[llvm] r296418 - Add MIR-level outlining pass

Matthias Braun via llvm-commits llvm-commits at lists.llvm.org
Mon Feb 27 16:33:32 PST 2017


Author: matze
Date: Mon Feb 27 18:33:32 2017
New Revision: 296418

URL: http://llvm.org/viewvc/llvm-project?rev=296418&view=rev
Log:
Add MIR-level outlining pass

This is a patch for the outliner described in the RFC at:
http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html

The outliner is a code-size reduction pass which works by finding
repeated sequences of instructions in a program, and replacing them with
calls to functions. This is useful to people working in low-memory
environments, where sacrificing performance for space is acceptable.

This adds an interprocedural outliner directly before printing assembly.
For reference on how this would work, this patch also includes X86
target hooks and an X86 test.

The outliner is run like so:

clang -mno-red-zone -mllvm -enable-machine-outliner file.c

Patch by Jessica Paquette<jpaquette at apple.com>!

rdar://29166825

Differential Revision: https://reviews.llvm.org/D26872

Added:
    llvm/trunk/lib/CodeGen/MachineOutliner.cpp
    llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
    llvm/trunk/test/CodeGen/X86/machine-outliner.ll
Modified:
    llvm/trunk/include/llvm/CodeGen/Passes.h
    llvm/trunk/include/llvm/InitializePasses.h
    llvm/trunk/include/llvm/Target/TargetInstrInfo.h
    llvm/trunk/lib/CodeGen/CMakeLists.txt
    llvm/trunk/lib/CodeGen/CodeGen.cpp
    llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
    llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
    llvm/trunk/lib/Target/X86/X86InstrInfo.h

Modified: llvm/trunk/include/llvm/CodeGen/Passes.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/CodeGen/Passes.h?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/include/llvm/CodeGen/Passes.h (original)
+++ llvm/trunk/include/llvm/CodeGen/Passes.h Mon Feb 27 18:33:32 2017
@@ -402,6 +402,10 @@ namespace llvm {
 
   /// This pass frees the memory occupied by the MachineFunction.
   FunctionPass *createFreeMachineFunctionPass();
+
+  /// This pass performs outlining on machine instructions directly before
+  /// printing assembly.
+  ModulePass *createMachineOutlinerPass();
 } // End llvm namespace
 
 /// Target machine pass initializer for passes with dependencies. Use with

Modified: llvm/trunk/include/llvm/InitializePasses.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/InitializePasses.h?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/include/llvm/InitializePasses.h (original)
+++ llvm/trunk/include/llvm/InitializePasses.h Mon Feb 27 18:33:32 2017
@@ -236,6 +236,7 @@ void initializeMachineLICMPass(PassRegis
 void initializeMachineLoopInfoPass(PassRegistry&);
 void initializeMachineModuleInfoPass(PassRegistry&);
 void initializeMachineOptimizationRemarkEmitterPassPass(PassRegistry&);
+void initializeMachineOutlinerPass(PassRegistry&);
 void initializeMachinePipelinerPass(PassRegistry&);
 void initializeMachinePostDominatorTreePass(PassRegistry&);
 void initializeMachineRegionInfoPassPass(PassRegistry&);

Modified: llvm/trunk/include/llvm/Target/TargetInstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Target/TargetInstrInfo.h?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Target/TargetInstrInfo.h (original)
+++ llvm/trunk/include/llvm/Target/TargetInstrInfo.h Mon Feb 27 18:33:32 2017
@@ -1508,6 +1508,63 @@ public:
     return false;
   }
 
+  /// \brief Return how many instructions would be saved by outlining a
+  /// sequence containing \p SequenceSize instructions that appears
+  /// \p Occurrences times in a module.
+  virtual unsigned getOutliningBenefit(size_t SequenceSize, size_t Occurrences)
+  const {
+    llvm_unreachable(
+        "Target didn't implement TargetInstrInfo::getOutliningBenefit!");
+  }
+
+  /// Represents how an instruction should be mapped by the outliner.
+  /// \p Legal instructions are those which are safe to outline.
+  /// \p Illegal instructions are those which cannot be outlined.
+  /// \p Invisible instructions are instructions which can be outlined, but
+  /// shouldn't actually impact the outlining result.
+  enum MachineOutlinerInstrType {Legal, Illegal, Invisible};
+
+  /// Return true if the instruction is legal to outline.
+  virtual MachineOutlinerInstrType getOutliningType(MachineInstr &MI) const {
+    llvm_unreachable(
+        "Target didn't implement TargetInstrInfo::getOutliningType!");
+  }
+
+  /// Insert a custom epilogue for outlined functions.
+  /// This may be empty, in which case no epilogue or return statement will be
+  /// emitted.
+  virtual void insertOutlinerEpilogue(MachineBasicBlock &MBB,
+                                      MachineFunction &MF) const {
+    llvm_unreachable(
+        "Target didn't implement TargetInstrInfo::insertOutlinerEpilogue!");
+  }
+
+  /// Insert a call to an outlined function into the program.
+  /// Returns an iterator to the spot where we inserted the call. This must be
+  /// implemented by the target.
+  virtual MachineBasicBlock::iterator
+  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
+                     MachineBasicBlock::iterator &It, MachineFunction &MF)
+  const {
+    llvm_unreachable(
+        "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
+  }
+
+  /// Insert a custom prologue for outlined functions.
+  /// This may be empty, in which case no prologue will be emitted.
+  virtual void insertOutlinerPrologue(MachineBasicBlock &MBB,
+                                      MachineFunction &MF) const {
+    llvm_unreachable(
+        "Target didn't implement TargetInstrInfo::insertOutlinerPrologue!");
+  }
+
+  /// Return true if the function can safely be outlined from.
+  /// By default, this means that the function has no red zone.
+  virtual bool isFunctionSafeToOutlineFrom(MachineFunction &F) const {
+    llvm_unreachable("Target didn't implement "
+                     "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
+  }
+
 private:
   unsigned CallFrameSetupOpcode, CallFrameDestroyOpcode;
   unsigned CatchRetOpcode;

Modified: llvm/trunk/lib/CodeGen/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CMakeLists.txt?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/CMakeLists.txt (original)
+++ llvm/trunk/lib/CodeGen/CMakeLists.txt Mon Feb 27 18:33:32 2017
@@ -74,6 +74,7 @@ add_llvm_library(LLVMCodeGen
   MachineModuleInfo.cpp
   MachineModuleInfoImpls.cpp
   MachineOptimizationRemarkEmitter.cpp
+  MachineOutliner.cpp
   MachinePassRegistry.cpp
   MachinePipeliner.cpp
   MachinePostDominators.cpp

Modified: llvm/trunk/lib/CodeGen/CodeGen.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/CodeGen.cpp?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/CodeGen.cpp (original)
+++ llvm/trunk/lib/CodeGen/CodeGen.cpp Mon Feb 27 18:33:32 2017
@@ -57,6 +57,7 @@ void llvm::initializeCodeGen(PassRegistr
   initializeMachineLoopInfoPass(Registry);
   initializeMachineModuleInfoPass(Registry);
   initializeMachineOptimizationRemarkEmitterPassPass(Registry);
+  initializeMachineOutlinerPass(Registry);
   initializeMachinePipelinerPass(Registry);
   initializeMachinePostDominatorTreePass(Registry);
   initializeMachineRegionInfoPassPass(Registry);

