[llvm] 75a73c9 - Revert "[ScalarEvolution] Infer loop max trip count from array accesses"

via llvm-commits llvm-commits at lists.llvm.org
Thu Jun 29 02:27:52 PDT 2023


Author: Liren Peng
Date: 2023-06-29T17:27:38+08:00
New Revision: 75a73c983f81260a995f6f3d9b6dd4c663a78f9d

URL: https://github.com/llvm/llvm-project/commit/75a73c983f81260a995f6f3d9b6dd4c663a78f9d
DIFF: https://github.com/llvm/llvm-project/commit/75a73c983f81260a995f6f3d9b6dd4c663a78f9d.diff

LOG: Revert "[ScalarEvolution] Infer loop max trip count from array accesses"

This reverts commit 57e093162e27334730d8ed8f7b25b1b6f65ec8c8.

Added: 
    

Modified: 
    llvm/include/llvm/Analysis/ScalarEvolution.h
    llvm/lib/Analysis/ScalarEvolution.cpp
    llvm/unittests/Analysis/ScalarEvolutionTest.cpp

Removed: 
    


################################################################################
diff  --git a/llvm/include/llvm/Analysis/ScalarEvolution.h b/llvm/include/llvm/Analysis/ScalarEvolution.h
index 44bff2bd51314..c108a7ae9c9b5 100644
--- a/llvm/include/llvm/Analysis/ScalarEvolution.h
+++ b/llvm/include/llvm/Analysis/ScalarEvolution.h
@@ -831,13 +831,6 @@ class ScalarEvolution {
   /// Returns 0 if the trip count is unknown or not constant.
   unsigned getSmallConstantMaxTripCount(const Loop *L);
 
-  /// Returns the upper bound of the loop trip count infered from array size.
-  /// Can not access bytes starting outside the statically allocated size
-  /// without being immediate UB.
-  /// Returns SCEVCouldNotCompute if the trip count could not inferred
-  /// from array accesses.
-  const SCEV *getConstantMaxTripCountFromArray(const Loop *L);
-
   /// Returns the largest constant divisor of the trip count as a normal
   /// unsigned value, if possible. This means that the actual trip count is
   /// always a multiple of the returned value. Returns 1 if the trip count is

diff  --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp
index 93346f643b974..2bce32df06bae 100644
--- a/llvm/lib/Analysis/ScalarEvolution.cpp
+++ b/llvm/lib/Analysis/ScalarEvolution.cpp
@@ -8107,126 +8107,6 @@ unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
   return getConstantTripCount(MaxExitCount);
 }
 
