[lld] r319781 - [ELF] AArch64 Errata fix, add missing files.

Peter Smith via llvm-commits llvm-commits at lists.llvm.org
Tue Dec 5 08:04:46 PST 2017


Author: psmith
Date: Tue Dec  5 08:04:45 2017
New Revision: 319781

URL: http://llvm.org/viewvc/llvm-project?rev=319781&view=rev
Log:
[ELF] AArch64 Errata fix, add missing files.

Forgot these from r319780

Added:
    lld/trunk/ELF/AArch64ErrataFix.cpp
    lld/trunk/ELF/AArch64ErrataFix.h

Added: lld/trunk/ELF/AArch64ErrataFix.cpp
URL: http://llvm.org/viewvc/llvm-project/lld/trunk/ELF/AArch64ErrataFix.cpp?rev=319781&view=auto
==============================================================================
--- lld/trunk/ELF/AArch64ErrataFix.cpp (added)
+++ lld/trunk/ELF/AArch64ErrataFix.cpp Tue Dec  5 08:04:45 2017
@@ -0,0 +1,489 @@
+//===- AArch64ErrataFix.cpp -----------------------------------------------===//
+//
+//                             The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// This file implements Section Patching for the purpose of working around
+// errata in CPUs. The general principle is that an erratum sequence of one or
+// more instructions is detected in the instruction stream, one of the
+// instructions in the sequence is replaced with a branch to a patch sequence
+// of replacement instructions. At the end of the replacement sequence the
+// patch branches back to the instruction stream.
+
+// This technique is only suitable for fixing an erratum when:
+// - There is a set of necessary conditions required to trigger the erratum that
+// can be detected at static link time.
+// - There is a set of replacement instructions that can be used to remove at
+// least one of the necessary conditions that trigger the erratum.
+// - We can overwrite an instruction in the erratum sequence with a branch to
+// the replacement sequence.
+// - We can place the replacement sequence within range of the branch.
+
+// FIXME:
+// - At this stage the implementation only supports detection and not fixing,
+// this is sufficient to test the decode and recognition of the erratum
+// sequence.
+// - The implementation here only supports one patch, the AArch64 Cortex-53
+// errata 843419 that affects r0p0, r0p1, r0p2 and r0p4 versions of the core.
+// To keep the initial version simple there is no support for multiple
+// architectures or selection of different patches.
+//===----------------------------------------------------------------------===//
+
+#include "AArch64ErrataFix.h"
+#include "Config.h"
+#include "LinkerScript.h"
+#include "lld/Common/Memory.h"
+#include "OutputSections.h"
+#include "Relocations.h"
+#include "Strings.h"
+#include "SyntheticSections.h"
+#include "Target.h"
+
+#include "llvm/Support/Endian.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+
+using namespace llvm;
+using namespace llvm::ELF;
+using namespace llvm::object;
+using namespace llvm::support::endian;
+
+using namespace lld;
+using namespace lld::elf;
+
+// Helper functions to identify instructions and conditions needed to trigger
+// the Cortex-A53-843419 erratum.
+
+// ADRP
+// | 1 | immlo (2) | 1 | 0 0 0 0 | immhi (19) | Rd (5) |
+static bool isADRP(uint32_t Instr) {
+  return (Instr & 0x9f000000) == 0x90000000;
+}
+
+// Load and store bit patterns from ARMv8-A ARM ARM.
+// Instructions appear in order of appearance starting from table in
+// C4.1.3 Loads and Stores.
+
+// All loads and stores have 1 (at bit postion 27), (0 at bit position 25).
+// | op0 x op1 (2) | 1 op2 0 op3 (2) | x | op4 (5) | xxxx | op5 (2) | x (10) |
+static bool isLoadStoreClass(uint32_t Instr) {
+  return (Instr & 0x0a000000) == 0x08000000;
+}
+
+// LDN/STN multiple no offset
+// | 0 Q 00 | 1100 | 0 L 00 | 0000 | opcode (4) | size (2) | Rn (5) | Rt (5) |
+// LDN/STN multiple post-indexed
+// | 0 Q 00 | 1100 | 1 L 0 | Rm (5)| opcode (4) | size (2) | Rn (5) | Rt (5) |
+// L == 0 for stores.
