[www-releases] r290368 - Add 3.9.1 docs.

Tom Stellard via llvm-commits llvm-commits at lists.llvm.org
Thu Dec 22 12:04:06 PST 2016


Added: www-releases/trunk/3.9.1/docs/_sources/BigEndianNEON.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BigEndianNEON.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BigEndianNEON.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BigEndianNEON.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,205 @@
+==============================================
+Using ARM NEON instructions in big endian mode
+==============================================
+
+.. contents::
+    :local:
+
+Introduction
+============
+
+Generating code for big endian ARM processors is for the most part straightforward. NEON loads and stores however have some interesting properties that make code generation decisions less obvious in big endian mode.
+
+The aim of this document is to explain the problem with NEON loads and stores, and the solution that has been implemented in LLVM.
+
+In this document the term "vector" refers to what the ARM ABI calls a "short vector", which is a sequence of items that can fit in a NEON register. This sequence can be 64 or 128 bits in length, and can constitute 8, 16, 32 or 64 bit items. This document refers to A64 instructions throughout, but is almost applicable to the A32/ARMv7 instruction sets also. The ABI format for passing vectors in A32 is sligtly different to A64. Apart from that, the same concepts apply.
+
+Example: C-level intrinsics -> assembly
+---------------------------------------
+
+It may be helpful first to illustrate how C-level ARM NEON intrinsics are lowered to instructions.
+
+This trivial C function takes a vector of four ints and sets the zero'th lane to the value "42"::
+
+    #include <arm_neon.h>
+    int32x4_t f(int32x4_t p) {
+        return vsetq_lane_s32(42, p, 0);
+    }
+
+arm_neon.h intrinsics generate "generic" IR where possible (that is, normal IR instructions not ``llvm.arm.neon.*`` intrinsic calls). The above generates::
+
+    define <4 x i32> @f(<4 x i32> %p) {
+      %vset_lane = insertelement <4 x i32> %p, i32 42, i32 0
+      ret <4 x i32> %vset_lane
+    }
+
+Which then becomes the following trivial assembly::
+
+    f:                                      // @f
+            movz	w8, #0x2a
+            ins 	v0.s[0], w8
+            ret
+
+Problem
+=======
+
+The main problem is how vectors are represented in memory and in registers.
+
+First, a recap. The "endianness" of an item affects its representation in memory only. In a register, a number is just a sequence of bits - 64 bits in the case of AArch64 general purpose registers. Memory, however, is a sequence of addressable units of 8 bits in size. Any number greater than 8 bits must therefore be split up into 8-bit chunks, and endianness describes the order in which these chunks are laid out in memory.
+
+A "little endian" layout has the least significant byte first (lowest in memory address). A "big endian" layout has the *most* significant byte first. This means that when loading an item from big endian memory, the lowest 8-bits in memory must go in the most significant 8-bits, and so forth.
+
+``LDR`` and ``LD1``
+===================
+
+.. figure:: ARM-BE-ldr.png
+    :align: right
+    
+    Big endian vector load using ``LDR``.
+
+
+A vector is a consecutive sequence of items that are operated on simultaneously. To load a 64-bit vector, 64 bits need to be read from memory. In little endian mode, we can do this by just performing a 64-bit load - ``LDR q0, [foo]``. However if we try this in big endian mode, because of the byte swapping the lane indices end up being swapped! The zero'th item as laid out in memory becomes the n'th lane in the vector.
+
+.. figure:: ARM-BE-ld1.png
+    :align: right
+
+    Big endian vector load using ``LD1``. Note that the lanes retain the correct ordering.
+
+
+Because of this, the instruction ``LD1`` performs a vector load but performs byte swapping not on the entire 64 bits, but on the individual items within the vector. This means that the register content is the same as it would have been on a little endian system.
+
+It may seem that ``LD1`` should suffice to peform vector loads on a big endian machine. However there are pros and cons to the two approaches that make it less than simple which register format to pick.
+
+There are two options:
+
+    1. The content of a vector register is the same *as if* it had been loaded with an ``LDR`` instruction.
+    2. The content of a vector register is the same *as if* it had been loaded with an ``LD1`` instruction.
+
+Because ``LD1 == LDR + REV`` and similarly ``LDR == LD1 + REV`` (on a big endian system), we can simulate either type of load with the other type of load plus a ``REV`` instruction. So we're not deciding which instructions to use, but which format to use (which will then influence which instruction is best to use).
+
+.. The 'clearer' container is required to make the following section header come after the floated
+   images above.
+.. container:: clearer
+
+    Note that throughout this section we only mention loads. Stores have exactly the same problems as their associated loads, so have been skipped for brevity.
+ 
+
+Considerations
+==============
+
+LLVM IR Lane ordering
+---------------------
+
+LLVM IR has first class vector types. In LLVM IR, the zero'th element of a vector resides at the lowest memory address. The optimizer relies on this property in certain areas, for example when concatenating vectors together. The intention is for arrays and vectors to have identical memory layouts - ``[4 x i8]`` and ``<4 x i8>`` should be represented the same in memory. Without this property there would be many special cases that the optimizer would have to cleverly handle.
+
+Use of ``LDR`` would break this lane ordering property. This doesn't preclude the use of ``LDR``, but we would have to do one of two things:
+
+   1. Insert a ``REV`` instruction to reverse the lane order after every ``LDR``.
+   2. Disable all optimizations that rely on lane layout, and for every access to an individual lane (``insertelement``/``extractelement``/``shufflevector``) reverse the lane index.
+
+AAPCS
+-----
+
+The ARM procedure call standard (AAPCS) defines the ABI for passing vectors between functions in registers. It states:
+
+    When a short vector is transferred between registers and memory it is treated as an opaque object. That is a short vector is stored in memory as if it were stored with a single ``STR`` of the entire register; a short vector is loaded from memory using the corresponding ``LDR`` instruction. On a little-endian system this means that element 0 will always contain the lowest addressed element of a short vector; on a big-endian system element 0 will contain the highest-addressed element of a short vector.
+
+    -- Procedure Call Standard for the ARM 64-bit Architecture (AArch64), 4.1.2 Short Vectors
+
+The use of ``LDR`` and ``STR`` as the ABI defines has at least one advantage over ``LD1`` and ``ST1``. ``LDR`` and ``STR`` are oblivious to the size of the individual lanes of a vector. ``LD1`` and ``ST1`` are not - the lane size is encoded within them. This is important across an ABI boundary, because it would become necessary to know the lane width the callee expects. Consider the following code:
+
+.. code-block:: c
+
+    <callee.c>
+    void callee(uint32x2_t v) {
+      ...
+    }
+
+    <caller.c>
+    extern void callee(uint32x2_t);
+    void caller() {
+      callee(...);
+    }
+
+If ``callee`` changed its signature to ``uint16x4_t``, which is equivalent in register content, if we passed as ``LD1`` we'd break this code until ``caller`` was updated and recompiled.
+
+There is an argument that if the signatures of the two functions are different then the behaviour should be undefined. But there may be functions that are agnostic to the lane layout of the vector, and treating the vector as an opaque value (just loading it and storing it) would be impossible without a common format across ABI boundaries.
+
+So to preserve ABI compatibility, we need to use the ``LDR`` lane layout across function calls.
+
+Alignment
+---------
+
+In strict alignment mode, ``LDR qX`` requires its address to be 128-bit aligned, whereas ``LD1`` only requires it to be as aligned as the lane size. If we canonicalised on using ``LDR``, we'd still need to use ``LD1`` in some places to avoid alignment faults (the result of the ``LD1`` would then need to be reversed with ``REV``).
+
+Most operating systems however do not run with alignment faults enabled, so this is often not an issue.
+
+Summary
+-------
+
+The following table summarises the instructions that are required to be emitted for each property mentioned above for each of the two solutions.
+
++-------------------------------+-------------------------------+---------------------+
+|                               | ``LDR`` layout                | ``LD1`` layout      |
++===============================+===============================+=====================+
+| Lane ordering                 |   ``LDR + REV``               |    ``LD1``          |
++-------------------------------+-------------------------------+---------------------+
+| AAPCS                         |   ``LDR``                     |    ``LD1 + REV``    |
++-------------------------------+-------------------------------+---------------------+
+| Alignment for strict mode     |   ``LDR`` / ``LD1 + REV``     |    ``LD1``          |
++-------------------------------+-------------------------------+---------------------+
+
+Neither approach is perfect, and choosing one boils down to choosing the lesser of two evils. The issue with lane ordering, it was decided, would have to change target-agnostic compiler passes and would result in a strange IR in which lane indices were reversed. It was decided that this was worse than the changes that would have to be made to support ``LD1``, so ``LD1`` was chosen as the canonical vector load instruction (and by inference, ``ST1`` for vector stores).
+
+Implementation
+==============
+
+There are 3 parts to the implementation:
+
+    1. Predicate ``LDR`` and ``STR`` instructions so that they are never allowed to be selected to generate vector loads and stores. The exception is one-lane vectors [1]_ - these by definition cannot have lane ordering problems so are fine to use ``LDR``/``STR``. 
+
+    2. Create code generation patterns for bitconverts that create ``REV`` instructions.
+
+    3. Make sure appropriate bitconverts are created so that vector values get passed over call boundaries as 1-element vectors (which is the same as if they were loaded with ``LDR``).
+
+Bitconverts
+-----------
+
+.. image:: ARM-BE-bitcastfail.png
+    :align: right
+
+The main problem with the ``LD1`` solution is dealing with bitconverts (or bitcasts, or reinterpret casts). These are pseudo instructions that only change the compiler's interpretation of data, not the underlying data itself. A requirement is that if data is loaded and then saved again (called a "round trip"), the memory contents should be the same after the store as before the load. If a vector is loaded and is then bitconverted to a different vector type before storing, the round trip will currently be broken.
+
+Take for example this code sequence::
+
+    %0 = load <4 x i32> %x
+    %1 = bitcast <4 x i32> %0 to <2 x i64>
+         store <2 x i64> %1, <2 x i64>* %y
+
+This would produce a code sequence such as that in the figure on the right. The mismatched ``LD1`` and ``ST1`` cause the stored data to differ from the loaded data.
+
+.. container:: clearer
+
+    When we see a bitcast from type ``X`` to type ``Y``, what we need to do is to change the in-register representation of the data to be *as if* it had just been loaded by a ``LD1`` of type ``Y``.
+
+.. image:: ARM-BE-bitcastsuccess.png
+    :align: right
+
+Conceptually this is simple - we can insert a ``REV`` undoing the ``LD1`` of type ``X`` (converting the in-register representation to the same as if it had been loaded by ``LDR``) and then insert another ``REV`` to change the representation to be as if it had been loaded by an ``LD1`` of type ``Y``.
+
+For the previous example, this would be::
+
+    LD1   v0.4s, [x]
+
+    REV64 v0.4s, v0.4s                  // There is no REV128 instruction, so it must be synthesizedcd 
+    EXT   v0.16b, v0.16b, v0.16b, #8    // with a REV64 then an EXT to swap the two 64-bit elements.
+
+    REV64 v0.2d, v0.2d
+    EXT   v0.16b, v0.16b, v0.16b, #8
+
+    ST1   v0.2d, [y]
+
+It turns out that these ``REV`` pairs can, in almost all cases, be squashed together into a single ``REV``. For the example above, a ``REV128 4s`` + ``REV128 2d`` is actually a ``REV64 4s``, as shown in the figure on the right.
+
+.. [1] One lane vectors may seem useless as a concept but they serve to distinguish between values held in general purpose registers and values held in NEON/VFP registers. For example, an ``i64`` would live in an ``x`` register, but ``<1 x i64>`` would live in a ``d`` register.
+

Added: www-releases/trunk/3.9.1/docs/_sources/BitCodeFormat.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BitCodeFormat.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BitCodeFormat.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BitCodeFormat.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,1156 @@
+.. role:: raw-html(raw)
+   :format: html
+
+========================
+LLVM Bitcode File Format
+========================
+
+.. contents::
+   :local:
+
+Abstract
+========
+
+This document describes the LLVM bitstream file format and the encoding of the
+LLVM IR into it.
+
+Overview
+========
+
+What is commonly known as the LLVM bitcode file format (also, sometimes
+anachronistically known as bytecode) is actually two things: a `bitstream
+container format`_ and an `encoding of LLVM IR`_ into the container format.
+
+The bitstream format is an abstract encoding of structured data, very similar to
+XML in some ways.  Like XML, bitstream files contain tags, and nested
+structures, and you can parse the file without having to understand the tags.
+Unlike XML, the bitstream format is a binary encoding, and unlike XML it
+provides a mechanism for the file to self-describe "abbreviations", which are
+effectively size optimizations for the content.
+
+LLVM IR files may be optionally embedded into a `wrapper`_ structure, or in a
+`native object file`_. Both of these mechanisms make it easy to embed extra
+data along with LLVM IR files.
+
+This document first describes the LLVM bitstream format, describes the wrapper
+format, then describes the record structure used by LLVM IR files.
+
+.. _bitstream container format:
+
+Bitstream Format
+================
+
+The bitstream format is literally a stream of bits, with a very simple
+structure.  This structure consists of the following concepts:
+
+* A "`magic number`_" that identifies the contents of the stream.
+
+* Encoding `primitives`_ like variable bit-rate integers.
+
+* `Blocks`_, which define nested content.
+
+* `Data Records`_, which describe entities within the file.
+
+* Abbreviations, which specify compression optimizations for the file.
+
+Note that the :doc:`llvm-bcanalyzer <CommandGuide/llvm-bcanalyzer>` tool can be
+used to dump and inspect arbitrary bitstreams, which is very useful for
+understanding the encoding.
+
+.. _magic number:
+
+Magic Numbers
+-------------
+
+The first two bytes of a bitcode file are 'BC' (``0x42``, ``0x43``).  The second
+two bytes are an application-specific magic number.  Generic bitcode tools can
+look at only the first two bytes to verify the file is bitcode, while
+application-specific programs will want to look at all four.
+
+.. _primitives:
+
+Primitives
+----------
+
+A bitstream literally consists of a stream of bits, which are read in order
+starting with the least significant bit of each byte.  The stream is made up of
+a number of primitive values that encode a stream of unsigned integer values.
+These integers are encoded in two ways: either as `Fixed Width Integers`_ or as
+`Variable Width Integers`_.
+
+.. _Fixed Width Integers:
+.. _fixed-width value:
+
+Fixed Width Integers
+^^^^^^^^^^^^^^^^^^^^
+
+Fixed-width integer values have their low bits emitted directly to the file.
+For example, a 3-bit integer value encodes 1 as 001.  Fixed width integers are
+used when there are a well-known number of options for a field.  For example,
+boolean values are usually encoded with a 1-bit wide integer.
+
+.. _Variable Width Integers:
+.. _Variable Width Integer:
+.. _variable-width value:
+
+Variable Width Integers
+^^^^^^^^^^^^^^^^^^^^^^^
+
+Variable-width integer (VBR) values encode values of arbitrary size, optimizing
+for the case where the values are small.  Given a 4-bit VBR field, any 3-bit
+value (0 through 7) is encoded directly, with the high bit set to zero.  Values
+larger than N-1 bits emit their bits in a series of N-1 bit chunks, where all
+but the last set the high bit.
+
+For example, the value 27 (0x1B) is encoded as 1011 0011 when emitted as a vbr4
+value.  The first set of four bits indicates the value 3 (011) with a
+continuation piece (indicated by a high bit of 1).  The next word indicates a
+value of 24 (011 << 3) with no continuation.  The sum (3+24) yields the value
+27.
+
+.. _char6-encoded value:
+
+6-bit characters
+^^^^^^^^^^^^^^^^
+
+6-bit characters encode common characters into a fixed 6-bit field.  They
+represent the following characters with the following 6-bit values:
+
+::
+
+  'a' .. 'z' ---  0 .. 25
+  'A' .. 'Z' --- 26 .. 51
+  '0' .. '9' --- 52 .. 61
+         '.' --- 62
+         '_' --- 63
+
+This encoding is only suitable for encoding characters and strings that consist
+only of the above characters.  It is completely incapable of encoding characters
+not in the set.
+
+Word Alignment
+^^^^^^^^^^^^^^
+
+Occasionally, it is useful to emit zero bits until the bitstream is a multiple
+of 32 bits.  This ensures that the bit position in the stream can be represented
+as a multiple of 32-bit words.
+
+Abbreviation IDs
+----------------
+
+A bitstream is a sequential series of `Blocks`_ and `Data Records`_.  Both of
+these start with an abbreviation ID encoded as a fixed-bitwidth field.  The
+width is specified by the current block, as described below.  The value of the
+abbreviation ID specifies either a builtin ID (which have special meanings,
+defined below) or one of the abbreviation IDs defined for the current block by
+the stream itself.
+
+The set of builtin abbrev IDs is:
+
+* 0 - `END_BLOCK`_ --- This abbrev ID marks the end of the current block.
+
+* 1 - `ENTER_SUBBLOCK`_ --- This abbrev ID marks the beginning of a new
+  block.
+
+* 2 - `DEFINE_ABBREV`_ --- This defines a new abbreviation.
+
+* 3 - `UNABBREV_RECORD`_ --- This ID specifies the definition of an
+  unabbreviated record.
+
+Abbreviation IDs 4 and above are defined by the stream itself, and specify an
+`abbreviated record encoding`_.
+
+.. _Blocks:
+
+Blocks
+------
+
+Blocks in a bitstream denote nested regions of the stream, and are identified by
+a content-specific id number (for example, LLVM IR uses an ID of 12 to represent
+function bodies).  Block IDs 0-7 are reserved for `standard blocks`_ whose
+meaning is defined by Bitcode; block IDs 8 and greater are application
+specific. Nested blocks capture the hierarchical structure of the data encoded
+in it, and various properties are associated with blocks as the file is parsed.
+Block definitions allow the reader to efficiently skip blocks in constant time
+if the reader wants a summary of blocks, or if it wants to efficiently skip data
+it does not understand.  The LLVM IR reader uses this mechanism to skip function
+bodies, lazily reading them on demand.
+
+When reading and encoding the stream, several properties are maintained for the
+block.  In particular, each block maintains:
+
+#. A current abbrev id width.  This value starts at 2 at the beginning of the
+   stream, and is set every time a block record is entered.  The block entry
+   specifies the abbrev id width for the body of the block.
+
+#. A set of abbreviations.  Abbreviations may be defined within a block, in
+   which case they are only defined in that block (neither subblocks nor
+   enclosing blocks see the abbreviation).  Abbreviations can also be defined
+   inside a `BLOCKINFO`_ block, in which case they are defined in all blocks
+   that match the ID that the ``BLOCKINFO`` block is describing.
+
+As sub blocks are entered, these properties are saved and the new sub-block has
+its own set of abbreviations, and its own abbrev id width.  When a sub-block is
+popped, the saved values are restored.
+
+.. _ENTER_SUBBLOCK:
+
+ENTER_SUBBLOCK Encoding
+^^^^^^^^^^^^^^^^^^^^^^^
+
+:raw-html:`<tt>`
+[ENTER_SUBBLOCK, blockid\ :sub:`vbr8`, newabbrevlen\ :sub:`vbr4`, <align32bits>, blocklen_32]
+:raw-html:`</tt>`
+
+The ``ENTER_SUBBLOCK`` abbreviation ID specifies the start of a new block
+record.  The ``blockid`` value is encoded as an 8-bit VBR identifier, and
+indicates the type of block being entered, which can be a `standard block`_ or
+an application-specific block.  The ``newabbrevlen`` value is a 4-bit VBR, which
+specifies the abbrev id width for the sub-block.  The ``blocklen`` value is a
+32-bit aligned value that specifies the size of the subblock in 32-bit
+words. This value allows the reader to skip over the entire block in one jump.
+
+.. _END_BLOCK:
+
+END_BLOCK Encoding
+^^^^^^^^^^^^^^^^^^
+
+``[END_BLOCK, <align32bits>]``
+
+The ``END_BLOCK`` abbreviation ID specifies the end of the current block record.
+Its end is aligned to 32-bits to ensure that the size of the block is an even
+multiple of 32-bits.
+
+.. _Data Records:
+
+Data Records
+------------
+
+Data records consist of a record code and a number of (up to) 64-bit integer
+values.  The interpretation of the code and values is application specific and
+may vary between different block types.  Records can be encoded either using an
+unabbrev record, or with an abbreviation.  In the LLVM IR format, for example,
+there is a record which encodes the target triple of a module.  The code is
+``MODULE_CODE_TRIPLE``, and the values of the record are the ASCII codes for the
+characters in the string.
+
+.. _UNABBREV_RECORD:
+
+UNABBREV_RECORD Encoding
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+:raw-html:`<tt>`
+[UNABBREV_RECORD, code\ :sub:`vbr6`, numops\ :sub:`vbr6`, op0\ :sub:`vbr6`, op1\ :sub:`vbr6`, ...]
+:raw-html:`</tt>`
+
+An ``UNABBREV_RECORD`` provides a default fallback encoding, which is both
+completely general and extremely inefficient.  It can describe an arbitrary
+record by emitting the code and operands as VBRs.
+
+For example, emitting an LLVM IR target triple as an unabbreviated record
+requires emitting the ``UNABBREV_RECORD`` abbrevid, a vbr6 for the
+``MODULE_CODE_TRIPLE`` code, a vbr6 for the length of the string, which is equal
+to the number of operands, and a vbr6 for each character.  Because there are no
+letters with values less than 32, each letter would need to be emitted as at
+least a two-part VBR, which means that each letter would require at least 12
+bits.  This is not an efficient encoding, but it is fully general.
+
+.. _abbreviated record encoding:
+
+Abbreviated Record Encoding
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[<abbrevid>, fields...]``
+
+An abbreviated record is a abbreviation id followed by a set of fields that are
+encoded according to the `abbreviation definition`_.  This allows records to be
+encoded significantly more densely than records encoded with the
+`UNABBREV_RECORD`_ type, and allows the abbreviation types to be specified in
+the stream itself, which allows the files to be completely self describing.  The
+actual encoding of abbreviations is defined below.
+
+The record code, which is the first field of an abbreviated record, may be
+encoded in the abbreviation definition (as a literal operand) or supplied in the
+abbreviated record (as a Fixed or VBR operand value).
+
+.. _abbreviation definition:
+
+Abbreviations
+-------------
+
+Abbreviations are an important form of compression for bitstreams.  The idea is
+to specify a dense encoding for a class of records once, then use that encoding
+to emit many records.  It takes space to emit the encoding into the file, but
+the space is recouped (hopefully plus some) when the records that use it are
+emitted.
+
+Abbreviations can be determined dynamically per client, per file. Because the
+abbreviations are stored in the bitstream itself, different streams of the same
+format can contain different sets of abbreviations according to the needs of the
+specific stream.  As a concrete example, LLVM IR files usually emit an
+abbreviation for binary operators.  If a specific LLVM module contained no or
+few binary operators, the abbreviation does not need to be emitted.
+
+.. _DEFINE_ABBREV:
+
+DEFINE_ABBREV Encoding
+^^^^^^^^^^^^^^^^^^^^^^
+
+:raw-html:`<tt>`
+[DEFINE_ABBREV, numabbrevops\ :sub:`vbr5`, abbrevop0, abbrevop1, ...]
+:raw-html:`</tt>`
+
+A ``DEFINE_ABBREV`` record adds an abbreviation to the list of currently defined
+abbreviations in the scope of this block.  This definition only exists inside
+this immediate block --- it is not visible in subblocks or enclosing blocks.
+Abbreviations are implicitly assigned IDs sequentially starting from 4 (the
+first application-defined abbreviation ID).  Any abbreviations defined in a
+``BLOCKINFO`` record for the particular block type receive IDs first, in order,
+followed by any abbreviations defined within the block itself.  Abbreviated data
+records reference this ID to indicate what abbreviation they are invoking.
+
+An abbreviation definition consists of the ``DEFINE_ABBREV`` abbrevid followed
+by a VBR that specifies the number of abbrev operands, then the abbrev operands
+themselves.  Abbreviation operands come in three forms.  They all start with a
+single bit that indicates whether the abbrev operand is a literal operand (when
+the bit is 1) or an encoding operand (when the bit is 0).
+
+#. Literal operands --- :raw-html:`<tt>` [1\ :sub:`1`, litvalue\
+   :sub:`vbr8`] :raw-html:`</tt>` --- Literal operands specify that the value in
+   the result is always a single specific value.  This specific value is emitted
+   as a vbr8 after the bit indicating that it is a literal operand.
+
+#. Encoding info without data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
+   :sub:`3`] :raw-html:`</tt>` --- Operand encodings that do not have extra data
+   are just emitted as their code.
+
+#. Encoding info with data --- :raw-html:`<tt>` [0\ :sub:`1`, encoding\
+   :sub:`3`, value\ :sub:`vbr5`] :raw-html:`</tt>` --- Operand encodings that do
+   have extra data are emitted as their code, followed by the extra data.
+
+The possible operand encodings are:
+
+* Fixed (code 1): The field should be emitted as a `fixed-width value`_, whose
+  width is specified by the operand's extra data.
+
+* VBR (code 2): The field should be emitted as a `variable-width value`_, whose
+  width is specified by the operand's extra data.
+
+* Array (code 3): This field is an array of values.  The array operand has no
+  extra data, but expects another operand to follow it, indicating the element
+  type of the array.  When reading an array in an abbreviated record, the first
+  integer is a vbr6 that indicates the array length, followed by the encoded
+  elements of the array.  An array may only occur as the last operand of an
+  abbreviation (except for the one final operand that gives the array's
+  type).
+
+* Char6 (code 4): This field should be emitted as a `char6-encoded value`_.
+  This operand type takes no extra data. Char6 encoding is normally used as an
+  array element type.
+
+* Blob (code 5): This field is emitted as a vbr6, followed by padding to a
+  32-bit boundary (for alignment) and an array of 8-bit objects.  The array of
+  bytes is further followed by tail padding to ensure that its total length is a
+  multiple of 4 bytes.  This makes it very efficient for the reader to decode
+  the data without having to make a copy of it: it can use a pointer to the data
+  in the mapped in file and poke directly at it.  A blob may only occur as the
+  last operand of an abbreviation.
+
+For example, target triples in LLVM modules are encoded as a record of the form
+``[TRIPLE, 'a', 'b', 'c', 'd']``.  Consider if the bitstream emitted the
+following abbrev entry:
+
+::
+
+  [0, Fixed, 4]
+  [0, Array]
+  [0, Char6]
+
+When emitting a record with this abbreviation, the above entry would be emitted
+as:
+
+:raw-html:`<tt><blockquote>`
+[4\ :sub:`abbrevwidth`, 2\ :sub:`4`, 4\ :sub:`vbr6`, 0\ :sub:`6`, 1\ :sub:`6`, 2\ :sub:`6`, 3\ :sub:`6`]
+:raw-html:`</blockquote></tt>`
+
+These values are:
+
+#. The first value, 4, is the abbreviation ID for this abbreviation.
+
+#. The second value, 2, is the record code for ``TRIPLE`` records within LLVM IR
+   file ``MODULE_BLOCK`` blocks.
+
+#. The third value, 4, is the length of the array.
+
+#. The rest of the values are the char6 encoded values for ``"abcd"``.
+
+With this abbreviation, the triple is emitted with only 37 bits (assuming a
+abbrev id width of 3).  Without the abbreviation, significantly more space would
+be required to emit the target triple.  Also, because the ``TRIPLE`` value is
+not emitted as a literal in the abbreviation, the abbreviation can also be used
+for any other string value.
+
+.. _standard blocks:
+.. _standard block:
+
+Standard Blocks
+---------------
+
+In addition to the basic block structure and record encodings, the bitstream
+also defines specific built-in block types.  These block types specify how the
+stream is to be decoded or other metadata.  In the future, new standard blocks
+may be added.  Block IDs 0-7 are reserved for standard blocks.
+
+.. _BLOCKINFO:
+
+#0 - BLOCKINFO Block
+^^^^^^^^^^^^^^^^^^^^
+
+The ``BLOCKINFO`` block allows the description of metadata for other blocks.
+The currently specified records are:
+
+::
+
+  [SETBID (#1), blockid]
+  [DEFINE_ABBREV, ...]
+  [BLOCKNAME, ...name...]
+  [SETRECORDNAME, RecordID, ...name...]
+
+The ``SETBID`` record (code 1) indicates which block ID is being described.
+``SETBID`` records can occur multiple times throughout the block to change which
+block ID is being described.  There must be a ``SETBID`` record prior to any
+other records.
+
+Standard ``DEFINE_ABBREV`` records can occur inside ``BLOCKINFO`` blocks, but
+unlike their occurrence in normal blocks, the abbreviation is defined for blocks
+matching the block ID we are describing, *not* the ``BLOCKINFO`` block
+itself.  The abbreviations defined in ``BLOCKINFO`` blocks receive abbreviation
+IDs as described in `DEFINE_ABBREV`_.
+
+The ``BLOCKNAME`` record (code 2) can optionally occur in this block.  The
+elements of the record are the bytes of the string name of the block.
+llvm-bcanalyzer can use this to dump out bitcode files symbolically.
+
+The ``SETRECORDNAME`` record (code 3) can also optionally occur in this block.
+The first operand value is a record ID number, and the rest of the elements of
+the record are the bytes for the string name of the record.  llvm-bcanalyzer can
+use this to dump out bitcode files symbolically.
+
+Note that although the data in ``BLOCKINFO`` blocks is described as "metadata,"
+the abbreviations they contain are essential for parsing records from the
+corresponding blocks.  It is not safe to skip them.
+
+.. _wrapper:
+
+Bitcode Wrapper Format
+======================
+
+Bitcode files for LLVM IR may optionally be wrapped in a simple wrapper
+structure.  This structure contains a simple header that indicates the offset
+and size of the embedded BC file.  This allows additional information to be
+stored alongside the BC file.  The structure of this file header is:
+
+:raw-html:`<tt><blockquote>`
+[Magic\ :sub:`32`, Version\ :sub:`32`, Offset\ :sub:`32`, Size\ :sub:`32`, CPUType\ :sub:`32`]
+:raw-html:`</blockquote></tt>`
+
+Each of the fields are 32-bit fields stored in little endian form (as with the
+rest of the bitcode file fields).  The Magic number is always ``0x0B17C0DE`` and
+the version is currently always ``0``.  The Offset field is the offset in bytes
+to the start of the bitcode stream in the file, and the Size field is the size
+in bytes of the stream. CPUType is a target-specific value that can be used to
+encode the CPU of the target.
+
+.. _native object file:
+
+Native Object File Wrapper Format
+=================================
+
+Bitcode files for LLVM IR may also be wrapped in a native object file
+(i.e. ELF, COFF, Mach-O).  The bitcode must be stored in a section of the object
+file named ``__LLVM,__bitcode`` for MachO and ``.llvmbc`` for the other object
+formats.  This wrapper format is useful for accommodating LTO in compilation
+pipelines where intermediate objects must be native object files which contain
+metadata in other sections.
+
+Not all tools support this format.
+
+.. _encoding of LLVM IR:
+
+LLVM IR Encoding
+================
+
+LLVM IR is encoded into a bitstream by defining blocks and records.  It uses
+blocks for things like constant pools, functions, symbol tables, etc.  It uses
+records for things like instructions, global variable descriptors, type
+descriptions, etc.  This document does not describe the set of abbreviations
+that the writer uses, as these are fully self-described in the file, and the
+reader is not allowed to build in any knowledge of this.
+
+Basics
+------
+
+LLVM IR Magic Number
+^^^^^^^^^^^^^^^^^^^^
+
+The magic number for LLVM IR files is:
+
+:raw-html:`<tt><blockquote>`
+[0x0\ :sub:`4`, 0xC\ :sub:`4`, 0xE\ :sub:`4`, 0xD\ :sub:`4`]
+:raw-html:`</blockquote></tt>`
+
+When combined with the bitcode magic number and viewed as bytes, this is
+``"BC 0xC0DE"``.
+
+.. _Signed VBRs:
+
+Signed VBRs
+^^^^^^^^^^^
+
+`Variable Width Integer`_ encoding is an efficient way to encode arbitrary sized
+unsigned values, but is an extremely inefficient for encoding signed values, as
+signed values are otherwise treated as maximally large unsigned values.
+
+As such, signed VBR values of a specific width are emitted as follows:
+
+* Positive values are emitted as VBRs of the specified width, but with their
+  value shifted left by one.
+
+* Negative values are emitted as VBRs of the specified width, but the negated
+  value is shifted left by one, and the low bit is set.
+
+With this encoding, small positive and small negative values can both be emitted
+efficiently. Signed VBR encoding is used in ``CST_CODE_INTEGER`` and
+``CST_CODE_WIDE_INTEGER`` records within ``CONSTANTS_BLOCK`` blocks.
+It is also used for phi instruction operands in `MODULE_CODE_VERSION`_ 1.
+
+LLVM IR Blocks
+^^^^^^^^^^^^^^
+
+LLVM IR is defined with the following blocks:
+
+* 8 --- `MODULE_BLOCK`_ --- This is the top-level block that contains the entire
+  module, and describes a variety of per-module information.
+
+* 9 --- `PARAMATTR_BLOCK`_ --- This enumerates the parameter attributes.
+
+* 10 --- `TYPE_BLOCK`_ --- This describes all of the types in the module.
+
+* 11 --- `CONSTANTS_BLOCK`_ --- This describes constants for a module or
+  function.
+
+* 12 --- `FUNCTION_BLOCK`_ --- This describes a function body.
+
+* 13 --- `TYPE_SYMTAB_BLOCK`_ --- This describes the type symbol table.
+
+* 14 --- `VALUE_SYMTAB_BLOCK`_ --- This describes a value symbol table.
+
+* 15 --- `METADATA_BLOCK`_ --- This describes metadata items.
+
+* 16 --- `METADATA_ATTACHMENT`_ --- This contains records associating metadata
+  with function instruction values.
+
+.. _MODULE_BLOCK:
+
+MODULE_BLOCK Contents
+---------------------
+
+The ``MODULE_BLOCK`` block (id 8) is the top-level block for LLVM bitcode files,
+and each bitcode file must contain exactly one. In addition to records
+(described below) containing information about the module, a ``MODULE_BLOCK``
+block may contain the following sub-blocks:
+
+* `BLOCKINFO`_
+* `PARAMATTR_BLOCK`_
+* `TYPE_BLOCK`_
+* `TYPE_SYMTAB_BLOCK`_
+* `VALUE_SYMTAB_BLOCK`_
+* `CONSTANTS_BLOCK`_
+* `FUNCTION_BLOCK`_
+* `METADATA_BLOCK`_
+
+.. _MODULE_CODE_VERSION:
+
+MODULE_CODE_VERSION Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[VERSION, version#]``
+
+The ``VERSION`` record (code 1) contains a single value indicating the format
+version. Versions 0 and 1 are supported at this time. The difference between
+version 0 and 1 is in the encoding of instruction operands in
+each `FUNCTION_BLOCK`_.
+
+In version 0, each value defined by an instruction is assigned an ID
+unique to the function. Function-level value IDs are assigned starting from
+``NumModuleValues`` since they share the same namespace as module-level
+values. The value enumerator resets after each function. When a value is
+an operand of an instruction, the value ID is used to represent the operand.
+For large functions or large modules, these operand values can be large.
+
+The encoding in version 1 attempts to avoid large operand values
+in common cases. Instead of using the value ID directly, operands are
+encoded as relative to the current instruction. Thus, if an operand
+is the value defined by the previous instruction, the operand
+will be encoded as 1.
+
+For example, instead of
+
+.. code-block:: llvm
+
+  #n = load #n-1
+  #n+1 = icmp eq #n, #const0
+  br #n+1, label #(bb1), label #(bb2)
+
+version 1 will encode the instructions as
+
+.. code-block:: llvm
+
+  #n = load #1
+  #n+1 = icmp eq #1, (#n+1)-#const0
+  br #1, label #(bb1), label #(bb2)
+
+Note in the example that operands which are constants also use
+the relative encoding, while operands like basic block labels
+do not use the relative encoding.
+
+Forward references will result in a negative value.
+This can be inefficient, as operands are normally encoded
+as unsigned VBRs. However, forward references are rare, except in the
+case of phi instructions. For phi instructions, operands are encoded as
+`Signed VBRs`_ to deal with forward references.
+
+
+MODULE_CODE_TRIPLE Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[TRIPLE, ...string...]``
+
+The ``TRIPLE`` record (code 2) contains a variable number of values representing
+the bytes of the ``target triple`` specification string.
+
+MODULE_CODE_DATALAYOUT Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[DATALAYOUT, ...string...]``
+
+The ``DATALAYOUT`` record (code 3) contains a variable number of values
+representing the bytes of the ``target datalayout`` specification string.
+
+MODULE_CODE_ASM Record
+^^^^^^^^^^^^^^^^^^^^^^
+
+``[ASM, ...string...]``
+
+The ``ASM`` record (code 4) contains a variable number of values representing
+the bytes of ``module asm`` strings, with individual assembly blocks separated
+by newline (ASCII 10) characters.
+
+.. _MODULE_CODE_SECTIONNAME:
+
+MODULE_CODE_SECTIONNAME Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[SECTIONNAME, ...string...]``
+
+The ``SECTIONNAME`` record (code 5) contains a variable number of values
+representing the bytes of a single section name string. There should be one
+``SECTIONNAME`` record for each section name referenced (e.g., in global
+variable or function ``section`` attributes) within the module. These records
+can be referenced by the 1-based index in the *section* fields of ``GLOBALVAR``
+or ``FUNCTION`` records.
+
+MODULE_CODE_DEPLIB Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[DEPLIB, ...string...]``
+
+The ``DEPLIB`` record (code 6) contains a variable number of values representing
+the bytes of a single dependent library name string, one of the libraries
+mentioned in a ``deplibs`` declaration.  There should be one ``DEPLIB`` record
+for each library name referenced.
+
+MODULE_CODE_GLOBALVAR Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[GLOBALVAR, pointer type, isconst, initid, linkage, alignment, section, visibility, threadlocal, unnamed_addr, externally_initialized, dllstorageclass, comdat]``
+
+The ``GLOBALVAR`` record (code 7) marks the declaration or definition of a
+global variable. The operand fields are:
+
+* *pointer type*: The type index of the pointer type used to point to this
+  global variable
+
+* *isconst*: Non-zero if the variable is treated as constant within the module,
+  or zero if it is not
+
+* *initid*: If non-zero, the value index of the initializer for this variable,
+  plus 1.
+
+.. _linkage type:
+
+* *linkage*: An encoding of the linkage type for this variable:
+
+  * ``external``: code 0
+  * ``weak``: code 1
+  * ``appending``: code 2
+  * ``internal``: code 3
+  * ``linkonce``: code 4
+  * ``dllimport``: code 5
+  * ``dllexport``: code 6
+  * ``extern_weak``: code 7
+  * ``common``: code 8
+  * ``private``: code 9
+  * ``weak_odr``: code 10
+  * ``linkonce_odr``: code 11
+  * ``available_externally``: code 12
+  * deprecated : code 13
+  * deprecated : code 14
+
+* alignment*: The logarithm base 2 of the variable's requested alignment, plus 1
+
+* *section*: If non-zero, the 1-based section index in the table of
+  `MODULE_CODE_SECTIONNAME`_ entries.
+
+.. _visibility:
+
+* *visibility*: If present, an encoding of the visibility of this variable:
+
+  * ``default``: code 0
+  * ``hidden``: code 1
+  * ``protected``: code 2
+
+.. _bcthreadlocal:
+
+* *threadlocal*: If present, an encoding of the thread local storage mode of the
+  variable:
+
+  * ``not thread local``: code 0
+  * ``thread local; default TLS model``: code 1
+  * ``localdynamic``: code 2
+  * ``initialexec``: code 3
+  * ``localexec``: code 4
+
+.. _bcunnamedaddr:
+
+* *unnamed_addr*: If present, an encoding of the ``unnamed_addr`` attribute of this
+  variable:
+
+  * not ``unnamed_addr``: code 0
+  * ``unnamed_addr``: code 1
+  * ``local_unnamed_addr``: code 2
+
+.. _bcdllstorageclass:
+
+* *dllstorageclass*: If present, an encoding of the DLL storage class of this variable:
+
+  * ``default``: code 0
+  * ``dllimport``: code 1
+  * ``dllexport``: code 2
+
+* *comdat*: An encoding of the COMDAT of this function
+
+.. _FUNCTION:
+
+MODULE_CODE_FUNCTION Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[FUNCTION, type, callingconv, isproto, linkage, paramattr, alignment, section, visibility, gc, prologuedata, dllstorageclass, comdat, prefixdata, personalityfn]``
+
+The ``FUNCTION`` record (code 8) marks the declaration or definition of a
+function. The operand fields are:
+
+* *type*: The type index of the function type describing this function
+
+* *callingconv*: The calling convention number:
+  * ``ccc``: code 0
+  * ``fastcc``: code 8
+  * ``coldcc``: code 9
+  * ``webkit_jscc``: code 12
+  * ``anyregcc``: code 13
+  * ``preserve_mostcc``: code 14
+  * ``preserve_allcc``: code 15
+  * ``swiftcc`` : code 16
+  * ``cxx_fast_tlscc``: code 17
+  * ``x86_stdcallcc``: code 64
+  * ``x86_fastcallcc``: code 65
+  * ``arm_apcscc``: code 66
+  * ``arm_aapcscc``: code 67
+  * ``arm_aapcs_vfpcc``: code 68
+
+* isproto*: Non-zero if this entry represents a declaration rather than a
+  definition
+
+* *linkage*: An encoding of the `linkage type`_ for this function
+
+* *paramattr*: If nonzero, the 1-based parameter attribute index into the table
+  of `PARAMATTR_CODE_ENTRY`_ entries.
