-bit instruction needs a 0x66
+  /// prefix in 16-bit mode.
   OpSizeShift = 7,
   OpSizeMask = 0x3 << OpSizeShift,
-
   OpSizeFixed = 0 << OpSizeShift,
   OpSize16 = 1 << OpSizeShift,
   OpSize32 = 2 << OpSizeShift,
-
-  // AsSize - AdSizeX implies this instruction determines its need of 0x67
-  // prefix from a normal ModRM memory operand. The other types indicate that
-  // an operand is encoded with a specific width and a prefix is needed if
-  // it differs from the current mode.
+  /// AsSize - AdSizeX implies this instruction determines its need of 0x67
+  /// prefix from a normal ModRM memory operand. The other types indicate that
+  /// an operand is encoded with a specific width and a prefix is needed if
+  /// it differs from the current mode.
   AdSizeShift = OpSizeShift + 2,
   AdSizeMask = 0x3 << AdSizeShift,
-
   AdSizeX = 0 << AdSizeShift,
   AdSize16 = 1 << AdSizeShift,
   AdSize32 = 2 << AdSizeShift,
   AdSize64 = 3 << AdSizeShift,
-
   //===------------------------------------------------------------------===//
-  // OpPrefix - There are several prefix bytes that are used as opcode
-  // extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
-  // no prefix.
-  //
+  /// OpPrefix - There are several prefix bytes that are used as opcode
+  /// extensions. These are 0x66, 0xF3, and 0xF2. If this field is 0 there is
+  /// no prefix.
   OpPrefixShift = AdSizeShift + 2,
   OpPrefixMask = 0x3 << OpPrefixShift,
-
-  // PD - Prefix code for packed double precision vector floating point
-  // operations performed in the SSE registers.
+  /// PD - Prefix code for packed double precision vector floating point
+  /// operations performed in the SSE registers.
   PD = 1 << OpPrefixShift,
-
-  // XS, XD - These prefix codes are for single and double precision scalar
-  // floating point operations performed in the SSE registers.
+  /// XS, XD - These prefix codes are for single and double precision scalar
+  /// floating point operations performed in the SSE registers.
   XS = 2 << OpPrefixShift,
   XD = 3 << OpPrefixShift,
-
   //===------------------------------------------------------------------===//
-  // OpMap - This field determines which opcode map this instruction
-  // belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
-  //
+  /// OpMap - This field determines which opcode map this instruction
+  /// belongs to. i.e. one-byte, two-byte, 0x0f 0x38, 0x0f 0x3a, etc.
   OpMapShift = OpPrefixShift + 2,
   OpMapMask = 0xF << OpMapShift,
-
-  // OB - OneByte - Set if this instruction has a one byte opcode.
+  /// OB - OneByte - Set if this instruction has a one byte opcode.
   OB = 0 << OpMapShift,
-
-  // TB - TwoByte - Set if this instruction has a two byte opcode, which
-  // starts with a 0x0F byte before the real opcode.
+  /// TB - TwoByte - Set if this instruction has a two byte opcode, which
+  /// starts with a 0x0F byte before the real opcode.
   TB = 1 << OpMapShift,
-
-  // T8, TA - Prefix after the 0x0F prefix.
+  /// T8, TA - Prefix after the 0x0F prefix.
   T8 = 2 << OpMapShift,
   TA = 3 << OpMapShift,
-
-  // XOP8 - Prefix to include use of imm byte.
+  /// XOP8 - Prefix to include use of imm byte.
   XOP8 = 4 << OpMapShift,
-
-  // XOP9 - Prefix to exclude use of imm byte.
+  /// XOP9 - Prefix to exclude use of imm byte.
   XOP9 = 5 << OpMapShift,
-
-  // XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
+  /// XOPA - Prefix to encode 0xA in VEX.MMMM of XOP instructions.
   XOPA = 6 << OpMapShift,
-
   /// ThreeDNow - This indicates that the instruction uses the
   /// wacky 0x0F 0x0F prefix for 3DNow! instructions.  The manual documents
   /// this as having a 0x0F prefix with a 0x0F opcode, and each instruction
@@ -896,23 +795,19 @@ enum : uint64_t {
   /// we handle this by storeing the classifier in the opcode field and using
   /// this flag to indicate that the encoder should do the wacky 3DNow! thing.
   ThreeDNow = 7 << OpMapShift,
-
-  // MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
+  /// MAP5, MAP6, MAP7 - Prefix after the 0x0F prefix.