-const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
-  // We can't infer from Array in Irregular Loop.
-  // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
-  if (!L->isLoopSimplifyForm() || !L->isInnermost())
-    return getCouldNotCompute();
-
-  // FIXME: To make the scene more typical, we only analysis loops that have
-  // one exiting block and that block must be the latch. To make it easier to
-  // capture loops that have memory access and memory access will be executed
-  // in each iteration.
-  const BasicBlock *LoopLatch = L->getLoopLatch();
-  assert(LoopLatch && "See defination of simplify form loop.");
-  if (L->getExitingBlock() != LoopLatch)
-    return getCouldNotCompute();
-
-  const DataLayout &DL = getDataLayout();
-  SmallVector<const SCEV *> InferCountColl;
-  for (auto *BB : L->getBlocks()) {
-    // Go here, we can know that Loop is a single exiting and simplified form
-    // loop. Make sure that infer from Memory Operation in those BBs must be
-    // executed in loop. First step, we can make sure that max execution time
-    // of MemAccessBB in loop represents latch max excution time.
-    // If MemAccessBB does not dom Latch, skip.
-    //            Entry
-    //              │
-    //        ┌─────▼─────┐
-    //        │Loop Header◄─────┐
-    //        └──┬──────┬─┘     │
-    //           │      │       │
-    //  ┌────────▼──┐ ┌─▼─────┐ │
-    //  │MemAccessBB│ │OtherBB│ │
-    //  └────────┬──┘ └─┬─────┘ │
-    //           │      │       │
-    //         ┌─▼──────▼─┐     │
-    //         │Loop Latch├─────┘
-    //         └────┬─────┘
-    //              ▼
-    //             Exit
-    if (!DT.dominates(BB, LoopLatch))
-      continue;
-
-    for (Instruction &Inst : *BB) {
-      // Find Memory Operation Instruction.
-      auto *GEP = getLoadStorePointerOperand(&Inst);
-      if (!GEP)
-        continue;
-
-      auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
-      // Do not infer from scalar type, eg."ElemSize = sizeof()".
-      if (!ElemSize)
-        continue;
-
-      // Use a existing polynomial recurrence on the trip count.
-      auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
-      if (!AddRec)
-        continue;
-      auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
-      auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
-      if (!ArrBase || !Step)
-        continue;
-      assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
-
-      // Only handle { %array + step },
-      // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
-      if (AddRec->getStart() != ArrBase)
-        continue;
-
-      // Memory operation pattern which have gaps.
-      // Or repeat memory opreation.
-      // And index of GEP wraps arround.
-      if (Step->getAPInt().getActiveBits() > 32 ||
-          Step->getAPInt().getZExtValue() !=
-              ElemSize->getAPInt().getZExtValue() ||
-          Step->isZero() || Step->getAPInt().isNegative())
-        continue;
-
-      // Only infer from stack array which has certain size.
-      // Make sure alloca instruction is not excuted in loop.
-      AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
-      if (!AllocateInst || L->contains(AllocateInst->getParent()))
-        continue;
-
-      // Make sure only handle normal array.
-      auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
-      auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
-      if (!Ty || !ArrSize || !ArrSize->isOne())
-        continue;
-
-      // FIXME: Since gep indices are silently zext to the indexing type,
-      // we will have a narrow gep index which wraps around rather than
-      // increasing strictly, we shoule ensure that step is increasing
-      // strictly by the loop iteration.
-      // Now we can infer a max execution time by MemLength/StepLength.
-      const SCEV *MemSize =
-          getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
-      auto *MaxExeCount =
-          dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
-      if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
-        continue;
-
-      // If the loop reaches the maximum number of executions, we can not
-      // access bytes starting outside the statically allocated size without
-      // being immediate UB. But it is allowed to enter loop header one more
-      // time.
-      auto *InferCount = dyn_cast<SCEVConstant>(
-          getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
-      // Discard the maximum number of execution times under 32bits.
-      if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
-        continue;
-
-      InferCountColl.push_back(InferCount);
-    }
-  }
-
-  if (InferCountColl.size() == 0)
-    return getCouldNotCompute();
-
-  return getUMinFromMismatchedTypes(InferCountColl);
-}
-
 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
   SmallVector<BasicBlock *, 8> ExitingBlocks;
   L->getExitingBlocks(ExitingBlocks);

diff  --git a/llvm/unittests/Analysis/ScalarEvolutionTest.cpp b/llvm/unittests/Analysis/ScalarEvolutionTest.cpp
index 1834e8cad56fa..9365464d58b30 100644
--- a/llvm/unittests/Analysis/ScalarEvolutionTest.cpp
+++ b/llvm/unittests/Analysis/ScalarEvolutionTest.cpp
@@ -1536,214 +1536,6 @@ TEST_F(ScalarEvolutionsTest, SCEVUDivFloorCeiling) {
   });
 }
 