+
+* *alignment*: The logarithm base 2 of the function's requested alignment, plus
+  1
+
+* *section*: If non-zero, the 1-based section index in the table of
+  `MODULE_CODE_SECTIONNAME`_ entries.
+
+* *visibility*: An encoding of the `visibility`_ of this function
+
+* *gc*: If present and nonzero, the 1-based garbage collector index in the table
+  of `MODULE_CODE_GCNAME`_ entries.
+
+* *unnamed_addr*: If present, an encoding of the
+  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this function
+
+* *prologuedata*: If non-zero, the value index of the prologue data for this function,
+  plus 1.
+
+* *dllstorageclass*: An encoding of the
+  :ref:`dllstorageclass<bcdllstorageclass>` of this function
+
+* *comdat*: An encoding of the COMDAT of this function
+
+* *prefixdata*: If non-zero, the value index of the prefix data for this function,
+  plus 1.
+
+* *personalityfn*: If non-zero, the value index of the personality function for this function,
+  plus 1.
+
+MODULE_CODE_ALIAS Record
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[ALIAS, alias type, aliasee val#, linkage, visibility, dllstorageclass, threadlocal, unnamed_addr]``
+
+The ``ALIAS`` record (code 9) marks the definition of an alias. The operand
+fields are
+
+* *alias type*: The type index of the alias
+
+* *aliasee val#*: The value index of the aliased value
+
+* *linkage*: An encoding of the `linkage type`_ for this alias
+
+* *visibility*: If present, an encoding of the `visibility`_ of the alias
+
+* *dllstorageclass*: If present, an encoding of the
+  :ref:`dllstorageclass<bcdllstorageclass>` of the alias
+
+* *threadlocal*: If present, an encoding of the
+  :ref:`thread local property<bcthreadlocal>` of the alias
+
+* *unnamed_addr*: If present, an encoding of the
+  :ref:`unnamed_addr<bcunnamedaddr>` attribute of this alias
+
+MODULE_CODE_PURGEVALS Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[PURGEVALS, numvals]``
+
+The ``PURGEVALS`` record (code 10) resets the module-level value list to the
+size given by the single operand value. Module-level value list items are added
+by ``GLOBALVAR``, ``FUNCTION``, and ``ALIAS`` records.  After a ``PURGEVALS``
+record is seen, new value indices will start from the given *numvals* value.
+
+.. _MODULE_CODE_GCNAME:
+
+MODULE_CODE_GCNAME Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[GCNAME, ...string...]``
+
+The ``GCNAME`` record (code 11) contains a variable number of values
+representing the bytes of a single garbage collector name string. There should
+be one ``GCNAME`` record for each garbage collector name referenced in function
+``gc`` attributes within the module. These records can be referenced by 1-based
+index in the *gc* fields of ``FUNCTION`` records.
+
+.. _PARAMATTR_BLOCK:
+
+PARAMATTR_BLOCK Contents
+------------------------
+
+The ``PARAMATTR_BLOCK`` block (id 9) contains a table of entries describing the
+attributes of function parameters. These entries are referenced by 1-based index
+in the *paramattr* field of module block `FUNCTION`_ records, or within the
+*attr* field of function block ``INST_INVOKE`` and ``INST_CALL`` records.
+
+Entries within ``PARAMATTR_BLOCK`` are constructed to ensure that each is unique
+(i.e., no two indices represent equivalent attribute lists).
+
+.. _PARAMATTR_CODE_ENTRY:
+
+PARAMATTR_CODE_ENTRY Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[ENTRY, paramidx0, attr0, paramidx1, attr1...]``
+
+The ``ENTRY`` record (code 1) contains an even number of values describing a
+unique set of function parameter attributes. Each *paramidx* value indicates
+which set of attributes is represented, with 0 representing the return value
+attributes, 0xFFFFFFFF representing function attributes, and other values
+representing 1-based function parameters. Each *attr* value is a bitmap with the
+following interpretation:
+
+* bit 0: ``zeroext``
+* bit 1: ``signext``
+* bit 2: ``noreturn``
+* bit 3: ``inreg``
+* bit 4: ``sret``
+* bit 5: ``nounwind``
+* bit 6: ``noalias``
+* bit 7: ``byval``
+* bit 8: ``nest``
+* bit 9: ``readnone``
+* bit 10: ``readonly``
+* bit 11: ``noinline``
+* bit 12: ``alwaysinline``
+* bit 13: ``optsize``
+* bit 14: ``ssp``
+* bit 15: ``sspreq``
+* bits 16-31: ``align n``
+* bit 32: ``nocapture``
+* bit 33: ``noredzone``
+* bit 34: ``noimplicitfloat``
+* bit 35: ``naked``
+* bit 36: ``inlinehint``
+* bits 37-39: ``alignstack n``, represented as the logarithm
+  base 2 of the requested alignment, plus 1
+
+.. _TYPE_BLOCK:
+
+TYPE_BLOCK Contents
+-------------------
+
+The ``TYPE_BLOCK`` block (id 10) contains records which constitute a table of
+type operator entries used to represent types referenced within an LLVM
+module. Each record (with the exception of `NUMENTRY`_) generates a single type
+table entry, which may be referenced by 0-based index from instructions,
+constants, metadata, type symbol table entries, or other type operator records.
+
+Entries within ``TYPE_BLOCK`` are constructed to ensure that each entry is
+unique (i.e., no two indices represent structurally equivalent types).
+
+.. _TYPE_CODE_NUMENTRY:
+.. _NUMENTRY:
+
+TYPE_CODE_NUMENTRY Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[NUMENTRY, numentries]``
+
+The ``NUMENTRY`` record (code 1) contains a single value which indicates the
+total number of type code entries in the type table of the module. If present,
+``NUMENTRY`` should be the first record in the block.
+
+TYPE_CODE_VOID Record
+^^^^^^^^^^^^^^^^^^^^^
+
+``[VOID]``
+
+The ``VOID`` record (code 2) adds a ``void`` type to the type table.
+
+TYPE_CODE_HALF Record
+^^^^^^^^^^^^^^^^^^^^^
+
+``[HALF]``
+
+The ``HALF`` record (code 10) adds a ``half`` (16-bit floating point) type to
+the type table.
+
+TYPE_CODE_FLOAT Record
+^^^^^^^^^^^^^^^^^^^^^^
+
+``[FLOAT]``
+
+The ``FLOAT`` record (code 3) adds a ``float`` (32-bit floating point) type to
+the type table.
+
+TYPE_CODE_DOUBLE Record
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``[DOUBLE]``
+
+The ``DOUBLE`` record (code 4) adds a ``double`` (64-bit floating point) type to
+the type table.
+
+TYPE_CODE_LABEL Record
+^^^^^^^^^^^^^^^^^^^^^^
+
+``[LABEL]``
+
+The ``LABEL`` record (code 5) adds a ``label`` type to the type table.
+
+TYPE_CODE_OPAQUE Record
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``[OPAQUE]``
+
+The ``OPAQUE`` record (code 6) adds an ``opaque`` type to the type table. Note
+that distinct ``opaque`` types are not unified.
+
+TYPE_CODE_INTEGER Record
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[INTEGER, width]``
+
+The ``INTEGER`` record (code 7) adds an integer type to the type table. The
+single *width* field indicates the width of the integer type.
+
+TYPE_CODE_POINTER Record
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[POINTER, pointee type, address space]``
+
+The ``POINTER`` record (code 8) adds a pointer type to the type table. The
+operand fields are
+
+* *pointee type*: The type index of the pointed-to type
+
+* *address space*: If supplied, the target-specific numbered address space where
+  the pointed-to object resides. Otherwise, the default address space is zero.
+
+TYPE_CODE_FUNCTION Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[FUNCTION, vararg, ignored, retty, ...paramty... ]``
+
+The ``FUNCTION`` record (code 9) adds a function type to the type table. The
+operand fields are
+
+* *vararg*: Non-zero if the type represents a varargs function
+
+* *ignored*: This value field is present for backward compatibility only, and is
+  ignored
+
+* *retty*: The type index of the function's return type
+
+* *paramty*: Zero or more type indices representing the parameter types of the
+  function
+
+TYPE_CODE_STRUCT Record
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``[STRUCT, ispacked, ...eltty...]``
+
+The ``STRUCT`` record (code 10) adds a struct type to the type table. The
+operand fields are
+
+* *ispacked*: Non-zero if the type represents a packed structure
+
+* *eltty*: Zero or more type indices representing the element types of the
+  structure
+
+TYPE_CODE_ARRAY Record
+^^^^^^^^^^^^^^^^^^^^^^
+
+``[ARRAY, numelts, eltty]``
+
+The ``ARRAY`` record (code 11) adds an array type to the type table.  The
+operand fields are
+
+* *numelts*: The number of elements in arrays of this type
+
+* *eltty*: The type index of the array element type
+
+TYPE_CODE_VECTOR Record
+^^^^^^^^^^^^^^^^^^^^^^^
+
+``[VECTOR, numelts, eltty]``
+
+The ``VECTOR`` record (code 12) adds a vector type to the type table.  The
+operand fields are
+
+* *numelts*: The number of elements in vectors of this type
+
+* *eltty*: The type index of the vector element type
+
+TYPE_CODE_X86_FP80 Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[X86_FP80]``
+
+The ``X86_FP80`` record (code 13) adds an ``x86_fp80`` (80-bit floating point)
+type to the type table.
+
+TYPE_CODE_FP128 Record
+^^^^^^^^^^^^^^^^^^^^^^
+
+``[FP128]``
+
+The ``FP128`` record (code 14) adds an ``fp128`` (128-bit floating point) type
+to the type table.
+
+TYPE_CODE_PPC_FP128 Record
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[PPC_FP128]``
+
+The ``PPC_FP128`` record (code 15) adds a ``ppc_fp128`` (128-bit floating point)
+type to the type table.
+
+TYPE_CODE_METADATA Record
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``[METADATA]``
+
+The ``METADATA`` record (code 16) adds a ``metadata`` type to the type table.
+
+.. _CONSTANTS_BLOCK:
+
+CONSTANTS_BLOCK Contents
+------------------------
+
+The ``CONSTANTS_BLOCK`` block (id 11) ...
+
+.. _FUNCTION_BLOCK:
+
+FUNCTION_BLOCK Contents
+-----------------------
+
+The ``FUNCTION_BLOCK`` block (id 12) ...
+
+In addition to the record types described below, a ``FUNCTION_BLOCK`` block may
+contain the following sub-blocks:
+
+* `CONSTANTS_BLOCK`_
+* `VALUE_SYMTAB_BLOCK`_
+* `METADATA_ATTACHMENT`_
+
+.. _TYPE_SYMTAB_BLOCK:
+
+TYPE_SYMTAB_BLOCK Contents
+--------------------------
+
+The ``TYPE_SYMTAB_BLOCK`` block (id 13) contains entries which map between
+module-level named types and their corresponding type indices.
+
+.. _TST_CODE_ENTRY:
+
+TST_CODE_ENTRY Record
+^^^^^^^^^^^^^^^^^^^^^
+
+``[ENTRY, typeid, ...string...]``
+
+The ``ENTRY`` record (code 1) contains a variable number of values, with the
+first giving the type index of the designated type, and the remaining values
+giving the character codes of the type name. Each entry corresponds to a single
+named type.
+
+.. _VALUE_SYMTAB_BLOCK:
+
+VALUE_SYMTAB_BLOCK Contents
+---------------------------
+
+The ``VALUE_SYMTAB_BLOCK`` block (id 14) ...
+
+.. _METADATA_BLOCK:
+
+METADATA_BLOCK Contents
+-----------------------
+
+The ``METADATA_BLOCK`` block (id 15) ...
+
+.. _METADATA_ATTACHMENT:
+
+METADATA_ATTACHMENT Contents
+----------------------------
+
+The ``METADATA_ATTACHMENT`` block (id 16) ...

Added: www-releases/trunk/3.9.1/docs/_sources/BitSets.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BitSets.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BitSets.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BitSets.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,115 @@
+=======
+Bitsets
+=======
+
+This is a mechanism that allows IR modules to co-operatively build pointer
+sets corresponding to addresses within a given set of globals. One example
+of a use case for this is to allow a C++ program to efficiently verify (at
+each call site) that a vtable pointer is in the set of valid vtable pointers
+for the type of the class or its derived classes.
+
+To use the mechanism, a client creates a global metadata node named
+``llvm.bitsets``.  Each element is a metadata node with three elements:
+
+1. a metadata object representing an identifier for the bitset
+2. either a global variable or a function
+3. a byte offset into the global (generally zero for functions)
+
+Each bitset must exclusively contain either global variables or functions.
+
+.. admonition:: Limitation
+
+  The current implementation only supports functions as members of bitsets on
+  the x86-32 and x86-64 architectures.
+
+This will cause a link-time optimization pass to generate bitsets from the
+memory addresses referenced from the elements of the bitset metadata. The
+pass will lay out referenced global variables consecutively, so their
+definitions must be available at LTO time.
+
+A bit set containing functions is transformed into a jump table, which
+is a block of code consisting of one branch instruction for each of the
+functions in the bit set that branches to the target function, and redirect
+any taken function addresses to the corresponding jump table entry. In the
+object file's symbol table, the jump table entries take the identities of
+the original functions, so that addresses taken outside the module will pass
+any verification done inside the module.
+
+Jump tables may call external functions, so their definitions need not
+be available at LTO time. Note that if an externally defined function is a
+member of a bitset, there is no guarantee that its identity within the module
+will be the same as its identity outside of the module, as the former will
+be the jump table entry if a jump table is necessary.
+
+The `GlobalLayoutBuilder`_ class is responsible for laying out the globals
+efficiently to minimize the sizes of the underlying bitsets. An intrinsic,
+:ref:`llvm.bitset.test <bitset.test>`, generates code to test whether a
+given pointer is a member of a bitset.
+
+:Example:
+
+::
+
+    target datalayout = "e-p:32:32"
+
+    @a = internal global i32 0
+    @b = internal global i32 0
+    @c = internal global i32 0
+    @d = internal global [2 x i32] [i32 0, i32 0]
+
+    define void @e() {
+      ret void
+    }
+
+    define void @f() {
+      ret void
+    }
+
+    declare void @g()
+
+    !llvm.bitsets = !{!0, !1, !2, !3, !4, !5, !6}
+
+    !0 = !{!"bitset1", i32* @a, i32 0}
+    !1 = !{!"bitset1", i32* @b, i32 0}
+    !2 = !{!"bitset2", i32* @b, i32 0}
+    !3 = !{!"bitset2", i32* @c, i32 0}
+    !4 = !{!"bitset2", i32* @d, i32 4}
+    !5 = !{!"bitset3", void ()* @e, i32 0}
+    !6 = !{!"bitset3", void ()* @g, i32 0}
+
+    declare i1 @llvm.bitset.test(i8* %ptr, metadata %bitset) nounwind readnone
+
+    define i1 @foo(i32* %p) {
+      %pi8 = bitcast i32* %p to i8*
+      %x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset1")
+      ret i1 %x
+    }
+
+    define i1 @bar(i32* %p) {
+      %pi8 = bitcast i32* %p to i8*
+      %x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset2")
+      ret i1 %x
+    }
+
+    define i1 @baz(void ()* %p) {
+      %pi8 = bitcast void ()* %p to i8*
+      %x = call i1 @llvm.bitset.test(i8* %pi8, metadata !"bitset3")
+      ret i1 %x
+    }
+
+    define void @main() {
+      %a1 = call i1 @foo(i32* @a) ; returns 1
+      %b1 = call i1 @foo(i32* @b) ; returns 1
+      %c1 = call i1 @foo(i32* @c) ; returns 0
+      %a2 = call i1 @bar(i32* @a) ; returns 0
+      %b2 = call i1 @bar(i32* @b) ; returns 1
+      %c2 = call i1 @bar(i32* @c) ; returns 1
+      %d02 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 0)) ; returns 0
+      %d12 = call i1 @bar(i32* getelementptr ([2 x i32]* @d, i32 0, i32 1)) ; returns 1
+      %e = call i1 @baz(void ()* @e) ; returns 1
+      %f = call i1 @baz(void ()* @f) ; returns 0
+      %g = call i1 @baz(void ()* @g) ; returns 1
+      ret void
+    }
+
+.. _GlobalLayoutBuilder: http://llvm.org/klaus/llvm/blob/master/include/llvm/Transforms/IPO/LowerBitSets.h

Added: www-releases/trunk/3.9.1/docs/_sources/BlockFrequencyTerminology.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BlockFrequencyTerminology.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BlockFrequencyTerminology.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BlockFrequencyTerminology.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,130 @@
+================================
+LLVM Block Frequency Terminology
+================================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+Block Frequency is a metric for estimating the relative frequency of different
+basic blocks.  This document describes the terminology that the
+``BlockFrequencyInfo`` and ``MachineBlockFrequencyInfo`` analysis passes use.
+
+Branch Probability
+==================
+
+Blocks with multiple successors have probabilities associated with each
+outgoing edge.  These are called branch probabilities.  For a given block, the
+sum of its outgoing branch probabilities should be 1.0.
+
+Branch Weight
+=============
+
+Rather than storing fractions on each edge, we store an integer weight.
+Weights are relative to the other edges of a given predecessor block.  The
+branch probability associated with a given edge is its own weight divided by
+the sum of the weights on the predecessor's outgoing edges.
+
+For example, consider this IR:
+
+.. code-block:: llvm
+
+   define void @foo() {
+       ; ...
+       A:
+           br i1 %cond, label %B, label %C, !prof !0
+       ; ...
+   }
+   !0 = metadata !{metadata !"branch_weights", i32 7, i32 8}
+
+and this simple graph representation::
+
+   A -> B  (edge-weight: 7)
+   A -> C  (edge-weight: 8)
+
+The probability of branching from block A to block B is 7/15, and the
+probability of branching from block A to block C is 8/15.
+
+See :doc:`BranchWeightMetadata` for details about the branch weight IR
+representation.
+
+Block Frequency
+===============
+
+Block frequency is a relative metric that represents the number of times a
+block executes.  The ratio of a block frequency to the entry block frequency is
+the expected number of times the block will execute per entry to the function.
+
+Block frequency is the main output of the ``BlockFrequencyInfo`` and
+``MachineBlockFrequencyInfo`` analysis passes.
+
+Implementation: a series of DAGs
+================================
+
+The implementation of the block frequency calculation analyses each loop,
+bottom-up, ignoring backedges; i.e., as a DAG.  After each loop is processed,
+it's packaged up to act as a pseudo-node in its parent loop's (or the
+function's) DAG analysis.
+
+Block Mass
+==========
+
+For each DAG, the entry node is assigned a mass of ``UINT64_MAX`` and mass is
+distributed to successors according to branch weights.  Block Mass uses a
+fixed-point representation where ``UINT64_MAX`` represents ``1.0`` and ``0``
+represents a number just above ``0.0``.
+
+After mass is fully distributed, in any cut of the DAG that separates the exit
+nodes from the entry node, the sum of the block masses of the nodes succeeded
+by a cut edge should equal ``UINT64_MAX``.  In other words, mass is conserved
+as it "falls" through the DAG.
+
+If a function's basic block graph is a DAG, then block masses are valid block
+frequencies.  This works poorly in practise though, since downstream users rely
+on adding block frequencies together without hitting the maximum.
+
+Loop Scale
+==========
+
+Loop scale is a metric that indicates how many times a loop iterates per entry.
+As mass is distributed through the loop's DAG, the (otherwise ignored) backedge
+mass is collected.  This backedge mass is used to compute the exit frequency,
+and thus the loop scale.
+
+Implementation: Getting from mass and scale to frequency
+========================================================
+
+After analysing the complete series of DAGs, each block has a mass (local to
+its containing loop, if any), and each loop pseudo-node has a loop scale and
+its own mass (from its parent's DAG).
+
+We can get an initial frequency assignment (with entry frequency of 1.0) by
+multiplying these masses and loop scales together.  A given block's frequency
+is the product of its mass, the mass of containing loops' pseudo nodes, and the
+containing loops' loop scales.
+
+Since downstream users need integers (not floating point), this initial
+frequency assignment is shifted as necessary into the range of ``uint64_t``.
+
+Block Bias
+==========
+
+Block bias is a proposed *absolute* metric to indicate a bias toward or away
+from a given block during a function's execution.  The idea is that bias can be
+used in isolation to indicate whether a block is relatively hot or cold, or to
+compare two blocks to indicate whether one is hotter or colder than the other.
+
+The proposed calculation involves calculating a *reference* block frequency,
+where:
+
+* every branch weight is assumed to be 1 (i.e., every branch probability
+  distribution is even) and
+
+* loop scales are ignored.
+
+This reference frequency represents what the block frequency would be in an
+unbiased graph.
+
+The bias is the ratio of the block frequency to this reference block frequency.

Added: www-releases/trunk/3.9.1/docs/_sources/BranchWeightMetadata.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BranchWeightMetadata.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BranchWeightMetadata.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BranchWeightMetadata.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,140 @@
+===========================
+LLVM Branch Weight Metadata
+===========================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+Branch Weight Metadata represents branch weights as its likeliness to be taken
+(see :doc:`BlockFrequencyTerminology`). Metadata is assigned to the
+``TerminatorInst`` as a ``MDNode`` of the ``MD_prof`` kind. The first operator
+is always a ``MDString`` node with the string "branch_weights".  Number of
+operators depends on the terminator type.
+
+Branch weights might be fetch from the profiling file, or generated based on
+`__builtin_expect`_ instruction.
+
+All weights are represented as an unsigned 32-bit values, where higher value
+indicates greater chance to be taken.
+
+Supported Instructions
+======================
+
+``BranchInst``
+^^^^^^^^^^^^^^
+
+Metadata is only assigned to the conditional branches. There are two extra
+operands for the true and the false branch.
+
+.. code-block:: llvm
+
+  !0 = metadata !{
+    metadata !"branch_weights",
+    i32 <TRUE_BRANCH_WEIGHT>,
+    i32 <FALSE_BRANCH_WEIGHT>
+  }
+
+``SwitchInst``
+^^^^^^^^^^^^^^
+
+Branch weights are assigned to every case (including the ``default`` case which
+is always case #0).
+
+.. code-block:: llvm
+
+  !0 = metadata !{
+    metadata !"branch_weights",
+    i32 <DEFAULT_BRANCH_WEIGHT>
+    [ , i32 <CASE_BRANCH_WEIGHT> ... ]
+  }
+
+``IndirectBrInst``
+^^^^^^^^^^^^^^^^^^
+
+Branch weights are assigned to every destination.
+
+.. code-block:: llvm
+
+  !0 = metadata !{
+    metadata !"branch_weights",
+    i32 <LABEL_BRANCH_WEIGHT>
+    [ , i32 <LABEL_BRANCH_WEIGHT> ... ]
+  }
+
+Other
+^^^^^
+
+Other terminator instructions are not allowed to contain Branch Weight Metadata.
+
+.. _\__builtin_expect:
+
+Built-in ``expect`` Instructions
+================================
+
+``__builtin_expect(long exp, long c)`` instruction provides branch prediction
+information. The return value is the value of ``exp``.
+
+It is especially useful in conditional statements. Currently Clang supports two
+conditional statements:
+
+``if`` statement
+^^^^^^^^^^^^^^^^
+
+The ``exp`` parameter is the condition. The ``c`` parameter is the expected
+comparison value. If it is equal to 1 (true), the condition is likely to be
+true, in other case condition is likely to be false. For example:
+
+.. code-block:: c++
+
+  if (__builtin_expect(x > 0, 1)) {
+    // This block is likely to be taken.
+  }
+
+``switch`` statement
+^^^^^^^^^^^^^^^^^^^^
+
+The ``exp`` parameter is the value. The ``c`` parameter is the expected
+value. If the expected value doesn't show on the cases list, the ``default``
+case is assumed to be likely taken.
+
+.. code-block:: c++
+
+  switch (__builtin_expect(x, 5)) {
+  default: break;
+  case 0:  // ...
+  case 3:  // ...
+  case 5:  // This case is likely to be taken.
+  }
+
+CFG Modifications
+=================
+
+Branch Weight Metatada is not proof against CFG changes. If terminator operands'
+are changed some action should be taken. In other case some misoptimizations may
+occur due to incorrect branch prediction information.
+
+Function Entry Counts
+=====================
+
+To allow comparing different functions during inter-procedural analysis and
+optimization, ``MD_prof`` nodes can also be assigned to a function definition.
+The first operand is a string indicating the name of the associated counter.
+
+Currently, one counter is supported: "function_entry_count". This is a 64-bit
+counter that indicates the number of times that this function was invoked (in
+the case of instrumentation-based profiles). In the case of sampling-based
+profiles, this counter is an approximation of how many times the function was
+invoked.
+
+For example, in the code below, the instrumentation for function foo()
+indicates that it was called 2,590 times at runtime.
+
+.. code-block:: llvm
+
+  define i32 @foo() !prof !1 {
+    ret i32 0
+  }
+  !1 = !{!"function_entry_count", i64 2590}

Added: www-releases/trunk/3.9.1/docs/_sources/Bugpoint.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/Bugpoint.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/Bugpoint.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/Bugpoint.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,216 @@
+====================================
+LLVM bugpoint tool: design and usage
+====================================
+
+.. contents::
+   :local:
+
+Description
+===========
+
+``bugpoint`` narrows down the source of problems in LLVM tools and passes.  It
+can be used to debug three types of failures: optimizer crashes, miscompilations
+by optimizers, or bad native code generation (including problems in the static
+and JIT compilers).  It aims to reduce large test cases to small, useful ones.
+For example, if ``opt`` crashes while optimizing a file, it will identify the
+optimization (or combination of optimizations) that causes the crash, and reduce
+the file down to a small example which triggers the crash.
+
+For detailed case scenarios, such as debugging ``opt``, or one of the LLVM code
+generators, see :doc:`HowToSubmitABug`.
+
+Design Philosophy
+=================
+
+``bugpoint`` is designed to be a useful tool without requiring any hooks into
+the LLVM infrastructure at all.  It works with any and all LLVM passes and code
+generators, and does not need to "know" how they work.  Because of this, it may
+appear to do stupid things or miss obvious simplifications.  ``bugpoint`` is
+also designed to trade off programmer time for computer time in the
+compiler-debugging process; consequently, it may take a long period of
+(unattended) time to reduce a test case, but we feel it is still worth it. Note
+that ``bugpoint`` is generally very quick unless debugging a miscompilation
+where each test of the program (which requires executing it) takes a long time.
+
+Automatic Debugger Selection
+----------------------------
+
+``bugpoint`` reads each ``.bc`` or ``.ll`` file specified on the command line
+and links them together into a single module, called the test program.  If any
+LLVM passes are specified on the command line, it runs these passes on the test
+program.  If any of the passes crash, or if they produce malformed output (which
+causes the verifier to abort), ``bugpoint`` starts the `crash debugger`_.
+
+Otherwise, if the ``-output`` option was not specified, ``bugpoint`` runs the
+test program with the "safe" backend (which is assumed to generate good code) to
+generate a reference output.  Once ``bugpoint`` has a reference output for the
+test program, it tries executing it with the selected code generator.  If the
+selected code generator crashes, ``bugpoint`` starts the `crash debugger`_ on
+the code generator.  Otherwise, if the resulting output differs from the
+reference output, it assumes the difference resulted from a code generator
+failure, and starts the `code generator debugger`_.
+
+Finally, if the output of the selected code generator matches the reference
+output, ``bugpoint`` runs the test program after all of the LLVM passes have
+been applied to it.  If its output differs from the reference output, it assumes
+the difference resulted from a failure in one of the LLVM passes, and enters the
+`miscompilation debugger`_.  Otherwise, there is no problem ``bugpoint`` can
+debug.
+
+.. _crash debugger:
+
+Crash debugger
+--------------
+
+If an optimizer or code generator crashes, ``bugpoint`` will try as hard as it
+can to reduce the list of passes (for optimizer crashes) and the size of the
+test program.  First, ``bugpoint`` figures out which combination of optimizer
+passes triggers the bug. This is useful when debugging a problem exposed by
+``opt``, for example, because it runs over 38 passes.
+
+Next, ``bugpoint`` tries removing functions from the test program, to reduce its
+size.  Usually it is able to reduce a test program to a single function, when
+debugging intraprocedural optimizations.  Once the number of functions has been
+reduced, it attempts to delete various edges in the control flow graph, to
+reduce the size of the function as much as possible.  Finally, ``bugpoint``
+deletes any individual LLVM instructions whose absence does not eliminate the
+failure.  At the end, ``bugpoint`` should tell you what passes crash, give you a
+bitcode file, and give you instructions on how to reproduce the failure with
+``opt`` or ``llc``.
+
+.. _code generator debugger:
+
+Code generator debugger
+-----------------------
+
+The code generator debugger attempts to narrow down the amount of code that is
+being miscompiled by the selected code generator.  To do this, it takes the test
+program and partitions it into two pieces: one piece which it compiles with the
+"safe" backend (into a shared object), and one piece which it runs with either
+the JIT or the static LLC compiler.  It uses several techniques to reduce the
+amount of code pushed through the LLVM code generator, to reduce the potential
+scope of the problem.  After it is finished, it emits two bitcode files (called
+"test" [to be compiled with the code generator] and "safe" [to be compiled with
+the "safe" backend], respectively), and instructions for reproducing the
+problem.  The code generator debugger assumes that the "safe" backend produces
+good code.
+
+.. _miscompilation debugger:
+
+Miscompilation debugger
+-----------------------
+
+The miscompilation debugger works similarly to the code generator debugger.  It
+works by splitting the test program into two pieces, running the optimizations
+specified on one piece, linking the two pieces back together, and then executing
+the result.  It attempts to narrow down the list of passes to the one (or few)
+which are causing the miscompilation, then reduce the portion of the test
+program which is being miscompiled.  The miscompilation debugger assumes that
+the selected code generator is working properly.
+
+Advice for using bugpoint
+=========================
+
+``bugpoint`` can be a remarkably useful tool, but it sometimes works in
+non-obvious ways.  Here are some hints and tips:
+
+* In the code generator and miscompilation debuggers, ``bugpoint`` only works
+  with programs that have deterministic output.  Thus, if the program outputs
+  ``argv[0]``, the date, time, or any other "random" data, ``bugpoint`` may
+  misinterpret differences in these data, when output, as the result of a
+  miscompilation.  Programs should be temporarily modified to disable outputs
+  that are likely to vary from run to run.
+
+* In the code generator and miscompilation debuggers, debugging will go faster
+  if you manually modify the program or its inputs to reduce the runtime, but
+  still exhibit the problem.
+
+* ``bugpoint`` is extremely useful when working on a new optimization: it helps
+  track down regressions quickly.  To avoid having to relink ``bugpoint`` every
+  time you change your optimization however, have ``bugpoint`` dynamically load
+  your optimization with the ``-load`` option.
+
+* ``bugpoint`` can generate a lot of output and run for a long period of time.
+  It is often useful to capture the output of the program to file.  For example,
+  in the C shell, you can run:
+
+  .. code-block:: console
+
+    $ bugpoint  ... |& tee bugpoint.log
+
+  to get a copy of ``bugpoint``'s output in the file ``bugpoint.log``, as well
+  as on your terminal.
+
+* ``bugpoint`` cannot debug problems with the LLVM linker. If ``bugpoint``
+  crashes before you see its "All input ok" message, you might try ``llvm-link
+  -v`` on the same set of input files. If that also crashes, you may be
+  experiencing a linker bug.
+
+* ``bugpoint`` is useful for proactively finding bugs in LLVM.  Invoking
+  ``bugpoint`` with the ``-find-bugs`` option will cause the list of specified
+  optimizations to be randomized and applied to the program. This process will
+  repeat until a bug is found or the user kills ``bugpoint``.
+
+What to do when bugpoint isn't enough
+=====================================
+	
+Sometimes, ``bugpoint`` is not enough. In particular, InstCombine and
+TargetLowering both have visitor structured code with lots of potential
+transformations.  If the process of using bugpoint has left you with still too
+much code to figure out and the problem seems to be in instcombine, the
+following steps may help.  These same techniques are useful with TargetLowering
+as well.
+
+Turn on ``-debug-only=instcombine`` and see which transformations within
+instcombine are firing by selecting out lines with "``IC``" in them.
+
+At this point, you have a decision to make.  Is the number of transformations
+small enough to step through them using a debugger?  If so, then try that.
+
+If there are too many transformations, then a source modification approach may
+be helpful.  In this approach, you can modify the source code of instcombine to
+disable just those transformations that are being performed on your test input
+and perform a binary search over the set of transformations.  One set of places
+to modify are the "``visit*``" methods of ``InstCombiner`` (*e.g.*
+``visitICmpInst``) by adding a "``return false``" as the first line of the
+method.
+
+If that still doesn't remove enough, then change the caller of
+``InstCombiner::DoOneIteration``, ``InstCombiner::runOnFunction`` to limit the
+number of iterations.
+
+You may also find it useful to use "``-stats``" now to see what parts of
+instcombine are firing.  This can guide where to put additional reporting code.
+
+At this point, if the amount of transformations is still too large, then
+inserting code to limit whether or not to execute the body of the code in the
+visit function can be helpful.  Add a static counter which is incremented on
+every invocation of the function.  Then add code which simply returns false on
+desired ranges.  For example:
+
+.. code-block:: c++
+
+
+  static int calledCount = 0;
+  calledCount++;
+  DEBUG(if (calledCount < 212) return false);
+  DEBUG(if (calledCount > 217) return false);
+  DEBUG(if (calledCount == 213) return false);
+  DEBUG(if (calledCount == 214) return false);
+  DEBUG(if (calledCount == 215) return false);
+  DEBUG(if (calledCount == 216) return false);
+  DEBUG(dbgs() << "visitXOR calledCount: " << calledCount << "\n");
+  DEBUG(dbgs() << "I: "; I->dump());
+
+could be added to ``visitXOR`` to limit ``visitXor`` to being applied only to
+calls 212 and 217. This is from an actual test case and raises an important
+point---a simple binary search may not be sufficient, as transformations that
+interact may require isolating more than one call.  In TargetLowering, use
+``return SDNode();`` instead of ``return false;``.
+
+Now that the number of transformations is down to a manageable number, try
+examining the output to see if you can figure out which transformations are
+being done.  If that can be figured out, then do the usual debugging.  If which
+code corresponds to the transformation being performed isn't obvious, set a
+breakpoint after the call count based disabling and step through the code.
+Alternatively, you can use "``printf``" style debugging to report waypoints.

Added: www-releases/trunk/3.9.1/docs/_sources/BuildingLLVMWithAutotools.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/BuildingLLVMWithAutotools.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/BuildingLLVMWithAutotools.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/BuildingLLVMWithAutotools.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,338 @@
+====================================
+Building LLVM With Autotools
+====================================
+
+.. contents::
+   :local:
+
+.. warning::
+
+    Building LLVM with autoconf is deprecated as of 3.8. The autoconf build
+    system will be removed in 3.9. Please migrate to using CMake. For more
+    information see: `Building LLVM with CMake <CMake.html>`_
+
+Overview
+========
+
+This document details how to use the LLVM autotools based build system to
+configure and build LLVM from source. The normal developer process using CMake
+is detailed `here <GettingStarted.html#check-here>`_.
+
+A Quick Summary
+---------------
+
+#. Configure and build LLVM and Clang:
+
+   * ``cd where-you-want-to-build-llvm``
+   * ``mkdir build`` (for building without polluting the source dir)
+   * ``cd build``
+   * ``../llvm/configure [options]``
+     Some common options:
+
+     * ``--prefix=directory`` --- Specify for *directory* the full pathname of
+       where you want the LLVM tools and libraries to be installed (default
+       ``/usr/local``).
+
+     * ``--enable-optimized`` --- Compile with optimizations enabled (default
+       is NO).
+
+     * ``--enable-assertions`` --- Compile with assertion checks enabled
+       (default is YES).
+
+   * ``make [-j]`` --- The ``-j`` specifies the number of jobs (commands) to run
+     simultaneously.  This builds both LLVM and Clang for Debug+Asserts mode.
+     The ``--enable-optimized`` configure option is used to specify a Release
+     build.
+
+   * ``make check-all`` --- This run the regression tests to ensure everything
+     is in working order.
+
+   * If you get an "internal compiler error (ICE)" or test failures, see
+     `here <GettingStarted.html#check-here>`_.
+
+Local LLVM Configuration
+------------------------
+
+Once checked out from the Subversion repository, the LLVM suite source code must
+be configured via the ``configure`` script.  This script sets variables in the
+various ``*.in`` files, most notably ``llvm/Makefile.config`` and
+``llvm/include/Config/config.h``.  It also populates *OBJ_ROOT* with the
+Makefiles needed to begin building LLVM.
+
+The following environment variables are used by the ``configure`` script to
+configure the build system:
+
++------------+-----------------------------------------------------------+
+| Variable   | Purpose                                                   |
++============+===========================================================+
+| CC         | Tells ``configure`` which C compiler to use.  By default, |
+|            | ``configure`` will check ``PATH`` for ``clang`` and GCC C |
+|            | compilers (in this order).  Use this variable to override |
+|            | ``configure``\'s  default behavior.                       |
++------------+-----------------------------------------------------------+
+| CXX        | Tells ``configure`` which C++ compiler to use.  By        |
+|            | default, ``configure`` will check ``PATH`` for            |
+|            | ``clang++`` and GCC C++ compilers (in this order).  Use   |
+|            | this variable to override  ``configure``'s default        |
+|            | behavior.                                                 |
++------------+-----------------------------------------------------------+
+
+The following options can be used to set or enable LLVM specific options:
+
+``--enable-optimized``
+
+  Enables optimized compilation (debugging symbols are removed and GCC
+  optimization flags are enabled). Note that this is the default setting if you
+  are using the LLVM distribution. The default behavior of a Subversion
+  checkout is to use an unoptimized build (also known as a debug build).
+
+``--enable-debug-runtime``
+
+  Enables debug symbols in the runtime libraries. The default is to strip debug
+  symbols from the runtime libraries.
+
+``--enable-jit``
+
+  Compile the Just In Time (JIT) compiler functionality.  This is not available
+  on all platforms.  The default is dependent on platform, so it is best to
+  explicitly enable it if you want it.
+
+``--enable-targets=target-option``
+
+  Controls which targets will be built and linked into llc. The default value
+  for ``target_options`` is "all" which builds and links all available targets.
+  The "host" target is selected as the target of the build host. You can also
+  specify a comma separated list of target names that you want available in llc.
+  The target names use all lower case. The current set of targets is:
+
+    ``aarch64, arm, arm64, cpp, hexagon, mips, mipsel, mips64, mips64el, msp430,
+    powerpc, nvptx, r600, sparc, systemz, x86, x86_64, xcore``.
+
+``--enable-doxygen``
+
+  Look for the doxygen program and enable construction of doxygen based
+  documentation from the source code. This is disabled by default because
+  generating the documentation can take a long time and producess 100s of
+  megabytes of output.
+
+To configure LLVM, follow these steps:
+
+#. Change directory into the object root directory:
+
+   .. code-block:: console
+
+     % cd OBJ_ROOT
+
+#. Run the ``configure`` script located in the LLVM source tree:
+
+   .. code-block:: console
+
+     % $LLVM_SRC_DIR/configure --prefix=/install/path [other options]
+
+Compiling the LLVM Suite Source Code
+------------------------------------
+
+Once you have configured LLVM, you can build it.  There are three types of
+builds:
+
+Debug Builds
+
+  These builds are the default when one is using a Subversion checkout and
+  types ``gmake`` (unless the ``--enable-optimized`` option was used during
+  configuration).  The build system will compile the tools and libraries with
+  debugging information.  To get a Debug Build using the LLVM distribution the
+  ``--disable-optimized`` option must be passed to ``configure``.