   T_MAP5 = 8 << OpMapShift,
   T_MAP6 = 9 << OpMapShift,
   T_MAP7 = 10 << OpMapShift,
-
   //===------------------------------------------------------------------===//
-  // REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
-  // They are used to specify GPRs and SSE registers, 64-bit operand size,
-  // etc. We only cares about REX.W and REX.R bits and only the former is
-  // statically determined.
-  //
+  /// REX_W - REX prefixes are instruction prefixes used in 64-bit mode.
+  /// They are used to specify GPRs and SSE registers, 64-bit operand size,
+  /// etc. We only cares about REX.W and REX.R bits and only the former is
+  /// statically determined.
   REXShift = OpMapShift + 4,
   REX_W = 1 << REXShift,
-
   //===------------------------------------------------------------------===//
-  // This three-bit field describes the size of an immediate operand.  Zero is
+  // This three-bit field describes the size of an immediate operand. Zero is
   // unused so that we can tell if we forgot to set a value.
   ImmShift = REXShift + 1,
   ImmMask = 15 << ImmShift,
@@ -925,123 +820,94 @@ enum : uint64_t {
   Imm32PCRel = 7 << ImmShift,
   Imm32S = 8 << ImmShift,
   Imm64 = 9 << ImmShift,
-
   //===------------------------------------------------------------------===//
-  // FP Instruction Classification...  Zero is non-fp instruction.
-
-  // FPTypeMask - Mask for all of the FP types...
+  /// FP Instruction Classification...  Zero is non-fp instruction.
+  /// FPTypeMask - Mask for all of the FP types...
   FPTypeShift = ImmShift + 4,
   FPTypeMask = 7 << FPTypeShift,
-
-  // NotFP - The default, set for instructions that do not use FP registers.
+  /// NotFP - The default, set for instructions that do not use FP registers.
   NotFP = 0 << FPTypeShift,
-
-  // ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
+  /// ZeroArgFP - 0 arg FP instruction which implicitly pushes ST(0), f.e. fld0
   ZeroArgFP = 1 << FPTypeShift,
-
-  // OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
+  /// OneArgFP - 1 arg FP instructions which implicitly read ST(0), such as fst
   OneArgFP = 2 << FPTypeShift,
-
-  // OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
-  // result back to ST(0).  For example, fcos, fsqrt, etc.
-  //
+  /// OneArgFPRW - 1 arg FP instruction which implicitly read ST(0) and write a
+  /// result back to ST(0).  For example, fcos, fsqrt, etc.
   OneArgFPRW = 3 << FPTypeShift,
-
-  // TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
-  // explicit argument, storing the result to either ST(0) or the implicit
-  // argument.  For example: fadd, fsub, fmul, etc...
+  /// TwoArgFP - 2 arg FP instructions which implicitly read ST(0), and an
+  /// explicit argument, storing the result to either ST(0) or the implicit
+  /// argument.  For example: fadd, fsub, fmul, etc...
   TwoArgFP = 4 << FPTypeShift,
-
-  // CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
-  // explicit argument, but have no destination.  Example: fucom, fucomi, ...
+  /// CompareFP - 2 arg FP instructions which implicitly read ST(0) and an
+  /// explicit argument, but have no destination.  Example: fucom, fucomi, ...
   CompareFP = 5 << FPTypeShift,
-
-  // CondMovFP - "2 operand" floating point conditional move instructions.
+  /// CondMovFP - "2 operand" floating point conditional move instructions.
   CondMovFP = 6 << FPTypeShift,
-
-  // SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
+  /// SpecialFP - Special instruction forms.  Dispatch by opcode explicitly.
   SpecialFP = 7 << FPTypeShift,
-
   // Lock prefix
   LOCKShift = FPTypeShift + 3,
   LOCK = 1 << LOCKShift,
-
   // REP prefix
   REPShift = LOCKShift + 1,
   REP = 1 << REPShift,
-
-  // Execution domain for SSE instructions.
-  // 0 means normal, non-SSE instruction.
+  /// Execution domain for SSE instructions.
+  /// 0 means normal, non-SSE instruction.
   SSEDomainShift = REPShift + 1,
-
   // Encoding
   EncodingShift = SSEDomainShift + 2,
   EncodingMask = 0x3 << EncodingShift,
-
-  // VEX - encoding using 0xC4/0xC5
+  /// VEX - encoding using 0xC4/0xC5
   VEX = 1 << EncodingShift,
-
   /// XOP - Opcode prefix used by XOP instructions.