-TEST_F(ScalarEvolutionsTest, ComputeMaxTripCountFromArrayNormal) {
-  LLVMContext C;
-  SMDiagnostic Err;
-  std::unique_ptr<Module> M = parseAssemblyString(
-      "define void @foo(i32 signext %len) { "
-      "entry: "
-      "  %a = alloca [7 x i32], align 4 "
-      "  %cmp4 = icmp sgt i32 %len, 0 "
-      "  br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup "
-      "for.body.preheader: "
-      "  br label %for.body "
-      "for.cond.cleanup.loopexit: "
-      "  br label %for.cond.cleanup "
-      "for.cond.cleanup: "
-      "  ret void "
-      "for.body: "
-      "  %iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] "
-      "  %idxprom = zext i32 %iv to i64 "
-      "  %arrayidx = getelementptr inbounds [7 x i32], [7 x i32]* %a, i64 0, \
-    i64 %idxprom "
-      "  store i32 0, i32* %arrayidx, align 4 "
-      "  %inc = add nuw nsw i32 %iv, 1 "
-      "  %cmp = icmp slt i32 %inc, %len "
-      "  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit "
-      "} ",
-      Err, C);
-
-  ASSERT_TRUE(M && "Could not parse module?");
-  ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
-
-  runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
-    auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv"));
-    const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
-
-    const SCEV *ITC = SE.getConstantMaxTripCountFromArray(L);
-    EXPECT_FALSE(isa<SCEVCouldNotCompute>(ITC));
-    EXPECT_TRUE(isa<SCEVConstant>(ITC));
-    EXPECT_EQ(cast<SCEVConstant>(ITC)->getAPInt().getSExtValue(), 8);
-  });
-}
-
-TEST_F(ScalarEvolutionsTest, ComputeMaxTripCountFromZeroArray) {
-  LLVMContext C;
-  SMDiagnostic Err;
-  std::unique_ptr<Module> M = parseAssemblyString(
-      "define void @foo(i32 signext %len) { "
-      "entry: "
-      "  %a = alloca [0 x i32], align 4 "
-      "  %cmp4 = icmp sgt i32 %len, 0 "
-      "  br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup "
-      "for.body.preheader: "
-      "  br label %for.body "
-      "for.cond.cleanup.loopexit: "
-      "  br label %for.cond.cleanup "
-      "for.cond.cleanup: "
-      "  ret void "
-      "for.body: "
-      "  %iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] "
-      "  %idxprom = zext i32 %iv to i64 "
-      "  %arrayidx = getelementptr inbounds [0 x i32], [0 x i32]* %a, i64 0, \
-    i64 %idxprom "
-      "  store i32 0, i32* %arrayidx, align 4 "
-      "  %inc = add nuw nsw i32 %iv, 1 "
-      "  %cmp = icmp slt i32 %inc, %len "
-      "  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit "
-      "} ",
-      Err, C);
-
-  ASSERT_TRUE(M && "Could not parse module?");
-  ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
-
-  runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
-    auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv"));
-    const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
-
-    const SCEV *ITC = SE.getConstantMaxTripCountFromArray(L);
-    EXPECT_FALSE(isa<SCEVCouldNotCompute>(ITC));
-    EXPECT_TRUE(isa<SCEVConstant>(ITC));
-    EXPECT_EQ(cast<SCEVConstant>(ITC)->getAPInt().getSExtValue(), 1);
-  });
-}
-
-TEST_F(ScalarEvolutionsTest, ComputeMaxTripCountFromExtremArray) {
-  LLVMContext C;
-  SMDiagnostic Err;
-  std::unique_ptr<Module> M = parseAssemblyString(
-      "define void @foo(i32 signext %len) { "
-      "entry: "
-      "  %a = alloca [4294967295 x i1], align 4 "
-      "  %cmp4 = icmp sgt i32 %len, 0 "
-      "  br i1 %cmp4, label %for.body.preheader, label %for.cond.cleanup "
-      "for.body.preheader: "
-      "  br label %for.body "
-      "for.cond.cleanup.loopexit: "
-      "  br label %for.cond.cleanup "
-      "for.cond.cleanup: "
-      "  ret void "
-      "for.body: "
-      "  %iv = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] "
-      "  %idxprom = zext i32 %iv to i64 "
-      "  %arrayidx = getelementptr inbounds [4294967295 x i1], \
-    [4294967295 x i1]* %a, i64 0, i64 %idxprom "