+
+Release (Optimized) Builds
+
+  These builds are enabled with the ``--enable-optimized`` option to
+  ``configure`` or by specifying ``ENABLE_OPTIMIZED=1`` on the ``gmake`` command
+  line.  For these builds, the build system will compile the tools and libraries
+  with GCC optimizations enabled and strip debugging information from the
+  libraries and executables it generates.  Note that Release Builds are default
+  when using an LLVM distribution.
+
+Profile Builds
+
+  These builds are for use with profiling.  They compile profiling information
+  into the code for use with programs like ``gprof``.  Profile builds must be
+  started by specifying ``ENABLE_PROFILING=1`` on the ``gmake`` command line.
+
+Once you have LLVM configured, you can build it by entering the *OBJ_ROOT*
+directory and issuing the following command:
+
+.. code-block:: console
+
+  % gmake
+
+If the build fails, please `check here <GettingStarted.html#check-here>`_
+to see if you are using a version of GCC that is known not to compile LLVM.
+
+If you have multiple processors in your machine, you may wish to use some of the
+parallel build options provided by GNU Make.  For example, you could use the
+command:
+
+.. code-block:: console
+
+  % gmake -j2
+
+There are several special targets which are useful when working with the LLVM
+source code:
+
+``gmake clean``
+
+  Removes all files generated by the build.  This includes object files,
+  generated C/C++ files, libraries, and executables.
+
+``gmake dist-clean``
+
+  Removes everything that ``gmake clean`` does, but also removes files generated
+  by ``configure``.  It attempts to return the source tree to the original state
+  in which it was shipped.
+
+``gmake install``
+
+  Installs LLVM header files, libraries, tools, and documentation in a hierarchy
+  under ``$PREFIX``, specified with ``$LLVM_SRC_DIR/configure --prefix=[dir]``, which
+  defaults to ``/usr/local``.
+
+``gmake -C runtime install-bytecode``
+
+  Assuming you built LLVM into $OBJDIR, when this command is run, it will
+  install bitcode libraries into the GCC front end's bitcode library directory.
+  If you need to update your bitcode libraries, this is the target to use once
+  you've built them.
+
+Please see the `Makefile Guide <MakefileGuide.html>`_ for further details on
+these ``make`` targets and descriptions of other targets available.
+
+It is also possible to override default values from ``configure`` by declaring
+variables on the command line.  The following are some examples:
+
+``gmake ENABLE_OPTIMIZED=1``
+
+  Perform a Release (Optimized) build.
+
+``gmake ENABLE_OPTIMIZED=1 DISABLE_ASSERTIONS=1``
+
+  Perform a Release (Optimized) build without assertions enabled.
+ 
+``gmake ENABLE_OPTIMIZED=0``
+
+  Perform a Debug build.
+
+``gmake ENABLE_PROFILING=1``
+
+  Perform a Profiling build.
+
+``gmake VERBOSE=1``
+
+  Print what ``gmake`` is doing on standard output.
+
+``gmake TOOL_VERBOSE=1``
+
+  Ask each tool invoked by the makefiles to print out what it is doing on 
+  the standard output. This also implies ``VERBOSE=1``.
+
+Every directory in the LLVM object tree includes a ``Makefile`` to build it and
+any subdirectories that it contains.  Entering any directory inside the LLVM
+object tree and typing ``gmake`` should rebuild anything in or below that
+directory that is out of date.
+
+This does not apply to building the documentation.
+LLVM's (non-Doxygen) documentation is produced with the
+`Sphinx <http://sphinx-doc.org/>`_ documentation generation system.
+There are some HTML documents that have not yet been converted to the new
+system (which uses the easy-to-read and easy-to-write
+`reStructuredText <http://sphinx-doc.org/rest.html>`_ plaintext markup
+language).
+The generated documentation is built in the ``$LLVM_SRC_DIR/docs`` directory using
+a special makefile.
+For instructions on how to install Sphinx, see
+`Sphinx Introduction for LLVM Developers
+<http://lld.llvm.org/sphinx_intro.html>`_.
+After following the instructions there for installing Sphinx, build the LLVM
+HTML documentation by doing the following:
+
+.. code-block:: console
+
+  $ cd $LLVM_SRC_DIR/docs
+  $ make -f Makefile.sphinx
+
+This creates a ``_build/html`` sub-directory with all of the HTML files, not
+just the generated ones.
+This directory corresponds to ``llvm.org/docs``.
+For example, ``_build/html/SphinxQuickstartTemplate.html`` corresponds to
+``llvm.org/docs/SphinxQuickstartTemplate.html``.
+The :doc:`SphinxQuickstartTemplate` is useful when creating a new document.
+
+Cross-Compiling LLVM
+--------------------
+
+It is possible to cross-compile LLVM itself. That is, you can create LLVM
+executables and libraries to be hosted on a platform different from the platform
+where they are built (a Canadian Cross build). To configure a cross-compile,
+supply the configure script with ``--build`` and ``--host`` options that are
+different. The values of these options must be legal target triples that your
+GCC compiler supports.
+
+The result of such a build is executables that are not runnable on on the build
+host (--build option) but can be executed on the compile host (--host option).
+
+Check :doc:`HowToCrossCompileLLVM` and `Clang docs on how to cross-compile in general
+<http://clang.llvm.org/docs/CrossCompilation.html>`_ for more information
+about cross-compiling.
+
+The Location of LLVM Object Files
+---------------------------------
+
+The LLVM build system is capable of sharing a single LLVM source tree among
+several LLVM builds.  Hence, it is possible to build LLVM for several different
+platforms or configurations using the same source tree.
+
+This is accomplished in the typical autoconf manner:
+
+* Change directory to where the LLVM object files should live:
+
+  .. code-block:: console
+
+    % cd OBJ_ROOT
+
+* Run the ``configure`` script found in the LLVM source directory:
+
+  .. code-block:: console
+
+    % $LLVM_SRC_DIR/configure
+
+The LLVM build will place files underneath *OBJ_ROOT* in directories named after
+the build type:
+
+Debug Builds with assertions enabled (the default)
+
+  Tools
+
+    ``OBJ_ROOT/Debug+Asserts/bin``
+
+  Libraries
+
+    ``OBJ_ROOT/Debug+Asserts/lib``
+
+Release Builds
+
+  Tools
+
+    ``OBJ_ROOT/Release/bin``
+
+  Libraries
+
+    ``OBJ_ROOT/Release/lib``
+
+Profile Builds
+
+  Tools
+
+    ``OBJ_ROOT/Profile/bin``
+
+  Libraries
+
+    ``OBJ_ROOT/Profile/lib``

Added: www-releases/trunk/3.9.1/docs/_sources/CMake.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CMake.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CMake.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CMake.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,734 @@
+========================
+Building LLVM with CMake
+========================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+`CMake <http://www.cmake.org/>`_ is a cross-platform build-generator tool. CMake
+does not build the project, it generates the files needed by your build tool
+(GNU make, Visual Studio, etc.) for building LLVM.
+
+If **you are a new contributor**, please start with the :doc:`GettingStarted` 
+page.  This page is geared for existing contributors moving from the 
+legacy configure/make system.
+
+If you are really anxious about getting a functional LLVM build, go to the
+`Quick start`_ section. If you are a CMake novice, start with `Basic CMake usage`_
+and then go back to the `Quick start`_ section once you know what you are doing. The
+`Options and variables`_ section is a reference for customizing your build. If
+you already have experience with CMake, this is the recommended starting point.
+
+This page is geared towards users of the LLVM CMake build. If you're looking for
+information about modifying the LLVM CMake build system you may want to see the
+:doc:`CMakePrimer` page. It has a basic overview of the CMake language.
+
+.. _Quick start:
+
+Quick start
+===========
+
+We use here the command-line, non-interactive CMake interface.
+
+#. `Download <http://www.cmake.org/cmake/resources/software.html>`_ and install
+   CMake. Version 3.4.3 is the minimum required.
+
+#. Open a shell. Your development tools must be reachable from this shell
+   through the PATH environment variable.
+
+#. Create a build directory. Building LLVM in the source
+   directory is not supported. cd to this directory:
+
+   .. code-block:: console
+
+     $ mkdir mybuilddir
+     $ cd mybuilddir
+
+#. Execute this command in the shell replacing `path/to/llvm/source/root` with
+   the path to the root of your LLVM source tree:
+
+   .. code-block:: console
+
+     $ cmake path/to/llvm/source/root
+
+   CMake will detect your development environment, perform a series of tests, and
+   generate the files required for building LLVM. CMake will use default values
+   for all build parameters. See the `Options and variables`_ section for
+   a list of build parameters that you can modify.
+
+   This can fail if CMake can't detect your toolset, or if it thinks that the
+   environment is not sane enough. In this case, make sure that the toolset that
+   you intend to use is the only one reachable from the shell, and that the shell
+   itself is the correct one for your development environment. CMake will refuse
+   to build MinGW makefiles if you have a POSIX shell reachable through the PATH
+   environment variable, for instance. You can force CMake to use a given build
+   tool; for instructions, see the `Usage`_ section, below.
+
+#. After CMake has finished running, proceed to use IDE project files, or start
+   the build from the build directory:
+
+   .. code-block:: console
+
+     $ cmake --build .
+
+   The ``--build`` option tells ``cmake`` to invoke the underlying build
+   tool (``make``, ``ninja``, ``xcodebuild``, ``msbuild``, etc.)
+
+   The underlying build tool can be invoked directly, of course, but
+   the ``--build`` option is portable.
+
+#. After LLVM has finished building, install it from the build directory:
+
+   .. code-block:: console
+
+     $ cmake --build . --target install
+
+   The ``--target`` option with ``install`` parameter in addition to
+   the ``--build`` option tells ``cmake`` to build the ``install`` target.
+
+   It is possible to set a different install prefix at installation time
+   by invoking the ``cmake_install.cmake`` script generated in the
+   build directory:
+
+   .. code-block:: console
+
+     $ cmake -DCMAKE_INSTALL_PREFIX=/tmp/llvm -P cmake_install.cmake
+
+.. _Basic CMake usage:
+.. _Usage:
+
+Basic CMake usage
+=================
+
+This section explains basic aspects of CMake
+which you may need in your day-to-day usage.
+
+CMake comes with extensive documentation, in the form of html files, and as
+online help accessible via the ``cmake`` executable itself. Execute ``cmake
+--help`` for further help options.
+
+CMake allows you to specify a build tool (e.g., GNU make, Visual Studio,
+or Xcode). If not specified on the command line, CMake tries to guess which
+build tool to use, based on your environment. Once it has identified your
+build tool, CMake uses the corresponding *Generator* to create files for your
+build tool (e.g., Makefiles or Visual Studio or Xcode project files). You can
+explicitly specify the generator with the command line option ``-G "Name of the
+generator"``. To see a list of the available generators on your system, execute
+
+.. code-block:: console
+
+  $ cmake --help
+
+This will list the generator names at the end of the help text.
+
+Generators' names are case-sensitive, and may contain spaces. For this reason,
+you should enter them exactly as they are listed in the ``cmake --help``
+output, in quotes. For example, to generate project files specifically for
+Visual Studio 12, you can execute:
+
+.. code-block:: console
+
+  $ cmake -G "Visual Studio 12" path/to/llvm/source/root
+
+For a given development platform there can be more than one adequate
+generator. If you use Visual Studio, "NMake Makefiles" is a generator you can use
+for building with NMake. By default, CMake chooses the most specific generator
+supported by your development environment. If you want an alternative generator,
+you must tell this to CMake with the ``-G`` option.
+
+.. todo::
+
+  Explain variables and cache. Move explanation here from #options section.
+
+.. _Options and variables:
+
+Options and variables
+=====================
+
+Variables customize how the build will be generated. Options are boolean
+variables, with possible values ON/OFF. Options and variables are defined on the
+CMake command line like this:
+
+.. code-block:: console
+
+  $ cmake -DVARIABLE=value path/to/llvm/source
+
+You can set a variable after the initial CMake invocation to change its
+value. You can also undefine a variable:
+
+.. code-block:: console
+
+  $ cmake -UVARIABLE path/to/llvm/source
+
+Variables are stored in the CMake cache. This is a file named ``CMakeCache.txt``
+stored at the root of your build directory that is generated by ``cmake``.
+Editing it yourself is not recommended.
+
+Variables are listed in the CMake cache and later in this document with
+the variable name and type separated by a colon. You can also specify the
+variable and type on the CMake command line:
+
+.. code-block:: console
+
+  $ cmake -DVARIABLE:TYPE=value path/to/llvm/source
+
+Frequently-used CMake variables
+-------------------------------
+
+Here are some of the CMake variables that are used often, along with a
+brief explanation and LLVM-specific notes. For full documentation, consult the
+CMake manual, or execute ``cmake --help-variable VARIABLE_NAME``.
+
+**CMAKE_BUILD_TYPE**:STRING
+  Sets the build type for ``make``-based generators. Possible values are
+  Release, Debug, RelWithDebInfo and MinSizeRel. If you are using an IDE such as
+  Visual Studio, you should use the IDE settings to set the build type.
+
+**CMAKE_INSTALL_PREFIX**:PATH
+  Path where LLVM will be installed if "make install" is invoked or the
+  "install" target is built.
+
+**LLVM_LIBDIR_SUFFIX**:STRING
+  Extra suffix to append to the directory where libraries are to be
+  installed. On a 64-bit architecture, one could use ``-DLLVM_LIBDIR_SUFFIX=64``
+  to install libraries to ``/usr/lib64``.
+
+**CMAKE_C_FLAGS**:STRING
+  Extra flags to use when compiling C source files.
+
+**CMAKE_CXX_FLAGS**:STRING
+  Extra flags to use when compiling C++ source files.
+
+.. _LLVM-specific variables:
+
+LLVM-specific variables
+-----------------------
+
+**LLVM_TARGETS_TO_BUILD**:STRING
+  Semicolon-separated list of targets to build, or *all* for building all
+  targets. Case-sensitive. Defaults to *all*. Example:
+  ``-DLLVM_TARGETS_TO_BUILD="X86;PowerPC"``.
+
+**LLVM_BUILD_TOOLS**:BOOL
+  Build LLVM tools. Defaults to ON. Targets for building each tool are generated
+  in any case. You can build a tool separately by invoking its target. For
+  example, you can build *llvm-as* with a Makefile-based system by executing *make
+  llvm-as* at the root of your build directory.
+
+**LLVM_INCLUDE_TOOLS**:BOOL
+  Generate build targets for the LLVM tools. Defaults to ON. You can use this
+  option to disable the generation of build targets for the LLVM tools.
+
+**LLVM_BUILD_EXAMPLES**:BOOL
+  Build LLVM examples. Defaults to OFF. Targets for building each example are
+  generated in any case. See documentation for *LLVM_BUILD_TOOLS* above for more
+  details.
+
+**LLVM_INCLUDE_EXAMPLES**:BOOL
+  Generate build targets for the LLVM examples. Defaults to ON. You can use this
+  option to disable the generation of build targets for the LLVM examples.
+
+**LLVM_BUILD_TESTS**:BOOL
+  Build LLVM unit tests. Defaults to OFF. Targets for building each unit test
+  are generated in any case. You can build a specific unit test using the
+  targets defined under *unittests*, such as ADTTests, IRTests, SupportTests,
+  etc. (Search for ``add_llvm_unittest`` in the subdirectories of *unittests*
+  for a complete list of unit tests.) It is possible to build all unit tests
+  with the target *UnitTests*.
+
+**LLVM_INCLUDE_TESTS**:BOOL
+  Generate build targets for the LLVM unit tests. Defaults to ON. You can use
+  this option to disable the generation of build targets for the LLVM unit
+  tests.
+
+**LLVM_APPEND_VC_REV**:BOOL
+  Append version control revision info (svn revision number or Git revision id)
+  to LLVM version string (stored in the PACKAGE_VERSION macro). For this to work
+  cmake must be invoked before the build. Defaults to OFF.
+
+**LLVM_ENABLE_THREADS**:BOOL
+  Build with threads support, if available. Defaults to ON.
+
+**LLVM_ENABLE_CXX1Y**:BOOL
+  Build in C++1y mode, if available. Defaults to OFF.
+
+**LLVM_ENABLE_ASSERTIONS**:BOOL
+  Enables code assertions. Defaults to ON if and only if ``CMAKE_BUILD_TYPE``
+  is *Debug*.
+
+**LLVM_ENABLE_EH**:BOOL
+  Build LLVM with exception-handling support. This is necessary if you wish to
+  link against LLVM libraries and make use of C++ exceptions in your own code
+  that need to propagate through LLVM code. Defaults to OFF.
+
+**LLVM_ENABLE_EXPENSIVE_CHECKS**:BOOL
+  Enable additional time/memory expensive checking. Defaults to OFF.
+
+**LLVM_ENABLE_PIC**:BOOL
+  Add the ``-fPIC`` flag to the compiler command-line, if the compiler supports
+  this flag. Some systems, like Windows, do not need this flag. Defaults to ON.
+
+**LLVM_ENABLE_RTTI**:BOOL
+  Build LLVM with run-time type information. Defaults to OFF.
+
+**LLVM_ENABLE_WARNINGS**:BOOL
+  Enable all compiler warnings. Defaults to ON.
+
+**LLVM_ENABLE_PEDANTIC**:BOOL
+  Enable pedantic mode. This disables compiler-specific extensions, if
+  possible. Defaults to ON.
+
+**LLVM_ENABLE_WERROR**:BOOL
+  Stop and fail the build, if a compiler warning is triggered. Defaults to OFF.
+
+**LLVM_ABI_BREAKING_CHECKS**:STRING
+  Used to decide if LLVM should be built with ABI breaking checks or
+  not.  Allowed values are `WITH_ASSERTS` (default), `FORCE_ON` and
+  `FORCE_OFF`.  `WITH_ASSERTS` turns on ABI breaking checks in an
+  assertion enabled build.  `FORCE_ON` (`FORCE_OFF`) turns them on
+  (off) irrespective of whether normal (`NDEBUG`-based) assertions are
+  enabled or not.  A version of LLVM built with ABI breaking checks
+  is not ABI compatible with a version built without it.
+
+**LLVM_BUILD_32_BITS**:BOOL
+  Build 32-bit executables and libraries on 64-bit systems. This option is
+  available only on some 64-bit Unix systems. Defaults to OFF.
+
+**LLVM_TARGET_ARCH**:STRING
+  LLVM target to use for native code generation. This is required for JIT
+  generation. It defaults to "host", meaning that it shall pick the architecture
+  of the machine where LLVM is being built. If you are cross-compiling, set it
+  to the target architecture name.
+
+**LLVM_TABLEGEN**:STRING
+  Full path to a native TableGen executable (usually named ``llvm-tblgen``). This is
+  intended for cross-compiling: if the user sets this variable, no native
+  TableGen will be created.
+
+**LLVM_LIT_ARGS**:STRING
+  Arguments given to lit.  ``make check`` and ``make clang-test`` are affected.
+  By default, ``'-sv --no-progress-bar'`` on Visual C++ and Xcode, ``'-sv'`` on
+  others.
+
+**LLVM_LIT_TOOLS_DIR**:PATH
+  The path to GnuWin32 tools for tests. Valid on Windows host.  Defaults to
+  the empty string, in which case lit will look for tools needed for tests
+  (e.g. ``grep``, ``sort``, etc.) in your %PATH%. If GnuWin32 is not in your
+  %PATH%, then you can set this variable to the GnuWin32 directory so that
+  lit can find tools needed for tests in that directory.
+
+**LLVM_ENABLE_FFI**:BOOL
+  Indicates whether the LLVM Interpreter will be linked with the Foreign Function
+  Interface library (libffi) in order to enable calling external functions.
+  If the library or its headers are installed in a custom
+  location, you can also set the variables FFI_INCLUDE_DIR and
+  FFI_LIBRARY_DIR to the directories where ffi.h and libffi.so can be found,
+  respectively. Defaults to OFF.
+
+**LLVM_EXTERNAL_{CLANG,LLD,POLLY}_SOURCE_DIR**:PATH
+  These variables specify the path to the source directory for the external
+  LLVM projects Clang, lld, and Polly, respectively, relative to the top-level
+  source directory.  If the in-tree subdirectory for an external project
+  exists (e.g., llvm/tools/clang for Clang), then the corresponding variable
+  will not be used.  If the variable for an external project does not point
+  to a valid path, then that project will not be built.
+
+**LLVM_EXTERNAL_PROJECTS**:STRING
+  Semicolon-separated list of additional external projects to build as part of
+  llvm. For each project LLVM_EXTERNAL_<NAME>_SOURCE_DIR have to be specified
+  with the path for the source code of the project. Example:
+  ``-DLLVM_EXTERNAL_PROJECTS="Foo;Bar"
+  -DLLVM_EXTERNAL_FOO_SOURCE_DIR=/src/foo
+  -DLLVM_EXTERNAL_BAR_SOURCE_DIR=/src/bar``.
+
+**LLVM_USE_OPROFILE**:BOOL
+  Enable building OProfile JIT support. Defaults to OFF.
+
+**LLVM_PROFDATA_FILE**:PATH
+  Path to a profdata file to pass into clang's -fprofile-instr-use flag. This
+  can only be specified if you're building with clang.
+
+**LLVM_USE_INTEL_JITEVENTS**:BOOL
+  Enable building support for Intel JIT Events API. Defaults to OFF.
+
+**LLVM_ENABLE_ZLIB**:BOOL
+  Enable building with zlib to support compression/uncompression in LLVM tools.
+  Defaults to ON.
+
+**LLVM_USE_SANITIZER**:STRING
+  Define the sanitizer used to build LLVM binaries and tests. Possible values
+  are ``Address``, ``Memory``, ``MemoryWithOrigins``, ``Undefined``, ``Thread``,
+  and ``Address;Undefined``. Defaults to empty string.
+
+**LLVM_ENABLE_LTO**:STRING
+  Add ``-flto`` or ``-flto=`` flags to the compile and link command
+  lines, enabling link-time optimization. Possible values are ``Off``,
+  ``On``, ``Thin`` and ``Full``. Defaults to OFF.
+
+**LLVM_PARALLEL_COMPILE_JOBS**:STRING
+  Define the maximum number of concurrent compilation jobs.
+
+**LLVM_PARALLEL_LINK_JOBS**:STRING
+  Define the maximum number of concurrent link jobs.
+
+**LLVM_BUILD_DOCS**:BOOL
+  Adds all *enabled* documentation targets (i.e. Doxgyen and Sphinx targets) as
+  dependencies of the default build targets.  This results in all of the (enabled)
+  documentation targets being as part of a normal build.  If the ``install`` 
+  target is run then this also enables all built documentation targets to be 
+  installed. Defaults to OFF.  To enable a particular documentation target, see 
+  see LLVM_ENABLE_SPHINX and LLVM_ENABLE_DOXYGEN.  
+
+**LLVM_ENABLE_DOXYGEN**:BOOL
+  Enables the generation of browsable HTML documentation using doxygen.
+  Defaults to OFF.
+
+**LLVM_ENABLE_DOXYGEN_QT_HELP**:BOOL
+  Enables the generation of a Qt Compressed Help file. Defaults to OFF.
+  This affects the make target ``doxygen-llvm``. When enabled, apart from
+  the normal HTML output generated by doxygen, this will produce a QCH file
+  named ``org.llvm.qch``. You can then load this file into Qt Creator.
+  This option is only useful in combination with ``-DLLVM_ENABLE_DOXYGEN=ON``;
+  otherwise this has no effect.
+
+**LLVM_DOXYGEN_QCH_FILENAME**:STRING
+  The filename of the Qt Compressed Help file that will be generated when
+  ``-DLLVM_ENABLE_DOXYGEN=ON`` and
+  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON`` are given. Defaults to
+  ``org.llvm.qch``.
+  This option is only useful in combination with
+  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``;
+  otherwise it has no effect.
+
+**LLVM_DOXYGEN_QHP_NAMESPACE**:STRING
+  Namespace under which the intermediate Qt Help Project file lives. See `Qt
+  Help Project`_
+  for more information. Defaults to "org.llvm". This option is only useful in
+  combination with ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``; otherwise
+  it has no effect.
+
+**LLVM_DOXYGEN_QHP_CUST_FILTER_NAME**:STRING
+  See `Qt Help Project`_ for
+  more information. Defaults to the CMake variable ``${PACKAGE_STRING}`` which
+  is a combination of the package name and version string. This filter can then
+  be used in Qt Creator to select only documentation from LLVM when browsing
+  through all the help files that you might have loaded. This option is only
+  useful in combination with ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``;
+  otherwise it has no effect.
+
+.. _Qt Help Project: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-filters
+
+**LLVM_DOXYGEN_QHELPGENERATOR_PATH**:STRING
+  The path to the ``qhelpgenerator`` executable. Defaults to whatever CMake's
+  ``find_program()`` can find. This option is only useful in combination with
+  ``-DLLVM_ENABLE_DOXYGEN_QT_HELP=ON``; otherwise it has no
+  effect.
+
+**LLVM_DOXYGEN_SVG**:BOOL
+  Uses .svg files instead of .png files for graphs in the Doxygen output.
+  Defaults to OFF.
+
+**LLVM_ENABLE_SPHINX**:BOOL
+  If specified, CMake will search for the ``sphinx-build`` executable and will make
+  the ``SPHINX_OUTPUT_HTML`` and ``SPHINX_OUTPUT_MAN`` CMake options available.
+  Defaults to OFF.
+
+**SPHINX_EXECUTABLE**:STRING
+  The path to the ``sphinx-build`` executable detected by CMake.
+
+**SPHINX_OUTPUT_HTML**:BOOL
+  If enabled (and ``LLVM_ENABLE_SPHINX`` is enabled) then the targets for
+  building the documentation as html are added (but not built by default unless
+  ``LLVM_BUILD_DOCS`` is enabled). There is a target for each project in the
+  source tree that uses sphinx (e.g.  ``docs-llvm-html``, ``docs-clang-html``
+  and ``docs-lld-html``). Defaults to ON.
+
+**SPHINX_OUTPUT_MAN**:BOOL
+  If enabled (and ``LLVM_ENABLE_SPHINX`` is enabled) the targets for building
+  the man pages are added (but not built by default unless ``LLVM_BUILD_DOCS``
+  is enabled). Currently the only target added is ``docs-llvm-man``. Defaults
+  to ON.
+
+**SPHINX_WARNINGS_AS_ERRORS**:BOOL
+  If enabled then sphinx documentation warnings will be treated as
+  errors. Defaults to ON.
+
+**LLVM_CREATE_XCODE_TOOLCHAIN**:BOOL
+  OS X Only: If enabled CMake will generate a target named
+  'install-xcode-toolchain'. This target will create a directory at
+  $CMAKE_INSTALL_PREFIX/Toolchains containing an xctoolchain directory which can
+  be used to override the default system tools. 
+
+**LLVM_BUILD_LLVM_DYLIB**:BOOL
+  If enabled, the target for building the libLLVM shared library is added.
+  This library contains all of LLVM's components in a single shared library.
+  Defaults to OFF. This cannot be used in conjunction with BUILD_SHARED_LIBS.
+  Tools will only be linked to the libLLVM shared library if LLVM_LINK_LLVM_DYLIB
+  is also ON.
+  The components in the library can be customised by setting LLVM_DYLIB_COMPONENTS
+  to a list of the desired components.
+
+**LLVM_LINK_LLVM_DYLIB**:BOOL
+  If enabled, tools will be linked with the libLLVM shared library. Defaults
+  to OFF. Setting LLVM_LINK_LLVM_DYLIB to ON also sets LLVM_BUILD_LLVM_DYLIB
+  to ON.
+
+**BUILD_SHARED_LIBS**:BOOL
+  Flag indicating if each LLVM component (e.g. Support) is built as a shared
+  library (ON) or as a static library (OFF). Its default value is OFF. On
+  Windows, shared libraries may be used when building with MinGW, including
+  mingw-w64, but not when building with the Microsoft toolchain.
+ 
+  .. note:: BUILD_SHARED_LIBS is only recommended for use by LLVM developers.
+            If you want to build LLVM as a shared library, you should use the
+            ``LLVM_BUILD_LLVM_DYLIB`` option.
+
+**LLVM_OPTIMIZED_TABLEGEN**:BOOL
+  If enabled and building a debug or asserts build the CMake build system will
+  generate a Release build tree to build a fully optimized tablegen for use
+  during the build. Enabling this option can significantly speed up build times
+  especially when building LLVM in Debug configurations.
+
+CMake Caches
+============
+
+Recently LLVM and Clang have been adding some more complicated build system
+features. Utilizing these new features often involves a complicated chain of
+CMake variables passed on the command line. Clang provides a collection of CMake
+cache scripts to make these features more approachable.
+
+CMake cache files are utilized using CMake's -C flag:
+
+.. code-block:: console
+
+  $ cmake -C <path to cache file> <path to sources>
+
+CMake cache scripts are processed in an isolated scope, only cached variables
+remain set when the main configuration runs. CMake cached variables do not reset
+variables that are already set unless the FORCE option is specified.
+
+A few notes about CMake Caches:
+
+- Order of command line arguments is important
+
+  - -D arguments specified before -C are set before the cache is processed and
+    can be read inside the cache file
+  - -D arguments specified after -C are set after the cache is processed and
+    are unset inside the cache file
+
+- All -D arguments will override cache file settings
+- CMAKE_TOOLCHAIN_FILE is evaluated after both the cache file and the command
+  line arguments
+- It is recommended that all -D options should be specified *before* -C
+
+For more information about some of the advanced build configurations supported
+via Cache files see :doc:`AdvancedBuilds`.
+
+Executing the test suite
+========================
+
+Testing is performed when the *check-all* target is built. For instance, if you are
+using Makefiles, execute this command in the root of your build directory:
+
+.. code-block:: console
+
+  $ make check-all
+
+On Visual Studio, you may run tests by building the project "check-all".
+For more information about testing, see the :doc:`TestingGuide`.
+
+Cross compiling
+===============
+
+See `this wiki page <http://www.vtk.org/Wiki/CMake_Cross_Compiling>`_ for
+generic instructions on how to cross-compile with CMake. It goes into detailed
+explanations and may seem daunting, but it is not. On the wiki page there are
+several examples including toolchain files. Go directly to `this section
+<http://www.vtk.org/Wiki/CMake_Cross_Compiling#Information_how_to_set_up_various_cross_compiling_toolchains>`_
+for a quick solution.
+
+Also see the `LLVM-specific variables`_ section for variables used when
+cross-compiling.
+
+Embedding LLVM in your project
+==============================
+
+From LLVM 3.5 onwards both the CMake and autoconf/Makefile build systems export
+LLVM libraries as importable CMake targets. This means that clients of LLVM can
+now reliably use CMake to develop their own LLVM-based projects against an
+installed version of LLVM regardless of how it was built.
+
+Here is a simple example of a CMakeLists.txt file that imports the LLVM libraries
+and uses them to build a simple application ``simple-tool``.
+
+.. code-block:: cmake
+
+  cmake_minimum_required(VERSION 3.4.3)
+  project(SimpleProject)
+
+  find_package(LLVM REQUIRED CONFIG)
+
+  message(STATUS "Found LLVM ${LLVM_PACKAGE_VERSION}")
+  message(STATUS "Using LLVMConfig.cmake in: ${LLVM_DIR}")
+
+  # Set your project compile flags.
+  # E.g. if using the C++ header files
+  # you will need to enable C++11 support
+  # for your compiler.
+
+  include_directories(${LLVM_INCLUDE_DIRS})
+  add_definitions(${LLVM_DEFINITIONS})
+
+  # Now build our tools
+  add_executable(simple-tool tool.cpp)
+
+  # Find the libraries that correspond to the LLVM components
+  # that we wish to use
+  llvm_map_components_to_libnames(llvm_libs support core irreader)
+
+  # Link against LLVM libraries
+  target_link_libraries(simple-tool ${llvm_libs})
+
+The ``find_package(...)`` directive when used in CONFIG mode (as in the above
+example) will look for the ``LLVMConfig.cmake`` file in various locations (see
+cmake manual for details).  It creates a ``LLVM_DIR`` cache entry to save the
+directory where ``LLVMConfig.cmake`` is found or allows the user to specify the
+directory (e.g. by passing ``-DLLVM_DIR=/usr/lib/cmake/llvm`` to
+the ``cmake`` command or by setting it directly in ``ccmake`` or ``cmake-gui``).
+
+This file is available in two different locations.
+
+* ``<INSTALL_PREFIX>/lib/cmake/llvm/LLVMConfig.cmake`` where
+  ``<INSTALL_PREFIX>`` is the install prefix of an installed version of LLVM.
+  On Linux typically this is ``/usr/lib/cmake/llvm/LLVMConfig.cmake``.
+
+* ``<LLVM_BUILD_ROOT>/lib/cmake/llvm/LLVMConfig.cmake`` where
+  ``<LLVM_BUILD_ROOT>`` is the root of the LLVM build tree. **Note: this is only
+  available when building LLVM with CMake.**
+
+If LLVM is installed in your operating system's normal installation prefix (e.g.
+on Linux this is usually ``/usr/``) ``find_package(LLVM ...)`` will
+automatically find LLVM if it is installed correctly. If LLVM is not installed
+or you wish to build directly against the LLVM build tree you can use
+``LLVM_DIR`` as previously mentioned.
+
+The ``LLVMConfig.cmake`` file sets various useful variables. Notable variables
+include
+
+``LLVM_CMAKE_DIR``
+  The path to the LLVM CMake directory (i.e. the directory containing
+  LLVMConfig.cmake).
+
+``LLVM_DEFINITIONS``
+  A list of preprocessor defines that should be used when building against LLVM.
+
+``LLVM_ENABLE_ASSERTIONS``
+  This is set to ON if LLVM was built with assertions, otherwise OFF.
+
+``LLVM_ENABLE_EH``
+  This is set to ON if LLVM was built with exception handling (EH) enabled,
+  otherwise OFF.
+
+``LLVM_ENABLE_RTTI``
+  This is set to ON if LLVM was built with run time type information (RTTI),
+  otherwise OFF.
+
+``LLVM_INCLUDE_DIRS``
+  A list of include paths to directories containing LLVM header files.
+
+``LLVM_PACKAGE_VERSION``
+  The LLVM version. This string can be used with CMake conditionals, e.g., ``if
+  (${LLVM_PACKAGE_VERSION} VERSION_LESS "3.5")``.
+
+``LLVM_TOOLS_BINARY_DIR``
+  The path to the directory containing the LLVM tools (e.g. ``llvm-as``).
+
+Notice that in the above example we link ``simple-tool`` against several LLVM
+libraries. The list of libraries is determined by using the
+``llvm_map_components_to_libnames()`` CMake function. For a list of available
+components look at the output of running ``llvm-config --components``.
+
+Note that for LLVM < 3.5 ``llvm_map_components_to_libraries()`` was
+used instead of ``llvm_map_components_to_libnames()``. This is now deprecated
+and will be removed in a future version of LLVM.
+
+.. _cmake-out-of-source-pass:
+
+Developing LLVM passes out of source
+------------------------------------
+
+It is possible to develop LLVM passes out of LLVM's source tree (i.e. against an
+installed or built LLVM). An example of a project layout is provided below.
+
+.. code-block:: none
+
+  <project dir>/
+      |
+      CMakeLists.txt
+      <pass name>/
+          |
+          CMakeLists.txt
+          Pass.cpp
+          ...
+
+Contents of ``<project dir>/CMakeLists.txt``:
+
+.. code-block:: cmake
+
+  find_package(LLVM REQUIRED CONFIG)
+
+  add_definitions(${LLVM_DEFINITIONS})
+  include_directories(${LLVM_INCLUDE_DIRS})
+
+  add_subdirectory(<pass name>)
+
+Contents of ``<project dir>/<pass name>/CMakeLists.txt``:
+
+.. code-block:: cmake
+
+  add_library(LLVMPassname MODULE Pass.cpp)
+
+Note if you intend for this pass to be merged into the LLVM source tree at some
+point in the future it might make more sense to use LLVM's internal
+``add_llvm_loadable_module`` function instead by...
+
+
+Adding the following to ``<project dir>/CMakeLists.txt`` (after
+``find_package(LLVM ...)``)
+
+.. code-block:: cmake
+
+  list(APPEND CMAKE_MODULE_PATH "${LLVM_CMAKE_DIR}")
+  include(AddLLVM)
+
+And then changing ``<project dir>/<pass name>/CMakeLists.txt`` to
+
+.. code-block:: cmake
+
+  add_llvm_loadable_module(LLVMPassname
+    Pass.cpp
+    )
+
+When you are done developing your pass, you may wish to integrate it
+into the LLVM source tree. You can achieve it in two easy steps:
+
+#. Copying ``<pass name>`` folder into ``<LLVM root>/lib/Transform`` directory.
+
+#. Adding ``add_subdirectory(<pass name>)`` line into
+   ``<LLVM root>/lib/Transform/CMakeLists.txt``.
+
+Compiler/Platform-specific topics
+=================================
+
+Notes for specific compilers and/or platforms.
+
+Microsoft Visual C++
+--------------------
+
+**LLVM_COMPILER_JOBS**:STRING
+  Specifies the maximum number of parallel compiler jobs to use per project
+  when building with msbuild or Visual Studio. Only supported for the Visual
+  Studio 2010 CMake generator. 0 means use all processors. Default is 0.

Added: www-releases/trunk/3.9.1/docs/_sources/CMakePrimer.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CMakePrimer.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CMakePrimer.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CMakePrimer.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,465 @@
+============
+CMake Primer
+============
+
+.. contents::
+   :local:
+
+.. warning::
+   Disclaimer: This documentation is written by LLVM project contributors `not`
+   anyone affiliated with the CMake project. This document may contain
+   inaccurate terminology, phrasing, or technical details. It is provided with
+   the best intentions.
+
+
+Introduction
+============
+
+The LLVM project and many of the core projects built on LLVM build using CMake.
+This document aims to provide a brief overview of CMake for developers modifying
+LLVM projects or building their own projects on top of LLVM.
+
+The official CMake language references is available in the cmake-language
+manpage and `cmake-language online documentation
+<https://cmake.org/cmake/help/v3.4/manual/cmake-language.7.html>`_.
+
+10,000 ft View
+==============
+
+CMake is a tool that reads script files in its own language that describe how a
+software project builds. As CMake evaluates the scripts it constructs an
+internal representation of the software project. Once the scripts have been
+fully processed, if there are no errors, CMake will generate build files to
+actually build the project. CMake supports generating build files for a variety
+of command line build tools as well as for popular IDEs.
+
+When a user runs CMake it performs a variety of checks similar to how autoconf
+worked historically. During the checks and the evaluation of the build
+description scripts CMake caches values into the CMakeCache. This is useful
+because it allows the build system to skip long-running checks during
+incremental development. CMake caching also has some drawbacks, but that will be
+discussed later.
+
+Scripting Overview
+==================
+
+CMake's scripting language has a very simple grammar. Every language construct
+is a command that matches the pattern _name_(_args_). Commands come in three
+primary types: language-defined (commands implemented in C++ in CMake), defined
+functions, and defined macros. The CMake distribution also contains a suite of
+CMake modules that contain definitions for useful functionality.
+
+The example below is the full CMake build for building a C++ "Hello World"
+program. The example uses only CMake language-defined functions.
+
+.. code-block:: cmake
+
+   cmake_minimum_required(VERSION 3.2)
+   project(HelloWorld)
+   add_executable(HelloWorld HelloWorld.cpp)
+
+The CMake language provides control flow constructs in the form of foreach loops
+and if blocks. To make the example above more complicated you could add an if
+block to define "APPLE" when targeting Apple platforms:
+
+.. code-block:: cmake
+
+   cmake_minimum_required(VERSION 3.2)
+   project(HelloWorld)
+   add_executable(HelloWorld HelloWorld.cpp)
+   if(APPLE)
+     target_compile_definitions(HelloWorld PUBLIC APPLE)
+   endif()
+   
+Variables, Types, and Scope
+===========================
+
+Dereferencing
+-------------
+
+In CMake variables are "stringly" typed. All variables are represented as
+strings throughout evaluation. Wrapping a variable in ``${}`` dereferences it
+and results in a literal substitution of the name for the value. CMake refers to
+this as "variable evaluation" in their documentation. Dereferences are performed
+*before* the command being called receives the arguments. This means
+dereferencing a list results in multiple separate arguments being passed to the
+command.
+
+Variable dereferences can be nested and be used to model complex data. For
+example:
+
+.. code-block:: cmake
+
+   set(var_name var1)
+   set(${var_name} foo) # same as "set(var1 foo)"
+   set(${${var_name}}_var bar) # same as "set(foo_var bar)"
+   
+Dereferencing an unset variable results in an empty expansion. It is a common
+pattern in CMake to conditionally set variables knowing that it will be used in
+code paths that the variable isn't set. There are examples of this throughout
+the LLVM CMake build system.