Added: llvm/trunk/lib/CodeGen/MachineOutliner.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/MachineOutliner.cpp?rev=296418&view=auto
==============================================================================
--- llvm/trunk/lib/CodeGen/MachineOutliner.cpp (added)
+++ llvm/trunk/lib/CodeGen/MachineOutliner.cpp Mon Feb 27 18:33:32 2017
@@ -0,0 +1,1399 @@
+//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// Replaces repeated sequences of instructions with function calls.
+///
+/// This works by placing every instruction from every basic block in a
+/// suffix tree, and repeatedly querying that tree for repeated sequences of
+/// instructions. If a sequence of instructions appears often, then it ought
+/// to be beneficial to pull out into a function.
+///
+/// This was originally presented at the 2016 LLVM Developers' Meeting in the
+/// talk "Reducing Code Size Using Outlining". For a high-level overview of
+/// how this pass works, the talk is available on YouTube at
+///
+/// https://www.youtube.com/watch?v=yorld-WSOeU
+///
+/// The slides for the talk are available at
+///
+/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
+///
+/// The talk provides an overview of how the outliner finds candidates and
+/// ultimately outlines them. It describes how the main data structure for this
+/// pass, the suffix tree, is queried and purged for candidates. It also gives
+/// a simplified suffix tree construction algorithm for suffix trees based off
+/// of the algorithm actually used here, Ukkonen's algorithm.
+///
+/// For the original RFC for this pass, please see
+///
+/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
+///
+/// For more information on the suffix tree data structure, please see
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+///
+//===----------------------------------------------------------------------===//
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetSubtargetInfo.h"
+#include <functional>
+#include <map>
+#include <sstream>
+#include <tuple>
+#include <vector>
+
+#define DEBUG_TYPE "machine-outliner"
+
+using namespace llvm;
+
+STATISTIC(NumOutlined, "Number of candidates outlined");
+STATISTIC(FunctionsCreated, "Number of functions created");
+
+namespace {
+
+/// Represents an undefined index in the suffix tree.
+const size_t EmptyIdx = -1;
+
+/// A node in a suffix tree which represents a substring or suffix.
+///
+/// Each node has either no children or at least two children, with the root
+/// being a exception in the empty tree.
+///
+/// Children are represented as a map between unsigned integers and nodes. If
+/// a node N has a child M on unsigned integer k, then the mapping represented
+/// by N is a proper prefix of the mapping represented by M. Note that this,
+/// although similar to a trie is somewhat different: each node stores a full
+/// substring of the full mapping rather than a single character state.
+///
+/// Each internal node contains a pointer to the internal node representing
+/// the same string, but with the first character chopped off. This is stored
+/// in \p Link. Each leaf node stores the start index of its respective
+/// suffix in \p SuffixIdx.
+struct SuffixTreeNode {
+
+  /// The children of this node.
+  ///
+  /// A child existing on an unsigned integer implies that from the mapping
+  /// represented by the current node, there is a way to reach another
+  /// mapping by tacking that character on the end of the current string.
+  DenseMap<unsigned, SuffixTreeNode *> Children;
+
+  /// A flag set to false if the node has been pruned from the tree.
+  bool IsInTree = true;
+
+  /// The start index of this node's substring in the main string.
+  size_t StartIdx = EmptyIdx;
+
+  /// The end index of this node's substring in the main string.
+  ///
+  /// Every leaf node must have its \p EndIdx incremented at the end of every
+  /// step in the construction algorithm. To avoid having to update O(N)
+  /// nodes individually at the end of every step, the end index is stored
+  /// as a pointer.
+  size_t *EndIdx = nullptr;
+
+  /// For leaves, the start index of the suffix represented by this node.
+  ///
+  /// For all other nodes, this is ignored.
+  size_t SuffixIdx = EmptyIdx;
+
+  /// \brief For internal nodes, a pointer to the internal node representing
+  /// the same sequence with the first character chopped off.
+  ///
+  /// This has two major purposes in the suffix tree. The first is as a
+  /// shortcut in Ukkonen's construction algorithm. One of the things that
+  /// Ukkonen's algorithm does to achieve linear-time construction is
+  /// keep track of which node the next insert should be at. This makes each
+  /// insert O(1), and there are a total of O(N) inserts. The suffix link
+  /// helps with inserting children of internal nodes.
+  ///
+  /// Say we add a child to an internal node with associated mapping S. The 
+  /// next insertion must be at the node representing S - its first character.
+  /// This is given by the way that we iteratively build the tree in Ukkonen's
+  /// algorithm. The main idea is to look at the suffixes of each prefix in the
+  /// string, starting with the longest suffix of the prefix, and ending with
+  /// the shortest. Therefore, if we keep pointers between such nodes, we can
+  /// move to the next insertion point in O(1) time. If we don't, then we'd
+  /// have to query from the root, which takes O(N) time. This would make the
+  /// construction algorithm O(N^2) rather than O(N).
+  ///
+  /// The suffix link is also used during the tree pruning process to let us
+  /// quickly throw out a bunch of potential overlaps. Say we have a sequence
+  /// S we want to outline. Then each of its suffixes contribute to at least
+  /// one overlapping case. Therefore, we can follow the suffix links
+  /// starting at the node associated with S to the root and "delete" those
+  /// nodes, save for the root. For each candidate, this removes
+  /// O(|candidate|) overlaps from the search space. We don't actually
+  /// completely invalidate these nodes though; doing that is far too
+  /// aggressive. Consider the following pathological string:
+  ///
+  /// 1 2 3 1 2 3 2 3 2 3 2 3 2 3 2 3 2 3
+  ///
+  /// If we, for the sake of example, outlined 1 2 3, then we would throw
+  /// out all instances of 2 3. This isn't desirable. To get around this,
+  /// when we visit a link node, we decrement its occurrence count by the
+  /// number of sequences we outlined in the current step. In the pathological
+  /// example, the 2 3 node would have an occurrence count of 8, while the
+  /// 1 2 3 node would have an occurrence count of 2. Thus, the 2 3 node
+  /// would survive to the next round allowing us to outline the extra
+  /// instances of 2 3.
+  SuffixTreeNode *Link = nullptr;
+
+  /// The parent of this node. Every node except for the root has a parent.
+  SuffixTreeNode *Parent = nullptr;
+
+  /// The number of times this node's string appears in the tree.
+  ///
+  /// This is equal to the number of leaf children of the string. It represents
+  /// the number of suffixes that the node's string is a prefix of.
+  size_t OccurrenceCount = 0;
+
+  /// Returns true if this node is a leaf.
+  bool isLeaf() const { return SuffixIdx != EmptyIdx; }
+
+  /// Returns true if this node is the root of its owning \p SuffixTree.
+  bool isRoot() const { return StartIdx == EmptyIdx; }
+
+  /// Return the number of elements in the substring associated with this node.
+  size_t size() const {
+
+    // Is it the root? If so, it's the empty string so return 0.
+    if (isRoot())
+      return 0;
+
+    assert(*EndIdx != EmptyIdx && "EndIdx is undefined!");
+
+    // Size = the number of elements in the string.
+    // For example, [0 1 2 3] has length 4, not 3. 3-0 = 3, so we have 3-0+1.
+    return *EndIdx - StartIdx + 1;
+  }
+
+  SuffixTreeNode(size_t StartIdx, size_t *EndIdx, SuffixTreeNode *Link,
+                 SuffixTreeNode *Parent)
+      : StartIdx(StartIdx), EndIdx(EndIdx), Link(Link), Parent(Parent) {}
+
+  SuffixTreeNode() {}
+};
+
+/// A data structure for fast substring queries.
+///
+/// Suffix trees represent the suffixes of their input strings in their leaves.
+/// A suffix tree is a type of compressed trie structure where each node
+/// represents an entire substring rather than a single character. Each leaf
+/// of the tree is a suffix.
+///
+/// A suffix tree can be seen as a type of state machine where each state is a
+/// substring of the full string. The tree is structured so that, for a string
+/// of length N, there are exactly N leaves in the tree. This structure allows
+/// us to quickly find repeated substrings of the input string.
+///
+/// In this implementation, a "string" is a vector of unsigned integers.
+/// These integers may result from hashing some data type. A suffix tree can
+/// contain 1 or many strings, which can then be queried as one large string.
+///
+/// The suffix tree is implemented using Ukkonen's algorithm for linear-time
+/// suffix tree construction. Ukkonen's algorithm is explained in more detail
+/// in the paper by Esko Ukkonen "On-line construction of suffix trees. The
+/// paper is available at
+///
+/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
+class SuffixTree {
+private:
+  /// Each element is an integer representing an instruction in the module.
+  ArrayRef<unsigned> Str;
+
+  /// Maintains each node in the tree.
+  BumpPtrAllocator NodeAllocator;
+
+  /// The root of the suffix tree.
+  ///
+  /// The root represents the empty string. It is maintained by the
+  /// \p NodeAllocator like every other node in the tree.
+  SuffixTreeNode *Root = nullptr;
+
+  /// Stores each leaf in the tree for better pruning.
+  std::vector<SuffixTreeNode *> LeafVector;
+
+  /// Maintains the end indices of the internal nodes in the tree.
+  ///
+  /// Each internal node is guaranteed to never have its end index change
+  /// during the construction algorithm; however, leaves must be updated at
+  /// every step. Therefore, we need to store leaf end indices by reference
+  /// to avoid updating O(N) leaves at every step of construction. Thus,
+  /// every internal node must be allocated its own end index.
+  BumpPtrAllocator InternalEndIdxAllocator;
+
+  /// The end index of each leaf in the tree.
+  size_t LeafEndIdx = -1;
+
+  /// \brief Helper struct which keeps track of the next insertion point in
+  /// Ukkonen's algorithm.
+  struct ActiveState {
+    /// The next node to insert at.
+    SuffixTreeNode *Node;
+
+    /// The index of the first character in the substring currently being added.
+    size_t Idx = EmptyIdx;
+
+    /// The length of the substring we have to add at the current step.
+    size_t Len = 0;
+  };
+