+
+// Utility routine to decode opcode field of LDN/STN multiple structure
+// instructions to find the ST1 instructions.
+// opcode == 0010 ST1 4 registers.
+// opcode == 0110 ST1 3 registers.
+// opcode == 0111 ST1 1 register.
+// opcode == 1010 ST1 2 registers.
+static bool isST1MultipleOpcode(uint32_t Instr) {
+  return (Instr & 0x0000f000) == 0x00002000 ||
+         (Instr & 0x0000f000) == 0x00006000 ||
+         (Instr & 0x0000f000) == 0x00007000 ||
+         (Instr & 0x0000f000) == 0x0000a000;
+}
+
+static bool isST1Multiple(uint32_t Instr) {
+  return (Instr & 0xbfff0000) == 0x0c000000 && isST1MultipleOpcode(Instr);
+}
+
+// Writes to Rn (writeback).
+static bool isST1MultiplePost(uint32_t Instr) {
+  return (Instr & 0xbfe00000) == 0x0c800000 && isST1MultipleOpcode(Instr);
+}
+
+// LDN/STN single no offset
+// | 0 Q 00 | 1101 | 0 L R 0 | 0000 | opc (3) S | size (2) | Rn (5) | Rt (5)|
+// LDN/STN single post-indexed
+// | 0 Q 00 | 1101 | 1 L R | Rm (5) | opc (3) S | size (2) | Rn (5) | Rt (5)|
+// L == 0 for stores
+
+// Utility routine to decode opcode field of LDN/STN single structure
+// instructions to find the ST1 instructions.
+// R == 0 for ST1 and ST3, R == 1 for ST2 and ST4.
+// opcode == 000 ST1 8-bit.
+// opcode == 010 ST1 16-bit.
+// opcode == 100 ST1 32 or 64-bit (Size determines which).
+static bool isST1SingleOpcode(uint32_t Instr) {
+  return (Instr & 0x0040e000) == 0x00000000 ||
+         (Instr & 0x0040e000) == 0x00004000 ||
+         (Instr & 0x0040e000) == 0x00008000;
+}
+
+static bool isST1Single(uint32_t Instr) {
+  return (Instr & 0xbfff0000) == 0x0d000000 && isST1SingleOpcode(Instr);
+}
+
+// Writes to Rn (writeback).
+static bool isST1SinglePost(uint32_t Instr) {
+  return (Instr & 0xbfe00000) == 0x0d800000 && isST1SingleOpcode(Instr);
+}
+
+static bool isST1(uint32_t Instr) {
+  return isST1Multiple(Instr) || isST1MultiplePost(Instr) ||
+         isST1Single(Instr) || isST1SinglePost(Instr);
+}
+
+// Load/store exclusive
+// | size (2) 00 | 1000 | o2 L o1 | Rs (5) | o0 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for Stores.
+static bool isLoadStoreExclusive(uint32_t Instr) {
+  return (Instr & 0x3f000000) == 0x08000000;
+}
+
+static bool isLoadExclusive(uint32_t Instr) {
+  return (Instr & 0x3f400000) == 0x08400000;
+}
+
+// Load register literal
+// | opc (2) 01 | 1 V 00 | imm19 | Rt (5) |
+static bool isLoadLiteral(uint32_t Instr) {
+  return (Instr & 0x3b000000) == 0x18000000;
+}
+
+// Load/store no-allocate pair
+// (offset)
+// | opc (2) 10 | 1 V 00 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for stores.
+// Never writes to register
+static bool isSTNP(uint32_t Instr) {
+  return (Instr & 0x3bc00000) == 0x28000000;
+}
+
+// Load/store register pair
+// (post-indexed)
+// | opc (2) 10 | 1 V 00 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// L == 0 for stores, V == 0 for Scalar, V == 1 for Simd/FP
+// Writes to Rn.