+
+An example of variable empty expansion is:
+
+.. code-block:: cmake
+
+   if(APPLE)
+     set(extra_sources Apple.cpp)
+   endif()
+   add_executable(HelloWorld HelloWorld.cpp ${extra_sources})
+   
+In this example the ``extra_sources`` variable is only defined if you're
+targeting an Apple platform. For all other targets the ``extra_sources`` will be
+evaluated as empty before add_executable is given its arguments.
+
+One big "Gotcha" with variable dereferencing is that ``if`` commands implicitly
+dereference values. This has some unexpected results. For example:
+
+.. code-block:: cmake
+
+   if("${SOME_VAR}" STREQUAL "MSVC")
+
+In this code sample MSVC will be implicitly dereferenced, which will result in
+the if command comparing the value of the dereferenced variables ``SOME_VAR``
+and ``MSVC``. A common workaround to this solution is to prepend strings being
+compared with an ``x``.
+
+.. code-block:: cmake
+
+   if("x${SOME_VAR}" STREQUAL "xMSVC")
+
+This works because while ``MSVC`` is a defined variable, ``xMSVC`` is not. This
+pattern is uncommon, but it does occur in LLVM's CMake scripts.
+
+.. note::
+   
+   Once the LLVM project upgrades its minimum CMake version to 3.1 or later we
+   can prevent this behavior by setting CMP0054 to new. For more information on
+   CMake policies please see the cmake-policies manpage or the `cmake-policies
+   online documentation
+   <https://cmake.org/cmake/help/v3.4/manual/cmake-policies.7.html>`_.
+
+Lists
+-----
+
+In CMake lists are semi-colon delimited strings, and it is strongly advised that
+you avoid using semi-colons in lists; it doesn't go smoothly. A few examples of
+defining lists:
+
+.. code-block:: cmake
+
+   # Creates a list with members a, b, c, and d
+   set(my_list a b c d)
+   set(my_list "a;b;c;d")
+   
+   # Creates a string "a b c d"
+   set(my_string "a b c d")
+
+Lists of Lists
+--------------
+
+One of the more complicated patterns in CMake is lists of lists. Because a list
+cannot contain an element with a semi-colon to construct a list of lists you
+make a list of variable names that refer to other lists. For example:
+
+.. code-block:: cmake
+
+   set(list_of_lists a b c)
+   set(a 1 2 3)
+   set(b 4 5 6)
+   set(c 7 8 9)
+   
+With this layout you can iterate through the list of lists printing each value
+with the following code:
+
+.. code-block:: cmake
+
+   foreach(list_name IN LISTS list_of_lists)
+     foreach(value IN LISTS ${list_name})
+       message(${value})
+     endforeach()
+   endforeach()
+   
+You'll notice that the inner foreach loop's list is doubly dereferenced. This is
+because the first dereference turns ``list_name`` into the name of the sub-list
+(a, b, or c in the example), then the second dereference is to get the value of
+the list.
+
+This pattern is used throughout CMake, the most common example is the compiler
+flags options, which CMake refers to using the following variable expansions:
+CMAKE_${LANGUAGE}_FLAGS and CMAKE_${LANGUAGE}_FLAGS_${CMAKE_BUILD_TYPE}.
+
+Other Types
+-----------
+
+Variables that are cached or specified on the command line can have types
+associated with them. The variable's type is used by CMake's UI tool to display
+the right input field. The variable's type generally doesn't impact evaluation.
+One of the few examples is PATH variables, which CMake does have some special
+handling for. You can read more about the special handling in `CMake's set
+documentation
+<https://cmake.org/cmake/help/v3.5/command/set.html#set-cache-entry>`_.
+
+Scope
+-----
+
+CMake inherently has a directory-based scoping. Setting a variable in a
+CMakeLists file, will set the variable for that file, and all subdirectories.
+Variables set in a CMake module that is included in a CMakeLists file will be
+set in the scope they are included from, and all subdirectories.
+
+When a variable that is already set is set again in a subdirectory it overrides
+the value in that scope and any deeper subdirectories.
+
+The CMake set command provides two scope-related options. PARENT_SCOPE sets a
+variable into the parent scope, and not the current scope. The CACHE option sets
+the variable in the CMakeCache, which results in it being set in all scopes. The
+CACHE option will not set a variable that already exists in the CACHE unless the
+FORCE option is specified.
+
+In addition to directory-based scope, CMake functions also have their own scope.
+This means variables set inside functions do not bleed into the parent scope.
+This is not true of macros, and it is for this reason LLVM prefers functions
+over macros whenever reasonable.
+
+.. note::
+  Unlike C-based languages, CMake's loop and control flow blocks do not have
+  their own scopes.
+
+Control Flow
+============
+
+CMake features the same basic control flow constructs you would expect in any
+scripting language, but there are a few quarks because, as with everything in
+CMake, control flow constructs are commands.
+
+If, ElseIf, Else
+----------------
+
+.. note::
+  For the full documentation on the CMake if command go
+  `here <https://cmake.org/cmake/help/v3.4/command/if.html>`_. That resource is
+  far more complete.
+
+In general CMake if blocks work the way you'd expect:
+
+.. code-block:: cmake
+
+  if(<condition>)
+    .. do stuff
+  elseif(<condition>)
+    .. do other stuff
+  else()
+    .. do other other stuff
+  endif()
+
+The single most important thing to know about CMake's if blocks coming from a C
+background is that they do not have their own scope. Variables set inside
+conditional blocks persist after the ``endif()``.
+
+Loops
+-----
+
+The most common form of the CMake ``foreach`` block is:
+
+.. code-block:: cmake
+
+  foreach(var ...)
+    .. do stuff
+  endforeach()
+
+The variable argument portion of the ``foreach`` block can contain dereferenced
+lists, values to iterate, or a mix of both:
+
+.. code-block:: cmake
+
+  foreach(var foo bar baz)
+    message(${var})
+  endforeach()
+  # prints:
+  #  foo
+  #  bar
+  #  baz
+
+  set(my_list 1 2 3)
+  foreach(var ${my_list})
+    message(${var})
+  endforeach()
+  # prints:
+  #  1
+  #  2
+  #  3
+
+  foreach(var ${my_list} out_of_bounds)
+    message(${var})
+  endforeach()
+  # prints:
+  #  1
+  #  2
+  #  3
+  #  out_of_bounds
+
+There is also a more modern CMake foreach syntax. The code below is equivalent
+to the code above:
+
+.. code-block:: cmake
+
+  foreach(var IN ITEMS foo bar baz)
+    message(${var})
+  endforeach()
+  # prints:
+  #  foo
+  #  bar
+  #  baz
+
+  set(my_list 1 2 3)
+  foreach(var IN LISTS my_list)
+    message(${var})
+  endforeach()
+  # prints:
+  #  1
+  #  2
+  #  3
+
+  foreach(var IN LISTS my_list ITEMS out_of_bounds)
+    message(${var})
+  endforeach()
+  # prints:
+  #  1
+  #  2
+  #  3
+  #  out_of_bounds
+
+Similar to the conditional statements, these generally behave how you would
+expect, and they do not have their own scope.
+
+CMake also supports ``while`` loops, although they are not widely used in LLVM.
+
+Modules, Functions and Macros
+=============================
+
+Modules
+-------
+
+Modules are CMake's vehicle for enabling code reuse. CMake modules are just
+CMake script files. They can contain code to execute on include as well as
+definitions for commands.
+
+In CMake macros and functions are universally referred to as commands, and they
+are the primary method of defining code that can be called multiple times.
+
+In LLVM we have several CMake modules that are included as part of our
+distribution for developers who don't build our project from source. Those
+modules are the fundamental pieces needed to build LLVM-based projects with
+CMake. We also rely on modules as a way of organizing the build system's
+functionality for maintainability and re-use within LLVM projects.
+
+Argument Handling
+-----------------
+
+When defining a CMake command handling arguments is very useful. The examples
+in this section will all use the CMake ``function`` block, but this all applies
+to the ``macro`` block as well.
+
+CMake commands can have named arguments, but all commands are implicitly
+variable argument. If the command has named arguments they are required and must
+be specified at every call site. Below is a trivial example of providing a
+wrapper function for CMake's built in function ``add_dependencies``.
+
+.. code-block:: cmake
+
+   function(add_deps target)
+     add_dependencies(${target} ${ARGV})
+   endfunction()
+
+This example defines a new macro named ``add_deps`` which takes a required first
+argument, and just calls another function passing through the first argument and
+all trailing arguments. When variable arguments are present CMake defines them
+in a list named ``ARGV``, and the count of the arguments is defined in ``ARGN``.
+
+CMake provides a module ``CMakeParseArguments`` which provides an implementation
+of advanced argument parsing. We use this all over LLVM, and it is recommended
+for any function that has complex argument-based behaviors or optional
+arguments. CMake's official documentation for the module is in the
+``cmake-modules`` manpage, and is also available at the
+`cmake-modules online documentation
+<https://cmake.org/cmake/help/v3.4/module/CMakeParseArguments.html>`_.
+
+.. note::
+  As of CMake 3.5 the cmake_parse_arguments command has become a native command
+  and the CMakeParseArguments module is empty and only left around for
+  compatibility.
+
+Functions Vs Macros
+-------------------
+
+Functions and Macros look very similar in how they are used, but there is one
+fundamental difference between the two. Functions have their own scope, and
+macros don't. This means variables set in macros will bleed out into the calling
+scope. That makes macros suitable for defining very small bits of functionality
+only.
+
+The other difference between CMake functions and macros is how arguments are
+passed. Arguments to macros are not set as variables, instead dereferences to
+the parameters are resolved across the macro before executing it. This can
+result in some unexpected behavior if using unreferenced variables. For example:
+
+.. code-block:: cmake
+
+   macro(print_list my_list)
+     foreach(var IN LISTS my_list)
+       message("${var}")
+     endforeach()
+   endmacro()
+   
+   set(my_list a b c d)
+   set(my_list_of_numbers 1 2 3 4)
+   print_list(my_list_of_numbers)
+   # prints:
+   # a
+   # b
+   # c
+   # d
+
+Generally speaking this issue is uncommon because it requires using
+non-dereferenced variables with names that overlap in the parent scope, but it
+is important to be aware of because it can lead to subtle bugs.
+
+LLVM Project Wrappers
+=====================
+
+LLVM projects provide lots of wrappers around critical CMake built-in commands.
+We use these wrappers to provide consistent behaviors across LLVM components
+and to reduce code duplication.
+
+We generally (but not always) follow the convention that commands prefaced with
+``llvm_`` are intended to be used only as building blocks for other commands.
+Wrapper commands that are intended for direct use are generally named following
+with the project in the middle of the command name (i.e. ``add_llvm_executable``
+is the wrapper for ``add_executable``). The LLVM ``add_*`` wrapper functions are
+all defined in ``AddLLVM.cmake`` which is installed as part of the LLVM
+distribution. It can be included and used by any LLVM sub-project that requires
+LLVM.
+
+.. note::
+
+   Not all LLVM projects require LLVM for all use cases. For example compiler-rt
+   can be built without LLVM, and the compiler-rt sanitizer libraries are used
+   with GCC.
+
+Useful Built-in Commands
+========================
+
+CMake has a bunch of useful built-in commands. This document isn't going to
+go into details about them because The CMake project has excellent
+documentation. To highlight a few useful functions see:
+
+* `add_custom_command <https://cmake.org/cmake/help/v3.4/command/add_custom_command.html>`_
+* `add_custom_target <https://cmake.org/cmake/help/v3.4/command/add_custom_target.html>`_
+* `file <https://cmake.org/cmake/help/v3.4/command/file.html>`_
+* `list <https://cmake.org/cmake/help/v3.4/command/list.html>`_
+* `math <https://cmake.org/cmake/help/v3.4/command/math.html>`_
+* `string <https://cmake.org/cmake/help/v3.4/command/string.html>`_
+
+The full documentation for CMake commands is in the ``cmake-commands`` manpage
+and available on `CMake's website <https://cmake.org/cmake/help/v3.4/manual/cmake-commands.7.html>`_

Added: www-releases/trunk/3.9.1/docs/_sources/CodeGenerator.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CodeGenerator.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CodeGenerator.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CodeGenerator.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,2696 @@
+==========================================
+The LLVM Target-Independent Code Generator
+==========================================
+
+.. role:: raw-html(raw)
+   :format: html
+
+.. raw:: html
+
+  <style>
+    .unknown { background-color: #C0C0C0; text-align: center; }
+    .unknown:before { content: "?" }
+    .no { background-color: #C11B17 }
+    .no:before { content: "N" }
+    .partial { background-color: #F88017 }
+    .yes { background-color: #0F0; }
+    .yes:before { content: "Y" }
+    .na { background-color: #6666FF; }
+    .na:before { content: "N/A" }
+  </style>
+
+.. contents::
+   :local:
+
+.. warning::
+  This is a work in progress.
+
+Introduction
+============
+
+The LLVM target-independent code generator is a framework that provides a suite
+of reusable components for translating the LLVM internal representation to the
+machine code for a specified target---either in assembly form (suitable for a
+static compiler) or in binary machine code format (usable for a JIT
+compiler). The LLVM target-independent code generator consists of six main
+components:
+
+1. `Abstract target description`_ interfaces which capture important properties
+   about various aspects of the machine, independently of how they will be used.
+   These interfaces are defined in ``include/llvm/Target/``.
+
+2. Classes used to represent the `code being generated`_ for a target.  These
+   classes are intended to be abstract enough to represent the machine code for
+   *any* target machine.  These classes are defined in
+   ``include/llvm/CodeGen/``. At this level, concepts like "constant pool
+   entries" and "jump tables" are explicitly exposed.
+
+3. Classes and algorithms used to represent code at the object file level, the
+   `MC Layer`_.  These classes represent assembly level constructs like labels,
+   sections, and instructions.  At this level, concepts like "constant pool
+   entries" and "jump tables" don't exist.
+
+4. `Target-independent algorithms`_ used to implement various phases of native
+   code generation (register allocation, scheduling, stack frame representation,
+   etc).  This code lives in ``lib/CodeGen/``.
+
+5. `Implementations of the abstract target description interfaces`_ for
+   particular targets.  These machine descriptions make use of the components
+   provided by LLVM, and can optionally provide custom target-specific passes,
+   to build complete code generators for a specific target.  Target descriptions
+   live in ``lib/Target/``.
+
+6. The target-independent JIT components.  The LLVM JIT is completely target
+   independent (it uses the ``TargetJITInfo`` structure to interface for
+   target-specific issues.  The code for the target-independent JIT lives in
+   ``lib/ExecutionEngine/JIT``.
+
+Depending on which part of the code generator you are interested in working on,
+different pieces of this will be useful to you.  In any case, you should be
+familiar with the `target description`_ and `machine code representation`_
+classes.  If you want to add a backend for a new target, you will need to
+`implement the target description`_ classes for your new target and understand
+the :doc:`LLVM code representation <LangRef>`.  If you are interested in
+implementing a new `code generation algorithm`_, it should only depend on the
+target-description and machine code representation classes, ensuring that it is
+portable.
+
+Required components in the code generator
+-----------------------------------------
+
+The two pieces of the LLVM code generator are the high-level interface to the
+code generator and the set of reusable components that can be used to build
+target-specific backends.  The two most important interfaces (:raw-html:`<tt>`
+`TargetMachine`_ :raw-html:`</tt>` and :raw-html:`<tt>` `DataLayout`_
+:raw-html:`</tt>`) are the only ones that are required to be defined for a
+backend to fit into the LLVM system, but the others must be defined if the
+reusable code generator components are going to be used.
+
+This design has two important implications.  The first is that LLVM can support
+completely non-traditional code generation targets.  For example, the C backend
+does not require register allocation, instruction selection, or any of the other
+standard components provided by the system.  As such, it only implements these
+two interfaces, and does its own thing. Note that C backend was removed from the
+trunk since LLVM 3.1 release. Another example of a code generator like this is a
+(purely hypothetical) backend that converts LLVM to the GCC RTL form and uses
+GCC to emit machine code for a target.
+
+This design also implies that it is possible to design and implement radically
+different code generators in the LLVM system that do not make use of any of the
+built-in components.  Doing so is not recommended at all, but could be required
+for radically different targets that do not fit into the LLVM machine
+description model: FPGAs for example.
+
+.. _high-level design of the code generator:
+
+The high-level design of the code generator
+-------------------------------------------
+
+The LLVM target-independent code generator is designed to support efficient and
+quality code generation for standard register-based microprocessors.  Code
+generation in this model is divided into the following stages:
+
+1. `Instruction Selection`_ --- This phase determines an efficient way to
+   express the input LLVM code in the target instruction set.  This stage
+   produces the initial code for the program in the target instruction set, then
+   makes use of virtual registers in SSA form and physical registers that
+   represent any required register assignments due to target constraints or
+   calling conventions.  This step turns the LLVM code into a DAG of target
+   instructions.
+
+2. `Scheduling and Formation`_ --- This phase takes the DAG of target
+   instructions produced by the instruction selection phase, determines an
+   ordering of the instructions, then emits the instructions as :raw-html:`<tt>`
+   `MachineInstr`_\s :raw-html:`</tt>` with that ordering.  Note that we
+   describe this in the `instruction selection section`_ because it operates on
+   a `SelectionDAG`_.
+
+3. `SSA-based Machine Code Optimizations`_ --- This optional stage consists of a
+   series of machine-code optimizations that operate on the SSA-form produced by
+   the instruction selector.  Optimizations like modulo-scheduling or peephole
+   optimization work here.
+
+4. `Register Allocation`_ --- The target code is transformed from an infinite
+   virtual register file in SSA form to the concrete register file used by the
+   target.  This phase introduces spill code and eliminates all virtual register
+   references from the program.
+
+5. `Prolog/Epilog Code Insertion`_ --- Once the machine code has been generated
+   for the function and the amount of stack space required is known (used for
+   LLVM alloca's and spill slots), the prolog and epilog code for the function
+   can be inserted and "abstract stack location references" can be eliminated.
+   This stage is responsible for implementing optimizations like frame-pointer
+   elimination and stack packing.
+
+6. `Late Machine Code Optimizations`_ --- Optimizations that operate on "final"
+   machine code can go here, such as spill code scheduling and peephole
+   optimizations.
+
+7. `Code Emission`_ --- The final stage actually puts out the code for the
+   current function, either in the target assembler format or in machine
+   code.
+
+The code generator is based on the assumption that the instruction selector will
+use an optimal pattern matching selector to create high-quality sequences of
+native instructions.  Alternative code generator designs based on pattern
+expansion and aggressive iterative peephole optimization are much slower.  This
+design permits efficient compilation (important for JIT environments) and
+aggressive optimization (used when generating code offline) by allowing
+components of varying levels of sophistication to be used for any step of
+compilation.
+
+In addition to these stages, target implementations can insert arbitrary
+target-specific passes into the flow.  For example, the X86 target uses a
+special pass to handle the 80x87 floating point stack architecture.  Other
+targets with unusual requirements can be supported with custom passes as needed.
+
+Using TableGen for target description
+-------------------------------------
+
+The target description classes require a detailed description of the target
+architecture.  These target descriptions often have a large amount of common
+information (e.g., an ``add`` instruction is almost identical to a ``sub``
+instruction).  In order to allow the maximum amount of commonality to be
+factored out, the LLVM code generator uses the
+:doc:`TableGen/index` tool to describe big chunks of the
+target machine, which allows the use of domain-specific and target-specific
+abstractions to reduce the amount of repetition.
+
+As LLVM continues to be developed and refined, we plan to move more and more of
+the target description to the ``.td`` form.  Doing so gives us a number of
+advantages.  The most important is that it makes it easier to port LLVM because
+it reduces the amount of C++ code that has to be written, and the surface area
+of the code generator that needs to be understood before someone can get
+something working.  Second, it makes it easier to change things. In particular,
+if tables and other things are all emitted by ``tblgen``, we only need a change
+in one place (``tblgen``) to update all of the targets to a new interface.
+
+.. _Abstract target description:
+.. _target description:
+
+Target description classes
+==========================
+
+The LLVM target description classes (located in the ``include/llvm/Target``
+directory) provide an abstract description of the target machine independent of
+any particular client.  These classes are designed to capture the *abstract*
+properties of the target (such as the instructions and registers it has), and do
+not incorporate any particular pieces of code generation algorithms.
+
+All of the target description classes (except the :raw-html:`<tt>` `DataLayout`_
+:raw-html:`</tt>` class) are designed to be subclassed by the concrete target
+implementation, and have virtual methods implemented.  To get to these
+implementations, the :raw-html:`<tt>` `TargetMachine`_ :raw-html:`</tt>` class
+provides accessors that should be implemented by the target.
+
+.. _TargetMachine:
+
+The ``TargetMachine`` class
+---------------------------
+
+The ``TargetMachine`` class provides virtual methods that are used to access the
+target-specific implementations of the various target description classes via
+the ``get*Info`` methods (``getInstrInfo``, ``getRegisterInfo``,
+``getFrameInfo``, etc.).  This class is designed to be specialized by a concrete
+target implementation (e.g., ``X86TargetMachine``) which implements the various
+virtual methods.  The only required target description class is the
+:raw-html:`<tt>` `DataLayout`_ :raw-html:`</tt>` class, but if the code
+generator components are to be used, the other interfaces should be implemented
+as well.
+
+.. _DataLayout:
+
+The ``DataLayout`` class
+------------------------
+
+The ``DataLayout`` class is the only required target description class, and it
+is the only class that is not extensible (you cannot derive a new class from
+it).  ``DataLayout`` specifies information about how the target lays out memory
+for structures, the alignment requirements for various data types, the size of
+pointers in the target, and whether the target is little-endian or
+big-endian.
+
+.. _TargetLowering:
+
+The ``TargetLowering`` class
+----------------------------
+
+The ``TargetLowering`` class is used by SelectionDAG based instruction selectors
+primarily to describe how LLVM code should be lowered to SelectionDAG
+operations.  Among other things, this class indicates:
+
+* an initial register class to use for various ``ValueType``\s,
+
+* which operations are natively supported by the target machine,
+
+* the return type of ``setcc`` operations,
+
+* the type to use for shift amounts, and
+
+* various high-level characteristics, like whether it is profitable to turn
+  division by a constant into a multiplication sequence.
+
+.. _TargetRegisterInfo:
+
+The ``TargetRegisterInfo`` class
+--------------------------------
+
+The ``TargetRegisterInfo`` class is used to describe the register file of the
+target and any interactions between the registers.
+
+Registers are represented in the code generator by unsigned integers.  Physical
+registers (those that actually exist in the target description) are unique
+small numbers, and virtual registers are generally large.  Note that
+register ``#0`` is reserved as a flag value.
+
+Each register in the processor description has an associated
+``TargetRegisterDesc`` entry, which provides a textual name for the register
+(used for assembly output and debugging dumps) and a set of aliases (used to
+indicate whether one register overlaps with another).
+
+In addition to the per-register description, the ``TargetRegisterInfo`` class
+exposes a set of processor specific register classes (instances of the
+``TargetRegisterClass`` class).  Each register class contains sets of registers
+that have the same properties (for example, they are all 32-bit integer
+registers).  Each SSA virtual register created by the instruction selector has
+an associated register class.  When the register allocator runs, it replaces
+virtual registers with a physical register in the set.
+
+The target-specific implementations of these classes is auto-generated from a
+:doc:`TableGen/index` description of the register file.
+
+.. _TargetInstrInfo:
+
+The ``TargetInstrInfo`` class
+-----------------------------
+
+The ``TargetInstrInfo`` class is used to describe the machine instructions
+supported by the target.  Descriptions define things like the mnemonic for
+the opcode, the number of operands, the list of implicit register uses and defs,
+whether the instruction has certain target-independent properties (accesses
+memory, is commutable, etc), and holds any target-specific flags.
+
+The ``TargetFrameLowering`` class
+---------------------------------
+
+The ``TargetFrameLowering`` class is used to provide information about the stack
+frame layout of the target. It holds the direction of stack growth, the known
+stack alignment on entry to each function, and the offset to the local area.
+The offset to the local area is the offset from the stack pointer on function
+entry to the first location where function data (local variables, spill
+locations) can be stored.
+
+The ``TargetSubtarget`` class
+-----------------------------
+
+The ``TargetSubtarget`` class is used to provide information about the specific
+chip set being targeted.  A sub-target informs code generation of which
+instructions are supported, instruction latencies and instruction execution
+itinerary; i.e., which processing units are used, in what order, and for how
+long.
+
+The ``TargetJITInfo`` class
+---------------------------
+
+The ``TargetJITInfo`` class exposes an abstract interface used by the
+Just-In-Time code generator to perform target-specific activities, such as
+emitting stubs.  If a ``TargetMachine`` supports JIT code generation, it should
+provide one of these objects through the ``getJITInfo`` method.
+
+.. _code being generated:
+.. _machine code representation:
+
+Machine code description classes
+================================
+
+At the high-level, LLVM code is translated to a machine specific representation
+formed out of :raw-html:`<tt>` `MachineFunction`_ :raw-html:`</tt>`,
+:raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>`, and :raw-html:`<tt>`
+`MachineInstr`_ :raw-html:`</tt>` instances (defined in
+``include/llvm/CodeGen``).  This representation is completely target agnostic,
+representing instructions in their most abstract form: an opcode and a series of
+operands.  This representation is designed to support both an SSA representation
+for machine code, as well as a register allocated, non-SSA form.
+
+.. _MachineInstr:
+
+The ``MachineInstr`` class
+--------------------------
+
+Target machine instructions are represented as instances of the ``MachineInstr``
+class.  This class is an extremely abstract way of representing machine
+instructions.  In particular, it only keeps track of an opcode number and a set
+of operands.
+
+The opcode number is a simple unsigned integer that only has meaning to a
+specific backend.  All of the instructions for a target should be defined in the
+``*InstrInfo.td`` file for the target. The opcode enum values are auto-generated
+from this description.  The ``MachineInstr`` class does not have any information
+about how to interpret the instruction (i.e., what the semantics of the
+instruction are); for that you must refer to the :raw-html:`<tt>`
+`TargetInstrInfo`_ :raw-html:`</tt>` class.
+
+The operands of a machine instruction can be of several different types: a
+register reference, a constant integer, a basic block reference, etc.  In
+addition, a machine operand should be marked as a def or a use of the value
+(though only registers are allowed to be defs).
+
+By convention, the LLVM code generator orders instruction operands so that all
+register definitions come before the register uses, even on architectures that
+are normally printed in other orders.  For example, the SPARC add instruction:
+"``add %i1, %i2, %i3``" adds the "%i1", and "%i2" registers and stores the
+result into the "%i3" register.  In the LLVM code generator, the operands should
+be stored as "``%i3, %i1, %i2``": with the destination first.
+
+Keeping destination (definition) operands at the beginning of the operand list
+has several advantages.  In particular, the debugging printer will print the
+instruction like this:
+
+.. code-block:: llvm
+
+  %r3 = add %i1, %i2
+
+Also if the first operand is a def, it is easier to `create instructions`_ whose
+only def is the first operand.
+
+.. _create instructions:
+
+Using the ``MachineInstrBuilder.h`` functions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Machine instructions are created by using the ``BuildMI`` functions, located in
+the ``include/llvm/CodeGen/MachineInstrBuilder.h`` file.  The ``BuildMI``
+functions make it easy to build arbitrary machine instructions.  Usage of the
+``BuildMI`` functions look like this:
+
+.. code-block:: c++
+
+  // Create a 'DestReg = mov 42' (rendered in X86 assembly as 'mov DestReg, 42')
+  // instruction and insert it at the end of the given MachineBasicBlock.
+  const TargetInstrInfo &TII = ...
+  MachineBasicBlock &MBB = ...
+  DebugLoc DL;
+  MachineInstr *MI = BuildMI(MBB, DL, TII.get(X86::MOV32ri), DestReg).addImm(42);
+
+  // Create the same instr, but insert it before a specified iterator point.
+  MachineBasicBlock::iterator MBBI = ...
+  BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), DestReg).addImm(42);
+
+  // Create a 'cmp Reg, 0' instruction, no destination reg.
+  MI = BuildMI(MBB, DL, TII.get(X86::CMP32ri8)).addReg(Reg).addImm(42);
+
+  // Create an 'sahf' instruction which takes no operands and stores nothing.
+  MI = BuildMI(MBB, DL, TII.get(X86::SAHF));
+
+  // Create a self looping branch instruction.
+  BuildMI(MBB, DL, TII.get(X86::JNE)).addMBB(&MBB);
+
+If you need to add a definition operand (other than the optional destination
+register), you must explicitly mark it as such:
+
+.. code-block:: c++
+
+  MI.addReg(Reg, RegState::Define);
+
+Fixed (preassigned) registers
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+One important issue that the code generator needs to be aware of is the presence
+of fixed registers.  In particular, there are often places in the instruction
+stream where the register allocator *must* arrange for a particular value to be
+in a particular register.  This can occur due to limitations of the instruction
+set (e.g., the X86 can only do a 32-bit divide with the ``EAX``/``EDX``
+registers), or external factors like calling conventions.  In any case, the
+instruction selector should emit code that copies a virtual register into or out
+of a physical register when needed.
+
+For example, consider this simple LLVM example:
+
+.. code-block:: llvm
+
+  define i32 @test(i32 %X, i32 %Y) {
+    %Z = sdiv i32 %X, %Y
+    ret i32 %Z
+  }
+
+The X86 instruction selector might produce this machine code for the ``div`` and
+``ret``:
+
+.. code-block:: text
+
+  ;; Start of div
+  %EAX = mov %reg1024           ;; Copy X (in reg1024) into EAX
+  %reg1027 = sar %reg1024, 31
+  %EDX = mov %reg1027           ;; Sign extend X into EDX
+  idiv %reg1025                 ;; Divide by Y (in reg1025)
+  %reg1026 = mov %EAX           ;; Read the result (Z) out of EAX
+
+  ;; Start of ret
+  %EAX = mov %reg1026           ;; 32-bit return value goes in EAX
+  ret
+
+By the end of code generation, the register allocator would coalesce the
+registers and delete the resultant identity moves producing the following
+code:
+
+.. code-block:: text
+
+  ;; X is in EAX, Y is in ECX
+  mov %EAX, %EDX
+  sar %EDX, 31
+  idiv %ECX
+  ret
+
+This approach is extremely general (if it can handle the X86 architecture, it
+can handle anything!) and allows all of the target specific knowledge about the
+instruction stream to be isolated in the instruction selector.  Note that
+physical registers should have a short lifetime for good code generation, and
+all physical registers are assumed dead on entry to and exit from basic blocks
+(before register allocation).  Thus, if you need a value to be live across basic
+block boundaries, it *must* live in a virtual register.
+
+Call-clobbered registers
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Some machine instructions, like calls, clobber a large number of physical
+registers.  Rather than adding ``<def,dead>`` operands for all of them, it is
+possible to use an ``MO_RegisterMask`` operand instead.  The register mask
+operand holds a bit mask of preserved registers, and everything else is
+considered to be clobbered by the instruction.
+
+Machine code in SSA form
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+``MachineInstr``'s are initially selected in SSA-form, and are maintained in
+SSA-form until register allocation happens.  For the most part, this is
+trivially simple since LLVM is already in SSA form; LLVM PHI nodes become
+machine code PHI nodes, and virtual registers are only allowed to have a single
+definition.
+
+After register allocation, machine code is no longer in SSA-form because there
+are no virtual registers left in the code.
+
+.. _MachineBasicBlock:
+
+The ``MachineBasicBlock`` class
+-------------------------------
+
+The ``MachineBasicBlock`` class contains a list of machine instructions
+(:raw-html:`<tt>` `MachineInstr`_ :raw-html:`</tt>` instances).  It roughly
+corresponds to the LLVM code input to the instruction selector, but there can be
+a one-to-many mapping (i.e. one LLVM basic block can map to multiple machine
+basic blocks). The ``MachineBasicBlock`` class has a "``getBasicBlock``" method,
+which returns the LLVM basic block that it comes from.
+
+.. _MachineFunction:
+
+The ``MachineFunction`` class
+-----------------------------
+
+The ``MachineFunction`` class contains a list of machine basic blocks
+(:raw-html:`<tt>` `MachineBasicBlock`_ :raw-html:`</tt>` instances).  It
+corresponds one-to-one with the LLVM function input to the instruction selector.
+In addition to a list of basic blocks, the ``MachineFunction`` contains a a
+``MachineConstantPool``, a ``MachineFrameInfo``, a ``MachineFunctionInfo``, and
+a ``MachineRegisterInfo``.  See ``include/llvm/CodeGen/MachineFunction.h`` for
+more information.
+
+``MachineInstr Bundles``
+------------------------
+
+LLVM code generator can model sequences of instructions as MachineInstr
+bundles. A MI bundle can model a VLIW group / pack which contains an arbitrary
+number of parallel instructions. It can also be used to model a sequential list
+of instructions (potentially with data dependencies) that cannot be legally
+separated (e.g. ARM Thumb2 IT blocks).
+
+Conceptually a MI bundle is a MI with a number of other MIs nested within:
+
+::
+
+  --------------
+  |   Bundle   | ---------
+  --------------          \
+         |           ----------------
+         |           |      MI      |
+         |           ----------------
+         |                   |
+         |           ----------------
+         |           |      MI      |
+         |           ----------------
+         |                   |
+         |           ----------------
+         |           |      MI      |
+         |           ----------------
+         |
+  --------------
+  |   Bundle   | --------
+  --------------         \
+         |           ----------------
+         |           |      MI      |
+         |           ----------------
+         |                   |
+         |           ----------------
+         |           |      MI      |
+         |           ----------------
+         |                   |
+         |                  ...
+         |
+  --------------
+  |   Bundle   | --------
+  --------------         \
+         |
+        ...
+
+MI bundle support does not change the physical representations of
+MachineBasicBlock and MachineInstr. All the MIs (including top level and nested
+ones) are stored as sequential list of MIs. The "bundled" MIs are marked with
+the 'InsideBundle' flag. A top level MI with the special BUNDLE opcode is used
+to represent the start of a bundle. It's legal to mix BUNDLE MIs with indiviual
+MIs that are not inside bundles nor represent bundles.
+
+MachineInstr passes should operate on a MI bundle as a single unit. Member
+methods have been taught to correctly handle bundles and MIs inside bundles.
+The MachineBasicBlock iterator has been modified to skip over bundled MIs to
+enforce the bundle-as-a-single-unit concept. An alternative iterator
+instr_iterator has been added to MachineBasicBlock to allow passes to iterate
+over all of the MIs in a MachineBasicBlock, including those which are nested
+inside bundles. The top level BUNDLE instruction must have the correct set of
+register MachineOperand's that represent the cumulative inputs and outputs of
+the bundled MIs.
+
+Packing / bundling of MachineInstr's should be done as part of the register
+allocation super-pass. More specifically, the pass which determines what MIs
+should be bundled together must be done after code generator exits SSA form
+(i.e. after two-address pass, PHI elimination, and copy coalescing).  Bundles
+should only be finalized (i.e. adding BUNDLE MIs and input and output register
+MachineOperands) after virtual registers have been rewritten into physical
+registers. This requirement eliminates the need to add virtual register operands
+to BUNDLE instructions which would effectively double the virtual register def
+and use lists.
+
+.. _MC Layer:
+
+The "MC" Layer
+==============
+
+The MC Layer is used to represent and process code at the raw machine code
+level, devoid of "high level" information like "constant pools", "jump tables",
+"global variables" or anything like that.  At this level, LLVM handles things
+like label names, machine instructions, and sections in the object file.  The
+code in this layer is used for a number of important purposes: the tail end of
+the code generator uses it to write a .s or .o file, and it is also used by the
+llvm-mc tool to implement standalone machine code assemblers and disassemblers.
+
+This section describes some of the important classes.  There are also a number
+of important subsystems that interact at this layer, they are described later in
+this manual.
+
+.. _MCStreamer:
+
+The ``MCStreamer`` API
+----------------------
+
+MCStreamer is best thought of as an assembler API.  It is an abstract API which
+is *implemented* in different ways (e.g. to output a .s file, output an ELF .o
+file, etc) but whose API correspond directly to what you see in a .s file.
+MCStreamer has one method per directive, such as EmitLabel, EmitSymbolAttribute,
+SwitchSection, EmitValue (for .byte, .word), etc, which directly correspond to
+assembly level directives.  It also has an EmitInstruction method, which is used
+to output an MCInst to the streamer.
+
+This API is most important for two clients: the llvm-mc stand-alone assembler is
+effectively a parser that parses a line, then invokes a method on MCStreamer. In
+the code generator, the `Code Emission`_ phase of the code generator lowers
+higher level LLVM IR and Machine* constructs down to the MC layer, emitting
+directives through MCStreamer.
+
+On the implementation side of MCStreamer, there are two major implementations:
+one for writing out a .s file (MCAsmStreamer), and one for writing out a .o
+file (MCObjectStreamer).  MCAsmStreamer is a straightforward implementation
+that prints out a directive for each method (e.g. ``EmitValue -> .byte``), but
+MCObjectStreamer implements a full assembler.
+
+For target specific directives, the MCStreamer has a MCTargetStreamer instance.
+Each target that needs it defines a class that inherits from it and is a lot
+like MCStreamer itself: It has one method per directive and two classes that
+inherit from it, a target object streamer and a target asm streamer. The target
+asm streamer just prints it (``emitFnStart -> .fnstart``), and the object
+streamer implement the assembler logic for it.
+
+To make llvm use these classes, the target initialization must call
+TargetRegistry::RegisterAsmStreamer and TargetRegistry::RegisterMCObjectStreamer
+passing callbacks that allocate the corresponding target streamer and pass it
+to createAsmStreamer or to the appropriate object streamer constructor.
+
+The ``MCContext`` class
+-----------------------
+
+The MCContext class is the owner of a variety of uniqued data structures at the
+MC layer, including symbols, sections, etc.  As such, this is the class that you
+interact with to create symbols and sections.  This class can not be subclassed.
+
+The ``MCSymbol`` class
+----------------------
+
+The MCSymbol class represents a symbol (aka label) in the assembly file.  There
+are two interesting kinds of symbols: assembler temporary symbols, and normal
+symbols.  Assembler temporary symbols are used and processed by the assembler
+but are discarded when the object file is produced.  The distinction is usually
+represented by adding a prefix to the label, for example "L" labels are
+assembler temporary labels in MachO.
+
+MCSymbols are created by MCContext and uniqued there.  This means that MCSymbols
+can be compared for pointer equivalence to find out if they are the same symbol.
+Note that pointer inequality does not guarantee the labels will end up at
+different addresses though.  It's perfectly legal to output something like this
+to the .s file:
+
+::
+
+  foo:
+  bar:
+    .byte 4
+
+In this case, both the foo and bar symbols will have the same address.
+
+The ``MCSection`` class
+-----------------------
+
+The ``MCSection`` class represents an object-file specific section. It is
+subclassed by object file specific implementations (e.g. ``MCSectionMachO``,
+``MCSectionCOFF``, ``MCSectionELF``) and these are created and uniqued by
+MCContext.  The MCStreamer has a notion of the current section, which can be
+changed with the SwitchToSection method (which corresponds to a ".section"
+directive in a .s file).
+
+.. _MCInst:
+
+The ``MCInst`` class
+--------------------
+
+The ``MCInst`` class is a target-independent representation of an instruction.
+It is a simple class (much more so than `MachineInstr`_) that holds a
+target-specific opcode and a vector of MCOperands.  MCOperand, in turn, is a
+simple discriminated union of three cases: 1) a simple immediate, 2) a target
+register ID, 3) a symbolic expression (e.g. "``Lfoo-Lbar+42``") as an MCExpr.
+
+MCInst is the common currency used to represent machine instructions at the MC
+layer.  It is the type used by the instruction encoder, the instruction printer,
+and the type generated by the assembly parser and disassembler.
+
+.. _Target-independent algorithms:
+.. _code generation algorithm:
+
+Target-independent code generation algorithms
+=============================================
+
+This section documents the phases described in the `high-level design of the
+code generator`_.  It explains how they work and some of the rationale behind
+their design.
+
+.. _Instruction Selection:
+.. _instruction selection section:
+
+Instruction Selection
+---------------------
+
+Instruction Selection is the process of translating LLVM code presented to the
+code generator into target-specific machine instructions.  There are several
+well-known ways to do this in the literature.  LLVM uses a SelectionDAG based
+instruction selector.
+
+Portions of the DAG instruction selector are generated from the target
+description (``*.td``) files.  Our goal is for the entire instruction selector
+to be generated from these ``.td`` files, though currently there are still
+things that require custom C++ code.