+  /// \brief The point the next insertion will take place at in the
+  /// construction algorithm.
+  ActiveState Active;
+
+  /// Allocate a leaf node and add it to the tree.
+  ///
+  /// \param Parent The parent of this node.
+  /// \param StartIdx The start index of this node's associated string.
+  /// \param Edge The label on the edge leaving \p Parent to this node.
+  ///
+  /// \returns A pointer to the allocated leaf node.
+  SuffixTreeNode *insertLeaf(SuffixTreeNode &Parent, size_t StartIdx,
+                             unsigned Edge) {
+
+    assert(StartIdx <= LeafEndIdx && "String can't start after it ends!");
+
+    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx, 
+                                                           &LeafEndIdx,
+                                                           nullptr,
+                                                           &Parent);
+    Parent.Children[Edge] = N;
+
+    return N;
+  }
+
+  /// Allocate an internal node and add it to the tree.
+  ///
+  /// \param Parent The parent of this node. Only null when allocating the root.
+  /// \param StartIdx The start index of this node's associated string.
+  /// \param EndIdx The end index of this node's associated string.
+  /// \param Edge The label on the edge leaving \p Parent to this node.
+  ///
+  /// \returns A pointer to the allocated internal node.
+  SuffixTreeNode *insertInternalNode(SuffixTreeNode *Parent, size_t StartIdx,
+                                     size_t EndIdx, unsigned Edge) {
+
+    assert(StartIdx <= EndIdx && "String can't start after it ends!");
+    assert(!(!Parent && StartIdx != EmptyIdx) &&
+    "Non-root internal nodes must have parents!");
+
+    size_t *E = new (InternalEndIdxAllocator) size_t(EndIdx);
+    SuffixTreeNode *N = new (NodeAllocator) SuffixTreeNode(StartIdx,
+                                                           E,
+                                                           Root,
+                                                           Parent);
+    if (Parent)
+      Parent->Children[Edge] = N;
+
+    return N;
+  }
+
+  /// \brief Set the suffix indices of the leaves to the start indices of their
+  /// respective suffixes. Also stores each leaf in \p LeafVector at its
+  /// respective suffix index.
+  ///
+  /// \param[in] CurrNode The node currently being visited.
+  /// \param CurrIdx The current index of the string being visited.
+  void setSuffixIndices(SuffixTreeNode &CurrNode, size_t CurrIdx) {
+
+    bool IsLeaf = CurrNode.Children.size() == 0 && !CurrNode.isRoot();
+
+    // Traverse the tree depth-first.
+    for (auto &ChildPair : CurrNode.Children) {
+      assert(ChildPair.second && "Node had a null child!");
+      setSuffixIndices(*ChildPair.second,
+                       CurrIdx + ChildPair.second->size());
+    }
+
+    // Is this node a leaf?
+    if (IsLeaf) {
+      // If yes, give it a suffix index and bump its parent's occurrence count.
+      CurrNode.SuffixIdx = Str.size() - CurrIdx;
+      assert(CurrNode.Parent && "CurrNode had no parent!");
+      CurrNode.Parent->OccurrenceCount++;
+
+      // Store the leaf in the leaf vector for pruning later.
+      LeafVector[CurrNode.SuffixIdx] = &CurrNode;
+    }
+  }
+
+  /// \brief Construct the suffix tree for the prefix of the input ending at
+  /// \p EndIdx.
+  ///
+  /// Used to construct the full suffix tree iteratively. At the end of each
+  /// step, the constructed suffix tree is either a valid suffix tree, or a
+  /// suffix tree with implicit suffixes. At the end of the final step, the
+  /// suffix tree is a valid tree.
+  ///
+  /// \param EndIdx The end index of the current prefix in the main string.
+  /// \param SuffixesToAdd The number of suffixes that must be added
+  /// to complete the suffix tree at the current phase.
+  ///
+  /// \returns The number of suffixes that have not been added at the end of
+  /// this step.
+  unsigned extend(size_t EndIdx, size_t SuffixesToAdd) {
+    SuffixTreeNode *NeedsLink = nullptr;
+
+    while (SuffixesToAdd > 0) {
+    
+      // Are we waiting to add anything other than just the last character?
+      if (Active.Len == 0) {
+        // If not, then say the active index is the end index.
+        Active.Idx = EndIdx;
+      }
+
+      assert(Active.Idx <= EndIdx && "Start index can't be after end index!");
+
+      // The first character in the current substring we're looking at.
+      unsigned FirstChar = Str[Active.Idx];
+
+      // Have we inserted anything starting with FirstChar at the current node?
+      if (Active.Node->Children.count(FirstChar) == 0) {
+        // If not, then we can just insert a leaf and move too the next step.
+        insertLeaf(*Active.Node, EndIdx, FirstChar);
+
+        // The active node is an internal node, and we visited it, so it must
+        // need a link if it doesn't have one.
+        if (NeedsLink) {
+          NeedsLink->Link = Active.Node;
+          NeedsLink = nullptr;
+        }
+      } else {
+        // There's a match with FirstChar, so look for the point in the tree to
+        // insert a new node.
+        SuffixTreeNode *NextNode = Active.Node->Children[FirstChar];
+
+        size_t SubstringLen = NextNode->size();
+
+        // Is the current suffix we're trying to insert longer than the size of
+        // the child we want to move to?
+        if (Active.Len >= SubstringLen) {
+          // If yes, then consume the characters we've seen and move to the next
+          // node.
+          Active.Idx += SubstringLen;
+          Active.Len -= SubstringLen;
+          Active.Node = NextNode;
+          continue;
+        }
+
+        // Otherwise, the suffix we're trying to insert must be contained in the
+        // next node we want to move to.
+        unsigned LastChar = Str[EndIdx];
+
+        // Is the string we're trying to insert a substring of the next node?
+        if (Str[NextNode->StartIdx + Active.Len] == LastChar) {
+          // If yes, then we're done for this step. Remember our insertion point
+          // and move to the next end index. At this point, we have an implicit
+          // suffix tree.
+          if (NeedsLink && !Active.Node->isRoot()) {
+            NeedsLink->Link = Active.Node;
+            NeedsLink = nullptr;
+          }
+
+          Active.Len++;
+          break;
+        }
+
+        // The string we're trying to insert isn't a substring of the next node,
+        // but matches up to a point. Split the node.
+        //
+        // For example, say we ended our search at a node n and we're trying to
+        // insert ABD. Then we'll create a new node s for AB, reduce n to just
+        // representing C, and insert a new leaf node l to represent d. This
+        // allows us to ensure that if n was a leaf, it remains a leaf.
+        //
+        //   | ABC  ---split--->  | AB
+        //   n                    s
+        //                     C / \ D
+        //                      n   l
+
+        // The node s from the diagram
+        SuffixTreeNode *SplitNode =
+            insertInternalNode(Active.Node,
+                               NextNode->StartIdx,
+                               NextNode->StartIdx + Active.Len - 1,
+                               FirstChar);
+
+        // Insert the new node representing the new substring into the tree as
+        // a child of the split node. This is the node l from the diagram.
+        insertLeaf(*SplitNode, EndIdx, LastChar);
+
+        // Make the old node a child of the split node and update its start
+        // index. This is the node n from the diagram.
+        NextNode->StartIdx += Active.Len;
+        NextNode->Parent = SplitNode;
+        SplitNode->Children[Str[NextNode->StartIdx]] = NextNode;
+
+        // SplitNode is an internal node, update the suffix link.
+        if (NeedsLink)
+          NeedsLink->Link = SplitNode;
+
+        NeedsLink = SplitNode;
+      }
+
+      // We've added something new to the tree, so there's one less suffix to
+      // add.
+      SuffixesToAdd--;
+
+      if (Active.Node->isRoot()) {
+        if (Active.Len > 0) {
+          Active.Len--;
+          Active.Idx = EndIdx - SuffixesToAdd + 1;
+        }
+      } else {
+        // Start the next phase at the next smallest suffix.
+        Active.Node = Active.Node->Link;
+      }
+    }
+
+    return SuffixesToAdd;
+  }
+
+  /// \brief Return the start index and length of a string which maximizes a
+  /// benefit function by traversing the tree depth-first.
+  ///
+  /// Helper function for \p bestRepeatedSubstring.
+  ///
+  /// \param CurrNode The node currently being visited.
+  /// \param CurrLen Length of the current string.
+  /// \param[out] BestLen Length of the most beneficial substring.
+  /// \param[out] MaxBenefit Benefit of the most beneficial substring.
+  /// \param[out] BestStartIdx Start index of the most beneficial substring.
+  /// \param BenefitFn The function the query should return a maximum string
+  /// for.
+  void findBest(SuffixTreeNode &CurrNode, size_t CurrLen, size_t &BestLen,
+                size_t &MaxBenefit, size_t &BestStartIdx,
+                const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
+                &BenefitFn) {
+
+    if (!CurrNode.IsInTree)
+      return;
+
+    // Can we traverse further down the tree?
+    if (!CurrNode.isLeaf()) {
+      // If yes, continue the traversal.
+      for (auto &ChildPair : CurrNode.Children) {
+        if (ChildPair.second && ChildPair.second->IsInTree)
+          findBest(*ChildPair.second, CurrLen + ChildPair.second->size(),
+                   BestLen, MaxBenefit, BestStartIdx, BenefitFn);
+      }
+    } else {
+      // We hit a leaf.
+      size_t StringLen = CurrLen - CurrNode.size();
+      unsigned Benefit = BenefitFn(CurrNode, StringLen);
+
+      // Did we do better than in the last step?
+      if (Benefit <= MaxBenefit)
+        return;
+
+      // We did better, so update the best string.
+      MaxBenefit = Benefit;
+      BestStartIdx = CurrNode.SuffixIdx;
+      BestLen = StringLen;
+    }
+  }
+
+public:
+
+  /// \brief Return a substring of the tree with maximum benefit if such a
+  /// substring exists.
+  ///
+  /// Clears the input vector and fills it with a maximum substring or empty.
+  ///
+  /// \param[in,out] Best The most beneficial substring in the tree. Empty
+  /// if it does not exist.
+  /// \param BenefitFn The function the query should return a maximum string
+  /// for.
+  void bestRepeatedSubstring(std::vector<unsigned> &Best,
+                 const std::function<unsigned(SuffixTreeNode &, size_t CurrLen)>
+                 &BenefitFn) {
+    Best.clear();
+    size_t Length = 0;   // Becomes the length of the best substring.
+    size_t Benefit = 0;  // Becomes the benefit of the best substring.