+static bool isSTPPost(uint32_t Instr) {
+  return (Instr & 0x3bc00000) == 0x28800000;
+}
+
+// (offset)
+// | opc (2) 10 | 1 V 01 | 0 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+static bool isSTPOffset(uint32_t Instr) {
+  return (Instr & 0x3bc00000) == 0x29000000;
+}
+
+// (pre-index)
+// | opc (2) 10 | 1 V 01 | 1 L | imm7 | Rt2 (5) | Rn (5) | Rt (5) |
+// Writes to Rn.
+static bool isSTPPre(uint32_t Instr) {
+  return (Instr & 0x3bc00000) == 0x29800000;
+}
+
+static bool isSTP(uint32_t Instr) {
+  return isSTPPost(Instr) || isSTPOffset(Instr) || isSTPPre(Instr);
+}
+
+// Load/store register (unscaled immediate)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 00 | Rn (5) | Rt (5) |
+// V == 0 for Scalar, V == 1 for Simd/FP.
+static bool isLoadStoreUnscaled(uint32_t Instr) {
+  return (Instr & 0x3b000c00) == 0x38000000;
+}
+
+// Load/store register (immediate post-indexed)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 01 | Rn (5) | Rt (5) |
+static bool isLoadStoreImmediatePost(uint32_t Instr) {
+  return (Instr & 0x3b200c00) == 0x38000400;
+}
+
+// Load/store register (unprivileged)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 10 | Rn (5) | Rt (5) |
+static bool isLoadStoreUnpriv(uint32_t Instr) {
+  return (Instr & 0x3b200c00) == 0x38000800;
+}
+
+// Load/store register (immediate pre-indexed)
+// | size (2) 11 | 1 V 00 | opc (2) 0 | imm9 | 11 | Rn (5) | Rt (5) |
+static bool isLoadStoreImmediatePre(uint32_t Instr) {
+  return (Instr & 0x3b200c00) == 0x38000c00;
+}
+
+// Load/store register (register offset)
+// | size (2) 11 | 1 V 00 | opc (2) 1 | Rm (5) | option (3) S | 10 | Rn | Rt |
+static bool isLoadStoreRegisterOff(uint32_t Instr) {
+  return (Instr & 0x3b200c00) == 0x38200800;
+}
+
+// Load/store register (unsigned immediate)
+// | size (2) 11 | 1 V 01 | opc (2) | imm12 | Rn (5) | Rt (5) |
+static bool isLoadStoreRegisterUnsigned(uint32_t Instr) {
+  return (Instr & 0x3b000000) == 0x39000000;
+}
+
+// Rt is always in bit position 0 - 4.
+static uint32_t getRt(uint32_t Instr) { return (Instr & 0x1f); }
+
+// Rn is always in bit position 5 - 9.
+static uint32_t getRn(uint32_t Instr) { return (Instr >> 5) & 0x1f; }
+
+// C4.1.2 Branches, Exception Generating and System instructions
+// | op0 (3) 1 | 01 op1 (4) | x (22) |
+// op0 == 010 101 op1 == 0xxx Conditional Branch.
+// op0 == 110 101 op1 == 1xxx Unconditional Branch Register.
+// op0 == x00 101 op1 == xxxx Unconditional Branch immediate.
+// op0 == x01 101 op1 == 0xxx Compare and branch immediate.
+// op0 == x01 101 op1 == 1xxx Test and branch immediate.
+static bool isBranch(uint32_t Instr) {
+  return ((Instr & 0xfe000000) == 0xd6000000) || // Cond branch.
+         ((Instr & 0xfe000000) == 0x54000000) || // Uncond branch reg.
+         ((Instr & 0x7c000000) == 0x14000000) || // Uncond branch imm.
+         ((Instr & 0x7c000000) == 0x34000000);   // Compare and test branch.
+}
+
+static bool isV8SingleRegisterNonStructureLoadStore(uint32_t Instr) {
+  return isLoadStoreUnscaled(Instr) || isLoadStoreImmediatePost(Instr) ||
+         isLoadStoreUnpriv(Instr) || isLoadStoreImmediatePre(Instr) ||
+         isLoadStoreRegisterOff(Instr) || isLoadStoreRegisterUnsigned(Instr);
+}
+
+// Note that this function refers to v8.0 only and does not include the
+// additional load and store instructions added for in later revisions of
+// the architecture such as the Atomic memory operations introduced
+// in v8.1.