   XOP = 2 << EncodingShift,
-
-  // VEX_EVEX - Specifies that this instruction use EVEX form which provides
-  // syntax support up to 32 512-bit register operands and up to 7 16-bit
-  // mask operands as well as source operand data swizzling/memory operand
-  // conversion, eviction hint, and rounding mode.
+  /// EVEX - Specifies that this instruction use EVEX form which provides
+  /// syntax support up to 32 512-bit register operands and up to 7 16-bit
+  /// mask operands as well as source operand data swizzling/memory operand
+  /// conversion, eviction hint, and rounding mode.
   EVEX = 3 << EncodingShift,
-
   // Opcode
   OpcodeShift = EncodingShift + 2,
-
   /// VEX_4V - Used to specify an additional AVX/SSE register. Several 2
   /// address instructions in SSE are represented as 3 address ones in AVX
   /// and the additional register is encoded in VEX_VVVV prefix.
   VEX_4VShift = OpcodeShift + 8,
   VEX_4V = 1ULL << VEX_4VShift,
-
   /// VEX_L - Stands for a bit in the VEX opcode prefix meaning the current
   /// instruction uses 256-bit wide registers. This is usually auto detected
   /// if a VR256 register is used, but some AVX instructions also have this
   /// field marked when using a f256 memory references.
   VEX_LShift = VEX_4VShift + 1,
   VEX_L = 1ULL << VEX_LShift,
-
-  // EVEX_K - Set if this instruction requires masking
+  /// EVEX_K - Set if this instruction requires masking
   EVEX_KShift = VEX_LShift + 1,
   EVEX_K = 1ULL << EVEX_KShift,
-
-  // EVEX_Z - Set if this instruction has EVEX.Z field set.
+  /// EVEX_Z - Set if this instruction has EVEX.Z field set.
   EVEX_ZShift = EVEX_KShift + 1,
   EVEX_Z = 1ULL << EVEX_ZShift,
-
-  // EVEX_L2 - Set if this instruction has EVEX.L' field set.
+  /// EVEX_L2 - Set if this instruction has EVEX.L' field set.
   EVEX_L2Shift = EVEX_ZShift + 1,
   EVEX_L2 = 1ULL << EVEX_L2Shift,
-
-  // EVEX_B - Set if this instruction has EVEX.B field set.
+  /// EVEX_B - Set if this instruction has EVEX.B field set.
   EVEX_BShift = EVEX_L2Shift + 1,
   EVEX_B = 1ULL << EVEX_BShift,
-
-  // The scaling factor for the AVX512's 8-bit compressed displacement.
+  /// The scaling factor for the AVX512's 8-bit compressed displacement.
   CD8_Scale_Shift = EVEX_BShift + 1,
   CD8_Scale_Mask = 7ULL << CD8_Scale_Shift,
-
   /// Explicitly specified rounding control
   EVEX_RCShift = CD8_Scale_Shift + 3,
   EVEX_RC = 1ULL << EVEX_RCShift,
-
-  // NOTRACK prefix
+  /// NOTRACK prefix
   NoTrackShift = EVEX_RCShift + 1,
   NOTRACK = 1ULL << NoTrackShift,
-
-  // Force REX2/VEX/EVEX encoding
+  /// Force REX2/VEX/EVEX encoding
   ExplicitOpPrefixShift = NoTrackShift + 1,
-  // For instructions that require REX2 prefix even if EGPR is not used.
+  /// For instructions that require REX2 prefix even if EGPR is not used.
   ExplicitREX2Prefix = 1ULL << ExplicitOpPrefixShift,
-  // For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
-  // is present.
+  /// For instructions that use VEX encoding only when {vex}, {vex2} or {vex3}
+  /// is present.
   ExplicitVEXPrefix = 2ULL << ExplicitOpPrefixShift,
-  // For instructions that are promoted to EVEX space for EGPR.
+  /// For instructions that are promoted to EVEX space for EGPR.
   ExplicitEVEXPrefix = 3ULL << ExplicitOpPrefixShift,
   ExplicitOpPrefixMask = 3ULL << ExplicitOpPrefixShift
 };
@@ -1478,7 +1344,5 @@ inline bool isKMergeMasked(uint64_t TSFlags) {
   return isKMasked(TSFlags) && (TSFlags & X86II::EVEX_Z) == 0;
 }
 } // namespace X86II
-
 } // namespace llvm
-
 #endif



More information about the llvm-commits mailing list