+    size_t StartIdx = 0; // Becomes the start index of the best substring.
+    findBest(*Root, 0, Length, Benefit, StartIdx, BenefitFn);
+
+    for (size_t Idx = 0; Idx < Length; Idx++)
+      Best.push_back(Str[Idx + StartIdx]);
+  }
+
+  /// Perform a depth-first search for \p QueryString on the suffix tree.
+  ///
+  /// \param QueryString The string to search for.
+  /// \param CurrIdx The current index in \p QueryString that is being matched
+  /// against.
+  /// \param CurrNode The suffix tree node being searched in.
+  ///
+  /// \returns A \p SuffixTreeNode that \p QueryString appears in if such a
+  /// node exists, and \p nullptr otherwise.
+  SuffixTreeNode *findString(const std::vector<unsigned> &QueryString,
+                             size_t &CurrIdx, SuffixTreeNode *CurrNode) {
+
+    // The search ended at a nonexistent or pruned node. Quit.
+    if (!CurrNode || !CurrNode->IsInTree)
+      return nullptr;
+
+    unsigned Edge = QueryString[CurrIdx]; // The edge we want to move on.
+    SuffixTreeNode *NextNode = CurrNode->Children[Edge]; // Next node in query.
+
+    if (CurrNode->isRoot()) {
+      // If we're at the root we have to check if there's a child, and move to
+      // that child. Don't consume the character since \p Root represents the
+      // empty string.
+      if (NextNode && NextNode->IsInTree)
+        return findString(QueryString, CurrIdx, NextNode);
+      return nullptr;
+    }
+
+    size_t StrIdx = CurrNode->StartIdx;
+    size_t MaxIdx = QueryString.size();
+    bool ContinueSearching = false;
+
+    // Match as far as possible into the string. If there's a mismatch, quit.
+    for (; CurrIdx < MaxIdx; CurrIdx++, StrIdx++) {
+      Edge = QueryString[CurrIdx];
+
+      // We matched perfectly, but still have a remainder to search.
+      if (StrIdx > *(CurrNode->EndIdx)) {
+        ContinueSearching = true;
+        break;
+      }
+
+      if (Edge != Str[StrIdx])
+        return nullptr;
+    }
+
+    NextNode = CurrNode->Children[Edge];
+
+    // Move to the node which matches what we're looking for and continue
+    // searching.
+    if (ContinueSearching)
+      return findString(QueryString, CurrIdx, NextNode);
+
+    // We matched perfectly so we're done.
+    return CurrNode;
+  }
+
+  /// \brief Remove a node from a tree and all nodes representing proper
+  /// suffixes of that node's string.
+  ///
+  /// This is used in the outlining algorithm to reduce the number of
+  /// overlapping candidates
+  ///
+  /// \param N The suffix tree node to start pruning from.
+  /// \param Len The length of the string to be pruned.
+  ///
+  /// \returns True if this candidate didn't overlap with a previously chosen
+  /// candidate.
+  bool prune(SuffixTreeNode *N, size_t Len) {
+
+    bool NoOverlap = true;
+    std::vector<unsigned> IndicesToPrune;
+
+    // Look at each of N's children.
+    for (auto &ChildPair : N->Children) {
+      SuffixTreeNode *M = ChildPair.second;
+
+      // Is this a leaf child?
+      if (M && M->IsInTree && M->isLeaf()) {
+        // Save each leaf child's suffix indices and remove them from the tree.
+        IndicesToPrune.push_back(M->SuffixIdx);
+        M->IsInTree = false;
+      }
+    }
+
+    // Remove each suffix we have to prune from the tree. Each of these will be
+    // I + some offset for I in IndicesToPrune and some offset < Len.
+    unsigned Offset = 1;
+    for (unsigned CurrentSuffix = 1; CurrentSuffix < Len; CurrentSuffix++) {
+      for (unsigned I : IndicesToPrune) {
+
+        unsigned PruneIdx = I + Offset;
+
+        // Is this index actually in the string?
+        if (PruneIdx < LeafVector.size()) {
+          // If yes, we have to try and prune it.
+          // Was the current leaf already pruned by another candidate?
+          if (LeafVector[PruneIdx]->IsInTree) {
+            // If not, prune it.
+            LeafVector[PruneIdx]->IsInTree = false;
+          } else {
+            // If yes, signify that we've found an overlap, but keep pruning.
+            NoOverlap = false;
+          }
+
+          // Update the parent of the current leaf's occurrence count.
+          SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
+
+          // Is the parent still in the tree?
+          if (Parent->OccurrenceCount > 0) {
+            Parent->OccurrenceCount--;
+            Parent->IsInTree = (Parent->OccurrenceCount > 1);
+          }
+        }
+      }
+
+      // Move to the next character in the string.
+      Offset++;
+    }
+
+    // We know we can never outline anything which starts one index back from
+    // the indices we want to outline. This is because our minimum outlining
+    // length is always 2.
+    for (unsigned I : IndicesToPrune) {
+      if (I > 0) {
+
+        unsigned PruneIdx = I-1;
+        SuffixTreeNode *Parent = LeafVector[PruneIdx]->Parent;
+
+        // Was the leaf one index back from I already pruned?
+        if (LeafVector[PruneIdx]->IsInTree) {
+          // If not, prune it.
+          LeafVector[PruneIdx]->IsInTree = false;
+        } else {
+          // If yes, signify that we've found an overlap, but keep pruning.
+          NoOverlap = false;
+        }
+
+        // Update the parent of the current leaf's occurrence count.
+        if (Parent->OccurrenceCount > 0) {
+          Parent->OccurrenceCount--;
+          Parent->IsInTree = (Parent->OccurrenceCount > 1);
+        }
+      }
+    }
+
+    // Finally, remove N from the tree and set its occurrence count to 0.
+    N->IsInTree = false;
+    N->OccurrenceCount = 0;
+
+    return NoOverlap;
+  }
+
+  /// \brief Find each occurrence of of a string in \p QueryString and prune
+  /// their nodes.
+  ///
+  /// \param QueryString The string to search for.
+  /// \param[out] Occurrences The start indices of each occurrence.
+  ///
+  /// \returns Whether or not the occurrence overlaps with a previous candidate.
+  bool findOccurrencesAndPrune(const std::vector<unsigned> &QueryString,
+                               std::vector<size_t> &Occurrences) {
+    size_t Dummy = 0;
+    SuffixTreeNode *N = findString(QueryString, Dummy, Root);
+
+    if (!N || !N->IsInTree)
+      return false;
+
+    // If this is an internal node, occurrences are the number of leaf children
+    // of the node.
+    for (auto &ChildPair : N->Children) {
+      SuffixTreeNode *M = ChildPair.second;
+
+      // Is it a leaf? If so, we have an occurrence.
+      if (M && M->IsInTree && M->isLeaf())
+        Occurrences.push_back(M->SuffixIdx);
+    }
+
+    // If we're in a leaf, then this node is the only occurrence.
+    if (N->isLeaf())
+      Occurrences.push_back(N->SuffixIdx);
+
+    return prune(N, QueryString.size());
+  }
+
+  /// Construct a suffix tree from a sequence of unsigned integers.
+  ///
+  /// \param Str The string to construct the suffix tree for.
+  SuffixTree(const std::vector<unsigned> &Str) : Str(Str) {
+    Root = insertInternalNode(nullptr, EmptyIdx, EmptyIdx, 0);
+    Root->IsInTree = true;
+    Active.Node = Root;
+    LeafVector.reserve(Str.size());
+
+    // Keep track of the number of suffixes we have to add of the current
+    // prefix.
+    size_t SuffixesToAdd = 0;
+    Active.Node = Root;
+
+    // Construct the suffix tree iteratively on each prefix of the string.
+    // PfxEndIdx is the end index of the current prefix.
+    // End is one past the last element in the string.
+    for (size_t PfxEndIdx = 0, End = Str.size(); PfxEndIdx < End; PfxEndIdx++) {
+      SuffixesToAdd++;
+      LeafEndIdx = PfxEndIdx; // Extend each of the leaves.
+      SuffixesToAdd = extend(PfxEndIdx, SuffixesToAdd);
+    }
+
+    // Set the suffix indices of each leaf.
+    assert(Root && "Root node can't be nullptr!");
+    setSuffixIndices(*Root, 0);
+  }
+};
+
+/// \brief An individual sequence of instructions to be replaced with a call to
+/// an outlined function.
+struct Candidate {
+
+  /// Set to false if the candidate overlapped with another candidate.
+  bool InCandidateList = true;
+
+  /// The start index of this \p Candidate.
+  size_t StartIdx;
+
+  /// The number of instructions in this \p Candidate.
+  size_t Len;
+
+  /// The index of this \p Candidate's \p OutlinedFunction in the list of
+  /// \p OutlinedFunctions.
+  size_t FunctionIdx;
+
+  Candidate(size_t StartIdx, size_t Len, size_t FunctionIdx)
+      : StartIdx(StartIdx), Len(Len), FunctionIdx(FunctionIdx) {}
+
+  Candidate() {}
+
+  /// \brief Used to ensure that \p Candidates are outlined in an order that
+  /// preserves the start and end indices of other \p Candidates.
+  bool operator<(const Candidate &RHS) const { return StartIdx > RHS.StartIdx; }
+};
+
+/// \brief The information necessary to create an outlined function for some
+/// class of candidate.
+struct OutlinedFunction {
+
+  /// The actual outlined function created.
+  /// This is initialized after we go through and create the actual function.
+  MachineFunction *MF = nullptr;
+
+  /// A number assigned to this function which appears at the end of its name.
+  size_t Name;
+
+  /// The number of times that this function has appeared.
+  size_t OccurrenceCount = 0;
+
+  /// \brief The sequence of integers corresponding to the instructions in this
+  /// function.
+  std::vector<unsigned> Sequence;
+
+  /// The number of instructions this function would save.
+  unsigned Benefit = 0;
+
+  OutlinedFunction(size_t Name, size_t OccurrenceCount,
+                   const std::vector<unsigned> &Sequence,
+                   unsigned Benefit)
+      : Name(Name), OccurrenceCount(OccurrenceCount), Sequence(Sequence),
+        Benefit(Benefit)
+        {}
+};
+
+/// \brief Maps \p MachineInstrs to unsigned integers and stores the mappings.
+struct InstructionMapper {
+
+  /// \brief The next available integer to assign to a \p MachineInstr that
+  /// cannot be outlined.
+  ///
+  /// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
+  unsigned IllegalInstrNumber = -3;
+
+  /// \brief The next available integer to assign to a \p MachineInstr that can
+  /// be outlined.
+  unsigned LegalInstrNumber = 0;
+
+  /// Correspondence from \p MachineInstrs to unsigned integers.
+  DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
+      InstructionIntegerMap;
+
+  /// Corresponcence from unsigned integers to \p MachineInstrs.
+  /// Inverse of \p InstructionIntegerMap.
+  DenseMap<unsigned, MachineInstr *> IntegerInstructionMap;
+
+  /// The vector of unsigned integers that the module is mapped to.
+  std::vector<unsigned> UnsignedVec;
+
+  /// \brief Stores the location of the instruction associated with the integer
+  /// at index i in \p UnsignedVec for each index i.
+  std::vector<MachineBasicBlock::iterator> InstrList;
+
+  /// \brief Maps \p *It to a legal integer.
+  ///