+static bool isV8NonStructureLoad(uint32_t Instr) {
+  if (isLoadExclusive(Instr))
+    return true;
+  if (isLoadLiteral(Instr))
+    return true;
+  else if (isV8SingleRegisterNonStructureLoadStore(Instr)) {
+    // For Load and Store single register, Loads are derived from a
+    // combination of the Size, V and Opc fields.
+    uint32_t Size = (Instr >> 30) & 0xff;
+    uint32_t V = (Instr >> 26) & 0x1;
+    uint32_t Opc = (Instr >> 22) & 0x3;
+    // For the load and store instructions that we are decoding.
+    // Opc == 0 are all stores.
+    // Opc == 1 with a couple of exceptions are loads. The exceptions are:
+    // Size == 00 (0), V == 1, Opc == 10 (2) which is a store and
+    // Size == 11 (3), V == 0, Opc == 10 (2) which is a prefetch.
+    return Opc != 0 && !(Size == 0 && V == 1 && Opc == 2) &&
+           !(Size == 3 && V == 0 && Opc == 2);
+  }
+  return false;
+}
+
+// The following decode instructions are only complete up to the instructions
+// needed for errata 843419.
+
+// Instruction with writeback updates the index register after the load/store.
+static bool hasWriteback(uint32_t Instr) {
+  return isLoadStoreImmediatePre(Instr) || isLoadStoreImmediatePost(Instr) ||
+         isSTPPre(Instr) || isSTPPost(Instr) || isST1SinglePost(Instr) ||
+         isST1MultiplePost(Instr);
+}
+
+// For the load and store class of instructions, a load can write to the
+// destination register, a load and a store can write to the base register when
+// the instruction has writeback.
+static bool doesLoadStoreWriteToReg(uint32_t Instr, uint32_t Reg) {
+  return (isV8NonStructureLoad(Instr) && getRt(Instr) == Reg) ||
+         (hasWriteback(Instr) && getRn(Instr) == Reg);
+}
+
+// Scanner for Cortex-A53 errata 843419
+// Full details are available in the Cortex A53 MPCore revision 0 Software
+// Developers Errata Notice (ARM-EPM-048406).
+//
+// The instruction sequence that triggers the erratum is common in compiled
+// AArch64 code, however it is sensitive to the offset of the sequence within
+// a 4k page. This means that by scanning and fixing the patch after we have
+// assigned addresses we only need to disassemble and fix instances of the
+// sequence in the range of affected offsets.
+//
+// In summary the erratum conditions are a series of 4 instructions:
+// 1.) An ADRP instruction that writes to register Rn with low 12 bits of
+//     address of instruction either 0xff8 or 0xffc.
+// 2.) A load or store instruction that can be:
+// - A single register load or store, of either integer or vector registers.
+// - An STP or STNP, of either integer or vector registers.
+// - An Advanced SIMD ST1 store instruction.
+// - Must not write to Rn, but may optionally read from it.
+// 3.) An optional instruction that is not a branch and does not write to Rn.
+// 4.) A load or store from the  Load/store register (unsigned immediate) class
+//     that uses Rn as the base address register.
+//
+// Note that we do not attempt to scan for Sequence 2 as described in the
+// Software Developers Errata Notice as this has been assessed to be extremely
+// unlikely to occur in compiled code. This matches gold and ld.bfd behavior.
+
+// Return true if the Instruction sequence Adrp, Instr2, and Instr4 match
+// the erratum sequence. The Adrp, Instr2 and Instr4 correspond to 1.), 2.),
+// and 4.) in the Scanner for Cortex-A53 errata comment above.