+
+.. _SelectionDAG:
+
+Introduction to SelectionDAGs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The SelectionDAG provides an abstraction for code representation in a way that
+is amenable to instruction selection using automatic techniques
+(e.g. dynamic-programming based optimal pattern matching selectors). It is also
+well-suited to other phases of code generation; in particular, instruction
+scheduling (SelectionDAG's are very close to scheduling DAGs post-selection).
+Additionally, the SelectionDAG provides a host representation where a large
+variety of very-low-level (but target-independent) `optimizations`_ may be
+performed; ones which require extensive information about the instructions
+efficiently supported by the target.
+
+The SelectionDAG is a Directed-Acyclic-Graph whose nodes are instances of the
+``SDNode`` class.  The primary payload of the ``SDNode`` is its operation code
+(Opcode) that indicates what operation the node performs and the operands to the
+operation.  The various operation node types are described at the top of the
+``include/llvm/CodeGen/ISDOpcodes.h`` file.
+
+Although most operations define a single value, each node in the graph may
+define multiple values.  For example, a combined div/rem operation will define
+both the dividend and the remainder. Many other situations require multiple
+values as well.  Each node also has some number of operands, which are edges to
+the node defining the used value.  Because nodes may define multiple values,
+edges are represented by instances of the ``SDValue`` class, which is a
+``<SDNode, unsigned>`` pair, indicating the node and result value being used,
+respectively.  Each value produced by an ``SDNode`` has an associated ``MVT``
+(Machine Value Type) indicating what the type of the value is.
+
+SelectionDAGs contain two different kinds of values: those that represent data
+flow and those that represent control flow dependencies.  Data values are simple
+edges with an integer or floating point value type.  Control edges are
+represented as "chain" edges which are of type ``MVT::Other``.  These edges
+provide an ordering between nodes that have side effects (such as loads, stores,
+calls, returns, etc).  All nodes that have side effects should take a token
+chain as input and produce a new one as output.  By convention, token chain
+inputs are always operand #0, and chain results are always the last value
+produced by an operation. However, after instruction selection, the
+machine nodes have their chain after the instruction's operands, and
+may be followed by glue nodes.
+
+A SelectionDAG has designated "Entry" and "Root" nodes.  The Entry node is
+always a marker node with an Opcode of ``ISD::EntryToken``.  The Root node is
+the final side-effecting node in the token chain. For example, in a single basic
+block function it would be the return node.
+
+One important concept for SelectionDAGs is the notion of a "legal" vs.
+"illegal" DAG.  A legal DAG for a target is one that only uses supported
+operations and supported types.  On a 32-bit PowerPC, for example, a DAG with a
+value of type i1, i8, i16, or i64 would be illegal, as would a DAG that uses a
+SREM or UREM operation.  The `legalize types`_ and `legalize operations`_ phases
+are responsible for turning an illegal DAG into a legal DAG.
+
+.. _SelectionDAG-Process:
+
+SelectionDAG Instruction Selection Process
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+SelectionDAG-based instruction selection consists of the following steps:
+
+#. `Build initial DAG`_ --- This stage performs a simple translation from the
+   input LLVM code to an illegal SelectionDAG.
+
+#. `Optimize SelectionDAG`_ --- This stage performs simple optimizations on the
+   SelectionDAG to simplify it, and recognize meta instructions (like rotates
+   and ``div``/``rem`` pairs) for targets that support these meta operations.
+   This makes the resultant code more efficient and the `select instructions
+   from DAG`_ phase (below) simpler.
+
+#. `Legalize SelectionDAG Types`_ --- This stage transforms SelectionDAG nodes
+   to eliminate any types that are unsupported on the target.
+
+#. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to clean up
+   redundancies exposed by type legalization.
+
+#. `Legalize SelectionDAG Ops`_ --- This stage transforms SelectionDAG nodes to
+   eliminate any operations that are unsupported on the target.
+
+#. `Optimize SelectionDAG`_ --- The SelectionDAG optimizer is run to eliminate
+   inefficiencies introduced by operation legalization.
+
+#. `Select instructions from DAG`_ --- Finally, the target instruction selector
+   matches the DAG operations to target instructions.  This process translates
+   the target-independent input DAG into another DAG of target instructions.
+
+#. `SelectionDAG Scheduling and Formation`_ --- The last phase assigns a linear
+   order to the instructions in the target-instruction DAG and emits them into
+   the MachineFunction being compiled.  This step uses traditional prepass
+   scheduling techniques.
+
+After all of these steps are complete, the SelectionDAG is destroyed and the
+rest of the code generation passes are run.
+
+One great way to visualize what is going on here is to take advantage of a few
+LLC command line options.  The following options pop up a window displaying the
+SelectionDAG at specific times (if you only get errors printed to the console
+while using this, you probably `need to configure your
+system <ProgrammersManual.html#viewing-graphs-while-debugging-code>`_ to add support for it).
+
+* ``-view-dag-combine1-dags`` displays the DAG after being built, before the
+  first optimization pass.
+
+* ``-view-legalize-dags`` displays the DAG before Legalization.
+
+* ``-view-dag-combine2-dags`` displays the DAG before the second optimization
+  pass.
+
+* ``-view-isel-dags`` displays the DAG before the Select phase.
+
+* ``-view-sched-dags`` displays the DAG before Scheduling.
+
+The ``-view-sunit-dags`` displays the Scheduler's dependency graph.  This graph
+is based on the final SelectionDAG, with nodes that must be scheduled together
+bundled into a single scheduling-unit node, and with immediate operands and
+other nodes that aren't relevant for scheduling omitted.
+
+The option ``-filter-view-dags`` allows to select the name of the basic block
+that you are interested to visualize and filters all the previous
+``view-*-dags`` options.
+
+.. _Build initial DAG:
+
+Initial SelectionDAG Construction
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The initial SelectionDAG is na\ :raw-html:`ï`\ vely peephole expanded from
+the LLVM input by the ``SelectionDAGBuilder`` class.  The intent of this pass
+is to expose as much low-level, target-specific details to the SelectionDAG as
+possible.  This pass is mostly hard-coded (e.g. an LLVM ``add`` turns into an
+``SDNode add`` while a ``getelementptr`` is expanded into the obvious
+arithmetic). This pass requires target-specific hooks to lower calls, returns,
+varargs, etc.  For these features, the :raw-html:`<tt>` `TargetLowering`_
+:raw-html:`</tt>` interface is used.
+
+.. _legalize types:
+.. _Legalize SelectionDAG Types:
+.. _Legalize SelectionDAG Ops:
+
+SelectionDAG LegalizeTypes Phase
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The Legalize phase is in charge of converting a DAG to only use the types that
+are natively supported by the target.
+
+There are two main ways of converting values of unsupported scalar types to
+values of supported types: converting small types to larger types ("promoting"),
+and breaking up large integer types into smaller ones ("expanding").  For
+example, a target might require that all f32 values are promoted to f64 and that
+all i1/i8/i16 values are promoted to i32.  The same target might require that
+all i64 values be expanded into pairs of i32 values.  These changes can insert
+sign and zero extensions as needed to make sure that the final code has the same
+behavior as the input.
+
+There are two main ways of converting values of unsupported vector types to
+value of supported types: splitting vector types, multiple times if necessary,
+until a legal type is found, and extending vector types by adding elements to
+the end to round them out to legal types ("widening").  If a vector gets split
+all the way down to single-element parts with no supported vector type being
+found, the elements are converted to scalars ("scalarizing").
+
+A target implementation tells the legalizer which types are supported (and which
+register class to use for them) by calling the ``addRegisterClass`` method in
+its ``TargetLowering`` constructor.
+
+.. _legalize operations:
+.. _Legalizer:
+
+SelectionDAG Legalize Phase
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The Legalize phase is in charge of converting a DAG to only use the operations
+that are natively supported by the target.
+
+Targets often have weird constraints, such as not supporting every operation on
+every supported datatype (e.g. X86 does not support byte conditional moves and
+PowerPC does not support sign-extending loads from a 16-bit memory location).
+Legalize takes care of this by open-coding another sequence of operations to
+emulate the operation ("expansion"), by promoting one type to a larger type that
+supports the operation ("promotion"), or by using a target-specific hook to
+implement the legalization ("custom").
+
+A target implementation tells the legalizer which operations are not supported
+(and which of the above three actions to take) by calling the
+``setOperationAction`` method in its ``TargetLowering`` constructor.
+
+Prior to the existence of the Legalize passes, we required that every target
+`selector`_ supported and handled every operator and type even if they are not
+natively supported.  The introduction of the Legalize phases allows all of the
+canonicalization patterns to be shared across targets, and makes it very easy to
+optimize the canonicalized code because it is still in the form of a DAG.
+
+.. _optimizations:
+.. _Optimize SelectionDAG:
+.. _selector:
+
+SelectionDAG Optimization Phase: the DAG Combiner
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The SelectionDAG optimization phase is run multiple times for code generation,
+immediately after the DAG is built and once after each legalization.  The first
+run of the pass allows the initial code to be cleaned up (e.g. performing
+optimizations that depend on knowing that the operators have restricted type
+inputs).  Subsequent runs of the pass clean up the messy code generated by the
+Legalize passes, which allows Legalize to be very simple (it can focus on making
+code legal instead of focusing on generating *good* and legal code).
+
+One important class of optimizations performed is optimizing inserted sign and
+zero extension instructions.  We currently use ad-hoc techniques, but could move
+to more rigorous techniques in the future.  Here are some good papers on the
+subject:
+
+"`Widening integer arithmetic <http://www.eecs.harvard.edu/~nr/pubs/widen-abstract.html>`_" :raw-html:`<br>`
+Kevin Redwine and Norman Ramsey :raw-html:`<br>`
+International Conference on Compiler Construction (CC) 2004
+
+"`Effective sign extension elimination <http://portal.acm.org/citation.cfm?doid=512529.512552>`_"  :raw-html:`<br>`
+Motohiro Kawahito, Hideaki Komatsu, and Toshio Nakatani :raw-html:`<br>`
+Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
+and Implementation.
+
+.. _Select instructions from DAG:
+
+SelectionDAG Select Phase
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The Select phase is the bulk of the target-specific code for instruction
+selection.  This phase takes a legal SelectionDAG as input, pattern matches the
+instructions supported by the target to this DAG, and produces a new DAG of
+target code.  For example, consider the following LLVM fragment:
+
+.. code-block:: llvm
+
+  %t1 = fadd float %W, %X
+  %t2 = fmul float %t1, %Y
+  %t3 = fadd float %t2, %Z
+
+This LLVM code corresponds to a SelectionDAG that looks basically like this:
+
+.. code-block:: text
+
+  (fadd:f32 (fmul:f32 (fadd:f32 W, X), Y), Z)
+
+If a target supports floating point multiply-and-add (FMA) operations, one of
+the adds can be merged with the multiply.  On the PowerPC, for example, the
+output of the instruction selector might look like this DAG:
+
+::
+
+  (FMADDS (FADDS W, X), Y, Z)
+
+The ``FMADDS`` instruction is a ternary instruction that multiplies its first
+two operands and adds the third (as single-precision floating-point numbers).
+The ``FADDS`` instruction is a simple binary single-precision add instruction.
+To perform this pattern match, the PowerPC backend includes the following
+instruction definitions:
+
+.. code-block:: text
+  :emphasize-lines: 4-5,9
+
+  def FMADDS : AForm_1<59, 29,
+                      (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRC, F4RC:$FRB),
+                      "fmadds $FRT, $FRA, $FRC, $FRB",
+                      [(set F4RC:$FRT, (fadd (fmul F4RC:$FRA, F4RC:$FRC),
+                                             F4RC:$FRB))]>;
+  def FADDS : AForm_2<59, 21,
+                      (ops F4RC:$FRT, F4RC:$FRA, F4RC:$FRB),
+                      "fadds $FRT, $FRA, $FRB",
+                      [(set F4RC:$FRT, (fadd F4RC:$FRA, F4RC:$FRB))]>;
+
+The highlighted portion of the instruction definitions indicates the pattern
+used to match the instructions. The DAG operators (like ``fmul``/``fadd``)
+are defined in the ``include/llvm/Target/TargetSelectionDAG.td`` file.
+"``F4RC``" is the register class of the input and result values.
+
+The TableGen DAG instruction selector generator reads the instruction patterns
+in the ``.td`` file and automatically builds parts of the pattern matching code
+for your target.  It has the following strengths:
+
+* At compiler-compiler time, it analyzes your instruction patterns and tells you
+  if your patterns make sense or not.
+
+* It can handle arbitrary constraints on operands for the pattern match.  In
+  particular, it is straight-forward to say things like "match any immediate
+  that is a 13-bit sign-extended value".  For examples, see the ``immSExt16``
+  and related ``tblgen`` classes in the PowerPC backend.
+
+* It knows several important identities for the patterns defined.  For example,
+  it knows that addition is commutative, so it allows the ``FMADDS`` pattern
+  above to match "``(fadd X, (fmul Y, Z))``" as well as "``(fadd (fmul X, Y),
+  Z)``", without the target author having to specially handle this case.
+
+* It has a full-featured type-inferencing system.  In particular, you should
+  rarely have to explicitly tell the system what type parts of your patterns
+  are.  In the ``FMADDS`` case above, we didn't have to tell ``tblgen`` that all
+  of the nodes in the pattern are of type 'f32'.  It was able to infer and
+  propagate this knowledge from the fact that ``F4RC`` has type 'f32'.
+
+* Targets can define their own (and rely on built-in) "pattern fragments".
+  Pattern fragments are chunks of reusable patterns that get inlined into your
+  patterns during compiler-compiler time.  For example, the integer "``(not
+  x)``" operation is actually defined as a pattern fragment that expands as
+  "``(xor x, -1)``", since the SelectionDAG does not have a native '``not``'
+  operation.  Targets can define their own short-hand fragments as they see fit.
+  See the definition of '``not``' and '``ineg``' for examples.
+
+* In addition to instructions, targets can specify arbitrary patterns that map
+  to one or more instructions using the 'Pat' class.  For example, the PowerPC
+  has no way to load an arbitrary integer immediate into a register in one
+  instruction. To tell tblgen how to do this, it defines:
+
+  ::
+
+    // Arbitrary immediate support.  Implement in terms of LIS/ORI.
+    def : Pat<(i32 imm:$imm),
+              (ORI (LIS (HI16 imm:$imm)), (LO16 imm:$imm))>;
+
+  If none of the single-instruction patterns for loading an immediate into a
+  register match, this will be used.  This rule says "match an arbitrary i32
+  immediate, turning it into an ``ORI`` ('or a 16-bit immediate') and an ``LIS``
+  ('load 16-bit immediate, where the immediate is shifted to the left 16 bits')
+  instruction".  To make this work, the ``LO16``/``HI16`` node transformations
+  are used to manipulate the input immediate (in this case, take the high or low
+  16-bits of the immediate).
+
+* When using the 'Pat' class to map a pattern to an instruction that has one
+  or more complex operands (like e.g. `X86 addressing mode`_), the pattern may
+  either specify the operand as a whole using a ``ComplexPattern``, or else it
+  may specify the components of the complex operand separately.  The latter is
+  done e.g. for pre-increment instructions by the PowerPC back end:
+
+  ::
+
+    def STWU  : DForm_1<37, (outs ptr_rc:$ea_res), (ins GPRC:$rS, memri:$dst),
+                    "stwu $rS, $dst", LdStStoreUpd, []>,
+                    RegConstraint<"$dst.reg = $ea_res">, NoEncode<"$ea_res">;
+
+    def : Pat<(pre_store GPRC:$rS, ptr_rc:$ptrreg, iaddroff:$ptroff),
+              (STWU GPRC:$rS, iaddroff:$ptroff, ptr_rc:$ptrreg)>;
+
+  Here, the pair of ``ptroff`` and ``ptrreg`` operands is matched onto the
+  complex operand ``dst`` of class ``memri`` in the ``STWU`` instruction.
+
+* While the system does automate a lot, it still allows you to write custom C++
+  code to match special cases if there is something that is hard to
+  express.
+
+While it has many strengths, the system currently has some limitations,
+primarily because it is a work in progress and is not yet finished:
+
+* Overall, there is no way to define or match SelectionDAG nodes that define
+  multiple values (e.g. ``SMUL_LOHI``, ``LOAD``, ``CALL``, etc).  This is the
+  biggest reason that you currently still *have to* write custom C++ code
+  for your instruction selector.
+
+* There is no great way to support matching complex addressing modes yet.  In
+  the future, we will extend pattern fragments to allow them to define multiple
+  values (e.g. the four operands of the `X86 addressing mode`_, which are
+  currently matched with custom C++ code).  In addition, we'll extend fragments
+  so that a fragment can match multiple different patterns.
+
+* We don't automatically infer flags like ``isStore``/``isLoad`` yet.
+
+* We don't automatically generate the set of supported registers and operations
+  for the `Legalizer`_ yet.
+
+* We don't have a way of tying in custom legalized nodes yet.
+
+Despite these limitations, the instruction selector generator is still quite
+useful for most of the binary and logical operations in typical instruction
+sets.  If you run into any problems or can't figure out how to do something,
+please let Chris know!
+
+.. _Scheduling and Formation:
+.. _SelectionDAG Scheduling and Formation:
+
+SelectionDAG Scheduling and Formation Phase
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The scheduling phase takes the DAG of target instructions from the selection
+phase and assigns an order.  The scheduler can pick an order depending on
+various constraints of the machines (i.e. order for minimal register pressure or
+try to cover instruction latencies).  Once an order is established, the DAG is
+converted to a list of :raw-html:`<tt>` `MachineInstr`_\s :raw-html:`</tt>` and
+the SelectionDAG is destroyed.
+
+Note that this phase is logically separate from the instruction selection phase,
+but is tied to it closely in the code because it operates on SelectionDAGs.
+
+Future directions for the SelectionDAG
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+#. Optional function-at-a-time selection.
+
+#. Auto-generate entire selector from ``.td`` file.
+
+.. _SSA-based Machine Code Optimizations:
+
+SSA-based Machine Code Optimizations
+------------------------------------
+
+To Be Written
+
+Live Intervals
+--------------
+
+Live Intervals are the ranges (intervals) where a variable is *live*.  They are
+used by some `register allocator`_ passes to determine if two or more virtual
+registers which require the same physical register are live at the same point in
+the program (i.e., they conflict).  When this situation occurs, one virtual
+register must be *spilled*.
+
+Live Variable Analysis
+^^^^^^^^^^^^^^^^^^^^^^
+
+The first step in determining the live intervals of variables is to calculate
+the set of registers that are immediately dead after the instruction (i.e., the
+instruction calculates the value, but it is never used) and the set of registers
+that are used by the instruction, but are never used after the instruction
+(i.e., they are killed). Live variable information is computed for
+each *virtual* register and *register allocatable* physical register
+in the function.  This is done in a very efficient manner because it uses SSA to
+sparsely compute lifetime information for virtual registers (which are in SSA
+form) and only has to track physical registers within a block.  Before register
+allocation, LLVM can assume that physical registers are only live within a
+single basic block.  This allows it to do a single, local analysis to resolve
+physical register lifetimes within each basic block. If a physical register is
+not register allocatable (e.g., a stack pointer or condition codes), it is not
+tracked.
+
+Physical registers may be live in to or out of a function. Live in values are
+typically arguments in registers. Live out values are typically return values in
+registers. Live in values are marked as such, and are given a dummy "defining"
+instruction during live intervals analysis. If the last basic block of a
+function is a ``return``, then it's marked as using all live out values in the
+function.
+
+``PHI`` nodes need to be handled specially, because the calculation of the live
+variable information from a depth first traversal of the CFG of the function
+won't guarantee that a virtual register used by the ``PHI`` node is defined
+before it's used. When a ``PHI`` node is encountered, only the definition is
+handled, because the uses will be handled in other basic blocks.
+
+For each ``PHI`` node of the current basic block, we simulate an assignment at
+the end of the current basic block and traverse the successor basic blocks. If a
+successor basic block has a ``PHI`` node and one of the ``PHI`` node's operands
+is coming from the current basic block, then the variable is marked as *alive*
+within the current basic block and all of its predecessor basic blocks, until
+the basic block with the defining instruction is encountered.
+
+Live Intervals Analysis
+^^^^^^^^^^^^^^^^^^^^^^^
+
+We now have the information available to perform the live intervals analysis and
+build the live intervals themselves.  We start off by numbering the basic blocks
+and machine instructions.  We then handle the "live-in" values.  These are in
+physical registers, so the physical register is assumed to be killed by the end
+of the basic block.  Live intervals for virtual registers are computed for some
+ordering of the machine instructions ``[1, N]``.  A live interval is an interval
+``[i, j)``, where ``1 >= i >= j > N``, for which a variable is live.
+
+.. note::
+  More to come...
+
+.. _Register Allocation:
+.. _register allocator:
+
+Register Allocation
+-------------------
+
+The *Register Allocation problem* consists in mapping a program
+:raw-html:`<b><tt>` P\ :sub:`v`\ :raw-html:`</tt></b>`, that can use an unbounded
+number of virtual registers, to a program :raw-html:`<b><tt>` P\ :sub:`p`\
+:raw-html:`</tt></b>` that contains a finite (possibly small) number of physical
+registers. Each target architecture has a different number of physical
+registers. If the number of physical registers is not enough to accommodate all
+the virtual registers, some of them will have to be mapped into memory. These
+virtuals are called *spilled virtuals*.
+
+How registers are represented in LLVM
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In LLVM, physical registers are denoted by integer numbers that normally range
+from 1 to 1023. To see how this numbering is defined for a particular
+architecture, you can read the ``GenRegisterNames.inc`` file for that
+architecture. For instance, by inspecting
+``lib/Target/X86/X86GenRegisterInfo.inc`` we see that the 32-bit register
+``EAX`` is denoted by 43, and the MMX register ``MM0`` is mapped to 65.
+
+Some architectures contain registers that share the same physical location. A
+notable example is the X86 platform. For instance, in the X86 architecture, the
+registers ``EAX``, ``AX`` and ``AL`` share the first eight bits. These physical
+registers are marked as *aliased* in LLVM. Given a particular architecture, you
+can check which registers are aliased by inspecting its ``RegisterInfo.td``
+file. Moreover, the class ``MCRegAliasIterator`` enumerates all the physical
+registers aliased to a register.
+
+Physical registers, in LLVM, are grouped in *Register Classes*.  Elements in the
+same register class are functionally equivalent, and can be interchangeably
+used. Each virtual register can only be mapped to physical registers of a
+particular class. For instance, in the X86 architecture, some virtuals can only
+be allocated to 8 bit registers.  A register class is described by
+``TargetRegisterClass`` objects.  To discover if a virtual register is
+compatible with a given physical, this code can be used:
+
+.. code-block:: c++
+
+  bool RegMapping_Fer::compatible_class(MachineFunction &mf,
+                                        unsigned v_reg,
+                                        unsigned p_reg) {
+    assert(TargetRegisterInfo::isPhysicalRegister(p_reg) &&
+           "Target register must be physical");
+    const TargetRegisterClass *trc = mf.getRegInfo().getRegClass(v_reg);
+    return trc->contains(p_reg);
+  }
+
+Sometimes, mostly for debugging purposes, it is useful to change the number of
+physical registers available in the target architecture. This must be done
+statically, inside the ``TargetRegsterInfo.td`` file. Just ``grep`` for
+``RegisterClass``, the last parameter of which is a list of registers. Just
+commenting some out is one simple way to avoid them being used. A more polite
+way is to explicitly exclude some registers from the *allocation order*. See the
+definition of the ``GR8`` register class in
+``lib/Target/X86/X86RegisterInfo.td`` for an example of this.
+
+Virtual registers are also denoted by integer numbers. Contrary to physical
+registers, different virtual registers never share the same number. Whereas
+physical registers are statically defined in a ``TargetRegisterInfo.td`` file
+and cannot be created by the application developer, that is not the case with
+virtual registers. In order to create new virtual registers, use the method
+``MachineRegisterInfo::createVirtualRegister()``. This method will return a new
+virtual register. Use an ``IndexedMap<Foo, VirtReg2IndexFunctor>`` to hold
+information per virtual register. If you need to enumerate all virtual
+registers, use the function ``TargetRegisterInfo::index2VirtReg()`` to find the
+virtual register numbers:
+
+.. code-block:: c++
+
+    for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
+      unsigned VirtReg = TargetRegisterInfo::index2VirtReg(i);
+      stuff(VirtReg);
+    }
+
+Before register allocation, the operands of an instruction are mostly virtual
+registers, although physical registers may also be used. In order to check if a
+given machine operand is a register, use the boolean function
+``MachineOperand::isRegister()``. To obtain the integer code of a register, use
+``MachineOperand::getReg()``. An instruction may define or use a register. For
+instance, ``ADD reg:1026 := reg:1025 reg:1024`` defines the registers 1024, and
+uses registers 1025 and 1026. Given a register operand, the method
+``MachineOperand::isUse()`` informs if that register is being used by the
+instruction. The method ``MachineOperand::isDef()`` informs if that registers is
+being defined.
+
+We will call physical registers present in the LLVM bitcode before register
+allocation *pre-colored registers*. Pre-colored registers are used in many
+different situations, for instance, to pass parameters of functions calls, and
+to store results of particular instructions. There are two types of pre-colored
+registers: the ones *implicitly* defined, and those *explicitly*
+defined. Explicitly defined registers are normal operands, and can be accessed
+with ``MachineInstr::getOperand(int)::getReg()``.  In order to check which
+registers are implicitly defined by an instruction, use the
+``TargetInstrInfo::get(opcode)::ImplicitDefs``, where ``opcode`` is the opcode
+of the target instruction. One important difference between explicit and
+implicit physical registers is that the latter are defined statically for each
+instruction, whereas the former may vary depending on the program being
+compiled. For example, an instruction that represents a function call will
+always implicitly define or use the same set of physical registers. To read the
+registers implicitly used by an instruction, use
+``TargetInstrInfo::get(opcode)::ImplicitUses``. Pre-colored registers impose
+constraints on any register allocation algorithm. The register allocator must
+make sure that none of them are overwritten by the values of virtual registers
+while still alive.
+
+Mapping virtual registers to physical registers
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+There are two ways to map virtual registers to physical registers (or to memory
+slots). The first way, that we will call *direct mapping*, is based on the use
+of methods of the classes ``TargetRegisterInfo``, and ``MachineOperand``. The
+second way, that we will call *indirect mapping*, relies on the ``VirtRegMap``
+class in order to insert loads and stores sending and getting values to and from
+memory.
+
+The direct mapping provides more flexibility to the developer of the register
+allocator; however, it is more error prone, and demands more implementation
+work.  Basically, the programmer will have to specify where load and store
+instructions should be inserted in the target function being compiled in order
+to get and store values in memory. To assign a physical register to a virtual
+register present in a given operand, use ``MachineOperand::setReg(p_reg)``. To
+insert a store instruction, use ``TargetInstrInfo::storeRegToStackSlot(...)``,
+and to insert a load instruction, use ``TargetInstrInfo::loadRegFromStackSlot``.
+
+The indirect mapping shields the application developer from the complexities of
+inserting load and store instructions. In order to map a virtual register to a
+physical one, use ``VirtRegMap::assignVirt2Phys(vreg, preg)``.  In order to map
+a certain virtual register to memory, use
+``VirtRegMap::assignVirt2StackSlot(vreg)``. This method will return the stack
+slot where ``vreg``'s value will be located.  If it is necessary to map another
+virtual register to the same stack slot, use
+``VirtRegMap::assignVirt2StackSlot(vreg, stack_location)``. One important point
+to consider when using the indirect mapping, is that even if a virtual register
+is mapped to memory, it still needs to be mapped to a physical register. This
+physical register is the location where the virtual register is supposed to be
+found before being stored or after being reloaded.
+
+If the indirect strategy is used, after all the virtual registers have been
+mapped to physical registers or stack slots, it is necessary to use a spiller
+object to place load and store instructions in the code. Every virtual that has
+been mapped to a stack slot will be stored to memory after being defined and will
+be loaded before being used. The implementation of the spiller tries to recycle
+load/store instructions, avoiding unnecessary instructions. For an example of
+how to invoke the spiller, see ``RegAllocLinearScan::runOnMachineFunction`` in
+``lib/CodeGen/RegAllocLinearScan.cpp``.
+
+Handling two address instructions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+With very rare exceptions (e.g., function calls), the LLVM machine code
+instructions are three address instructions. That is, each instruction is
+expected to define at most one register, and to use at most two registers.
+However, some architectures use two address instructions. In this case, the
+defined register is also one of the used registers. For instance, an instruction
+such as ``ADD %EAX, %EBX``, in X86 is actually equivalent to ``%EAX = %EAX +
+%EBX``.
+
+In order to produce correct code, LLVM must convert three address instructions
+that represent two address instructions into true two address instructions. LLVM
+provides the pass ``TwoAddressInstructionPass`` for this specific purpose. It
+must be run before register allocation takes place. After its execution, the
+resulting code may no longer be in SSA form. This happens, for instance, in
+situations where an instruction such as ``%a = ADD %b %c`` is converted to two
+instructions such as:
+
+::
+
+  %a = MOVE %b
+  %a = ADD %a %c
+
+Notice that, internally, the second instruction is represented as ``ADD
+%a[def/use] %c``. I.e., the register operand ``%a`` is both used and defined by
+the instruction.
+
+The SSA deconstruction phase
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+An important transformation that happens during register allocation is called
+the *SSA Deconstruction Phase*. The SSA form simplifies many analyses that are
+performed on the control flow graph of programs. However, traditional
+instruction sets do not implement PHI instructions. Thus, in order to generate
+executable code, compilers must replace PHI instructions with other instructions
+that preserve their semantics.
+
+There are many ways in which PHI instructions can safely be removed from the
+target code. The most traditional PHI deconstruction algorithm replaces PHI
+instructions with copy instructions. That is the strategy adopted by LLVM. The
+SSA deconstruction algorithm is implemented in
+``lib/CodeGen/PHIElimination.cpp``. In order to invoke this pass, the identifier
+``PHIEliminationID`` must be marked as required in the code of the register
+allocator.
+
+Instruction folding
+^^^^^^^^^^^^^^^^^^^
+
+*Instruction folding* is an optimization performed during register allocation
+that removes unnecessary copy instructions. For instance, a sequence of
+instructions such as:
+
+::
+
+  %EBX = LOAD %mem_address
+  %EAX = COPY %EBX
+
+can be safely substituted by the single instruction:
+
+::
+
+  %EAX = LOAD %mem_address
+
+Instructions can be folded with the
+``TargetRegisterInfo::foldMemoryOperand(...)`` method. Care must be taken when
+folding instructions; a folded instruction can be quite different from the
+original instruction. See ``LiveIntervals::addIntervalsForSpills`` in
+``lib/CodeGen/LiveIntervalAnalysis.cpp`` for an example of its use.
+
+Built in register allocators
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The LLVM infrastructure provides the application developer with three different
+register allocators:
+
+* *Fast* --- This register allocator is the default for debug builds. It
+  allocates registers on a basic block level, attempting to keep values in
+  registers and reusing registers as appropriate.
+
+* *Basic* --- This is an incremental approach to register allocation. Live
+  ranges are assigned to registers one at a time in an order that is driven by
+  heuristics. Since code can be rewritten on-the-fly during allocation, this
+  framework allows interesting allocators to be developed as extensions. It is
+  not itself a production register allocator but is a potentially useful
+  stand-alone mode for triaging bugs and as a performance baseline.
+
+* *Greedy* --- *The default allocator*. This is a highly tuned implementation of
+  the *Basic* allocator that incorporates global live range splitting. This
+  allocator works hard to minimize the cost of spill code.
+
+* *PBQP* --- A Partitioned Boolean Quadratic Programming (PBQP) based register
+  allocator. This allocator works by constructing a PBQP problem representing
+  the register allocation problem under consideration, solving this using a PBQP
+  solver, and mapping the solution back to a register assignment.
+
+The type of register allocator used in ``llc`` can be chosen with the command
+line option ``-regalloc=...``:
+
+.. code-block:: bash
+
+  $ llc -regalloc=linearscan file.bc -o ln.s
+  $ llc -regalloc=fast file.bc -o fa.s
+  $ llc -regalloc=pbqp file.bc -o pbqp.s
+
+.. _Prolog/Epilog Code Insertion:
+
+Prolog/Epilog Code Insertion
+----------------------------
+
+Compact Unwind
+
+Throwing an exception requires *unwinding* out of a function. The information on
+how to unwind a given function is traditionally expressed in DWARF unwind
+(a.k.a. frame) info. But that format was originally developed for debuggers to
+backtrace, and each Frame Description Entry (FDE) requires ~20-30 bytes per
+function. There is also the cost of mapping from an address in a function to the
+corresponding FDE at runtime. An alternative unwind encoding is called *compact
+unwind* and requires just 4-bytes per function.
+
+The compact unwind encoding is a 32-bit value, which is encoded in an
+architecture-specific way. It specifies which registers to restore and from
+where, and how to unwind out of the function. When the linker creates a final
+linked image, it will create a ``__TEXT,__unwind_info`` section. This section is
+a small and fast way for the runtime to access unwind info for any given
+function. If we emit compact unwind info for the function, that compact unwind
+info will be encoded in the ``__TEXT,__unwind_info`` section. If we emit DWARF
+unwind info, the ``__TEXT,__unwind_info`` section will contain the offset of the
+FDE in the ``__TEXT,__eh_frame`` section in the final linked image.
+
+For X86, there are three modes for the compact unwind encoding:
+
+*Function with a Frame Pointer (``EBP`` or ``RBP``)*
+  ``EBP/RBP``-based frame, where ``EBP/RBP`` is pushed onto the stack
+  immediately after the return address, then ``ESP/RSP`` is moved to
+  ``EBP/RBP``. Thus to unwind, ``ESP/RSP`` is restored with the current
+  ``EBP/RBP`` value, then ``EBP/RBP`` is restored by popping the stack, and the
+  return is done by popping the stack once more into the PC. All non-volatile
+  registers that need to be restored must have been saved in a small range on
+  the stack that starts ``EBP-4`` to ``EBP-1020`` (``RBP-8`` to
+  ``RBP-1020``). The offset (divided by 4 in 32-bit mode and 8 in 64-bit mode)
+  is encoded in bits 16-23 (mask: ``0x00FF0000``).  The registers saved are
+  encoded in bits 0-14 (mask: ``0x00007FFF``) as five 3-bit entries from the
+  following table:
+
+    ==============  =============  ===============
+    Compact Number  i386 Register  x86-64 Register
+    ==============  =============  ===============
+    1               ``EBX``        ``RBX``
+    2               ``ECX``        ``R12``
+    3               ``EDX``        ``R13``
+    4               ``EDI``        ``R14``
+    5               ``ESI``        ``R15``
+    6               ``EBP``        ``RBP``
+    ==============  =============  ===============
+
+*Frameless with a Small Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)*
+  To return, a constant (encoded in the compact unwind encoding) is added to the
+  ``ESP/RSP``.  Then the return is done by popping the stack into the PC. All
+  non-volatile registers that need to be restored must have been saved on the
+  stack immediately after the return address. The stack size (divided by 4 in
+  32-bit mode and 8 in 64-bit mode) is encoded in bits 16-23 (mask:
+  ``0x00FF0000``). There is a maximum stack size of 1024 bytes in 32-bit mode
+  and 2048 in 64-bit mode. The number of registers saved is encoded in bits 9-12
+  (mask: ``0x00001C00``). Bits 0-9 (mask: ``0x000003FF``) contain which
+  registers were saved and their order. (See the
+  ``encodeCompactUnwindRegistersWithoutFrame()`` function in
+  ``lib/Target/X86FrameLowering.cpp`` for the encoding algorithm.)
+
+*Frameless with a Large Constant Stack Size (``EBP`` or ``RBP`` is not used as a frame pointer)*
+  This case is like the "Frameless with a Small Constant Stack Size" case, but
+  the stack size is too large to encode in the compact unwind encoding. Instead
+  it requires that the function contains "``subl $nnnnnn, %esp``" in its
+  prolog. The compact encoding contains the offset to the ``$nnnnnn`` value in
+  the function in bits 9-12 (mask: ``0x00001C00``).
+
+.. _Late Machine Code Optimizations:
+
+Late Machine Code Optimizations
+-------------------------------
+
+.. note::
+
+  To Be Written
+
+.. _Code Emission:
+
+Code Emission
+-------------
+
+The code emission step of code generation is responsible for lowering from the
+code generator abstractions (like `MachineFunction`_, `MachineInstr`_, etc) down
+to the abstractions used by the MC layer (`MCInst`_, `MCStreamer`_, etc).  This
+is done with a combination of several different classes: the (misnamed)
+target-independent AsmPrinter class, target-specific subclasses of AsmPrinter
+(such as SparcAsmPrinter), and the TargetLoweringObjectFile class.
+
+Since the MC layer works at the level of abstraction of object files, it doesn't
+have a notion of functions, global variables etc.  Instead, it thinks about
+labels, directives, and instructions.  A key class used at this time is the
+MCStreamer class.  This is an abstract API that is implemented in different ways
+(e.g. to output a .s file, output an ELF .o file, etc) that is effectively an
+"assembler API".  MCStreamer has one method per directive, such as EmitLabel,
+EmitSymbolAttribute, SwitchSection, etc, which directly correspond to assembly
+level directives.
+
+If you are interested in implementing a code generator for a target, there are
+three important things that you have to implement for your target:
+
+#. First, you need a subclass of AsmPrinter for your target.  This class
+   implements the general lowering process converting MachineFunction's into MC
+   label constructs.  The AsmPrinter base class provides a number of useful
+   methods and routines, and also allows you to override the lowering process in
+   some important ways.  You should get much of the lowering for free if you are
+   implementing an ELF, COFF, or MachO target, because the
+   TargetLoweringObjectFile class implements much of the common logic.
+
+#. Second, you need to implement an instruction printer for your target.  The
+   instruction printer takes an `MCInst`_ and renders it to a raw_ostream as
+   text.  Most of this is automatically generated from the .td file (when you
+   specify something like "``add $dst, $src1, $src2``" in the instructions), but
+   you need to implement routines to print operands.
+
+#. Third, you need to implement code that lowers a `MachineInstr`_ to an MCInst,
+   usually implemented in "<target>MCInstLower.cpp".  This lowering process is
+   often target specific, and is responsible for turning jump table entries,
+   constant pool indices, global variable addresses, etc into MCLabels as
+   appropriate.  This translation layer is also responsible for expanding pseudo
+   ops used by the code generator into the actual machine instructions they
+   correspond to. The MCInsts that are generated by this are fed into the
+   instruction printer or the encoder.
+
+Finally, at your choosing, you can also implement a subclass of MCCodeEmitter
+which lowers MCInst's into machine code bytes and relocations.  This is
+important if you want to support direct .o file emission, or would like to
+implement an assembler for your target.
+
+VLIW Packetizer
+---------------
+
+In a Very Long Instruction Word (VLIW) architecture, the compiler is responsible
+for mapping instructions to functional-units available on the architecture. To
+that end, the compiler creates groups of instructions called *packets* or
+*bundles*. The VLIW packetizer in LLVM is a target-independent mechanism to
+enable the packetization of machine instructions.
+
+Mapping from instructions to functional units
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Instructions in a VLIW target can typically be mapped to multiple functional
+units. During the process of packetizing, the compiler must be able to reason
+about whether an instruction can be added to a packet. This decision can be
+complex since the compiler has to examine all possible mappings of instructions
+to functional units. Therefore to alleviate compilation-time complexity, the
+VLIW packetizer parses the instruction classes of a target and generates tables
+at compiler build time. These tables can then be queried by the provided
+machine-independent API to determine if an instruction can be accommodated in a
+packet.
+
+How the packetization tables are generated and used
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The packetizer reads instruction classes from a target's itineraries and creates
+a deterministic finite automaton (DFA) to represent the state of a packet. A DFA
+consists of three major elements: inputs, states, and transitions. The set of
+inputs for the generated DFA represents the instruction being added to a
+packet. The states represent the possible consumption of functional units by
+instructions in a packet. In the DFA, transitions from one state to another
+occur on the addition of an instruction to an existing packet. If there is a
+legal mapping of functional units to instructions, then the DFA contains a
+corresponding transition. The absence of a transition indicates that a legal
+mapping does not exist and that the instruction cannot be added to the packet.
+
+To generate tables for a VLIW target, add *Target*\ GenDFAPacketizer.inc as a
+target to the Makefile in the target directory. The exported API provides three
+functions: ``DFAPacketizer::clearResources()``,
+``DFAPacketizer::reserveResources(MachineInstr *MI)``, and
+``DFAPacketizer::canReserveResources(MachineInstr *MI)``. These functions allow
+a target packetizer to add an instruction to an existing packet and to check
+whether an instruction can be added to a packet. See
+``llvm/CodeGen/DFAPacketizer.h`` for more information.