+  /// Updates \p InstrList, \p UnsignedVec, \p InstructionIntegerMap,
+  /// \p IntegerInstructionMap, and \p LegalInstrNumber.
+  ///
+  /// \returns The integer that \p *It was mapped to.
+  unsigned mapToLegalUnsigned(MachineBasicBlock::iterator &It) {
+
+    // Get the integer for this instruction or give it the current
+    // LegalInstrNumber.
+    InstrList.push_back(It);
+    MachineInstr &MI = *It;
+    bool WasInserted;
+    DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
+    ResultIt;
+    std::tie(ResultIt, WasInserted) =
+    InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
+    unsigned MINumber = ResultIt->second;
+
+    // There was an insertion.
+    if (WasInserted) {
+      LegalInstrNumber++;
+      IntegerInstructionMap.insert(std::make_pair(MINumber, &MI));
+    }
+
+    UnsignedVec.push_back(MINumber);
+
+    // Make sure we don't overflow or use any integers reserved by the DenseMap.
+    if (LegalInstrNumber >= IllegalInstrNumber)
+      report_fatal_error("Instruction mapping overflow!");
+
+    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey()
+          && "Tried to assign DenseMap tombstone or empty key to instruction.");
+    assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey()
+          && "Tried to assign DenseMap tombstone or empty key to instruction.");
+
+    return MINumber;
+  }
+
+  /// Maps \p *It to an illegal integer.
+  ///
+  /// Updates \p InstrList, \p UnsignedVec, and \p IllegalInstrNumber.
+  ///
+  /// \returns The integer that \p *It was mapped to.
+  unsigned mapToIllegalUnsigned(MachineBasicBlock::iterator &It) {
+    unsigned MINumber = IllegalInstrNumber;
+
+    InstrList.push_back(It);
+    UnsignedVec.push_back(IllegalInstrNumber);
+    IllegalInstrNumber--;
+
+    assert(LegalInstrNumber < IllegalInstrNumber &&
+           "Instruction mapping overflow!");
+
+    assert(IllegalInstrNumber !=
+      DenseMapInfo<unsigned>::getEmptyKey() &&
+      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+    assert(IllegalInstrNumber !=
+      DenseMapInfo<unsigned>::getTombstoneKey() &&
+      "IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
+
+    return MINumber;
+  }
+
+  /// \brief Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
+  /// and appends it to \p UnsignedVec and \p InstrList.
+  ///
+  /// Two instructions are assigned the same integer if they are identical.
+  /// If an instruction is deemed unsafe to outline, then it will be assigned an
+  /// unique integer. The resulting mapping is placed into a suffix tree and
+  /// queried for candidates.
+  ///
+  /// \param MBB The \p MachineBasicBlock to be translated into integers.
+  /// \param TRI \p TargetRegisterInfo for the module.
+  /// \param TII \p TargetInstrInfo for the module.
+  void convertToUnsignedVec(MachineBasicBlock &MBB,
+                            const TargetRegisterInfo &TRI,
+                            const TargetInstrInfo &TII) {
+    for (MachineBasicBlock::iterator It = MBB.begin(), Et = MBB.end(); It != Et;
+         It++) {
+
+      // Keep track of where this instruction is in the module.
+      switch(TII.getOutliningType(*It)) {
+        case TargetInstrInfo::MachineOutlinerInstrType::Illegal:
+          mapToIllegalUnsigned(It);
+          break;
+
+        case TargetInstrInfo::MachineOutlinerInstrType::Legal:
+          mapToLegalUnsigned(It);
+          break;
+
+        case TargetInstrInfo::MachineOutlinerInstrType::Invisible:
+          break;
+      }
+    }
+
+    // After we're done every insertion, uniquely terminate this part of the
+    // "string". This makes sure we won't match across basic block or function
+    // boundaries since the "end" is encoded uniquely and thus appears in no
+    // repeated substring.
+    InstrList.push_back(MBB.end());
+    UnsignedVec.push_back(IllegalInstrNumber);
+    IllegalInstrNumber--;
+  }
+
+  InstructionMapper() {
+    // Make sure that the implementation of DenseMapInfo<unsigned> hasn't
+    // changed.
+    assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
+                "DenseMapInfo<unsigned>'s empty key isn't -1!");
+    assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
+                "DenseMapInfo<unsigned>'s tombstone key isn't -2!");
+  }
+};
+
+/// \brief An interprocedural pass which finds repeated sequences of
+/// instructions and replaces them with calls to functions.
+///
+/// Each instruction is mapped to an unsigned integer and placed in a string.
+/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
+/// is then repeatedly queried for repeated sequences of instructions. Each
+/// non-overlapping repeated sequence is then placed in its own
+/// \p MachineFunction and each instance is then replaced with a call to that
+/// function.
+struct MachineOutliner : public ModulePass {
+
+  static char ID;
+
+  StringRef getPassName() const override { return "Machine Outliner"; }
+
+  void getAnalysisUsage(AnalysisUsage &AU) const override {
+    AU.addRequired<MachineModuleInfo>();
+    AU.addPreserved<MachineModuleInfo>();
+    AU.setPreservesAll();
+    ModulePass::getAnalysisUsage(AU);
+  }
+
+  MachineOutliner() : ModulePass(ID) {
+    initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
+  }
+
+  /// \brief Replace the sequences of instructions represented by the
+  /// \p Candidates in \p CandidateList with calls to \p MachineFunctions
+  /// described in \p FunctionList.
+  ///
+  /// \param M The module we are outlining from.
+  /// \param CandidateList A list of candidates to be outlined.
+  /// \param FunctionList A list of functions to be inserted into the module.
+  /// \param Mapper Contains the instruction mappings for the module.
+  bool outline(Module &M, const ArrayRef<Candidate> &CandidateList,
+               std::vector<OutlinedFunction> &FunctionList,
+               InstructionMapper &Mapper);
+
+  /// Creates a function for \p OF and inserts it into the module.
+  MachineFunction *createOutlinedFunction(Module &M, const OutlinedFunction &OF,
+                                          InstructionMapper &Mapper);
+
+  /// Find potential outlining candidates and store them in \p CandidateList.
+  ///
+  /// For each type of potential candidate, also build an \p OutlinedFunction
+  /// struct containing the information to build the function for that
+  /// candidate.
+  ///
+  /// \param[out] CandidateList Filled with outlining candidates for the module.
+  /// \param[out] FunctionList Filled with functions corresponding to each type
+  /// of \p Candidate.
+  /// \param ST The suffix tree for the module.
+  /// \param TII TargetInstrInfo for the module.
+  ///
+  /// \returns The length of the longest candidate found. 0 if there are none.
+  unsigned buildCandidateList(std::vector<Candidate> &CandidateList,
+                              std::vector<OutlinedFunction> &FunctionList,
+                              SuffixTree &ST, const TargetInstrInfo &TII);
+
+  /// \brief Remove any overlapping candidates that weren't handled by the
+  /// suffix tree's pruning method.
+  ///
+  /// Pruning from the suffix tree doesn't necessarily remove all overlaps.
+  /// If a short candidate is chosen for outlining, then a longer candidate
+  /// which has that short candidate as a suffix is chosen, the tree's pruning
+  /// method will not find it. Thus, we need to prune before outlining as well.
+  ///
+  /// \param[in,out] CandidateList A list of outlining candidates.
+  /// \param[in,out] FunctionList A list of functions to be outlined.
+  /// \param MaxCandidateLen The length of the longest candidate.
+  /// \param TII TargetInstrInfo for the module.
+  void pruneOverlaps(std::vector<Candidate> &CandidateList,
+                     std::vector<OutlinedFunction> &FunctionList,
+                     unsigned MaxCandidateLen,
+                     const TargetInstrInfo &TII);
+
+  /// Construct a suffix tree on the instructions in \p M and outline repeated
+  /// strings from that tree.
+  bool runOnModule(Module &M) override;
+};
+
+} // Anonymous namespace.
+
+char MachineOutliner::ID = 0;
+
+namespace llvm {
+ModulePass *createMachineOutlinerPass() { return new MachineOutliner(); }
+}
+
+INITIALIZE_PASS(MachineOutliner, "machine-outliner",
+                "Machine Function Outliner", false, false)
+
+void MachineOutliner::pruneOverlaps(std::vector<Candidate> &CandidateList,
+                                    std::vector<OutlinedFunction> &FunctionList,
+                                    unsigned MaxCandidateLen,
+                                    const TargetInstrInfo &TII) {
+
+  // Check for overlaps in the range. This is O(n^2) worst case, but we can
+  // alleviate that somewhat by bounding our search space using the start
+  // index of our first candidate and the maximum distance an overlapping
+  // candidate could have from the first candidate.
+  for (auto It = CandidateList.begin(), Et = CandidateList.end(); It != Et;
+       It++) {
+    Candidate &C1 = *It;
+    OutlinedFunction &F1 = FunctionList[C1.FunctionIdx];
+
+    // If we removed this candidate, skip it.
+    if (!C1.InCandidateList)
+      continue;
+
+    // If the candidate's function isn't good to outline anymore, then
+    // remove the candidate and skip it.
+    if (F1.OccurrenceCount < 2 || F1.Benefit < 1) {
+      C1.InCandidateList = false;
+      continue;
+    }
+
+    // The minimum start index of any candidate that could overlap with this
+    // one.
+    unsigned FarthestPossibleIdx = 0;
+
+    // Either the index is 0, or it's at most MaxCandidateLen indices away.
+    if (C1.StartIdx > MaxCandidateLen)
+      FarthestPossibleIdx = C1.StartIdx - MaxCandidateLen;
+
+    // Compare against the other candidates in the list.
+    // This is at most MaxCandidateLen/2 other candidates.
+    // This is because each candidate has to be at least 2 indices away.
+    // = O(n * MaxCandidateLen/2) comparisons
+    //
+    // On average, the maximum length of a candidate is quite small; a fraction
+    // of the total module length in terms of instructions. If the maximum
+    // candidate length is large, then there are fewer possible candidates to
+    // compare against in the first place.
+    for (auto Sit = It + 1; Sit != Et; Sit++) {
+      Candidate &C2 = *Sit;
+      OutlinedFunction &F2 = FunctionList[C2.FunctionIdx];
+
+      // Is this candidate too far away to overlap?
+      // NOTE: This will be true in
+      //    O(max(FarthestPossibleIdx/2, #Candidates remaining)) steps
+      // for every candidate.
+      if (C2.StartIdx < FarthestPossibleIdx)
+        break;
+
+      // Did we already remove this candidate in a previous step?
+      if (!C2.InCandidateList)
+        continue;
+
+      // Is the function beneficial to outline?