+static bool is843419ErratumSequence(uint32_t Instr1, uint32_t Instr2,
+                                    uint32_t Instr4) {
+  if (!isADRP(Instr1))
+    return false;
+
+  uint32_t Rn = getRt(Instr1);
+  return isLoadStoreClass(Instr2) &&
+         (isLoadStoreExclusive(Instr2) || isLoadLiteral(Instr2) ||
+          isV8SingleRegisterNonStructureLoadStore(Instr2) || isSTP(Instr2) ||
+          isSTNP(Instr2) || isST1(Instr2)) &&
+         !doesLoadStoreWriteToReg(Instr2, Rn) &&
+         isLoadStoreRegisterUnsigned(Instr4) && getRn(Instr4) == Rn;
+}
+
+static void report843419Fix(uint64_t AdrpAddr) {
+  if (!Config->Verbose)
+    return;
+  message("detected cortex-a53-843419 erratum sequence starting at " +
+          utohexstr(AdrpAddr) + " in unpatched output.");
+}
+
+// Scan the instruction sequence starting at Offset Off from the base of
+// InputSection IS. We update Off in this function rather than in the caller as
+// we can skip ahead much further into the section when we know how many
+// instructions we've scanned.
+// Return the offset of the load or store instruction in IS that we want to
+// patch or 0 if no patch required.
+static uint64_t scanCortexA53Errata843419(InputSection *IS, uint64_t &Off,
+                                          uint64_t Limit) {
+  uint64_t ISAddr = IS->getParent()->Addr + IS->OutSecOff;
+
+  // Advance Off so that (ISAddr + Off) modulo 0x1000 is at least 0xff8.
+  uint64_t InitialPageOff = (ISAddr + Off) & 0xfff;
+  if (InitialPageOff < 0xff8)
+    Off += 0xff8 - InitialPageOff;
+
+  bool OptionalAllowed = Limit - Off > 12;
+  if (Off >= Limit || Limit - Off < 12) {
+    // Need at least 3 4-byte sized instructions to trigger erratum.
+    Off = Limit;
+    return 0;
+  }
+
+  uint64_t PatchOff = 0;
+  const uint8_t *Buf = IS->Data.begin();
+  const uint32_t *InstBuf = reinterpret_cast<const uint32_t *>(Buf + Off);
+  uint32_t Instr1 = *InstBuf++;
+  uint32_t Instr2 = *InstBuf++;
+  uint32_t Instr3 = *InstBuf++;
+  if (is843419ErratumSequence(Instr1, Instr2, Instr3)) {
+    PatchOff = Off + 8;
+  } else if (OptionalAllowed && !isBranch(Instr3)) {
+    uint32_t Instr4 = *InstBuf++;
+    if (is843419ErratumSequence(Instr1, Instr2, Instr4))
+      PatchOff = Off + 12;
+  }
+  if (((ISAddr + Off) & 0xfff) == 0xff8)
+    Off += 4;
+  else
+    Off += 0xffc;
+  return PatchOff;
+}
+
+// The AArch64 ABI permits data in executable sections. We must avoid scanning
+// this data as if it were instructions to avoid false matches.
+// The ABI Section 4.5.4 Mapping symbols; defines local symbols that describe
+// half open intervals [Symbol Value, Next Symbol Value) of code and data
+// within sections. If there is no next symbol then the half open interval is
+// [Symbol Value, End of section). The type, code or data, is determined by the
+// mapping symbol name, $x for code, $d for data.
+std::map<InputSection *,
+         std::vector<const Defined *>> static makeAArch64SectionMap() {
+  std::map<InputSection *, std::vector<const Defined *>> SectionMap;
+  auto IsCodeMapSymbol = [](const Symbol *B) {
+    return B->getName() == "$x" || B->getName().startswith("$x.");
+  };
+  auto IsDataMapSymbol = [](const Symbol *B) {
+    return B->getName() == "$d" || B->getName().startswith("$d.");
+  };
+
+  // Collect mapping symbols for every executable InputSection.
+  for (InputFile *File : ObjectFiles) {
+    auto *F = cast<ObjFile<ELF64LE>>(File);
+    for (Symbol *B : F->getLocalSymbols()) {
+      auto *Def = dyn_cast<Defined>(B);
+      if (!Def)
+        continue;
+      if (!IsCodeMapSymbol(Def) && !IsDataMapSymbol(Def))
+        continue;
+      if (auto *Sec = dyn_cast<InputSection>(Def->Section))
+        if (Sec->Flags & SHF_EXECINSTR)
+          SectionMap[Sec].push_back(Def);
+    }
+  }
+  // For each InputSection make sure the mapping symbols are in sorted in
+  // ascending order and free from consecutive runs of mapping symbols with
+  // the same type. For example we must remove the redundant $d.1 from $x.0
+  // $d.0 $d.1 $x.1.