+
+Implementing a Native Assembler
+===============================
+
+Though you're probably reading this because you want to write or maintain a
+compiler backend, LLVM also fully supports building a native assembler.
+We've tried hard to automate the generation of the assembler from the .td files
+(in particular the instruction syntax and encodings), which means that a large
+part of the manual and repetitive data entry can be factored and shared with the
+compiler.
+
+Instruction Parsing
+-------------------
+
+.. note::
+
+  To Be Written
+
+
+Instruction Alias Processing
+----------------------------
+
+Once the instruction is parsed, it enters the MatchInstructionImpl function.
+The MatchInstructionImpl function performs alias processing and then does actual
+matching.
+
+Alias processing is the phase that canonicalizes different lexical forms of the
+same instructions down to one representation.  There are several different kinds
+of alias that are possible to implement and they are listed below in the order
+that they are processed (which is in order from simplest/weakest to most
+complex/powerful).  Generally you want to use the first alias mechanism that
+meets the needs of your instruction, because it will allow a more concise
+description.
+
+Mnemonic Aliases
+^^^^^^^^^^^^^^^^
+
+The first phase of alias processing is simple instruction mnemonic remapping for
+classes of instructions which are allowed with two different mnemonics.  This
+phase is a simple and unconditionally remapping from one input mnemonic to one
+output mnemonic.  It isn't possible for this form of alias to look at the
+operands at all, so the remapping must apply for all forms of a given mnemonic.
+Mnemonic aliases are defined simply, for example X86 has:
+
+::
+
+  def : MnemonicAlias<"cbw",     "cbtw">;
+  def : MnemonicAlias<"smovq",   "movsq">;
+  def : MnemonicAlias<"fldcww",  "fldcw">;
+  def : MnemonicAlias<"fucompi", "fucomip">;
+  def : MnemonicAlias<"ud2a",    "ud2">;
+
+... and many others.  With a MnemonicAlias definition, the mnemonic is remapped
+simply and directly.  Though MnemonicAlias's can't look at any aspect of the
+instruction (such as the operands) they can depend on global modes (the same
+ones supported by the matcher), through a Requires clause:
+
+::
+
+  def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
+  def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
+
+In this example, the mnemonic gets mapped into a different one depending on
+the current instruction set.
+
+Instruction Aliases
+^^^^^^^^^^^^^^^^^^^
+
+The most general phase of alias processing occurs while matching is happening:
+it provides new forms for the matcher to match along with a specific instruction
+to generate.  An instruction alias has two parts: the string to match and the
+instruction to generate.  For example:
+
+::
+
+  def : InstAlias<"movsx $src, $dst", (MOVSX16rr8W GR16:$dst, GR8  :$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX16rm8W GR16:$dst, i8mem:$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX32rr8  GR32:$dst, GR8  :$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX32rr16 GR32:$dst, GR16 :$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX64rr8  GR64:$dst, GR8  :$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX64rr16 GR64:$dst, GR16 :$src)>;
+  def : InstAlias<"movsx $src, $dst", (MOVSX64rr32 GR64:$dst, GR32 :$src)>;
+
+This shows a powerful example of the instruction aliases, matching the same
+mnemonic in multiple different ways depending on what operands are present in
+the assembly.  The result of instruction aliases can include operands in a
+different order than the destination instruction, and can use an input multiple
+times, for example:
+
+::
+
+  def : InstAlias<"clrb $reg", (XOR8rr  GR8 :$reg, GR8 :$reg)>;
+  def : InstAlias<"clrw $reg", (XOR16rr GR16:$reg, GR16:$reg)>;
+  def : InstAlias<"clrl $reg", (XOR32rr GR32:$reg, GR32:$reg)>;
+  def : InstAlias<"clrq $reg", (XOR64rr GR64:$reg, GR64:$reg)>;
+
+This example also shows that tied operands are only listed once.  In the X86
+backend, XOR8rr has two input GR8's and one output GR8 (where an input is tied
+to the output).  InstAliases take a flattened operand list without duplicates
+for tied operands.  The result of an instruction alias can also use immediates
+and fixed physical registers which are added as simple immediate operands in the
+result, for example:
+
+::
+
+  // Fixed Immediate operand.
+  def : InstAlias<"aad", (AAD8i8 10)>;
+
+  // Fixed register operand.
+  def : InstAlias<"fcomi", (COM_FIr ST1)>;
+
+  // Simple alias.
+  def : InstAlias<"fcomi $reg", (COM_FIr RST:$reg)>;
+
+Instruction aliases can also have a Requires clause to make them subtarget
+specific.
+
+If the back-end supports it, the instruction printer can automatically emit the
+alias rather than what's being aliased. It typically leads to better, more
+readable code. If it's better to print out what's being aliased, then pass a '0'
+as the third parameter to the InstAlias definition.
+
+Instruction Matching
+--------------------
+
+.. note::
+
+  To Be Written
+
+.. _Implementations of the abstract target description interfaces:
+.. _implement the target description:
+
+Target-specific Implementation Notes
+====================================
+
+This section of the document explains features or design decisions that are
+specific to the code generator for a particular target.  First we start with a
+table that summarizes what features are supported by each target.
+
+.. _target-feature-matrix:
+
+Target Feature Matrix
+---------------------
+
+Note that this table does not list features that are not supported fully by any
+target yet.  It considers a feature to be supported if at least one subtarget
+supports it.  A feature being supported means that it is useful and works for
+most cases, it does not indicate that there are zero known bugs in the
+implementation.  Here is the key:
+
+:raw-html:`<table border="1" cellspacing="0">`
+:raw-html:`<tr>`
+:raw-html:`<th>Unknown</th>`
+:raw-html:`<th>Not Applicable</th>`
+:raw-html:`<th>No support</th>`
+:raw-html:`<th>Partial Support</th>`
+:raw-html:`<th>Complete Support</th>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td class="unknown"></td>`
+:raw-html:`<td class="na"></td>`
+:raw-html:`<td class="no"></td>`
+:raw-html:`<td class="partial"></td>`
+:raw-html:`<td class="yes"></td>`
+:raw-html:`</tr>`
+:raw-html:`</table>`
+
+Here is the table:
+
+:raw-html:`<table width="689" border="1" cellspacing="0">`
+:raw-html:`<tr><td></td>`
+:raw-html:`<td colspan="13" align="center" style="background-color:#ffc">Target</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<th>Feature</th>`
+:raw-html:`<th>ARM</th>`
+:raw-html:`<th>Hexagon</th>`
+:raw-html:`<th>MSP430</th>`
+:raw-html:`<th>Mips</th>`
+:raw-html:`<th>NVPTX</th>`
+:raw-html:`<th>PowerPC</th>`
+:raw-html:`<th>Sparc</th>`
+:raw-html:`<th>SystemZ</th>`
+:raw-html:`<th>X86</th>`
+:raw-html:`<th>XCore</th>`
+:raw-html:`<th>eBPF</th>`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_reliable">is generally reliable</a></td>`
+:raw-html:`<td class="yes"></td> <!-- ARM -->`
+:raw-html:`<td class="yes"></td> <!-- Hexagon -->`
+:raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
+:raw-html:`<td class="yes"></td> <!-- Mips -->`
+:raw-html:`<td class="yes"></td> <!-- NVPTX -->`
+:raw-html:`<td class="yes"></td> <!-- PowerPC -->`
+:raw-html:`<td class="yes"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="yes"></td> <!-- XCore -->`
+:raw-html:`<td class="yes"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_asmparser">assembly parser</a></td>`
+:raw-html:`<td class="no"></td> <!-- ARM -->`
+:raw-html:`<td class="no"></td> <!-- Hexagon -->`
+:raw-html:`<td class="no"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="no"></td> <!-- NVPTX -->`
+:raw-html:`<td class="no"></td> <!-- PowerPC -->`
+:raw-html:`<td class="no"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="no"></td> <!-- XCore -->`
+:raw-html:`<td class="no"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_disassembler">disassembler</a></td>`
+:raw-html:`<td class="yes"></td> <!-- ARM -->`
+:raw-html:`<td class="no"></td> <!-- Hexagon -->`
+:raw-html:`<td class="no"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="na"></td> <!-- NVPTX -->`
+:raw-html:`<td class="no"></td> <!-- PowerPC -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="no"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="yes"></td> <!-- XCore -->`
+:raw-html:`<td class="yes"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_inlineasm">inline asm</a></td>`
+:raw-html:`<td class="yes"></td> <!-- ARM -->`
+:raw-html:`<td class="yes"></td> <!-- Hexagon -->`
+:raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="yes"></td> <!-- NVPTX -->`
+:raw-html:`<td class="yes"></td> <!-- PowerPC -->`
+:raw-html:`<td class="unknown"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="yes"></td> <!-- XCore -->`
+:raw-html:`<td class="no"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_jit">jit</a></td>`
+:raw-html:`<td class="partial"><a href="#feat_jit_arm">*</a></td> <!-- ARM -->`
+:raw-html:`<td class="no"></td> <!-- Hexagon -->`
+:raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
+:raw-html:`<td class="yes"></td> <!-- Mips -->`
+:raw-html:`<td class="na"></td> <!-- NVPTX -->`
+:raw-html:`<td class="yes"></td> <!-- PowerPC -->`
+:raw-html:`<td class="unknown"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="no"></td> <!-- XCore -->`
+:raw-html:`<td class="yes"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_objectwrite">.o file writing</a></td>`
+:raw-html:`<td class="no"></td> <!-- ARM -->`
+:raw-html:`<td class="no"></td> <!-- Hexagon -->`
+:raw-html:`<td class="no"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="na"></td> <!-- NVPTX -->`
+:raw-html:`<td class="no"></td> <!-- PowerPC -->`
+:raw-html:`<td class="no"></td> <!-- Sparc -->`
+:raw-html:`<td class="yes"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="no"></td> <!-- XCore -->`
+:raw-html:`<td class="yes"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a hr:raw-html:`ef="#feat_tailcall">tail calls</a></td>`
+:raw-html:`<td class="yes"></td> <!-- ARM -->`
+:raw-html:`<td class="yes"></td> <!-- Hexagon -->`
+:raw-html:`<td class="unknown"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="no"></td> <!-- NVPTX -->`
+:raw-html:`<td class="yes"></td> <!-- PowerPC -->`
+:raw-html:`<td class="unknown"></td> <!-- Sparc -->`
+:raw-html:`<td class="no"></td> <!-- SystemZ -->`
+:raw-html:`<td class="yes"></td> <!-- X86 -->`
+:raw-html:`<td class="no"></td> <!-- XCore -->`
+:raw-html:`<td class="no"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`<tr>`
+:raw-html:`<td><a href="#feat_segstacks">segmented stacks</a></td>`
+:raw-html:`<td class="no"></td> <!-- ARM -->`
+:raw-html:`<td class="no"></td> <!-- Hexagon -->`
+:raw-html:`<td class="no"></td> <!-- MSP430 -->`
+:raw-html:`<td class="no"></td> <!-- Mips -->`
+:raw-html:`<td class="no"></td> <!-- NVPTX -->`
+:raw-html:`<td class="no"></td> <!-- PowerPC -->`
+:raw-html:`<td class="no"></td> <!-- Sparc -->`
+:raw-html:`<td class="no"></td> <!-- SystemZ -->`
+:raw-html:`<td class="partial"><a href="#feat_segstacks_x86">*</a></td> <!-- X86 -->`
+:raw-html:`<td class="no"></td> <!-- XCore -->`
+:raw-html:`<td class="no"></td> <!-- eBPF -->`
+:raw-html:`</tr>`
+
+:raw-html:`</table>`
+
+.. _feat_reliable:
+
+Is Generally Reliable
+^^^^^^^^^^^^^^^^^^^^^
+
+This box indicates whether the target is considered to be production quality.
+This indicates that the target has been used as a static compiler to compile
+large amounts of code by a variety of different people and is in continuous use.
+
+.. _feat_asmparser:
+
+Assembly Parser
+^^^^^^^^^^^^^^^
+
+This box indicates whether the target supports parsing target specific .s files
+by implementing the MCAsmParser interface.  This is required for llvm-mc to be
+able to act as a native assembler and is required for inline assembly support in
+the native .o file writer.
+
+.. _feat_disassembler:
+
+Disassembler
+^^^^^^^^^^^^
+
+This box indicates whether the target supports the MCDisassembler API for
+disassembling machine opcode bytes into MCInst's.
+
+.. _feat_inlineasm:
+
+Inline Asm
+^^^^^^^^^^
+
+This box indicates whether the target supports most popular inline assembly
+constraints and modifiers.
+
+.. _feat_jit:
+
+JIT Support
+^^^^^^^^^^^
+
+This box indicates whether the target supports the JIT compiler through the
+ExecutionEngine interface.
+
+.. _feat_jit_arm:
+
+The ARM backend has basic support for integer code in ARM codegen mode, but
+lacks NEON and full Thumb support.
+
+.. _feat_objectwrite:
+
+.o File Writing
+^^^^^^^^^^^^^^^
+
+This box indicates whether the target supports writing .o files (e.g. MachO,
+ELF, and/or COFF) files directly from the target.  Note that the target also
+must include an assembly parser and general inline assembly support for full
+inline assembly support in the .o writer.
+
+Targets that don't support this feature can obviously still write out .o files,
+they just rely on having an external assembler to translate from a .s file to a
+.o file (as is the case for many C compilers).
+
+.. _feat_tailcall:
+
+Tail Calls
+^^^^^^^^^^
+
+This box indicates whether the target supports guaranteed tail calls.  These are
+calls marked "`tail <LangRef.html#i_call>`_" and use the fastcc calling
+convention.  Please see the `tail call section`_ for more details.
+
+.. _feat_segstacks:
+
+Segmented Stacks
+^^^^^^^^^^^^^^^^
+
+This box indicates whether the target supports segmented stacks. This replaces
+the traditional large C stack with many linked segments. It is compatible with
+the `gcc implementation <http://gcc.gnu.org/wiki/SplitStacks>`_ used by the Go
+front end.
+
+.. _feat_segstacks_x86:
+
+Basic support exists on the X86 backend. Currently vararg doesn't work and the
+object files are not marked the way the gold linker expects, but simple Go
+programs can be built by dragonegg.
+
+.. _tail call section:
+
+Tail call optimization
+----------------------
+
+Tail call optimization, callee reusing the stack of the caller, is currently
+supported on x86/x86-64 and PowerPC. It is performed if:
+
+* Caller and callee have the calling convention ``fastcc``, ``cc 10`` (GHC
+  calling convention) or ``cc 11`` (HiPE calling convention).
+
+* The call is a tail call - in tail position (ret immediately follows call and
+  ret uses value of call or is void).
+
+* Option ``-tailcallopt`` is enabled.
+
+* Platform-specific constraints are met.
+
+x86/x86-64 constraints:
+
+* No variable argument lists are used.
+
+* On x86-64 when generating GOT/PIC code only module-local calls (visibility =
+  hidden or protected) are supported.
+
+PowerPC constraints:
+
+* No variable argument lists are used.
+
+* No byval parameters are used.
+
+* On ppc32/64 GOT/PIC only module-local calls (visibility = hidden or protected)
+  are supported.
+
+Example:
+
+Call as ``llc -tailcallopt test.ll``.
+
+.. code-block:: llvm
+
+  declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2, i32 %a3, i32 %a4)
+
+  define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {
+    %l1 = add i32 %in1, %in2
+    %tmp = tail call fastcc i32 @tailcallee(i32 %in1 inreg, i32 %in2 inreg, i32 %in1, i32 %l1)
+    ret i32 %tmp
+  }
+
+Implications of ``-tailcallopt``:
+
+To support tail call optimization in situations where the callee has more
+arguments than the caller a 'callee pops arguments' convention is used. This
+currently causes each ``fastcc`` call that is not tail call optimized (because
+one or more of above constraints are not met) to be followed by a readjustment
+of the stack. So performance might be worse in such cases.
+
+Sibling call optimization
+-------------------------
+
+Sibling call optimization is a restricted form of tail call optimization.
+Unlike tail call optimization described in the previous section, it can be
+performed automatically on any tail calls when ``-tailcallopt`` option is not
+specified.
+
+Sibling call optimization is currently performed on x86/x86-64 when the
+following constraints are met:
+
+* Caller and callee have the same calling convention. It can be either ``c`` or
+  ``fastcc``.
+
+* The call is a tail call - in tail position (ret immediately follows call and
+  ret uses value of call or is void).
+
+* Caller and callee have matching return type or the callee result is not used.
+
+* If any of the callee arguments are being passed in stack, they must be
+  available in caller's own incoming argument stack and the frame offsets must
+  be the same.
+
+Example:
+
+.. code-block:: llvm
+
+  declare i32 @bar(i32, i32)
+
+  define i32 @foo(i32 %a, i32 %b, i32 %c) {
+  entry:
+    %0 = tail call i32 @bar(i32 %a, i32 %b)
+    ret i32 %0
+  }
+
+The X86 backend
+---------------
+
+The X86 code generator lives in the ``lib/Target/X86`` directory.  This code
+generator is capable of targeting a variety of x86-32 and x86-64 processors, and
+includes support for ISA extensions such as MMX and SSE.
+
+X86 Target Triples supported
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following are the known target triples that are supported by the X86
+backend.  This is not an exhaustive list, and it would be useful to add those
+that people test.
+
+* **i686-pc-linux-gnu** --- Linux
+
+* **i386-unknown-freebsd5.3** --- FreeBSD 5.3
+
+* **i686-pc-cygwin** --- Cygwin on Win32
+
+* **i686-pc-mingw32** --- MingW on Win32
+
+* **i386-pc-mingw32msvc** --- MingW crosscompiler on Linux
+
+* **i686-apple-darwin*** --- Apple Darwin on X86
+
+* **x86_64-unknown-linux-gnu** --- Linux
+
+X86 Calling Conventions supported
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following target-specific calling conventions are known to backend:
+
+* **x86_StdCall** --- stdcall calling convention seen on Microsoft Windows
+  platform (CC ID = 64).
+
+* **x86_FastCall** --- fastcall calling convention seen on Microsoft Windows
+  platform (CC ID = 65).
+
+* **x86_ThisCall** --- Similar to X86_StdCall. Passes first argument in ECX,
+  others via stack. Callee is responsible for stack cleaning. This convention is
+  used by MSVC by default for methods in its ABI (CC ID = 70).
+
+.. _X86 addressing mode:
+
+Representing X86 addressing modes in MachineInstrs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The x86 has a very flexible way of accessing memory.  It is capable of forming
+memory addresses of the following expression directly in integer instructions
+(which use ModR/M addressing):
+
+::
+
+  SegmentReg: Base + [1,2,4,8] * IndexReg + Disp32
+
+In order to represent this, LLVM tracks no less than 5 operands for each memory
+operand of this form.  This means that the "load" form of '``mov``' has the
+following ``MachineOperand``\s in this order:
+
+::
+
+  Index:        0     |    1        2       3           4          5
+  Meaning:   DestReg, | BaseReg,  Scale, IndexReg, Displacement Segment
+  OperandTy: VirtReg, | VirtReg, UnsImm, VirtReg,   SignExtImm  PhysReg
+
+Stores, and all other instructions, treat the four memory operands in the same
+way and in the same order.  If the segment register is unspecified (regno = 0),
+then no segment override is generated.  "Lea" operations do not have a segment
+register specified, so they only have 4 operands for their memory reference.
+
+X86 address spaces supported
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+x86 has a feature which provides the ability to perform loads and stores to
+different address spaces via the x86 segment registers.  A segment override
+prefix byte on an instruction causes the instruction's memory access to go to
+the specified segment.  LLVM address space 0 is the default address space, which
+includes the stack, and any unqualified memory accesses in a program.  Address
+spaces 1-255 are currently reserved for user-defined code.  The GS-segment is
+represented by address space 256, the FS-segment is represented by address space
+257, and the SS-segment is represented by address space 258. Other x86 segments
+have yet to be allocated address space numbers.
+
+While these address spaces may seem similar to TLS via the ``thread_local``
+keyword, and often use the same underlying hardware, there are some fundamental
+differences.
+
+The ``thread_local`` keyword applies to global variables and specifies that they
+are to be allocated in thread-local memory. There are no type qualifiers
+involved, and these variables can be pointed to with normal pointers and
+accessed with normal loads and stores.  The ``thread_local`` keyword is
+target-independent at the LLVM IR level (though LLVM doesn't yet have
+implementations of it for some configurations)
+
+Special address spaces, in contrast, apply to static types. Every load and store
+has a particular address space in its address operand type, and this is what
+determines which address space is accessed.  LLVM ignores these special address
+space qualifiers on global variables, and does not provide a way to directly
+allocate storage in them.  At the LLVM IR level, the behavior of these special
+address spaces depends in part on the underlying OS or runtime environment, and
+they are specific to x86 (and LLVM doesn't yet handle them correctly in some
+cases).
+
+Some operating systems and runtime environments use (or may in the future use)
+the FS/GS-segment registers for various low-level purposes, so care should be
+taken when considering them.
+
+Instruction naming
+^^^^^^^^^^^^^^^^^^
+
+An instruction name consists of the base name, a default operand size, and a a
+character per operand with an optional special size. For example:
+
+::
+
+  ADD8rr      -> add, 8-bit register, 8-bit register
+  IMUL16rmi   -> imul, 16-bit register, 16-bit memory, 16-bit immediate
+  IMUL16rmi8  -> imul, 16-bit register, 16-bit memory, 8-bit immediate
+  MOVSX32rm16 -> movsx, 32-bit register, 16-bit memory
+
+The PowerPC backend
+-------------------
+
+The PowerPC code generator lives in the lib/Target/PowerPC directory.  The code
+generation is retargetable to several variations or *subtargets* of the PowerPC
+ISA; including ppc32, ppc64 and altivec.
+
+LLVM PowerPC ABI
+^^^^^^^^^^^^^^^^
+
+LLVM follows the AIX PowerPC ABI, with two deviations. LLVM uses a PC relative
+(PIC) or static addressing for accessing global values, so no TOC (r2) is
+used. Second, r31 is used as a frame pointer to allow dynamic growth of a stack
+frame.  LLVM takes advantage of having no TOC to provide space to save the frame
+pointer in the PowerPC linkage area of the caller frame.  Other details of
+PowerPC ABI can be found at `PowerPC ABI
+<http://developer.apple.com/documentation/DeveloperTools/Conceptual/LowLevelABI/Articles/32bitPowerPC.html>`_\
+. Note: This link describes the 32 bit ABI.  The 64 bit ABI is similar except
+space for GPRs are 8 bytes wide (not 4) and r13 is reserved for system use.
+
+Frame Layout
+^^^^^^^^^^^^
+
+The size of a PowerPC frame is usually fixed for the duration of a function's
+invocation.  Since the frame is fixed size, all references into the frame can be
+accessed via fixed offsets from the stack pointer.  The exception to this is
+when dynamic alloca or variable sized arrays are present, then a base pointer
+(r31) is used as a proxy for the stack pointer and stack pointer is free to grow
+or shrink.  A base pointer is also used if llvm-gcc is not passed the
+-fomit-frame-pointer flag. The stack pointer is always aligned to 16 bytes, so
+that space allocated for altivec vectors will be properly aligned.
+
+An invocation frame is laid out as follows (low memory at top):
+
+:raw-html:`<table border="1" cellspacing="0">`
+:raw-html:`<tr>`
+:raw-html:`<td>Linkage<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>Parameter area<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>Dynamic area<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>Locals area<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>Saved registers area<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr style="border-style: none hidden none hidden;">`
+:raw-html:`<td><br></td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>Previous Frame<br><br></td>`
+:raw-html:`</tr>`
+:raw-html:`</table>`
+
+The *linkage* area is used by a callee to save special registers prior to
+allocating its own frame.  Only three entries are relevant to LLVM. The first
+entry is the previous stack pointer (sp), aka link.  This allows probing tools
+like gdb or exception handlers to quickly scan the frames in the stack.  A
+function epilog can also use the link to pop the frame from the stack.  The
+third entry in the linkage area is used to save the return address from the lr
+register. Finally, as mentioned above, the last entry is used to save the
+previous frame pointer (r31.)  The entries in the linkage area are the size of a
+GPR, thus the linkage area is 24 bytes long in 32 bit mode and 48 bytes in 64
+bit mode.
+
+32 bit linkage area:
+
+:raw-html:`<table  border="1" cellspacing="0">`
+:raw-html:`<tr>`
+:raw-html:`<td>0</td>`
+:raw-html:`<td>Saved SP (r1)</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>4</td>`
+:raw-html:`<td>Saved CR</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>8</td>`
+:raw-html:`<td>Saved LR</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>12</td>`
+:raw-html:`<td>Reserved</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>16</td>`
+:raw-html:`<td>Reserved</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>20</td>`
+:raw-html:`<td>Saved FP (r31)</td>`
+:raw-html:`</tr>`
+:raw-html:`</table>`
+
+64 bit linkage area:
+
+:raw-html:`<table border="1" cellspacing="0">`
+:raw-html:`<tr>`
+:raw-html:`<td>0</td>`
+:raw-html:`<td>Saved SP (r1)</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>8</td>`
+:raw-html:`<td>Saved CR</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>16</td>`
+:raw-html:`<td>Saved LR</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>24</td>`
+:raw-html:`<td>Reserved</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>32</td>`
+:raw-html:`<td>Reserved</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>40</td>`
+:raw-html:`<td>Saved FP (r31)</td>`
+:raw-html:`</tr>`
+:raw-html:`</table>`
+
+The *parameter area* is used to store arguments being passed to a callee
+function.  Following the PowerPC ABI, the first few arguments are actually
+passed in registers, with the space in the parameter area unused.  However, if
+there are not enough registers or the callee is a thunk or vararg function,
+these register arguments can be spilled into the parameter area.  Thus, the
+parameter area must be large enough to store all the parameters for the largest
+call sequence made by the caller.  The size must also be minimally large enough
+to spill registers r3-r10.  This allows callees blind to the call signature,
+such as thunks and vararg functions, enough space to cache the argument
+registers.  Therefore, the parameter area is minimally 32 bytes (64 bytes in 64
+bit mode.)  Also note that since the parameter area is a fixed offset from the
+top of the frame, that a callee can access its spilt arguments using fixed
+offsets from the stack pointer (or base pointer.)
+
+Combining the information about the linkage, parameter areas and alignment. A
+stack frame is minimally 64 bytes in 32 bit mode and 128 bytes in 64 bit mode.
+
+The *dynamic area* starts out as size zero.  If a function uses dynamic alloca
+then space is added to the stack, the linkage and parameter areas are shifted to
+top of stack, and the new space is available immediately below the linkage and
+parameter areas.  The cost of shifting the linkage and parameter areas is minor
+since only the link value needs to be copied.  The link value can be easily
+fetched by adding the original frame size to the base pointer.  Note that
+allocations in the dynamic space need to observe 16 byte alignment.
+
+The *locals area* is where the llvm compiler reserves space for local variables.
+
+The *saved registers area* is where the llvm compiler spills callee saved
+registers on entry to the callee.
+
+Prolog/Epilog
+^^^^^^^^^^^^^
+
+The llvm prolog and epilog are the same as described in the PowerPC ABI, with
+the following exceptions.  Callee saved registers are spilled after the frame is
+created.  This allows the llvm epilog/prolog support to be common with other
+targets.  The base pointer callee saved register r31 is saved in the TOC slot of
+linkage area.  This simplifies allocation of space for the base pointer and
+makes it convenient to locate programatically and during debugging.
+
+Dynamic Allocation
+^^^^^^^^^^^^^^^^^^
+
+.. note::
+
+  TODO - More to come.
+
+The NVPTX backend
+-----------------
+
+The NVPTX code generator under lib/Target/NVPTX is an open-source version of
+the NVIDIA NVPTX code generator for LLVM.  It is contributed by NVIDIA and is
+a port of the code generator used in the CUDA compiler (nvcc).  It targets the
+PTX 3.0/3.1 ISA and can target any compute capability greater than or equal to
+2.0 (Fermi).
+
+This target is of production quality and should be completely compatible with
+the official NVIDIA toolchain.
+
+Code Generator Options:
+
+:raw-html:`<table border="1" cellspacing="0">`
+:raw-html:`<tr>`
+:raw-html:`<th>Option</th>`
+:raw-html:`<th>Description</th>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>sm_20</td>`
+:raw-html:`<td align="left">Set shader model/compute capability to 2.0</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>sm_21</td>`
+:raw-html:`<td align="left">Set shader model/compute capability to 2.1</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>sm_30</td>`
+:raw-html:`<td align="left">Set shader model/compute capability to 3.0</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>sm_35</td>`
+:raw-html:`<td align="left">Set shader model/compute capability to 3.5</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>ptx30</td>`
+:raw-html:`<td align="left">Target PTX 3.0</td>`
+:raw-html:`</tr>`
+:raw-html:`<tr>`
+:raw-html:`<td>ptx31</td>`
+:raw-html:`<td align="left">Target PTX 3.1</td>`
+:raw-html:`</tr>`
+:raw-html:`</table>`
+
+The extended Berkeley Packet Filter (eBPF) backend
+--------------------------------------------------
+
+Extended BPF (or eBPF) is similar to the original ("classic") BPF (cBPF) used
+to filter network packets.  The
+`bpf() system call <http://man7.org/linux/man-pages/man2/bpf.2.html>`_
+performs a range of operations related to eBPF.  For both cBPF and eBPF
+programs, the Linux kernel statically analyzes the programs before loading
+them, in order to ensure that they cannot harm the running system.  eBPF is
+a 64-bit RISC instruction set designed for one to one mapping to 64-bit CPUs.
+Opcodes are 8-bit encoded, and 87 instructions are defined.  There are 10
+registers, grouped by function as outlined below.
+
+::
+
+  R0        return value from in-kernel functions; exit value for eBPF program
+  R1 - R5   function call arguments to in-kernel functions
+  R6 - R9   callee-saved registers preserved by in-kernel functions
+  R10       stack frame pointer (read only)
+
+Instruction encoding (arithmetic and jump)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+eBPF is reusing most of the opcode encoding from classic to simplify conversion
+of classic BPF to eBPF.  For arithmetic and jump instructions the 8-bit 'code'
+field is divided into three parts:
+
+::
+
+  +----------------+--------+--------------------+
+  |   4 bits       |  1 bit |   3 bits           |
+  | operation code | source | instruction class  |
+  +----------------+--------+--------------------+
+  (MSB)                                      (LSB)
+
+Three LSB bits store instruction class which is one of:
+
+::
+
+  BPF_LD     0x0
+  BPF_LDX    0x1
+  BPF_ST     0x2
+  BPF_STX    0x3
+  BPF_ALU    0x4
+  BPF_JMP    0x5
+  (unused)   0x6
+  BPF_ALU64  0x7
+
+When BPF_CLASS(code) == BPF_ALU or BPF_ALU64 or BPF_JMP,
+4th bit encodes source operand
+
+::
+
+  BPF_X     0x0  use src_reg register as source operand
+  BPF_K     0x1  use 32 bit immediate as source operand
+
+and four MSB bits store operation code
+
+::
+
+  BPF_ADD   0x0  add
+  BPF_SUB   0x1  subtract
+  BPF_MUL   0x2  multiply
+  BPF_DIV   0x3  divide
+  BPF_OR    0x4  bitwise logical OR
+  BPF_AND   0x5  bitwise logical AND
+  BPF_LSH   0x6  left shift
+  BPF_RSH   0x7  right shift (zero extended)
+  BPF_NEG   0x8  arithmetic negation
+  BPF_MOD   0x9  modulo
+  BPF_XOR   0xa  bitwise logical XOR
+  BPF_MOV   0xb  move register to register
+  BPF_ARSH  0xc  right shift (sign extended)
+  BPF_END   0xd  endianness conversion
+
+If BPF_CLASS(code) == BPF_JMP, BPF_OP(code) is one of
+
+::
+
+  BPF_JA    0x0  unconditional jump
+  BPF_JEQ   0x1  jump ==
+  BPF_JGT   0x2  jump >
+  BPF_JGE   0x3  jump >=
+  BPF_JSET  0x4  jump if (DST & SRC)
+  BPF_JNE   0x5  jump !=
+  BPF_JSGT  0x6  jump signed >
+  BPF_JSGE  0x7  jump signed >=
+  BPF_CALL  0x8  function call
+  BPF_EXIT  0x9  function return
+
+Instruction encoding (load, store)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+For load and store instructions the 8-bit 'code' field is divided as:
+
+::
+
+  +--------+--------+-------------------+
+  | 3 bits | 2 bits |   3 bits          |
+  |  mode  |  size  | instruction class |
+  +--------+--------+-------------------+
+  (MSB)                             (LSB)
+
+Size modifier is one of
+
+::
+
+  BPF_W       0x0  word
+  BPF_H       0x1  half word
+  BPF_B       0x2  byte
+  BPF_DW      0x3  double word
+
+Mode modifier is one of
+
+::
+
+  BPF_IMM     0x0  immediate
+  BPF_ABS     0x1  used to access packet data
+  BPF_IND     0x2  used to access packet data
+  BPF_MEM     0x3  memory
+  (reserved)  0x4
+  (reserved)  0x5
+  BPF_XADD    0x6  exclusive add
+
+
+Packet data access (BPF_ABS, BPF_IND)
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Two non-generic instructions: (BPF_ABS | <size> | BPF_LD) and
+(BPF_IND | <size> | BPF_LD) which are used to access packet data.
+Register R6 is an implicit input that must contain pointer to sk_buff.
+Register R0 is an implicit output which contains the data fetched
+from the packet.  Registers R1-R5 are scratch registers and must not
+be used to store the data across BPF_ABS | BPF_LD or BPF_IND | BPF_LD
+instructions.  These instructions have implicit program exit condition
+as well.  When eBPF program is trying to access the data beyond
+the packet boundary, the interpreter will abort the execution of the program.
+
+BPF_IND | BPF_W | BPF_LD is equivalent to:
+  R0 = ntohl(\*(u32 \*) (((struct sk_buff \*) R6)->data + src_reg + imm32))
+
+eBPF maps
+^^^^^^^^^
+
+eBPF maps are provided for sharing data between kernel and user-space.
+Currently implemented types are hash and array, with potential extension to
+support bloom filters, radix trees, etc.  A map is defined by its type,
+maximum number of elements, key size and value size in bytes.  eBPF syscall
+supports create, update, find and delete functions on maps.
+
+Function calls
+^^^^^^^^^^^^^^
+
+Function call arguments are passed using up to five registers (R1 - R5).
+The return value is passed in a dedicated register (R0).  Four additional
+registers (R6 - R9) are callee-saved, and the values in these registers
+are preserved within kernel functions.  R0 - R5 are scratch registers within
+kernel functions, and eBPF programs must therefor store/restore values in
+these registers if needed across function calls.  The stack can be accessed
+using the read-only frame pointer R10.  eBPF registers map 1:1 to hardware
+registers on x86_64 and other 64-bit architectures.  For example, x86_64
+in-kernel JIT maps them as
+
+::
+
+  R0 - rax
+  R1 - rdi
+  R2 - rsi
+  R3 - rdx
+  R4 - rcx
+  R5 - r8
+  R6 - rbx
+  R7 - r13
+  R8 - r14
+  R9 - r15
+  R10 - rbp
+
+since x86_64 ABI mandates rdi, rsi, rdx, rcx, r8, r9 for argument passing
+and rbx, r12 - r15 are callee saved.
+
+Program start
+^^^^^^^^^^^^^
+
+An eBPF program receives a single argument and contains
+a single eBPF main routine; the program does not contain eBPF functions.
+Function calls are limited to a predefined set of kernel functions.  The size
+of a program is limited to 4K instructions:  this ensures fast termination and
+a limited number of kernel function calls.  Prior to running an eBPF program,
+a verifier performs static analysis to prevent loops in the code and
+to ensure valid register usage and operand types.
+
+The AMDGPU backend
+------------------
+
+The AMDGPU code generator lives in the lib/Target/AMDGPU directory, and is an
+open source native AMD GCN ISA code generator.
+
+Target triples supported
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+The following are the known target triples that are supported by the AMDGPU
+backend.
+
+* **amdgcn--** --- AMD GCN GPUs (AMDGPU.7.0.0+)
+* **amdgcn--amdhsa** --- AMD GCN GPUs (AMDGPU.7.0.0+) with HSA support
+* **r600--** --- AMD GPUs HD2XXX-HD6XXX
+
+Relocations
+^^^^^^^^^^^
+
+Supported relocatable fields are:
+
+* **word32** --- This specifies a 32-bit field occupying 4 bytes with arbitrary
+  byte alignment. These values use the same byte order as other word values in
+  the AMD GPU architecture
+* **word64** --- This specifies a 64-bit field occupying 8 bytes with arbitrary
+  byte alignment. These values use the same byte order as other word values in
+  the AMD GPU architecture
+
+Following notations are used for specifying relocation calculations:
+
+* **A** --- Represents the addend used to compute the value of the relocatable
+  field
+* **G** --- Represents the offset into the global offset table at which the
+  relocation entry’s symbol will reside during execution.
+* **GOT** --- Represents the address of the global offset table.
+* **P** --- Represents the place (section offset or address) of the storage unit
+  being relocated (computed using ``r_offset``)
+* **S** --- Represents the value of the symbol whose index resides in the
+  relocation entry
+
+AMDGPU Backend generates *Elf64_Rela* relocation records with the following
+supported relocation types:
+
+  =====================  =====  ==========  ====================
+  Relocation type        Value  Field       Calculation
+  =====================  =====  ==========  ====================
+  ``R_AMDGPU_NONE``      0      ``none``    ``none``
+  ``R_AMDGPU_ABS32_LO``  1      ``word32``  (S + A) & 0xFFFFFFFF
+  ``R_AMDGPU_ABS32_HI``  2      ``word32``  (S + A) >> 32
+  ``R_AMDGPU_ABS64``     3      ``word64``  S + A
+  ``R_AMDGPU_REL32``     4      ``word32``  S + A - P
+  ``R_AMDGPU_REL64``     5      ``word64``  S + A - P
+  ``R_AMDGPU_ABS32``     6      ``word32``  S + A
+  ``R_AMDGPU_GOTPCREL``  7      ``word32``  G + GOT + A - P
+  =====================  =====  ==========  ====================

Added: www-releases/trunk/3.9.1/docs/_sources/CodeOfConduct.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CodeOfConduct.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CodeOfConduct.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CodeOfConduct.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,112 @@
+==============================
+LLVM Community Code of Conduct
+==============================
+
+.. note::
+
+   This document is currently a **DRAFT** document while it is being discussed
+   by the community.
+
+The LLVM community has always worked to be a welcoming and respectful
+community, and we want to ensure that doesn't change as we grow and evolve. To
+that end, we have a few ground rules that we ask people to adhere to:
+
+* `be friendly and patient`_,
+* `be welcoming`_,
+* `be considerate`_,
+* `be respectful`_,
+* `be careful in the words that you choose and be kind to others`_, and
+* `when we disagree, try to understand why`_.
+
+This isn't an exhaustive list of things that you can't do. Rather, take it in
+the spirit in which it's intended - a guide to make it easier to communicate
+and participate in the community.
+
+This code of conduct applies to all spaces managed by the LLVM project or The
+LLVM Foundation. This includes IRC channels, mailing lists, bug trackers, LLVM
+events such as the developer meetings and socials, and any other forums created
+by the project that the community uses for communication. It applies to all of
+your communication and conduct in these spaces, including emails, chats, things
+you say, slides, videos, posters, signs, or even t-shirts you display in these
+spaces. In addition, violations of this code outside these spaces may, in rare
+cases, affect a person's ability to participate within them, when the conduct
+amounts to an egregious violation of this code.
+
+If you believe someone is violating the code of conduct, we ask that you report
+it by emailing conduct at llvm.org. For more details please see our
+:doc:`Reporting Guide <ReportingGuide>`.
+
+.. _be friendly and patient:
+
+* **Be friendly and patient.**
+
+.. _be welcoming:
+
+* **Be welcoming.** We strive to be a community that welcomes and supports
+  people of all backgrounds and identities. This includes, but is not limited
+  to members of any race, ethnicity, culture, national origin, colour,
+  immigration status, social and economic class, educational level, sex, sexual
+  orientation, gender identity and expression, age, size, family status,
+  political belief, religion or lack thereof, and mental and physical ability.
+
+.. _be considerate:
+
+* **Be considerate.** Your work will be used by other people, and you in turn
+  will depend on the work of others. Any decision you take will affect users
+  and colleagues, and you should take those consequences into account. Remember
+  that we're a world-wide community, so you might not be communicating in
+  someone else's primary language.