+      if (F2.OccurrenceCount < 2 || F2.Benefit < 1) {
+        // If not, remove this candidate and move to the next one.
+        C2.InCandidateList = false;
+        continue;
+      }
+
+      size_t C2End = C2.StartIdx + C2.Len - 1;
+
+      // Do C1 and C2 overlap?
+      //
+      // Not overlapping:
+      // High indices... [C1End ... C1Start][C2End ... C2Start] ...Low indices
+      //
+      // We sorted our candidate list so C2Start <= C1Start. We know that
+      // C2End > C2Start since each candidate has length >= 2. Therefore, all we
+      // have to check is C2End < C2Start to see if we overlap.
+      if (C2End < C1.StartIdx)
+        continue;
+
+      // C2 overlaps with C1. Because we pruned the tree already, the only way
+      // this can happen is if C1 is a proper suffix of C2. Thus, we must have
+      // found C1 first during our query, so it must have benefit greater or
+      // equal to C2. Greedily pick C1 as the candidate to keep and toss out C2.
+      DEBUG (
+            size_t C1End = C1.StartIdx + C1.Len - 1;
+            dbgs() << "- Found an overlap to purge.\n";
+            dbgs() << "--- C1 :[" << C1.StartIdx << ", " << C1End << "]\n";
+            dbgs() << "--- C2 :[" << C2.StartIdx << ", " << C2End << "]\n";
+            );
+
+      // Update the function's occurrence count and benefit to reflec that C2
+      // is being removed.
+      F2.OccurrenceCount--;
+      F2.Benefit = TII.getOutliningBenefit(F2.Sequence.size(),
+                                           F2.OccurrenceCount
+                                           );
+
+      // Mark C2 as not in the list.
+      C2.InCandidateList = false;
+
+      DEBUG (
+            dbgs() << "- Removed C2. \n";
+            dbgs() << "--- Num fns left for C2: " << F2.OccurrenceCount << "\n";
+            dbgs() << "--- C2's benefit: " << F2.Benefit << "\n";
+            );
+    }
+  }
+}
+
+unsigned
+MachineOutliner::buildCandidateList(std::vector<Candidate> &CandidateList,
+                                    std::vector<OutlinedFunction> &FunctionList,
+                                    SuffixTree &ST,
+                                    const TargetInstrInfo &TII) {
+
+  std::vector<unsigned> CandidateSequence; // Current outlining candidate.
+  unsigned MaxCandidateLen = 0; // Length of the longest candidate.
+
+  // Function for maximizing query in the suffix tree.
+  // This allows us to define more fine-grained types of things to outline in
+  // the target without putting target-specific info in the suffix tree.
+  auto BenefitFn = [&TII](const SuffixTreeNode &Curr, size_t StringLen) {
+
+    // Any leaf whose parent is the root only has one occurrence.
+    if (Curr.Parent->isRoot())
+      return 0u;
+
+    // Anything with length < 2 will never be beneficial on any target.
+    if (StringLen < 2)
+      return 0u;
+
+    size_t Occurrences = Curr.Parent->OccurrenceCount;
+
+    // Anything with fewer than 2 occurrences will never be beneficial on any
+    // target.
+    if (Occurrences < 2)
+      return 0u;
+
+    return TII.getOutliningBenefit(StringLen, Occurrences);
+  };
+
+  // Repeatedly query the suffix tree for the substring that maximizes
+  // BenefitFn. Find the occurrences of that string, prune the tree, and store
+  // each occurrence as a candidate.
+  for (ST.bestRepeatedSubstring(CandidateSequence, BenefitFn);
+       CandidateSequence.size() > 1;
+       ST.bestRepeatedSubstring(CandidateSequence, BenefitFn)) {
+
+    std::vector<size_t> Occurrences;
+
+    bool GotNonOverlappingCandidate =
+        ST.findOccurrencesAndPrune(CandidateSequence, Occurrences);
+
+    // Is the candidate we found known to overlap with something we already
+    // outlined?
+    if (!GotNonOverlappingCandidate)
+      continue;
+
+    // Is this candidate the longest so far?
+    if (CandidateSequence.size() > MaxCandidateLen)
+      MaxCandidateLen = CandidateSequence.size();
+
+    // Keep track of the benefit of outlining this candidate in its
+    // OutlinedFunction.
+    unsigned FnBenefit = TII.getOutliningBenefit(CandidateSequence.size(),
+                                                 Occurrences.size()
+                                                 );
+
+    assert(FnBenefit > 0 && "Function cannot be unbeneficial!");
+
+    // Save an OutlinedFunction for this candidate.
+    FunctionList.emplace_back(
+        FunctionList.size(), // Number of this function.
+        Occurrences.size(),  // Number of occurrences.
+        CandidateSequence,   // Sequence to outline.
+        FnBenefit            // Instructions saved by outlining this function.
+        );
+
+    // Save each of the occurrences of the candidate so we can outline them.
+    for (size_t &Occ : Occurrences)
+      CandidateList.emplace_back(
+          Occ,                      // Starting idx in that MBB.
+          CandidateSequence.size(), // Candidate length.
+          FunctionList.size() - 1   // Idx of the corresponding function.
+          );
+
+    FunctionsCreated++;
+  }
+
+  // Sort the candidates in decending order. This will simplify the outlining
+  // process when we have to remove the candidates from the mapping by
+  // allowing us to cut them out without keeping track of an offset.
+  std::stable_sort(CandidateList.begin(), CandidateList.end());
+
+  return MaxCandidateLen;
+}
+
+MachineFunction *
+MachineOutliner::createOutlinedFunction(Module &M, const OutlinedFunction &OF,
+  InstructionMapper &Mapper) {
+
+  // Create the function name. This should be unique. For now, just hash the
+  // module name and include it in the function name plus the number of this
+  // function.
+  std::ostringstream NameStream;
+  NameStream << "OUTLINED_FUNCTION" << "_" << OF.Name;
+
+  // Create the function using an IR-level function.
+  LLVMContext &C = M.getContext();
+  Function *F = dyn_cast<Function>(
+      M.getOrInsertFunction(NameStream.str(), Type::getVoidTy(C), NULL));
+  assert(F && "Function was null!");
+
+  // NOTE: If this is linkonceodr, then we can take advantage of linker deduping
+  // which gives us better results when we outline from linkonceodr functions.
+  F->setLinkage(GlobalValue::PrivateLinkage);
+  F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
+
+  BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
+  IRBuilder<> Builder(EntryBB);
+  Builder.CreateRetVoid();
+
+  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+  MachineFunction &MF = MMI.getMachineFunction(*F);
+  MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
+  const TargetSubtargetInfo &STI = MF.getSubtarget();
+  const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+  // Insert the new function into the module.
+  MF.insert(MF.begin(), &MBB);
+
+  TII.insertOutlinerPrologue(MBB, MF);
+
+  // Copy over the instructions for the function using the integer mappings in
+  // its sequence.
+  for (unsigned Str : OF.Sequence) {
+    MachineInstr *NewMI =
+        MF.CloneMachineInstr(Mapper.IntegerInstructionMap.find(Str)->second);
+    NewMI->dropMemRefs();
+
+    // Don't keep debug information for outlined instructions.
+    // FIXME: This means outlined functions are currently undebuggable.
+    NewMI->setDebugLoc(DebugLoc());
+    MBB.insert(MBB.end(), NewMI);
+  }
+
+  TII.insertOutlinerEpilogue(MBB, MF);
+
+  return &MF;
+}
+
+bool MachineOutliner::outline(Module &M,
+                              const ArrayRef<Candidate> &CandidateList,
+                              std::vector<OutlinedFunction> &FunctionList,
+                              InstructionMapper &Mapper) {
+
+  bool OutlinedSomething = false;
+
+  // Replace the candidates with calls to their respective outlined functions.
+  for (const Candidate &C : CandidateList) {
+
+    // Was the candidate removed during pruneOverlaps?
+    if (!C.InCandidateList)
+      continue;
+
+    // If not, then look at its OutlinedFunction.
+    OutlinedFunction &OF = FunctionList[C.FunctionIdx];
+
+    // Was its OutlinedFunction made unbeneficial during pruneOverlaps?
+    if (OF.OccurrenceCount < 2 || OF.Benefit < 1)
+      continue;
+
+    // If not, then outline it.
+    assert(C.StartIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
+    MachineBasicBlock *MBB = (*Mapper.InstrList[C.StartIdx]).getParent();
+    MachineBasicBlock::iterator StartIt = Mapper.InstrList[C.StartIdx];
+    unsigned EndIdx = C.StartIdx + C.Len - 1;
+
+    assert(EndIdx < Mapper.InstrList.size() && "Candidate out of bounds!");
+    MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
+    assert(EndIt != MBB->end() && "EndIt out of bounds!");
+
+    EndIt++; // Erase needs one past the end index.
+
+    // Does this candidate have a function yet?
+    if (!OF.MF)
+      OF.MF = createOutlinedFunction(M, OF, Mapper);
+
+    MachineFunction *MF = OF.MF;
+    const TargetSubtargetInfo &STI = MF->getSubtarget();
+    const TargetInstrInfo &TII = *STI.getInstrInfo();
+
+    // Insert a call to the new function and erase the old sequence.
+    TII.insertOutlinedCall(M, *MBB, StartIt, *MF);
+    StartIt = Mapper.InstrList[C.StartIdx];
+    MBB->erase(StartIt, EndIt);
+
+    OutlinedSomething = true;
+
+    // Statistics.
+    NumOutlined++;
+  }
+
+  DEBUG (
+    dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";
+  );
+
+  return OutlinedSomething;
+}
+
+bool MachineOutliner::runOnModule(Module &M) {
+
+  // Is there anything in the module at all?
+  if (M.empty())
+    return false;
+
+  MachineModuleInfo &MMI = getAnalysis<MachineModuleInfo>();
+  const TargetSubtargetInfo &STI = MMI.getMachineFunction(*M.begin())
+                                      .getSubtarget();
+  const TargetRegisterInfo *TRI = STI.getRegisterInfo();
+  const TargetInstrInfo *TII = STI.getInstrInfo();
+
+  InstructionMapper Mapper;
+
+  // Build instruction mappings for each function in the module.
+  for (Function &F : M) {
+    MachineFunction &MF = MMI.getMachineFunction(F);
+
+    // Is the function empty? Safe to outline from?
+    if (F.empty() || !TII->isFunctionSafeToOutlineFrom(MF))
+      continue;
+
+    // If it is, look at each MachineBasicBlock in the function.
+    for (MachineBasicBlock &MBB : MF) {
+
+      // Is there anything in MBB?
+      if (MBB.empty())
+        continue;
+
+      // If yes, map it.
+      Mapper.convertToUnsignedVec(MBB, *TRI, *TII);
+    }
+  }
+
+  // Construct a suffix tree, use it to find candidates, and then outline them.
+  SuffixTree ST(Mapper.UnsignedVec);
+  std::vector<Candidate> CandidateList;
+  std::vector<OutlinedFunction> FunctionList;
+
+  unsigned MaxCandidateLen =
+      buildCandidateList(CandidateList, FunctionList, ST, *TII);
+
+  pruneOverlaps(CandidateList, FunctionList, MaxCandidateLen, *TII);
+  return outline(M, CandidateList, FunctionList, Mapper);
+}