+  for (auto &KV : SectionMap) {
+    std::vector<const Defined *> &MapSyms = KV.second;
+    if (MapSyms.size() <= 1)
+      continue;
+    std::stable_sort(
+        MapSyms.begin(), MapSyms.end(),
+        [](const Defined *A, const Defined *B) { return A->Value < B->Value; });
+    MapSyms.erase(
+        std::unique(MapSyms.begin(), MapSyms.end(),
+                    [=](const Defined *A, const Defined *B) {
+                      return (IsCodeMapSymbol(A) && IsCodeMapSymbol(B)) ||
+                             (IsDataMapSymbol(A) && IsDataMapSymbol(B));
+                    }),
+        MapSyms.end());
+  }
+  return SectionMap;
+}
+
+static void scanInputSectionDescription(std::vector<const Defined *> &MapSyms,
+                                        InputSection *IS) {
+  // Use SectionMap to make sure we only scan code and not inline data.
+  // We have already sorted MapSyms in ascending order and removed
+  // consecutive mapping symbols of the same type. Our range of
+  // executable instructions to scan is therefore [CodeSym->Value,
+  // DataSym->Value) or [CodeSym->Value, section size).
+  auto CodeSym = llvm::find_if(MapSyms, [&](const Defined *MS) {
+    return MS->getName().startswith("$x");
+  });
+
+  while (CodeSym != MapSyms.end()) {
+    auto DataSym = std::next(CodeSym);
+    uint64_t Off = (*CodeSym)->Value;
+    uint64_t Limit =
+        (DataSym == MapSyms.end()) ? IS->Data.size() : (*DataSym)->Value;
+
+    while (Off < Limit) {
+      uint64_t StartAddr = IS->getParent()->Addr + IS->OutSecOff + Off;
+      if (scanCortexA53Errata843419(IS, Off, Limit))
+        report843419Fix(StartAddr);
+    }
+    if (DataSym == MapSyms.end())
+      break;
+    CodeSym = std::next(DataSym);
+  }
+}
+
+// Scan all the executable code in an AArch64 link to detect the Cortex-A53
+// erratum 843419.
+// FIXME: The current implementation only scans for the erratum sequence, it
+// does not attempt to fix it.
+void lld::elf::reportA53Errata843419Fixes() {
+  std::map<InputSection *, std::vector<const Defined *>> SectionMap =
+      makeAArch64SectionMap();
+
+  for (OutputSection *OS : OutputSections) {
+    if (!(OS->Flags & SHF_ALLOC) || !(OS->Flags & SHF_EXECINSTR))
+      continue;
+    for (BaseCommand *BC : OS->SectionCommands)
+      if (auto *ISD = dyn_cast<InputSectionDescription>(BC)) {
+        for (InputSection *IS : ISD->Sections) {
+          //  LLD doesn't use the erratum sequence in SyntheticSections.
+          if (isa<SyntheticSection>(IS))
+            continue;
+          scanInputSectionDescription(SectionMap[IS], IS);
+        }
+      }
+  }
+}

Added: lld/trunk/ELF/AArch64ErrataFix.h
URL: http://llvm.org/viewvc/llvm-project/lld/trunk/ELF/AArch64ErrataFix.h?rev=319781&view=auto
==============================================================================
--- lld/trunk/ELF/AArch64ErrataFix.h (added)
+++ lld/trunk/ELF/AArch64ErrataFix.h Tue Dec  5 08:04:45 2017
@@ -0,0 +1,24 @@
+//===- AArch64ErrataFix.h ---------------------------------------*- C++ -*-===//
+//
+//                             The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLD_ELF_AARCH64ERRATAFIX_H
+#define LLD_ELF_AARCH64ERRATAFIX_H
+
+#include "lld/Common/LLVM.h"
+
+namespace lld {
+namespace elf {
+
+class OutputSection;
+void reportA53Errata843419Fixes();
+
+} // namespace elf
+} // namespace lld
+
+#endif




More information about the llvm-commits mailing list