+
+.. _be respectful:
+
+* **Be respectful.** Not all of us will agree all the time, but disagreement is
+  no excuse for poor behavior and poor manners. We might all experience some
+  frustration now and then, but we cannot allow that frustration to turn into
+  a personal attack. It's important to remember that a community where people
+  feel uncomfortable or threatened is not a productive one. Members of the LLVM
+  community should be respectful when dealing with other members as well as
+  with people outside the LLVM community.
+
+.. _be careful in the words that you choose and be kind to others:
+
+* **Be careful in the words that you choose and be kind to others.** Do not
+  insult or put down other participants. Harassment and other exclusionary
+  behavior aren't acceptable. This includes, but is not limited to:
+
+  * Violent threats or language directed against another person.
+  * Discriminatory jokes and language.
+  * Posting sexually explicit or violent material.
+  * Posting (or threatening to post) other people's personally identifying
+    information ("doxing").
+  * Personal insults, especially those using racist or sexist terms.
+  * Unwelcome sexual attention.
+  * Advocating for, or encouraging, any of the above behavior.
+
+  In general, if someone asks you to stop, then stop. Persisting in such
+  behavior after being asked to stop is considered harassment.
+
+.. _when we disagree, try to understand why:
+
+* **When we disagree, try to understand why.** Disagreements, both social and
+  technical, happen all the time and LLVM is no exception. It is important that
+  we resolve disagreements and differing views constructively. Remember that
+  we're different. The strength of LLVM comes from its varied community, people
+  from a wide range of backgrounds. Different people have different
+  perspectives on issues. Being unable to understand why someone holds
+  a viewpoint doesn't mean that they're wrong. Don't forget that it is human to
+  err and blaming each other doesn't get us anywhere. Instead, focus on helping
+  to resolve issues and learning from mistakes.
+
+Questions?
+==========
+
+If you have questions, please feel free to contact the LLVM Foundation Code of
+Conduct Advisory Committee by emailing conduct at llvm.org.
+
+
+(This text is based on the `Django Project`_ Code of Conduct, which is in turn
+based on wording from the `Speak Up! project`_.)
+
+.. _Django Project: https://www.djangoproject.com/conduct/
+.. _Speak Up! project: http://speakup.io/coc.html
+

Added: www-releases/trunk/3.9.1/docs/_sources/CodingStandards.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CodingStandards.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CodingStandards.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CodingStandards.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,1629 @@
+=====================
+LLVM Coding Standards
+=====================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document attempts to describe a few coding standards that are being used in
+the LLVM source tree.  Although no coding standards should be regarded as
+absolute requirements to be followed in all instances, coding standards are
+particularly important for large-scale code bases that follow a library-based
+design (like LLVM).
+
+While this document may provide guidance for some mechanical formatting issues,
+whitespace, or other "microscopic details", these are not fixed standards.
+Always follow the golden rule:
+
+.. _Golden Rule:
+
+    **If you are extending, enhancing, or bug fixing already implemented code,
+    use the style that is already being used so that the source is uniform and
+    easy to follow.**
+
+Note that some code bases (e.g. ``libc++``) have really good reasons to deviate
+from the coding standards.  In the case of ``libc++``, this is because the
+naming and other conventions are dictated by the C++ standard.  If you think
+there is a specific good reason to deviate from the standards here, please bring
+it up on the LLVM-dev mailing list.
+
+There are some conventions that are not uniformly followed in the code base
+(e.g. the naming convention).  This is because they are relatively new, and a
+lot of code was written before they were put in place.  Our long term goal is
+for the entire codebase to follow the convention, but we explicitly *do not*
+want patches that do large-scale reformating of existing code.  On the other
+hand, it is reasonable to rename the methods of a class if you're about to
+change it in some other way.  Just do the reformating as a separate commit from
+the functionality change.
+  
+The ultimate goal of these guidelines is to increase the readability and
+maintainability of our common source base. If you have suggestions for topics to
+be included, please mail them to `Chris <mailto:sabre at nondot.org>`_.
+
+Languages, Libraries, and Standards
+===================================
+
+Most source code in LLVM and other LLVM projects using these coding standards
+is C++ code. There are some places where C code is used either due to
+environment restrictions, historical restrictions, or due to third-party source
+code imported into the tree. Generally, our preference is for standards
+conforming, modern, and portable C++ code as the implementation language of
+choice.
+
+C++ Standard Versions
+---------------------
+
+LLVM, Clang, and LLD are currently written using C++11 conforming code,
+although we restrict ourselves to features which are available in the major
+toolchains supported as host compilers. The LLDB project is even more
+aggressive in the set of host compilers supported and thus uses still more
+features. Regardless of the supported features, code is expected to (when
+reasonable) be standard, portable, and modern C++11 code. We avoid unnecessary
+vendor-specific extensions, etc.
+
+C++ Standard Library
+--------------------
+
+Use the C++ standard library facilities whenever they are available for
+a particular task. LLVM and related projects emphasize and rely on the standard
+library facilities for as much as possible. Common support libraries providing
+functionality missing from the standard library for which there are standard
+interfaces or active work on adding standard interfaces will often be
+implemented in the LLVM namespace following the expected standard interface.
+
+There are some exceptions such as the standard I/O streams library which are
+avoided. Also, there is much more detailed information on these subjects in the
+:doc:`ProgrammersManual`.
+
+Supported C++11 Language and Library Features
+---------------------------------------------
+
+While LLVM, Clang, and LLD use C++11, not all features are available in all of
+the toolchains which we support. The set of features supported for use in LLVM
+is the intersection of those supported in MSVC 2013, GCC 4.7, and Clang 3.1.
+The ultimate definition of this set is what build bots with those respective
+toolchains accept. Don't argue with the build bots. However, we have some
+guidance below to help you know what to expect.
+
+Each toolchain provides a good reference for what it accepts:
+
+* Clang: http://clang.llvm.org/cxx_status.html
+* GCC: http://gcc.gnu.org/projects/cxx0x.html
+* MSVC: http://msdn.microsoft.com/en-us/library/hh567368.aspx
+
+In most cases, the MSVC list will be the dominating factor. Here is a summary
+of the features that are expected to work. Features not on this list are
+unlikely to be supported by our host compilers.
+
+* Rvalue references: N2118_
+
+  * But *not* Rvalue references for ``*this`` or member qualifiers (N2439_)
+
+* Static assert: N1720_
+* ``auto`` type deduction: N1984_, N1737_
+* Trailing return types: N2541_
+* Lambdas: N2927_
+
+  * But *not* lambdas with default arguments.
+
+* ``decltype``: N2343_
+* Nested closing right angle brackets: N1757_
+* Extern templates: N1987_
+* ``nullptr``: N2431_
+* Strongly-typed and forward declarable enums: N2347_, N2764_
+* Local and unnamed types as template arguments: N2657_
+* Range-based for-loop: N2930_
+
+  * But ``{}`` are required around inner ``do {} while()`` loops.  As a result,
+    ``{}`` are required around function-like macros inside range-based for
+    loops.
+
+* ``override`` and ``final``: N2928_, N3206_, N3272_
+* Atomic operations and the C++11 memory model: N2429_
+* Variadic templates: N2242_
+* Explicit conversion operators: N2437_
+* Defaulted and deleted functions: N2346_
+
+  * But not defaulted move constructors or move assignment operators, MSVC 2013
+    cannot synthesize them.
+* Initializer lists: N2627_
+* Delegating constructors: N1986_
+* Default member initializers (non-static data member initializers): N2756_
+
+  * Only use these for scalar members that would otherwise be left
+    uninitialized. Non-scalar members generally have appropriate default
+    constructors, and MSVC 2013 has problems when braced initializer lists are
+    involved.
+
+.. _N2118: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html
+.. _N2439: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
+.. _N1720: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
+.. _N1984: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
+.. _N1737: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf
+.. _N2541: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm
+.. _N2927: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2927.pdf
+.. _N2343: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf
+.. _N1757: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
+.. _N1987: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm
+.. _N2431: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
+.. _N2347: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf
+.. _N2764: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf
+.. _N2657: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
+.. _N2930: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2930.html
+.. _N2928: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2009/n2928.htm
+.. _N3206: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm
+.. _N3272: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm
+.. _N2429: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
+.. _N2242: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf
+.. _N2437: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
+.. _N2346: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
+.. _N2627: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm
+.. _N1986: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
+.. _N2756: http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2756.htm
+
+The supported features in the C++11 standard libraries are less well tracked,
+but also much greater. Most of the standard libraries implement most of C++11's
+library. The most likely lowest common denominator is Linux support. For
+libc++, the support is just poorly tested and undocumented but expected to be
+largely complete. YMMV. For libstdc++, the support is documented in detail in
+`the libstdc++ manual`_. There are some very minor missing facilities that are
+unlikely to be common problems, and there are a few larger gaps that are worth
+being aware of:
+
+* Not all of the type traits are implemented
+* No regular expression library.
+* While most of the atomics library is well implemented, the fences are
+  missing. Fortunately, they are rarely needed.
+* The locale support is incomplete.
+
+Other than these areas you should assume the standard library is available and
+working as expected until some build bot tells you otherwise. If you're in an
+uncertain area of one of the above points, but you cannot test on a Linux
+system, your best approach is to minimize your use of these features, and watch
+the Linux build bots to find out if your usage triggered a bug. For example, if
+you hit a type trait which doesn't work we can then add support to LLVM's
+traits header to emulate it.
+
+.. _the libstdc++ manual:
+  http://gcc.gnu.org/onlinedocs/gcc-4.7.3/libstdc++/manual/manual/status.html#status.iso.2011
+
+Other Languages
+---------------
+
+Any code written in the Go programming language is not subject to the
+formatting rules below. Instead, we adopt the formatting rules enforced by
+the `gofmt`_ tool.
+
+Go code should strive to be idiomatic. Two good sets of guidelines for what
+this means are `Effective Go`_ and `Go Code Review Comments`_.
+
+.. _gofmt:
+  https://golang.org/cmd/gofmt/
+
+.. _Effective Go:
+  https://golang.org/doc/effective_go.html
+
+.. _Go Code Review Comments:
+  https://code.google.com/p/go-wiki/wiki/CodeReviewComments
+
+Mechanical Source Issues
+========================
+
+Source Code Formatting
+----------------------
+
+Commenting
+^^^^^^^^^^
+
+Comments are one critical part of readability and maintainability.  Everyone
+knows they should comment their code, and so should you.  When writing comments,
+write them as English prose, which means they should use proper capitalization,
+punctuation, etc.  Aim to describe what the code is trying to do and why, not
+*how* it does it at a micro level. Here are a few critical things to document:
+
+.. _header file comment:
+
+File Headers
+""""""""""""
+
+Every source file should have a header on it that describes the basic purpose of
+the file.  If a file does not have a header, it should not be checked into the
+tree.  The standard header looks like this:
+
+.. code-block:: c++
+
+  //===-- llvm/Instruction.h - Instruction class definition -------*- C++ -*-===//
+  //
+  //                     The LLVM Compiler Infrastructure
+  //
+  // This file is distributed under the University of Illinois Open Source
+  // License. See LICENSE.TXT for details.
+  //
+  //===----------------------------------------------------------------------===//
+  ///
+  /// \file
+  /// This file contains the declaration of the Instruction class, which is the
+  /// base class for all of the VM instructions.
+  ///
+  //===----------------------------------------------------------------------===//
+
+A few things to note about this particular format: The "``-*- C++ -*-``" string
+on the first line is there to tell Emacs that the source file is a C++ file, not
+a C file (Emacs assumes ``.h`` files are C files by default).
+
+.. note::
+
+    This tag is not necessary in ``.cpp`` files.  The name of the file is also
+    on the first line, along with a very short description of the purpose of the
+    file.  This is important when printing out code and flipping though lots of
+    pages.
+
+The next section in the file is a concise note that defines the license that the
+file is released under.  This makes it perfectly clear what terms the source
+code can be distributed under and should not be modified in any way.
+
+The main body is a ``doxygen`` comment (identified by the ``///`` comment
+marker instead of the usual ``//``) describing the purpose of the file.  The
+first sentence or a passage beginning with ``\brief`` is used as an abstract.
+Any additional information should be separated by a blank line.  If an
+algorithm is being implemented or something tricky is going on, a reference
+to the paper where it is published should be included, as well as any notes or
+*gotchas* in the code to watch out for.
+
+Class overviews
+"""""""""""""""
+
+Classes are one fundamental part of a good object oriented design.  As such, a
+class definition should have a comment block that explains what the class is
+used for and how it works.  Every non-trivial class is expected to have a
+``doxygen`` comment block.
+
+Method information
+""""""""""""""""""
+
+Methods defined in a class (as well as any global functions) should also be
+documented properly.  A quick note about what it does and a description of the
+borderline behaviour is all that is necessary here (unless something
+particularly tricky or insidious is going on).  The hope is that people can
+figure out how to use your interfaces without reading the code itself.
+
+Good things to talk about here are what happens when something unexpected
+happens: does the method return null?  Abort?  Format your hard disk?
+
+Comment Formatting
+^^^^^^^^^^^^^^^^^^
+
+In general, prefer C++ style comments (``//`` for normal comments, ``///`` for
+``doxygen`` documentation comments).  They take less space, require
+less typing, don't have nesting problems, etc.  There are a few cases when it is
+useful to use C style (``/* */``) comments however:
+
+#. When writing C code: Obviously if you are writing C code, use C style
+   comments.
+
+#. When writing a header file that may be ``#include``\d by a C source file.
+
+#. When writing a source file that is used by a tool that only accepts C style
+   comments.
+
+To comment out a large block of code, use ``#if 0`` and ``#endif``. These nest
+properly and are better behaved in general than C style comments.
+
+Doxygen Use in Documentation Comments
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Use the ``\file`` command to turn the standard file header into a file-level
+comment.
+
+Include descriptive paragraphs for all public interfaces (public classes,
+member and non-member functions).  Don't just restate the information that can
+be inferred from the API name.  The first sentence or a paragraph beginning
+with ``\brief`` is used as an abstract. Put detailed discussion into separate
+paragraphs.
+
+To refer to parameter names inside a paragraph, use the ``\p name`` command.
+Don't use the ``\arg name`` command since it starts a new paragraph that
+contains documentation for the parameter.
+
+Wrap non-inline code examples in ``\code ... \endcode``.
+
+To document a function parameter, start a new paragraph with the
+``\param name`` command.  If the parameter is used as an out or an in/out
+parameter, use the ``\param [out] name`` or ``\param [in,out] name`` command,
+respectively.
+
+To describe function return value, start a new paragraph with the ``\returns``
+command.
+
+A minimal documentation comment:
+
+.. code-block:: c++
+
+  /// Sets the xyzzy property to \p Baz.
+  void setXyzzy(bool Baz);
+
+A documentation comment that uses all Doxygen features in a preferred way:
+
+.. code-block:: c++
+
+  /// \brief Does foo and bar.
+  ///
+  /// Does not do foo the usual way if \p Baz is true.
+  ///
+  /// Typical usage:
+  /// \code
+  ///   fooBar(false, "quux", Res);
+  /// \endcode
+  ///
+  /// \param Quux kind of foo to do.
+  /// \param [out] Result filled with bar sequence on foo success.
+  ///
+  /// \returns true on success.
+  bool fooBar(bool Baz, StringRef Quux, std::vector<int> &Result);
+
+Don't duplicate the documentation comment in the header file and in the
+implementation file.  Put the documentation comments for public APIs into the
+header file.  Documentation comments for private APIs can go to the
+implementation file.  In any case, implementation files can include additional
+comments (not necessarily in Doxygen markup) to explain implementation details
+as needed.
+
+Don't duplicate function or class name at the beginning of the comment.
+For humans it is obvious which function or class is being documented;
+automatic documentation processing tools are smart enough to bind the comment
+to the correct declaration.
+
+Wrong:
+
+.. code-block:: c++
+
+  // In Something.h:
+
+  /// Something - An abstraction for some complicated thing.
+  class Something {
+  public:
+    /// fooBar - Does foo and bar.
+    void fooBar();
+  };
+
+  // In Something.cpp:
+
+  /// fooBar - Does foo and bar.
+  void Something::fooBar() { ... }
+
+Correct:
+
+.. code-block:: c++
+
+  // In Something.h:
+
+  /// An abstraction for some complicated thing.
+  class Something {
+  public:
+    /// Does foo and bar.
+    void fooBar();
+  };
+
+  // In Something.cpp:
+
+  // Builds a B-tree in order to do foo.  See paper by...
+  void Something::fooBar() { ... }
+
+It is not required to use additional Doxygen features, but sometimes it might
+be a good idea to do so.
+
+Consider:
+
+* adding comments to any narrow namespace containing a collection of
+  related functions or types;
+
+* using top-level groups to organize a collection of related functions at
+  namespace scope where the grouping is smaller than the namespace;
+
+* using member groups and additional comments attached to member
+  groups to organize within a class.
+
+For example:
+
+.. code-block:: c++
+
+  class Something {
+    /// \name Functions that do Foo.
+    /// @{
+    void fooBar();
+    void fooBaz();
+    /// @}
+    ...
+  };
+
+``#include`` Style
+^^^^^^^^^^^^^^^^^^
+
+Immediately after the `header file comment`_ (and include guards if working on a
+header file), the `minimal list of #includes`_ required by the file should be
+listed.  We prefer these ``#include``\s to be listed in this order:
+
+.. _Main Module Header:
+.. _Local/Private Headers:
+
+#. Main Module Header
+#. Local/Private Headers
+#. ``llvm/...``
+#. System ``#include``\s
+
+and each category should be sorted lexicographically by the full path.
+
+The `Main Module Header`_ file applies to ``.cpp`` files which implement an
+interface defined by a ``.h`` file.  This ``#include`` should always be included
+**first** regardless of where it lives on the file system.  By including a
+header file first in the ``.cpp`` files that implement the interfaces, we ensure
+that the header does not have any hidden dependencies which are not explicitly
+``#include``\d in the header, but should be. It is also a form of documentation
+in the ``.cpp`` file to indicate where the interfaces it implements are defined.
+
+.. _fit into 80 columns:
+
+Source Code Width
+^^^^^^^^^^^^^^^^^
+
+Write your code to fit within 80 columns of text.  This helps those of us who
+like to print out code and look at your code in an ``xterm`` without resizing
+it.
+
+The longer answer is that there must be some limit to the width of the code in
+order to reasonably allow developers to have multiple files side-by-side in
+windows on a modest display.  If you are going to pick a width limit, it is
+somewhat arbitrary but you might as well pick something standard.  Going with 90
+columns (for example) instead of 80 columns wouldn't add any significant value
+and would be detrimental to printing out code.  Also many other projects have
+standardized on 80 columns, so some people have already configured their editors
+for it (vs something else, like 90 columns).
+
+This is one of many contentious issues in coding standards, but it is not up for
+debate.
+
+Use Spaces Instead of Tabs
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In all cases, prefer spaces to tabs in source files.  People have different
+preferred indentation levels, and different styles of indentation that they
+like; this is fine.  What isn't fine is that different editors/viewers expand
+tabs out to different tab stops.  This can cause your code to look completely
+unreadable, and it is not worth dealing with.
+
+As always, follow the `Golden Rule`_ above: follow the style of
+existing code if you are modifying and extending it.  If you like four spaces of
+indentation, **DO NOT** do that in the middle of a chunk of code with two spaces
+of indentation.  Also, do not reindent a whole source file: it makes for
+incredible diffs that are absolutely worthless.
+
+Indent Code Consistently
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Okay, in your first year of programming you were told that indentation is
+important. If you didn't believe and internalize this then, now is the time.
+Just do it. With the introduction of C++11, there are some new formatting
+challenges that merit some suggestions to help have consistent, maintainable,
+and tool-friendly formatting and indentation.
+
+Format Lambdas Like Blocks Of Code
+""""""""""""""""""""""""""""""""""
+
+When formatting a multi-line lambda, format it like a block of code, that's
+what it is. If there is only one multi-line lambda in a statement, and there
+are no expressions lexically after it in the statement, drop the indent to the
+standard two space indent for a block of code, as if it were an if-block opened
+by the preceding part of the statement:
+
+.. code-block:: c++
+
+  std::sort(foo.begin(), foo.end(), [&](Foo a, Foo b) -> bool {
+    if (a.blah < b.blah)
+      return true;
+    if (a.baz < b.baz)
+      return true;
+    return a.bam < b.bam;
+  });
+
+To take best advantage of this formatting, if you are designing an API which
+accepts a continuation or single callable argument (be it a functor, or
+a ``std::function``), it should be the last argument if at all possible.
+
+If there are multiple multi-line lambdas in a statement, or there is anything
+interesting after the lambda in the statement, indent the block two spaces from
+the indent of the ``[]``:
+
+.. code-block:: c++
+
+  dyn_switch(V->stripPointerCasts(),
+             [] (PHINode *PN) {
+               // process phis...
+             },
+             [] (SelectInst *SI) {
+               // process selects...
+             },
+             [] (LoadInst *LI) {
+               // process loads...
+             },
+             [] (AllocaInst *AI) {
+               // process allocas...
+             });
+
+Braced Initializer Lists
+""""""""""""""""""""""""
+
+With C++11, there are significantly more uses of braced lists to perform
+initialization. These allow you to easily construct aggregate temporaries in
+expressions among other niceness. They now have a natural way of ending up
+nested within each other and within function calls in order to build up
+aggregates (such as option structs) from local variables. To make matters
+worse, we also have many more uses of braces in an expression context that are
+*not* performing initialization.
+
+The historically common formatting of braced initialization of aggregate
+variables does not mix cleanly with deep nesting, general expression contexts,
+function arguments, and lambdas. We suggest new code use a simple rule for
+formatting braced initialization lists: act as-if the braces were parentheses
+in a function call. The formatting rules exactly match those already well
+understood for formatting nested function calls. Examples:
+
+.. code-block:: c++
+
+  foo({a, b, c}, {1, 2, 3});
+
+  llvm::Constant *Mask[] = {
+      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
+      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
+      llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)};
+
+This formatting scheme also makes it particularly easy to get predictable,
+consistent, and automatic formatting with tools like `Clang Format`_.
+
+.. _Clang Format: http://clang.llvm.org/docs/ClangFormat.html
+
+Language and Compiler Issues
+----------------------------
+
+Treat Compiler Warnings Like Errors
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If your code has compiler warnings in it, something is wrong --- you aren't
+casting values correctly, you have "questionable" constructs in your code, or
+you are doing something legitimately wrong.  Compiler warnings can cover up
+legitimate errors in output and make dealing with a translation unit difficult.
+
+It is not possible to prevent all warnings from all compilers, nor is it
+desirable.  Instead, pick a standard compiler (like ``gcc``) that provides a
+good thorough set of warnings, and stick to it.  At least in the case of
+``gcc``, it is possible to work around any spurious errors by changing the
+syntax of the code slightly.  For example, a warning that annoys me occurs when
+I write code like this:
+
+.. code-block:: c++
+
+  if (V = getValue()) {
+    ...
+  }
+
+``gcc`` will warn me that I probably want to use the ``==`` operator, and that I
+probably mistyped it.  In most cases, I haven't, and I really don't want the
+spurious errors.  To fix this particular problem, I rewrite the code like
+this:
+
+.. code-block:: c++
+
+  if ((V = getValue())) {
+    ...
+  }
+
+which shuts ``gcc`` up.  Any ``gcc`` warning that annoys you can be fixed by
+massaging the code appropriately.
+
+Write Portable Code
+^^^^^^^^^^^^^^^^^^^
+
+In almost all cases, it is possible and within reason to write completely
+portable code.  If there are cases where it isn't possible to write portable
+code, isolate it behind a well defined (and well documented) interface.
+
+In practice, this means that you shouldn't assume much about the host compiler
+(and Visual Studio tends to be the lowest common denominator).  If advanced
+features are used, they should only be an implementation detail of a library
+which has a simple exposed API, and preferably be buried in ``libSystem``.
+
+Do not use RTTI or Exceptions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In an effort to reduce code and executable size, LLVM does not use RTTI
+(e.g. ``dynamic_cast<>;``) or exceptions.  These two language features violate
+the general C++ principle of *"you only pay for what you use"*, causing
+executable bloat even if exceptions are never used in the code base, or if RTTI
+is never used for a class.  Because of this, we turn them off globally in the
+code.
+
+That said, LLVM does make extensive use of a hand-rolled form of RTTI that use
+templates like :ref:`isa\<>, cast\<>, and dyn_cast\<> <isa>`.
+This form of RTTI is opt-in and can be
+:doc:`added to any class <HowToSetUpLLVMStyleRTTI>`. It is also
+substantially more efficient than ``dynamic_cast<>``.
+
+.. _static constructor:
+
+Do not use Static Constructors
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Static constructors and destructors (e.g. global variables whose types have a
+constructor or destructor) should not be added to the code base, and should be
+removed wherever possible.  Besides `well known problems
+<http://yosefk.com/c++fqa/ctors.html#fqa-10.12>`_ where the order of
+initialization is undefined between globals in different source files, the
+entire concept of static constructors is at odds with the common use case of
+LLVM as a library linked into a larger application.
+  
+Consider the use of LLVM as a JIT linked into another application (perhaps for
+`OpenGL, custom languages <http://llvm.org/Users.html>`_, `shaders in movies
+<http://llvm.org/devmtg/2010-11/Gritz-OpenShadingLang.pdf>`_, etc). Due to the
+design of static constructors, they must be executed at startup time of the
+entire application, regardless of whether or how LLVM is used in that larger
+application.  There are two problems with this:
+
+* The time to run the static constructors impacts startup time of applications
+  --- a critical time for GUI apps, among others.
+  
+* The static constructors cause the app to pull many extra pages of memory off
+  the disk: both the code for the constructor in each ``.o`` file and the small
+  amount of data that gets touched. In addition, touched/dirty pages put more
+  pressure on the VM system on low-memory machines.
+
+We would really like for there to be zero cost for linking in an additional LLVM
+target or other library into an application, but static constructors violate
+this goal.
+  
+That said, LLVM unfortunately does contain static constructors.  It would be a
+`great project <http://llvm.org/PR11944>`_ for someone to purge all static
+constructors from LLVM, and then enable the ``-Wglobal-constructors`` warning
+flag (when building with Clang) to ensure we do not regress in the future.
+
+Use of ``class`` and ``struct`` Keywords
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In C++, the ``class`` and ``struct`` keywords can be used almost
+interchangeably. The only difference is when they are used to declare a class:
+``class`` makes all members private by default while ``struct`` makes all
+members public by default.
+
+Unfortunately, not all compilers follow the rules and some will generate
+different symbols based on whether ``class`` or ``struct`` was used to declare
+the symbol (e.g., MSVC).  This can lead to problems at link time.
+
+* All declarations and definitions of a given ``class`` or ``struct`` must use
+  the same keyword.  For example:
+
+.. code-block:: c++
+
+  class Foo;
+
+  // Breaks mangling in MSVC.
+  struct Foo { int Data; };
+
+* As a rule of thumb, ``struct`` should be kept to structures where *all*
+  members are declared public.
+
+.. code-block:: c++
+
+  // Foo feels like a class... this is strange.
+  struct Foo {
+  private:
+    int Data;
+  public:
+    Foo() : Data(0) { }
+    int getData() const { return Data; }
+    void setData(int D) { Data = D; }
+  };
+
+  // Bar isn't POD, but it does look like a struct.
+  struct Bar {
+    int Data;
+    Bar() : Data(0) { }
+  };
+
+Do not use Braced Initializer Lists to Call a Constructor
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In C++11 there is a "generalized initialization syntax" which allows calling
+constructors using braced initializer lists. Do not use these to call
+constructors with any interesting logic or if you care that you're calling some
+*particular* constructor. Those should look like function calls using
+parentheses rather than like aggregate initialization. Similarly, if you need
+to explicitly name the type and call its constructor to create a temporary,
+don't use a braced initializer list. Instead, use a braced initializer list
+(without any type for temporaries) when doing aggregate initialization or
+something notionally equivalent. Examples:
+
+.. code-block:: c++
+
+  class Foo {
+  public:
+    // Construct a Foo by reading data from the disk in the whizbang format, ...
+    Foo(std::string filename);
+
+    // Construct a Foo by looking up the Nth element of some global data ...
+    Foo(int N);
+
+    // ...
+  };
+
+  // The Foo constructor call is very deliberate, no braces.
+  std::fill(foo.begin(), foo.end(), Foo("name"));
+
+  // The pair is just being constructed like an aggregate, use braces.
+  bar_map.insert({my_key, my_value});
+
+If you use a braced initializer list when initializing a variable, use an equals before the open curly brace:
+
+.. code-block:: c++
+
+  int data[] = {0, 1, 2, 3};
+
+Use ``auto`` Type Deduction to Make Code More Readable
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Some are advocating a policy of "almost always ``auto``" in C++11, however LLVM
+uses a more moderate stance. Use ``auto`` if and only if it makes the code more
+readable or easier to maintain. Don't "almost always" use ``auto``, but do use
+``auto`` with initializers like ``cast<Foo>(...)`` or other places where the
+type is already obvious from the context. Another time when ``auto`` works well
+for these purposes is when the type would have been abstracted away anyways,
+often behind a container's typedef such as ``std::vector<T>::iterator``.
+
+Beware unnecessary copies with ``auto``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The convenience of ``auto`` makes it easy to forget that its default behavior
+is a copy.  Particularly in range-based ``for`` loops, careless copies are
+expensive.
+
+As a rule of thumb, use ``auto &`` unless you need to copy the result, and use
+``auto *`` when copying pointers.
+
+.. code-block:: c++
+
+  // Typically there's no reason to copy.
+  for (const auto &Val : Container) { observe(Val); }
+  for (auto &Val : Container) { Val.change(); }
+
+  // Remove the reference if you really want a new copy.
+  for (auto Val : Container) { Val.change(); saveSomewhere(Val); }
+
+  // Copy pointers, but make it clear that they're pointers.
+  for (const auto *Ptr : Container) { observe(*Ptr); }
+  for (auto *Ptr : Container) { Ptr->change(); }
+
+Style Issues
+============
+
+The High-Level Issues
+---------------------
+
+A Public Header File **is** a Module
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+C++ doesn't do too well in the modularity department.  There is no real
+encapsulation or data hiding (unless you use expensive protocol classes), but it
+is what we have to work with.  When you write a public header file (in the LLVM
+source tree, they live in the top level "``include``" directory), you are
+defining a module of functionality.
+
+Ideally, modules should be completely independent of each other, and their
+header files should only ``#include`` the absolute minimum number of headers
+possible. A module is not just a class, a function, or a namespace: it's a
+collection of these that defines an interface.  This interface may be several
+functions, classes, or data structures, but the important issue is how they work
+together.
+
+In general, a module should be implemented by one or more ``.cpp`` files.  Each
+of these ``.cpp`` files should include the header that defines their interface
+first.  This ensures that all of the dependences of the module header have been
+properly added to the module header itself, and are not implicit.  System
+headers should be included after user headers for a translation unit.
+
+.. _minimal list of #includes:
+
+``#include`` as Little as Possible
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``#include`` hurts compile time performance.  Don't do it unless you have to,
+especially in header files.
+
+But wait! Sometimes you need to have the definition of a class to use it, or to
+inherit from it.  In these cases go ahead and ``#include`` that header file.  Be
+aware however that there are many cases where you don't need to have the full
+definition of a class.  If you are using a pointer or reference to a class, you
+don't need the header file.  If you are simply returning a class instance from a
+prototyped function or method, you don't need it.  In fact, for most cases, you
+simply don't need the definition of a class. And not ``#include``\ing speeds up
+compilation.
+
+It is easy to try to go too overboard on this recommendation, however.  You
+**must** include all of the header files that you are using --- you can include
+them either directly or indirectly through another header file.  To make sure
+that you don't accidentally forget to include a header file in your module
+header, make sure to include your module header **first** in the implementation
+file (as mentioned above).  This way there won't be any hidden dependencies that
+you'll find out about later.
+
+Keep "Internal" Headers Private
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Many modules have a complex implementation that causes them to use more than one
+implementation (``.cpp``) file.  It is often tempting to put the internal
+communication interface (helper classes, extra functions, etc) in the public
+module header file.  Don't do this!
+
+If you really need to do something like this, put a private header file in the
+same directory as the source files, and include it locally.  This ensures that
+your private interface remains private and undisturbed by outsiders.
+
+.. note::
+
+    It's okay to put extra implementation methods in a public class itself. Just
+    make them private (or protected) and all is well.
+
+.. _early exits:
+
+Use Early Exits and ``continue`` to Simplify Code
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+When reading code, keep in mind how much state and how many previous decisions
+have to be remembered by the reader to understand a block of code.  Aim to
+reduce indentation where possible when it doesn't make it more difficult to
+understand the code.  One great way to do this is by making use of early exits
+and the ``continue`` keyword in long loops.  As an example of using an early
+exit from a function, consider this "bad" code:
+
+.. code-block:: c++
+
+  Value *doSomething(Instruction *I) {
+    if (!isa<TerminatorInst>(I) &&
+        I->hasOneUse() && doOtherThing(I)) {
+      ... some long code ....
+    }
+
+    return 0;
+  }
+
+This code has several problems if the body of the ``'if'`` is large.  When
+you're looking at the top of the function, it isn't immediately clear that this
+*only* does interesting things with non-terminator instructions, and only
+applies to things with the other predicates.  Second, it is relatively difficult
+to describe (in comments) why these predicates are important because the ``if``
+statement makes it difficult to lay out the comments.  Third, when you're deep
+within the body of the code, it is indented an extra level.  Finally, when
+reading the top of the function, it isn't clear what the result is if the
+predicate isn't true; you have to read to the end of the function to know that
+it returns null.
+
+It is much preferred to format the code like this:
+
+.. code-block:: c++
+
+  Value *doSomething(Instruction *I) {
+    // Terminators never need 'something' done to them because ... 
+    if (isa<TerminatorInst>(I))
+      return 0;
+
+    // We conservatively avoid transforming instructions with multiple uses
+    // because goats like cheese.
+    if (!I->hasOneUse())
+      return 0;
+
+    // This is really just here for example.
+    if (!doOtherThing(I))
+      return 0;
+    
+    ... some long code ....
+  }
+
+This fixes these problems.  A similar problem frequently happens in ``for``
+loops.  A silly example is something like this:
+
+.. code-block:: c++
+
+  for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(II)) {
+      Value *LHS = BO->getOperand(0);
+      Value *RHS = BO->getOperand(1);
+      if (LHS != RHS) {
+        ...
+      }
+    }
+  }
+
+When you have very, very small loops, this sort of structure is fine. But if it
+exceeds more than 10-15 lines, it becomes difficult for people to read and
+understand at a glance. The problem with this sort of code is that it gets very
+nested very quickly. Meaning that the reader of the code has to keep a lot of
+context in their brain to remember what is going immediately on in the loop,
+because they don't know if/when the ``if`` conditions will have ``else``\s etc.
+It is strongly preferred to structure the loop like this:
+
+.. code-block:: c++
+
+  for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
+    BinaryOperator *BO = dyn_cast<BinaryOperator>(II);
+    if (!BO) continue;
+
+    Value *LHS = BO->getOperand(0);
+    Value *RHS = BO->getOperand(1);
+    if (LHS == RHS) continue;
+
+    ...
+  }
+
+This has all the benefits of using early exits for functions: it reduces nesting
+of the loop, it makes it easier to describe why the conditions are true, and it
+makes it obvious to the reader that there is no ``else`` coming up that they
+have to push context into their brain for.  If a loop is large, this can be a
+big understandability win.
+
+Don't use ``else`` after a ``return``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+For similar reasons above (reduction of indentation and easier reading), please
+do not use ``'else'`` or ``'else if'`` after something that interrupts control
+flow --- like ``return``, ``break``, ``continue``, ``goto``, etc. For
+example, this is *bad*:
+
+.. code-block:: c++
+
+  case 'J': {
+    if (Signed) {
+      Type = Context.getsigjmp_bufType();
+      if (Type.isNull()) {
+        Error = ASTContext::GE_Missing_sigjmp_buf;
+        return QualType();
+      } else {
+        break;
+      }
+    } else {
+      Type = Context.getjmp_bufType();
+      if (Type.isNull()) {
+        Error = ASTContext::GE_Missing_jmp_buf;
+        return QualType();
+      } else {
+        break;
+      }
+    }
+  }
+
+It is better to write it like this:
+
+.. code-block:: c++
+
+  case 'J':
+    if (Signed) {
+      Type = Context.getsigjmp_bufType();
+      if (Type.isNull()) {
+        Error = ASTContext::GE_Missing_sigjmp_buf;
+        return QualType();
+      }
+    } else {
+      Type = Context.getjmp_bufType();
+      if (Type.isNull()) {
+        Error = ASTContext::GE_Missing_jmp_buf;
+        return QualType();
+      }
+    }
+    break;
+
+Or better yet (in this case) as:
+
+.. code-block:: c++
+
+  case 'J':
+    if (Signed)
+      Type = Context.getsigjmp_bufType();
+    else
+      Type = Context.getjmp_bufType();
+    
+    if (Type.isNull()) {
+      Error = Signed ? ASTContext::GE_Missing_sigjmp_buf :
+                       ASTContext::GE_Missing_jmp_buf;
+      return QualType();
+    }
+    break;
+
+The idea is to reduce indentation and the amount of code you have to keep track
+of when reading the code.
+              
+Turn Predicate Loops into Predicate Functions
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+It is very common to write small loops that just compute a boolean value.  There
+are a number of ways that people commonly write these, but an example of this
+sort of thing is:
+
+.. code-block:: c++
+
+  bool FoundFoo = false;
+  for (unsigned I = 0, E = BarList.size(); I != E; ++I)
+    if (BarList[I]->isFoo()) {
+      FoundFoo = true;
+      break;
+    }
+
+  if (FoundFoo) {
+    ...
+  }
+
+This sort of code is awkward to write, and is almost always a bad sign.  Instead
+of this sort of loop, we strongly prefer to use a predicate function (which may
+be `static`_) that uses `early exits`_ to compute the predicate.  We prefer the
+code to be structured like this:
+
+.. code-block:: c++
+
+  /// \returns true if the specified list has an element that is a foo.
+  static bool containsFoo(const std::vector<Bar*> &List) {
+    for (unsigned I = 0, E = List.size(); I != E; ++I)
+      if (List[I]->isFoo())
+        return true;
+    return false;
+  }
+  ...
+
+  if (containsFoo(BarList)) {
+    ...
+  }
+
+There are many reasons for doing this: it reduces indentation and factors out
+code which can often be shared by other code that checks for the same predicate.
+More importantly, it *forces you to pick a name* for the function, and forces
+you to write a comment for it.  In this silly example, this doesn't add much
+value.  However, if the condition is complex, this can make it a lot easier for
+the reader to understand the code that queries for this predicate.  Instead of
+being faced with the in-line details of how we check to see if the BarList
+contains a foo, we can trust the function name and continue reading with better
+locality.
+
+The Low-Level Issues
+--------------------
+
+Name Types, Functions, Variables, and Enumerators Properly
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Poorly-chosen names can mislead the reader and cause bugs. We cannot stress
+enough how important it is to use *descriptive* names.  Pick names that match
+the semantics and role of the underlying entities, within reason.  Avoid
+abbreviations unless they are well known.  After picking a good name, make sure
+to use consistent capitalization for the name, as inconsistency requires clients
+to either memorize the APIs or to look it up to find the exact spelling.
+
+In general, names should be in camel case (e.g. ``TextFileReader`` and
+``isLValue()``).  Different kinds of declarations have different rules:
+
+* **Type names** (including classes, structs, enums, typedefs, etc) should be
+  nouns and start with an upper-case letter (e.g. ``TextFileReader``).
+
+* **Variable names** should be nouns (as they represent state).  The name should
+  be camel case, and start with an upper case letter (e.g. ``Leader`` or
+  ``Boats``).
+  
+* **Function names** should be verb phrases (as they represent actions), and
+  command-like function should be imperative.  The name should be camel case,
+  and start with a lower case letter (e.g. ``openFile()`` or ``isFoo()``).
+
+* **Enum declarations** (e.g. ``enum Foo {...}``) are types, so they should
+  follow the naming conventions for types.  A common use for enums is as a
+  discriminator for a union, or an indicator of a subclass.  When an enum is
+  used for something like this, it should have a ``Kind`` suffix
+  (e.g. ``ValueKind``).
+  
+* **Enumerators** (e.g. ``enum { Foo, Bar }``) and **public member variables**
+  should start with an upper-case letter, just like types.  Unless the
+  enumerators are defined in their own small namespace or inside a class,
+  enumerators should have a prefix corresponding to the enum declaration name.