Modified: llvm/trunk/lib/CodeGen/TargetPassConfig.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/TargetPassConfig.cpp?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/lib/CodeGen/TargetPassConfig.cpp (original)
+++ llvm/trunk/lib/CodeGen/TargetPassConfig.cpp Mon Feb 27 18:33:32 2017
@@ -92,6 +92,9 @@ static cl::opt<bool> VerifyMachineCode("
     cl::desc("Verify generated machine code"),
     cl::init(false),
     cl::ZeroOrMore);
+static cl::opt<bool> EnableMachineOutliner("enable-machine-outliner",
+    cl::Hidden,
+    cl::desc("Enable machine outliner"));
 
 static cl::opt<std::string>
 PrintMachineInstrs("print-machineinstrs", cl::ValueOptional,
@@ -674,6 +677,9 @@ void TargetPassConfig::addMachinePasses(
   addPass(&XRayInstrumentationID, false);
   addPass(&PatchableFunctionID, false);
 
+  if (EnableMachineOutliner)
+    PM->add(createMachineOutlinerPass());
+
   AddingMachinePasses = false;
 }
 

Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.cpp?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86InstrInfo.cpp (original)
+++ llvm/trunk/lib/Target/X86/X86InstrInfo.cpp Mon Feb 27 18:33:32 2017
@@ -10383,3 +10383,83 @@ namespace {
 char LDTLSCleanup::ID = 0;
 FunctionPass*
 llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); }
+
+unsigned X86InstrInfo::getOutliningBenefit(size_t SequenceSize,
+                                           size_t Occurrences) const {
+  unsigned NotOutlinedSize = SequenceSize * Occurrences;
+
+  // Sequence appears once in outlined function (Sequence.size())
+  // One return instruction (+1)
+  // One call per occurrence (Occurrences)
+  unsigned OutlinedSize = (SequenceSize + 1) + Occurrences;
+
+  // Return the number of instructions saved by outlining this sequence.
+  return NotOutlinedSize > OutlinedSize ? NotOutlinedSize - OutlinedSize : 0;
+}
+
+bool X86InstrInfo::isFunctionSafeToOutlineFrom(MachineFunction &MF) const {
+  return MF.getFunction()->hasFnAttribute(Attribute::NoRedZone);
+}
+
+X86GenInstrInfo::MachineOutlinerInstrType
+X86InstrInfo::getOutliningType(MachineInstr &MI) const {
+
+  // Don't outline returns or basic block terminators.
+  if (MI.isReturn() || MI.isTerminator())
+    return MachineOutlinerInstrType::Illegal;
+
+  // Don't outline anything that modifies or reads from the stack pointer.
+  //
+  // FIXME: There are instructions which are being manually built without
+  // explicit uses/defs so we also have to check the MCInstrDesc. We should be
+  // able to remove the extra checks once those are fixed up. For example,
+  // sometimes we might get something like %RAX<def> = POP64r 1. This won't be
+  // caught by modifiesRegister or readsRegister even though the instruction
+  // really ought to be formed so that modifiesRegister/readsRegister would
+  // catch it.
+  if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) ||
+      MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) ||
+      MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP))
+    return MachineOutlinerInstrType::Illegal;
+
+  if (MI.readsRegister(X86::RIP, &RI) ||
+      MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) ||
+      MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP))
+    return MachineOutlinerInstrType::Illegal;
+
+  if (MI.isPosition())
+    return MachineOutlinerInstrType::Illegal;
+
+  for (const MachineOperand &MOP : MI.operands())
+    if (MOP.isCPI() || MOP.isJTI() || MOP.isCFIIndex() || MOP.isFI() ||
+        MOP.isTargetIndex())
+      return MachineOutlinerInstrType::Illegal;
+
+  // Don't allow debug values to impact outlining type.
+  if (MI.isDebugValue() || MI.isIndirectDebugValue())
+    return MachineOutlinerInstrType::Invisible;
+
+  return MachineOutlinerInstrType::Legal;
+}
+
+void X86InstrInfo::insertOutlinerEpilogue(MachineBasicBlock &MBB,
+                                          MachineFunction &MF) const {
+
+  MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RETQ));
+  MBB.insert(MBB.end(), retq);
+}
+
+void X86InstrInfo::insertOutlinerPrologue(MachineBasicBlock &MBB,
+                                          MachineFunction &MF) const {
+  return;
+}
+
+MachineBasicBlock::iterator
+X86InstrInfo::insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
+                                 MachineBasicBlock::iterator &It,
+                                 MachineFunction &MF) const {
+  It = MBB.insert(It,
+                  BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32))
+                      .addGlobalAddress(M.getNamedValue(MF.getName())));
+  return It;
+}