-      "  store i1 0, i1* %arrayidx, align 4 "
-      "  %inc = add nuw nsw i32 %iv, 1 "
-      "  %cmp = icmp slt i32 %inc, %len "
-      "  br i1 %cmp, label %for.body, label %for.cond.cleanup.loopexit "
-      "} ",
-      Err, C);
-
-  ASSERT_TRUE(M && "Could not parse module?");
-  ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
-
-  runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
-    auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv"));
-    const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
-
-    const SCEV *ITC = SE.getConstantMaxTripCountFromArray(L);
-    EXPECT_TRUE(isa<SCEVCouldNotCompute>(ITC));
-  });
-}
-
-TEST_F(ScalarEvolutionsTest, ComputeMaxTripCountFromArrayInBranch) {
-  LLVMContext C;
-  SMDiagnostic Err;
-  std::unique_ptr<Module> M = parseAssemblyString(
-      "define void @foo(i32 signext %len) { "
-      "entry: "
-      "  %a = alloca [8 x i32], align 4 "
-      "  br label %for.cond "
-      "for.cond: "
-      "  %iv = phi i32 [ %inc, %for.inc ], [ 0, %entry ] "
-      "  %cmp = icmp slt i32 %iv, %len "
-      "  br i1 %cmp, label %for.body, label %for.cond.cleanup "
-      "for.cond.cleanup: "
-      "  br label %for.end "
-      "for.body: "
-      "  %cmp1 = icmp slt i32 %iv, 8 "
-      "  br i1 %cmp1, label %if.then, label %if.end "
-      "if.then: "
-      "  %idxprom = sext i32 %iv to i64 "
-      "  %arrayidx = getelementptr inbounds [8 x i32], [8 x i32]* %a, i64 0, \
-    i64 %idxprom "
-      "  store i32 0, i32* %arrayidx, align 4 "
-      "  br label %if.end "
-      "if.end: "
-      "  br label %for.inc "
-      "for.inc: "
-      "  %inc = add nsw i32 %iv, 1 "
-      "  br label %for.cond "
-      "for.end: "
-      "  ret void "
-      "} ",
-      Err, C);
-
-  ASSERT_TRUE(M && "Could not parse module?");
-  ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
-
-  runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
-    auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv"));
-    const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
-
-    const SCEV *ITC = SE.getConstantMaxTripCountFromArray(L);
-    EXPECT_TRUE(isa<SCEVCouldNotCompute>(ITC));
-  });
-}
-
-TEST_F(ScalarEvolutionsTest, ComputeMaxTripCountFromMultiDemArray) {
-  LLVMContext C;
-  SMDiagnostic Err;
-  std::unique_ptr<Module> M = parseAssemblyString(
-      "define void @foo(i32 signext %len) { "
-      "entry: "
-      "  %a = alloca [3 x [5 x i32]], align 4 "
-      "  br label %for.cond "
-      "for.cond: "
-      "  %iv = phi i32 [ %inc, %for.inc ], [ 0, %entry ] "
-      "  %cmp = icmp slt i32 %iv, %len "
-      "  br i1 %cmp, label %for.body, label %for.cond.cleanup "
-      "for.cond.cleanup: "
-      "  br label %for.end "
-      "for.body: "
-      "  %arrayidx = getelementptr inbounds [3 x [5 x i32]], \
-    [3 x [5 x i32]]* %a, i64 0, i64 3 "
-      "  %idxprom = sext i32 %iv to i64 "
-      "  %arrayidx1 = getelementptr inbounds [5 x i32], [5 x i32]* %arrayidx, \
-    i64 0, i64 %idxprom "
-      "  store i32 0, i32* %arrayidx1, align 4"
-      "  br label %for.inc "
-      "for.inc: "
-      "  %inc = add nsw i32 %iv, 1 "
-      "  br label %for.cond "
-      "for.end: "
-      "  ret void "
-      "} ",
-      Err, C);
-
-  ASSERT_TRUE(M && "Could not parse module?");
-  ASSERT_TRUE(!verifyModule(*M) && "Must have been well formed!");
-
-  runWithSE(*M, "foo", [](Function &F, LoopInfo &LI, ScalarEvolution &SE) {
-    auto *ScevIV = SE.getSCEV(getInstructionByName(F, "iv"));
-    const Loop *L = cast<SCEVAddRecExpr>(ScevIV)->getLoop();
-
-    const SCEV *ITC = SE.getConstantMaxTripCountFromArray(L);
-    EXPECT_TRUE(isa<SCEVCouldNotCompute>(ITC));
-  });
-}
-
 TEST_F(ScalarEvolutionsTest, CheckGetPowerOfTwo) {
   Module M("CheckGetPowerOfTwo", Context);
   FunctionType *FTy = FunctionType::get(Type::getVoidTy(Context), {}, false);


        


More information about the llvm-commits mailing list