Modified: llvm/trunk/lib/Target/X86/X86InstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/X86/X86InstrInfo.h?rev=296418&r1=296417&r2=296418&view=diff
==============================================================================
--- llvm/trunk/lib/Target/X86/X86InstrInfo.h (original)
+++ llvm/trunk/lib/Target/X86/X86InstrInfo.h Mon Feb 27 18:33:32 2017
@@ -545,6 +545,27 @@ public:
 
   bool isTailCall(const MachineInstr &Inst) const override;
 
+  unsigned getOutliningBenefit(size_t SequenceSize,
+                               size_t Occurrences) const override;
+
+  bool isFunctionSafeToOutlineFrom(MachineFunction &MF) const override;
+
+  llvm::X86GenInstrInfo::MachineOutlinerInstrType
+  getOutliningType(MachineInstr &MI) const override;
+
+  bool isFixablePostOutline(MachineInstr &MI) const;
+
+  void insertOutlinerEpilogue(MachineBasicBlock &MBB,
+                              MachineFunction &MF) const override;
+
+  void insertOutlinerPrologue(MachineBasicBlock &MBB,
+                              MachineFunction &MF) const override;
+
+  MachineBasicBlock::iterator
+  insertOutlinedCall(Module &M, MachineBasicBlock &MBB,
+                     MachineBasicBlock::iterator &It,
+                     MachineFunction &MF) const override;
+
 protected:
   /// Commutes the operands in the given instruction by changing the operands
   /// order and/or changing the instruction's opcode and/or the immediate value

Added: llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll?rev=296418&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll (added)
+++ llvm/trunk/test/CodeGen/X86/machine-outliner-debuginfo.ll Mon Feb 27 18:33:32 2017
@@ -0,0 +1,75 @@
+; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
+
+ at x = global i32 0, align 4, !dbg !0
+
+define i32 @main() #0 !dbg !11 {
+  ; CHECK-LABEL: _main:
+  %1 = alloca i32, align 4
+  %2 = alloca i32, align 4
+  %3 = alloca i32, align 4
+  %4 = alloca i32, align 4
+  %5 = alloca i32, align 4
+  ; There is a debug value in the middle of this section, make sure debug values are ignored.
+  ; CHECK: callq l_OUTLINED_FUNCTION_0
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  call void @llvm.dbg.value(metadata i32 10, i64 0, metadata !15, metadata !16), !dbg !17
+  store i32 4, i32* %5, align 4
+  store i32 0, i32* @x, align 4, !dbg !24
+  ; This is the same sequence of instructions without a debug value. It should be outlined
+  ; in the same way.
+  ; CHECK: callq l_OUTLINED_FUNCTION_0
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  store i32 4, i32* %5, align 4
+  store i32 1, i32* @x, align 4, !dbg !14
+  ret i32 0, !dbg !25
+}
+
+; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
+; CHECK-NOT:  .loc  {{[0-9]+}} {{[0-9]+}} {{[0-9]+}} {{^(is_stmt)}}
+; CHECK-NOT:  ##DEBUG_VALUE: main:{{[a-z]}} <- {{[0-9]+}}
+; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: retq
+
+declare void @llvm.dbg.declare(metadata, metadata, metadata) #1
+
+declare void @llvm.dbg.value(metadata, i64, metadata, metadata) #1
+
+attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
+
+!llvm.dbg.cu = !{!2}
+!llvm.module.flags = !{!7, !8, !9}
+!llvm.ident = !{!10}
+
+!0 = !DIGlobalVariableExpression(var: !1)
+!1 = distinct !DIGlobalVariable(name: "x", scope: !2, file: !3, line: 2, type: !6, isLocal: false, isDefinition: true)
+!2 = distinct !DICompileUnit(language: DW_LANG_C99, file: !3, producer: "clang version 5.0.0", isOptimized: false, runtimeVersion: 0, emissionKind: FullDebug, enums: !4, globals: !5)
+!3 = !DIFile(filename: "debug-test.c", directory: "dir")
+!4 = !{}
+!5 = !{!0}
+!6 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
+!7 = !{i32 2, !"Dwarf Version", i32 4}
+!8 = !{i32 2, !"Debug Info Version", i32 3}
+!9 = !{i32 1, !"PIC Level", i32 2}
+!10 = !{!"clang version 5.0.0"}
+!11 = distinct !DISubprogram(name: "main", scope: !3, file: !3, line: 4, type: !12, isLocal: false, isDefinition: true, scopeLine: 4, flags: DIFlagPrototyped, isOptimized: false, unit: !2, variables: !4)
+!12 = !DISubroutineType(types: !13)
+!13 = !{!6}
+!14 = !DILocation(line: 7, column: 4, scope: !11)
+!15 = !DILocalVariable(name: "a", scope: !11, file: !3, line: 5, type: !6)
+!16 = !DIExpression()
+!17 = !DILocation(line: 5, column: 6, scope: !11)
+!18 = !DILocalVariable(name: "b", scope: !11, file: !3, line: 5, type: !6)
+!19 = !DILocation(line: 5, column: 9, scope: !11)
+!20 = !DILocalVariable(name: "c", scope: !11, file: !3, line: 5, type: !6)
+!21 = !DILocation(line: 5, column: 12, scope: !11)
+!22 = !DILocalVariable(name: "d", scope: !11, file: !3, line: 5, type: !6)
+!23 = !DILocation(line: 5, column: 15, scope: !11)
+!24 = !DILocation(line: 14, column: 4, scope: !11)
+!25 = !DILocation(line: 21, column: 2, scope: !11)

Added: llvm/trunk/test/CodeGen/X86/machine-outliner.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/X86/machine-outliner.ll?rev=296418&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/X86/machine-outliner.ll (added)
+++ llvm/trunk/test/CodeGen/X86/machine-outliner.ll Mon Feb 27 18:33:32 2017
@@ -0,0 +1,110 @@
+; RUN: llc -enable-machine-outliner -mtriple=x86_64-apple-darwin < %s | FileCheck %s
+
+ at x = global i32 0, align 4
+
+define i32 @check_boundaries() #0 {
+  ; CHECK-LABEL: _check_boundaries:
+  %1 = alloca i32, align 4
+  %2 = alloca i32, align 4
+  %3 = alloca i32, align 4
+  %4 = alloca i32, align 4
+  %5 = alloca i32, align 4
+  store i32 0, i32* %1, align 4
+  store i32 0, i32* %2, align 4
+  %6 = load i32, i32* %2, align 4
+  %7 = icmp ne i32 %6, 0
+  br i1 %7, label %9, label %8
+
+  ; CHECK: callq l_OUTLINED_FUNCTION_1
+  ; CHECK: cmpl  $0, -{{[0-9]+}}(%rbp)
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  store i32 4, i32* %5, align 4
+  br label %10
+
+  store i32 1, i32* %4, align 4
+  br label %10
+
+  %11 = load i32, i32* %2, align 4
+  %12 = icmp ne i32 %11, 0
+  br i1 %12, label %14, label %13
+
+  ; CHECK: callq l_OUTLINED_FUNCTION_1
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  store i32 4, i32* %5, align 4
+  br label %15
+
+  store i32 1, i32* %4, align 4
+  br label %15
+
+  ret i32 0
+}
+
+define i32 @empty_1() #0 {
+  ; CHECK-LABEL: _empty_1:
+  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
+  ret i32 1
+}
+
+define i32 @empty_2() #0 {
+  ; CHECK-LABEL: _empty_2
+  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
+  ret i32 1
+}
+
+define i32 @no_empty_outlining() #0 {
+  ; CHECK-LABEL: _no_empty_outlining:
+  %1 = alloca i32, align 4
+  store i32 0, i32* %1, align 4
+  ; CHECK-NOT: callq l_OUTLINED_FUNCTION_{{[0-9]+}}
+  %2 = call i32 @empty_1() #1
+  %3 = call i32 @empty_2() #1
+  %4 = call i32 @empty_1() #1
+  %5 = call i32 @empty_2() #1
+  %6 = call i32 @empty_1() #1
+  %7 = call i32 @empty_2() #1
+  ret i32 0
+}
+
+define i32 @main() #0 {
+  ; CHECK-LABEL: _main:
+  %1 = alloca i32, align 4
+  %2 = alloca i32, align 4
+  %3 = alloca i32, align 4
+  %4 = alloca i32, align 4
+  %5 = alloca i32, align 4
+
+  store i32 0, i32* %1, align 4
+  store i32 0, i32* @x, align 4
+  ; CHECK: callq l_OUTLINED_FUNCTION_0
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  store i32 4, i32* %5, align 4
+  store i32 1, i32* @x, align 4
+  ; CHECK: callq l_OUTLINED_FUNCTION_0
+  store i32 1, i32* %2, align 4
+  store i32 2, i32* %3, align 4
+  store i32 3, i32* %4, align 4
+  store i32 4, i32* %5, align 4
+  ret i32 0
+}
+
+attributes #0 = { noredzone nounwind ssp uwtable "no-frame-pointer-elim"="true" }
+
+; CHECK-LABEL: l_OUTLINED_FUNCTION_0:
+; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: retq
+
+; CHECK-LABEL: l_OUTLINED_FUNCTION_1:
+; CHECK:      movl  $1, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $2, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $3, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: movl  $4, -{{[0-9]+}}(%rbp)
+; CHECK-NEXT: retq




More information about the llvm-commits mailing list