+  For example, ``enum ValueKind { ... };`` may contain enumerators like
+  ``VK_Argument``, ``VK_BasicBlock``, etc.  Enumerators that are just
+  convenience constants are exempt from the requirement for a prefix.  For
+  instance:
+
+  .. code-block:: c++
+
+      enum {
+        MaxSize = 42,
+        Density = 12
+      };
+  
+As an exception, classes that mimic STL classes can have member names in STL's
+style of lower-case words separated by underscores (e.g. ``begin()``,
+``push_back()``, and ``empty()``). Classes that provide multiple
+iterators should add a singular prefix to ``begin()`` and ``end()``
+(e.g. ``global_begin()`` and ``use_begin()``).
+
+Here are some examples of good and bad names:
+
+.. code-block:: c++
+
+  class VehicleMaker {
+    ...
+    Factory<Tire> F;            // Bad -- abbreviation and non-descriptive.
+    Factory<Tire> Factory;      // Better.
+    Factory<Tire> TireFactory;  // Even better -- if VehicleMaker has more than one
+                                // kind of factories.
+  };
+
+  Vehicle MakeVehicle(VehicleType Type) {
+    VehicleMaker M;                         // Might be OK if having a short life-span.
+    Tire Tmp1 = M.makeTire();               // Bad -- 'Tmp1' provides no information.
+    Light Headlight = M.makeLight("head");  // Good -- descriptive.
+    ...
+  }
+
+Assert Liberally
+^^^^^^^^^^^^^^^^
+
+Use the "``assert``" macro to its fullest.  Check all of your preconditions and
+assumptions, you never know when a bug (not necessarily even yours) might be
+caught early by an assertion, which reduces debugging time dramatically.  The
+"``<cassert>``" header file is probably already included by the header files you
+are using, so it doesn't cost anything to use it.
+
+To further assist with debugging, make sure to put some kind of error message in
+the assertion statement, which is printed if the assertion is tripped. This
+helps the poor debugger make sense of why an assertion is being made and
+enforced, and hopefully what to do about it.  Here is one complete example:
+
+.. code-block:: c++
+
+  inline Value *getOperand(unsigned I) {
+    assert(I < Operands.size() && "getOperand() out of range!");
+    return Operands[I];
+  }
+
+Here are more examples:
+
+.. code-block:: c++
+
+  assert(Ty->isPointerType() && "Can't allocate a non-pointer type!");
+
+  assert((Opcode == Shl || Opcode == Shr) && "ShiftInst Opcode invalid!");
+
+  assert(idx < getNumSuccessors() && "Successor # out of range!");
+
+  assert(V1.getType() == V2.getType() && "Constant types must be identical!");
+
+  assert(isa<PHINode>(Succ->front()) && "Only works on PHId BBs!");
+
+You get the idea.
+
+In the past, asserts were used to indicate a piece of code that should not be
+reached.  These were typically of the form:
+
+.. code-block:: c++
+
+  assert(0 && "Invalid radix for integer literal");
+
+This has a few issues, the main one being that some compilers might not
+understand the assertion, or warn about a missing return in builds where
+assertions are compiled out.
+
+Today, we have something much better: ``llvm_unreachable``:
+
+.. code-block:: c++
+
+  llvm_unreachable("Invalid radix for integer literal");
+
+When assertions are enabled, this will print the message if it's ever reached
+and then exit the program. When assertions are disabled (i.e. in release
+builds), ``llvm_unreachable`` becomes a hint to compilers to skip generating
+code for this branch. If the compiler does not support this, it will fall back
+to the "abort" implementation.
+
+Another issue is that values used only by assertions will produce an "unused
+value" warning when assertions are disabled.  For example, this code will warn:
+
+.. code-block:: c++
+
+  unsigned Size = V.size();
+  assert(Size > 42 && "Vector smaller than it should be");
+
+  bool NewToSet = Myset.insert(Value);
+  assert(NewToSet && "The value shouldn't be in the set yet");
+
+These are two interesting different cases. In the first case, the call to
+``V.size()`` is only useful for the assert, and we don't want it executed when
+assertions are disabled.  Code like this should move the call into the assert
+itself.  In the second case, the side effects of the call must happen whether
+the assert is enabled or not.  In this case, the value should be cast to void to
+disable the warning.  To be specific, it is preferred to write the code like
+this:
+
+.. code-block:: c++
+
+  assert(V.size() > 42 && "Vector smaller than it should be");
+
+  bool NewToSet = Myset.insert(Value); (void)NewToSet;
+  assert(NewToSet && "The value shouldn't be in the set yet");
+
+Do Not Use ``using namespace std``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In LLVM, we prefer to explicitly prefix all identifiers from the standard
+namespace with an "``std::``" prefix, rather than rely on "``using namespace
+std;``".
+
+In header files, adding a ``'using namespace XXX'`` directive pollutes the
+namespace of any source file that ``#include``\s the header.  This is clearly a
+bad thing.
+
+In implementation files (e.g. ``.cpp`` files), the rule is more of a stylistic
+rule, but is still important.  Basically, using explicit namespace prefixes
+makes the code **clearer**, because it is immediately obvious what facilities
+are being used and where they are coming from. And **more portable**, because
+namespace clashes cannot occur between LLVM code and other namespaces.  The
+portability rule is important because different standard library implementations
+expose different symbols (potentially ones they shouldn't), and future revisions
+to the C++ standard will add more symbols to the ``std`` namespace.  As such, we
+never use ``'using namespace std;'`` in LLVM.
+
+The exception to the general rule (i.e. it's not an exception for the ``std``
+namespace) is for implementation files.  For example, all of the code in the
+LLVM project implements code that lives in the 'llvm' namespace.  As such, it is
+ok, and actually clearer, for the ``.cpp`` files to have a ``'using namespace
+llvm;'`` directive at the top, after the ``#include``\s.  This reduces
+indentation in the body of the file for source editors that indent based on
+braces, and keeps the conceptual context cleaner.  The general form of this rule
+is that any ``.cpp`` file that implements code in any namespace may use that
+namespace (and its parents'), but should not use any others.
+
+Provide a Virtual Method Anchor for Classes in Headers
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If a class is defined in a header file and has a vtable (either it has virtual
+methods or it derives from classes with virtual methods), it must always have at
+least one out-of-line virtual method in the class.  Without this, the compiler
+will copy the vtable and RTTI into every ``.o`` file that ``#include``\s the
+header, bloating ``.o`` file sizes and increasing link times.
+
+Don't use default labels in fully covered switches over enumerations
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+``-Wswitch`` warns if a switch, without a default label, over an enumeration
+does not cover every enumeration value. If you write a default label on a fully
+covered switch over an enumeration then the ``-Wswitch`` warning won't fire
+when new elements are added to that enumeration. To help avoid adding these
+kinds of defaults, Clang has the warning ``-Wcovered-switch-default`` which is
+off by default but turned on when building LLVM with a version of Clang that
+supports the warning.
+
+A knock-on effect of this stylistic requirement is that when building LLVM with
+GCC you may get warnings related to "control may reach end of non-void function"
+if you return from each case of a covered switch-over-enum because GCC assumes
+that the enum expression may take any representable value, not just those of
+individual enumerators. To suppress this warning, use ``llvm_unreachable`` after
+the switch.
+
+Don't evaluate ``end()`` every time through a loop
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Because C++ doesn't have a standard "``foreach``" loop (though it can be
+emulated with macros and may be coming in C++'0x) we end up writing a lot of
+loops that manually iterate from begin to end on a variety of containers or
+through other data structures.  One common mistake is to write a loop in this
+style:
+
+.. code-block:: c++
+
+  BasicBlock *BB = ...
+  for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I)
+    ... use I ...
+
+The problem with this construct is that it evaluates "``BB->end()``" every time
+through the loop.  Instead of writing the loop like this, we strongly prefer
+loops to be written so that they evaluate it once before the loop starts.  A
+convenient way to do this is like so:
+
+.. code-block:: c++
+
+  BasicBlock *BB = ...
+  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
+    ... use I ...
+
+The observant may quickly point out that these two loops may have different
+semantics: if the container (a basic block in this case) is being mutated, then
+"``BB->end()``" may change its value every time through the loop and the second
+loop may not in fact be correct.  If you actually do depend on this behavior,
+please write the loop in the first form and add a comment indicating that you
+did it intentionally.
+
+Why do we prefer the second form (when correct)?  Writing the loop in the first
+form has two problems. First it may be less efficient than evaluating it at the
+start of the loop.  In this case, the cost is probably minor --- a few extra
+loads every time through the loop.  However, if the base expression is more
+complex, then the cost can rise quickly.  I've seen loops where the end
+expression was actually something like: "``SomeMap[X]->end()``" and map lookups
+really aren't cheap.  By writing it in the second form consistently, you
+eliminate the issue entirely and don't even have to think about it.
+
+The second (even bigger) issue is that writing the loop in the first form hints
+to the reader that the loop is mutating the container (a fact that a comment
+would handily confirm!).  If you write the loop in the second form, it is
+immediately obvious without even looking at the body of the loop that the
+container isn't being modified, which makes it easier to read the code and
+understand what it does.
+
+While the second form of the loop is a few extra keystrokes, we do strongly
+prefer it.
+
+``#include <iostream>`` is Forbidden
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The use of ``#include <iostream>`` in library files is hereby **forbidden**,
+because many common implementations transparently inject a `static constructor`_
+into every translation unit that includes it.
+  
+Note that using the other stream headers (``<sstream>`` for example) is not
+problematic in this regard --- just ``<iostream>``. However, ``raw_ostream``
+provides various APIs that are better performing for almost every use than
+``std::ostream`` style APIs.
+
+.. note::
+
+  New code should always use `raw_ostream`_ for writing, or the
+  ``llvm::MemoryBuffer`` API for reading files.
+
+.. _raw_ostream:
+
+Use ``raw_ostream``
+^^^^^^^^^^^^^^^^^^^
+
+LLVM includes a lightweight, simple, and efficient stream implementation in
+``llvm/Support/raw_ostream.h``, which provides all of the common features of
+``std::ostream``.  All new code should use ``raw_ostream`` instead of
+``ostream``.
+
+Unlike ``std::ostream``, ``raw_ostream`` is not a template and can be forward
+declared as ``class raw_ostream``.  Public headers should generally not include
+the ``raw_ostream`` header, but use forward declarations and constant references
+to ``raw_ostream`` instances.
+
+Avoid ``std::endl``
+^^^^^^^^^^^^^^^^^^^
+
+The ``std::endl`` modifier, when used with ``iostreams`` outputs a newline to
+the output stream specified.  In addition to doing this, however, it also
+flushes the output stream.  In other words, these are equivalent:
+
+.. code-block:: c++
+
+  std::cout << std::endl;
+  std::cout << '\n' << std::flush;
+
+Most of the time, you probably have no reason to flush the output stream, so
+it's better to use a literal ``'\n'``.
+
+Don't use ``inline`` when defining a function in a class definition
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+A member function defined in a class definition is implicitly inline, so don't
+put the ``inline`` keyword in this case.
+
+Don't:
+
+.. code-block:: c++
+
+  class Foo {
+  public:
+    inline void bar() {
+      // ...
+    }
+  };
+
+Do:
+
+.. code-block:: c++
+
+  class Foo {
+  public:
+    void bar() {
+      // ...
+    }
+  };
+
+Microscopic Details
+-------------------
+
+This section describes preferred low-level formatting guidelines along with
+reasoning on why we prefer them.
+
+Spaces Before Parentheses
+^^^^^^^^^^^^^^^^^^^^^^^^^
+
+We prefer to put a space before an open parenthesis only in control flow
+statements, but not in normal function call expressions and function-like
+macros.  For example, this is good:
+
+.. code-block:: c++
+
+  if (X) ...
+  for (I = 0; I != 100; ++I) ...
+  while (LLVMRocks) ...
+
+  somefunc(42);
+  assert(3 != 4 && "laws of math are failing me");
+  
+  A = foo(42, 92) + bar(X);
+
+and this is bad:
+
+.. code-block:: c++
+
+  if(X) ...
+  for(I = 0; I != 100; ++I) ...
+  while(LLVMRocks) ...
+
+  somefunc (42);
+  assert (3 != 4 && "laws of math are failing me");
+  
+  A = foo (42, 92) + bar (X);
+
+The reason for doing this is not completely arbitrary.  This style makes control
+flow operators stand out more, and makes expressions flow better. The function
+call operator binds very tightly as a postfix operator.  Putting a space after a
+function name (as in the last example) makes it appear that the code might bind
+the arguments of the left-hand-side of a binary operator with the argument list
+of a function and the name of the right side.  More specifically, it is easy to
+misread the "``A``" example as:
+
+.. code-block:: c++
+
+  A = foo ((42, 92) + bar) (X);
+
+when skimming through the code.  By avoiding a space in a function, we avoid
+this misinterpretation.
+
+Prefer Preincrement
+^^^^^^^^^^^^^^^^^^^
+
+Hard fast rule: Preincrement (``++X``) may be no slower than postincrement
+(``X++``) and could very well be a lot faster than it.  Use preincrementation
+whenever possible.
+
+The semantics of postincrement include making a copy of the value being
+incremented, returning it, and then preincrementing the "work value".  For
+primitive types, this isn't a big deal. But for iterators, it can be a huge
+issue (for example, some iterators contains stack and set objects in them...
+copying an iterator could invoke the copy ctor's of these as well).  In general,
+get in the habit of always using preincrement, and you won't have a problem.
+
+
+Namespace Indentation
+^^^^^^^^^^^^^^^^^^^^^
+
+In general, we strive to reduce indentation wherever possible.  This is useful
+because we want code to `fit into 80 columns`_ without wrapping horribly, but
+also because it makes it easier to understand the code. To facilitate this and
+avoid some insanely deep nesting on occasion, don't indent namespaces. If it
+helps readability, feel free to add a comment indicating what namespace is
+being closed by a ``}``.  For example:
+
+.. code-block:: c++
+
+  namespace llvm {
+  namespace knowledge {
+
+  /// This class represents things that Smith can have an intimate
+  /// understanding of and contains the data associated with it.
+  class Grokable {
+  ...
+  public:
+    explicit Grokable() { ... }
+    virtual ~Grokable() = 0;
+  
+    ...
+
+  };
+
+  } // end namespace knowledge
+  } // end namespace llvm
+
+
+Feel free to skip the closing comment when the namespace being closed is
+obvious for any reason. For example, the outer-most namespace in a header file
+is rarely a source of confusion. But namespaces both anonymous and named in
+source files that are being closed half way through the file probably could use
+clarification.
+
+.. _static:
+
+Anonymous Namespaces
+^^^^^^^^^^^^^^^^^^^^
+
+After talking about namespaces in general, you may be wondering about anonymous
+namespaces in particular.  Anonymous namespaces are a great language feature
+that tells the C++ compiler that the contents of the namespace are only visible
+within the current translation unit, allowing more aggressive optimization and
+eliminating the possibility of symbol name collisions.  Anonymous namespaces are
+to C++ as "static" is to C functions and global variables.  While "``static``"
+is available in C++, anonymous namespaces are more general: they can make entire
+classes private to a file.
+
+The problem with anonymous namespaces is that they naturally want to encourage
+indentation of their body, and they reduce locality of reference: if you see a
+random function definition in a C++ file, it is easy to see if it is marked
+static, but seeing if it is in an anonymous namespace requires scanning a big
+chunk of the file.
+
+Because of this, we have a simple guideline: make anonymous namespaces as small
+as possible, and only use them for class declarations.  For example, this is
+good:
+
+.. code-block:: c++
+
+  namespace {
+  class StringSort {
+  ...
+  public:
+    StringSort(...)
+    bool operator<(const char *RHS) const;
+  };
+  } // end anonymous namespace
+
+  static void runHelper() { 
+    ... 
+  }
+
+  bool StringSort::operator<(const char *RHS) const {
+    ...
+  }
+
+This is bad:
+
+.. code-block:: c++
+
+  namespace {
+
+  class StringSort {
+  ...
+  public:
+    StringSort(...)
+    bool operator<(const char *RHS) const;
+  };
+
+  void runHelper() { 
+    ... 
+  }
+
+  bool StringSort::operator<(const char *RHS) const {
+    ...
+  }
+
+  } // end anonymous namespace
+
+This is bad specifically because if you're looking at "``runHelper``" in the middle
+of a large C++ file, that you have no immediate way to tell if it is local to
+the file.  When it is marked static explicitly, this is immediately obvious.
+Also, there is no reason to enclose the definition of "``operator<``" in the
+namespace just because it was declared there.
+
+See Also
+========
+
+A lot of these comments and recommendations have been culled from other sources.
+Two particularly important books for our work are:
+
+#. `Effective C++
+   <http://www.amazon.com/Effective-Specific-Addison-Wesley-Professional-Computing/dp/0321334876>`_
+   by Scott Meyers.  Also interesting and useful are "More Effective C++" and
+   "Effective STL" by the same author.
+
+#. `Large-Scale C++ Software Design
+   <http://www.amazon.com/Large-Scale-Software-Design-John-Lakos/dp/0201633620/ref=sr_1_1>`_
+   by John Lakos
+
+If you get some free time, and you haven't read them: do so, you might learn
+something.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/FileCheck.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/FileCheck.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/FileCheck.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/FileCheck.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,482 @@
+FileCheck - Flexible pattern matching file verifier
+===================================================
+
+SYNOPSIS
+--------
+
+:program:`FileCheck` *match-filename* [*--check-prefix=XXX*] [*--strict-whitespace*]
+
+DESCRIPTION
+-----------
+
+:program:`FileCheck` reads two files (one from standard input, and one
+specified on the command line) and uses one to verify the other.  This
+behavior is particularly useful for the testsuite, which wants to verify that
+the output of some tool (e.g. :program:`llc`) contains the expected information
+(for example, a movsd from esp or whatever is interesting).  This is similar to
+using :program:`grep`, but it is optimized for matching multiple different
+inputs in one file in a specific order.
+
+The ``match-filename`` file specifies the file that contains the patterns to
+match.  The file to verify is read from standard input unless the
+:option:`--input-file` option is used.
+
+OPTIONS
+-------
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: --check-prefix prefix
+
+ FileCheck searches the contents of ``match-filename`` for patterns to
+ match.  By default, these patterns are prefixed with "``CHECK:``".
+ If you'd like to use a different prefix (e.g. because the same input
+ file is checking multiple different tool or options), the
+ :option:`--check-prefix` argument allows you to specify one or more
+ prefixes to match. Multiple prefixes are useful for tests which might
+ change for different run options, but most lines remain the same.
+
+.. option:: --check-prefixes prefix1,prefix2,...
+
+ An alias of :option:`--check-prefix` that allows multiple prefixes to be
+ specified as a comma separated list.
+
+.. option:: --input-file filename
+
+  File to check (defaults to stdin).
+
+.. option:: --match-full-lines
+
+ By default, FileCheck allows matches of anywhere on a line. This
+ option will require all positive matches to cover an entire
+ line. Leading and trailing whitespace is ignored, unless
+ :option:`--strict-whitespace` is also specified. (Note: negative
+ matches from ``CHECK-NOT`` are not affected by this option!)
+
+ Passing this option is equivalent to inserting ``{{^ *}}`` or
+ ``{{^}}`` before, and ``{{ *$}}`` or ``{{$}}`` after every positive
+ check pattern.
+
+.. option:: --strict-whitespace
+
+ By default, FileCheck canonicalizes input horizontal whitespace (spaces and
+ tabs) which causes it to ignore these differences (a space will match a tab).
+ The :option:`--strict-whitespace` argument disables this behavior. End-of-line
+ sequences are canonicalized to UNIX-style ``\n`` in all modes.
+
+.. option:: --implicit-check-not check-pattern
+
+  Adds implicit negative checks for the specified patterns between positive
+  checks. The option allows writing stricter tests without stuffing them with
+  ``CHECK-NOT``\ s.
+
+  For example, "``--implicit-check-not warning:``" can be useful when testing
+  diagnostic messages from tools that don't have an option similar to ``clang
+  -verify``. With this option FileCheck will verify that input does not contain
+  warnings not covered by any ``CHECK:`` patterns.
+
+.. option:: -version
+
+ Show the version number of this program.
+
+EXIT STATUS
+-----------
+
+If :program:`FileCheck` verifies that the file matches the expected contents,
+it exits with 0.  Otherwise, if not, or if an error occurs, it will exit with a
+non-zero value.
+
+TUTORIAL
+--------
+
+FileCheck is typically used from LLVM regression tests, being invoked on the RUN
+line of the test.  A simple example of using FileCheck from a RUN line looks
+like this:
+
+.. code-block:: llvm
+
+   ; RUN: llvm-as < %s | llc -march=x86-64 | FileCheck %s
+
+This syntax says to pipe the current file ("``%s``") into ``llvm-as``, pipe
+that into ``llc``, then pipe the output of ``llc`` into ``FileCheck``.  This
+means that FileCheck will be verifying its standard input (the llc output)
+against the filename argument specified (the original ``.ll`` file specified by
+"``%s``").  To see how this works, let's look at the rest of the ``.ll`` file
+(after the RUN line):
+
+.. code-block:: llvm
+
+   define void @sub1(i32* %p, i32 %v) {
+   entry:
+   ; CHECK: sub1:
+   ; CHECK: subl
+           %0 = tail call i32 @llvm.atomic.load.sub.i32.p0i32(i32* %p, i32 %v)
+           ret void
+   }
+
+   define void @inc4(i64* %p) {
+   entry:
+   ; CHECK: inc4:
+   ; CHECK: incq
+           %0 = tail call i64 @llvm.atomic.load.add.i64.p0i64(i64* %p, i64 1)
+           ret void
+   }
+
+Here you can see some "``CHECK:``" lines specified in comments.  Now you can
+see how the file is piped into ``llvm-as``, then ``llc``, and the machine code
+output is what we are verifying.  FileCheck checks the machine code output to
+verify that it matches what the "``CHECK:``" lines specify.
+
+The syntax of the "``CHECK:``" lines is very simple: they are fixed strings that
+must occur in order.  FileCheck defaults to ignoring horizontal whitespace
+differences (e.g. a space is allowed to match a tab) but otherwise, the contents
+of the "``CHECK:``" line is required to match some thing in the test file exactly.
+
+One nice thing about FileCheck (compared to grep) is that it allows merging
+test cases together into logical groups.  For example, because the test above
+is checking for the "``sub1:``" and "``inc4:``" labels, it will not match
+unless there is a "``subl``" in between those labels.  If it existed somewhere
+else in the file, that would not count: "``grep subl``" matches if "``subl``"
+exists anywhere in the file.
+
+The FileCheck -check-prefix option
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FileCheck `-check-prefix` option allows multiple test
+configurations to be driven from one `.ll` file.  This is useful in many
+circumstances, for example, testing different architectural variants with
+:program:`llc`.  Here's a simple example:
+
+.. code-block:: llvm
+
+   ; RUN: llvm-as < %s | llc -mtriple=i686-apple-darwin9 -mattr=sse41 \
+   ; RUN:              | FileCheck %s -check-prefix=X32
+   ; RUN: llvm-as < %s | llc -mtriple=x86_64-apple-darwin9 -mattr=sse41 \
+   ; RUN:              | FileCheck %s -check-prefix=X64
+
+   define <4 x i32> @pinsrd_1(i32 %s, <4 x i32> %tmp) nounwind {
+           %tmp1 = insertelement <4 x i32>; %tmp, i32 %s, i32 1
+           ret <4 x i32> %tmp1
+   ; X32: pinsrd_1:
+   ; X32:    pinsrd $1, 4(%esp), %xmm0
+
+   ; X64: pinsrd_1:
+   ; X64:    pinsrd $1, %edi, %xmm0
+   }
+
+In this case, we're testing that we get the expected code generation with
+both 32-bit and 64-bit code generation.
+
+The "CHECK-NEXT:" directive
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes you want to match lines and would like to verify that matches
+happen on exactly consecutive lines with no other lines in between them.  In
+this case, you can use "``CHECK:``" and "``CHECK-NEXT:``" directives to specify
+this.  If you specified a custom check prefix, just use "``<PREFIX>-NEXT:``".
+For example, something like this works as you'd expect:
+
+.. code-block:: llvm
+
+   define void @t2(<2 x double>* %r, <2 x double>* %A, double %B) {
+ 	%tmp3 = load <2 x double>* %A, align 16
+ 	%tmp7 = insertelement <2 x double> undef, double %B, i32 0
+ 	%tmp9 = shufflevector <2 x double> %tmp3,
+                               <2 x double> %tmp7,
+                               <2 x i32> < i32 0, i32 2 >
+ 	store <2 x double> %tmp9, <2 x double>* %r, align 16
+ 	ret void
+
+   ; CHECK:          t2:
+   ; CHECK: 	        movl	8(%esp), %eax
+   ; CHECK-NEXT: 	movapd	(%eax), %xmm0
+   ; CHECK-NEXT: 	movhpd	12(%esp), %xmm0
+   ; CHECK-NEXT: 	movl	4(%esp), %eax
+   ; CHECK-NEXT: 	movapd	%xmm0, (%eax)
+   ; CHECK-NEXT: 	ret
+   }
+
+"``CHECK-NEXT:``" directives reject the input unless there is exactly one
+newline between it and the previous directive.  A "``CHECK-NEXT:``" cannot be
+the first directive in a file.
+
+The "CHECK-SAME:" directive
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes you want to match lines and would like to verify that matches happen
+on the same line as the previous match.  In this case, you can use "``CHECK:``"
+and "``CHECK-SAME:``" directives to specify this.  If you specified a custom
+check prefix, just use "``<PREFIX>-SAME:``".
+
+"``CHECK-SAME:``" is particularly powerful in conjunction with "``CHECK-NOT:``"
+(described below).
+
+For example, the following works like you'd expect:
+
+.. code-block:: llvm
+
+   !0 = !DILocation(line: 5, scope: !1, inlinedAt: !2)
+
+   ; CHECK:       !DILocation(line: 5,
+   ; CHECK-NOT:               column:
+   ; CHECK-SAME:              scope: ![[SCOPE:[0-9]+]]
+
+"``CHECK-SAME:``" directives reject the input if there are any newlines between
+it and the previous directive.  A "``CHECK-SAME:``" cannot be the first
+directive in a file.
+
+The "CHECK-NOT:" directive
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The "``CHECK-NOT:``" directive is used to verify that a string doesn't occur
+between two matches (or before the first match, or after the last match).  For
+example, to verify that a load is removed by a transformation, a test like this
+can be used:
+
+.. code-block:: llvm
+
+   define i8 @coerce_offset0(i32 %V, i32* %P) {
+     store i32 %V, i32* %P
+
+     %P2 = bitcast i32* %P to i8*
+     %P3 = getelementptr i8* %P2, i32 2
+
+     %A = load i8* %P3
+     ret i8 %A
+   ; CHECK: @coerce_offset0
+   ; CHECK-NOT: load
+   ; CHECK: ret i8
+   }
+
+The "CHECK-DAG:" directive
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+If it's necessary to match strings that don't occur in a strictly sequential
+order, "``CHECK-DAG:``" could be used to verify them between two matches (or
+before the first match, or after the last match). For example, clang emits
+vtable globals in reverse order. Using ``CHECK-DAG:``, we can keep the checks
+in the natural order:
+
+.. code-block:: c++
+
+    // RUN: %clang_cc1 %s -emit-llvm -o - | FileCheck %s
+
+    struct Foo { virtual void method(); };
+    Foo f;  // emit vtable
+    // CHECK-DAG: @_ZTV3Foo =
+
+    struct Bar { virtual void method(); };
+    Bar b;
+    // CHECK-DAG: @_ZTV3Bar =
+
+``CHECK-NOT:`` directives could be mixed with ``CHECK-DAG:`` directives to
+exclude strings between the surrounding ``CHECK-DAG:`` directives. As a result,
+the surrounding ``CHECK-DAG:`` directives cannot be reordered, i.e. all
+occurrences matching ``CHECK-DAG:`` before ``CHECK-NOT:`` must not fall behind
+occurrences matching ``CHECK-DAG:`` after ``CHECK-NOT:``. For example,
+
+.. code-block:: llvm
+
+   ; CHECK-DAG: BEFORE
+   ; CHECK-NOT: NOT
+   ; CHECK-DAG: AFTER
+
+This case will reject input strings where ``BEFORE`` occurs after ``AFTER``.
+
+With captured variables, ``CHECK-DAG:`` is able to match valid topological
+orderings of a DAG with edges from the definition of a variable to its use.
+It's useful, e.g., when your test cases need to match different output
+sequences from the instruction scheduler. For example,
+
+.. code-block:: llvm
+
+   ; CHECK-DAG: add [[REG1:r[0-9]+]], r1, r2
+   ; CHECK-DAG: add [[REG2:r[0-9]+]], r3, r4
+   ; CHECK:     mul r5, [[REG1]], [[REG2]]
+
+In this case, any order of that two ``add`` instructions will be allowed.
+
+If you are defining `and` using variables in the same ``CHECK-DAG:`` block,
+be aware that the definition rule can match `after` its use.
+
+So, for instance, the code below will pass:
+
+.. code-block:: text
+
+  ; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
+  ; CHECK-DAG: vmov.32 [[REG2]][1]
+  vmov.32 d0[1]
+  vmov.32 d0[0]
+
+While this other code, will not:
+
+.. code-block:: text
+
+  ; CHECK-DAG: vmov.32 [[REG2:d[0-9]+]][0]
+  ; CHECK-DAG: vmov.32 [[REG2]][1]
+  vmov.32 d1[1]
+  vmov.32 d0[0]
+
+While this can be very useful, it's also dangerous, because in the case of
+register sequence, you must have a strong order (read before write, copy before
+use, etc). If the definition your test is looking for doesn't match (because
+of a bug in the compiler), it may match further away from the use, and mask
+real bugs away.
+
+In those cases, to enforce the order, use a non-DAG directive between DAG-blocks.
+
+The "CHECK-LABEL:" directive
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes in a file containing multiple tests divided into logical blocks, one
+or more ``CHECK:`` directives may inadvertently succeed by matching lines in a
+later block. While an error will usually eventually be generated, the check
+flagged as causing the error may not actually bear any relationship to the
+actual source of the problem.
+
+In order to produce better error messages in these cases, the "``CHECK-LABEL:``"
+directive can be used. It is treated identically to a normal ``CHECK``
+directive except that FileCheck makes an additional assumption that a line
+matched by the directive cannot also be matched by any other check present in
+``match-filename``; this is intended to be used for lines containing labels or
+other unique identifiers. Conceptually, the presence of ``CHECK-LABEL`` divides
+the input stream into separate blocks, each of which is processed independently,
+preventing a ``CHECK:`` directive in one block matching a line in another block.
+For example,
+
+.. code-block:: llvm
+
+  define %struct.C* @C_ctor_base(%struct.C* %this, i32 %x) {
+  entry:
+  ; CHECK-LABEL: C_ctor_base:
+  ; CHECK: mov [[SAVETHIS:r[0-9]+]], r0
+  ; CHECK: bl A_ctor_base
+  ; CHECK: mov r0, [[SAVETHIS]]
+    %0 = bitcast %struct.C* %this to %struct.A*
+    %call = tail call %struct.A* @A_ctor_base(%struct.A* %0)
+    %1 = bitcast %struct.C* %this to %struct.B*
+    %call2 = tail call %struct.B* @B_ctor_base(%struct.B* %1, i32 %x)
+    ret %struct.C* %this
+  }
+
+  define %struct.D* @D_ctor_base(%struct.D* %this, i32 %x) {
+  entry:
+  ; CHECK-LABEL: D_ctor_base:
+
+The use of ``CHECK-LABEL:`` directives in this case ensures that the three
+``CHECK:`` directives only accept lines corresponding to the body of the
+``@C_ctor_base`` function, even if the patterns match lines found later in
+the file. Furthermore, if one of these three ``CHECK:`` directives fail,
+FileCheck will recover by continuing to the next block, allowing multiple test
+failures to be detected in a single invocation.
+
+There is no requirement that ``CHECK-LABEL:`` directives contain strings that
+correspond to actual syntactic labels in a source or output language: they must
+simply uniquely match a single line in the file being verified.
+
+``CHECK-LABEL:`` directives cannot contain variable definitions or uses.
+
+FileCheck Pattern Matching Syntax
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+All FileCheck directives take a pattern to match.
+For most uses of FileCheck, fixed string matching is perfectly sufficient.  For
+some things, a more flexible form of matching is desired.  To support this,
+FileCheck allows you to specify regular expressions in matching strings,
+surrounded by double braces: ``{{yourregex}}``.  Because we want to use fixed
+string matching for a majority of what we do, FileCheck has been designed to
+support mixing and matching fixed string matching with regular expressions.
+This allows you to write things like this:
+
+.. code-block:: llvm
+
+   ; CHECK: movhpd	{{[0-9]+}}(%esp), {{%xmm[0-7]}}
+
+In this case, any offset from the ESP register will be allowed, and any xmm
+register will be allowed.
+
+Because regular expressions are enclosed with double braces, they are
+visually distinct, and you don't need to use escape characters within the double
+braces like you would in C.  In the rare case that you want to match double
+braces explicitly from the input, you can use something ugly like
+``{{[{][{]}}`` as your pattern.
+
+FileCheck Variables
+~~~~~~~~~~~~~~~~~~~
+
+It is often useful to match a pattern and then verify that it occurs again
+later in the file.  For codegen tests, this can be useful to allow any register,
+but verify that that register is used consistently later.  To do this,
+:program:`FileCheck` allows named variables to be defined and substituted into
+patterns.  Here is a simple example:
+
+.. code-block:: llvm
+
+   ; CHECK: test5:
+   ; CHECK:    notw	[[REGISTER:%[a-z]+]]
+   ; CHECK:    andw	{{.*}}[[REGISTER]]
+
+The first check line matches a regex ``%[a-z]+`` and captures it into the
+variable ``REGISTER``.  The second line verifies that whatever is in
+``REGISTER`` occurs later in the file after an "``andw``".  :program:`FileCheck`
+variable references are always contained in ``[[ ]]`` pairs, and their names can
+be formed with the regex ``[a-zA-Z][a-zA-Z0-9]*``.  If a colon follows the name,
+then it is a definition of the variable; otherwise, it is a use.
+
+:program:`FileCheck` variables can be defined multiple times, and uses always
+get the latest value.  Variables can also be used later on the same line they
+were defined on. For example:
+
+.. code-block:: llvm
+
+    ; CHECK: op [[REG:r[0-9]+]], [[REG]]
+
+Can be useful if you want the operands of ``op`` to be the same register,
+and don't care exactly which register it is.
+
+FileCheck Expressions
+~~~~~~~~~~~~~~~~~~~~~
+
+Sometimes there's a need to verify output which refers line numbers of the
+match file, e.g. when testing compiler diagnostics.  This introduces a certain
+fragility of the match file structure, as "``CHECK:``" lines contain absolute
+line numbers in the same file, which have to be updated whenever line numbers
+change due to text addition or deletion.
+
+To support this case, FileCheck allows using ``[[@LINE]]``,
+``[[@LINE+<offset>]]``, ``[[@LINE-<offset>]]`` expressions in patterns. These
+expressions expand to a number of the line where a pattern is located (with an
+optional integer offset).
+
+This way match patterns can be put near the relevant test lines and include
+relative line number references, for example:
+
+.. code-block:: c++
+
+   // CHECK: test.cpp:[[@LINE+4]]:6: error: expected ';' after top level declarator
+   // CHECK-NEXT: {{^int a}}
+   // CHECK-NEXT: {{^     \^}}
+   // CHECK-NEXT: {{^     ;}}
+   int a
+
+Matching Newline Characters
+~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+To match newline characters in regular expressions the character class
+``[[:space:]]`` can be used. For example, the following pattern:
+
+.. code-block:: c++
+
+   // CHECK: DW_AT_location [DW_FORM_sec_offset] ([[DLOC:0x[0-9a-f]+]]){{[[:space:]].*}}"intd"
+
+matches output of the form (from llvm-dwarfdump):
+
+.. code-block:: text
+
+       DW_AT_location [DW_FORM_sec_offset]   (0x00000233)
+       DW_AT_name [DW_FORM_strp]  ( .debug_str[0x000000c9] = "intd")
+
+letting us set the :program:`FileCheck` variable ``DLOC`` to the desired value 
+``0x00000233``, extracted from the line immediately preceding "``intd``".

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/bugpoint.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/bugpoint.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/bugpoint.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/bugpoint.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,196 @@
+bugpoint - automatic test case reduction tool
+=============================================
+
+SYNOPSIS
+--------
+
+**bugpoint** [*options*] [*input LLVM ll/bc files*] [*LLVM passes*] **--args**
+*program arguments*
+
+DESCRIPTION
+-----------
+
+**bugpoint** narrows down the source of problems in LLVM tools and passes.  It
+can be used to debug three types of failures: optimizer crashes, miscompilations
+by optimizers, or bad native code generation (including problems in the static
+and JIT compilers).  It aims to reduce large test cases to small, useful ones.
+For more information on the design and inner workings of **bugpoint**, as well as
+advice for using bugpoint, see :doc:`/Bugpoint` in the LLVM
+distribution.
+
+OPTIONS
+-------
+
+**--additional-so** *library*
+
+ Load the dynamic shared object *library* into the test program whenever it is
+ run.  This is useful if you are debugging programs which depend on non-LLVM
+ libraries (such as the X or curses libraries) to run.
+
+**--append-exit-code**\ =\ *{true,false}*
+
+ Append the test programs exit code to the output file so that a change in exit
+ code is considered a test failure. Defaults to false.
+
+**--args** *program args*
+
+ Pass all arguments specified after **--args** to the test program whenever it runs.
+ Note that if any of the *program args* start with a "``-``", you should use:
+
+ .. code-block:: bash
+
+      bugpoint [bugpoint args] --args -- [program args]
+
+ The "``--``" right after the **--args** option tells **bugpoint** to consider
+ any options starting with "``-``" to be part of the **--args** option, not as
+ options to **bugpoint** itself.
+
+**--tool-args** *tool args*
+
+ Pass all arguments specified after **--tool-args** to the LLVM tool under test
+ (**llc**, **lli**, etc.) whenever it runs.  You should use this option in the
+ following way:
+
+ .. code-block:: bash
+
+      bugpoint [bugpoint args] --tool-args -- [tool args]
+
+ The "``--``" right after the **--tool-args** option tells **bugpoint** to
+ consider any options starting with "``-``" to be part of the **--tool-args**
+ option, not as options to **bugpoint** itself. (See **--args**, above.)
+
+**--safe-tool-args** *tool args*
+
+ Pass all arguments specified after **--safe-tool-args** to the "safe" execution
+ tool.
+
+**--gcc-tool-args** *gcc tool args*
+
+ Pass all arguments specified after **--gcc-tool-args** to the invocation of
+ **gcc**.
+
+**--opt-args** *opt args*
+
+ Pass all arguments specified after **--opt-args** to the invocation of **opt**.
+
+**--disable-{dce,simplifycfg}**
+
+ Do not run the specified passes to clean up and reduce the size of the test
+ program. By default, **bugpoint** uses these passes internally when attempting to
+ reduce test programs.  If you're trying to find a bug in one of these passes,
+ **bugpoint** may crash.
+
+**--enable-valgrind**
+
+ Use valgrind to find faults in the optimization phase. This will allow
+ bugpoint to find otherwise asymptomatic problems caused by memory
+ mis-management.
+
+**-find-bugs**
+
+ Continually randomize the specified passes and run them on the test program
+ until a bug is found or the user kills **bugpoint**.
+
+**-help**
+
+ Print a summary of command line options.
+
+**--input** *filename*
+
+ Open *filename* and redirect the standard input of the test program, whenever
+ it runs, to come from that file.
+
+**--load** *plugin*
+
+ Load the dynamic object *plugin* into **bugpoint** itself.  This object should
+ register new optimization passes.  Once loaded, the object will add new command
+ line options to enable various optimizations.  To see the new complete list of
+ optimizations, use the **-help** and **--load** options together; for example:
+
+
+ .. code-block:: bash
+
+      bugpoint --load myNewPass.so -help
+
+**--mlimit** *megabytes*
+
+ Specifies an upper limit on memory usage of the optimization and codegen. Set
+ to zero to disable the limit.
+
+**--output** *filename*
+
+ Whenever the test program produces output on its standard output stream, it
+ should match the contents of *filename* (the "reference output"). If you
+ do not use this option, **bugpoint** will attempt to generate a reference output
+ by compiling the program with the "safe" backend and running it.
+
+**--run-{int,jit,llc,custom}**
+
+ Whenever the test program is compiled, **bugpoint** should generate code for it
+ using the specified code generator.  These options allow you to choose the
+ interpreter, the JIT compiler, the static native code compiler, or a
+ custom command (see **--exec-command**) respectively.
+
+**--safe-{llc,custom}**
+
+ When debugging a code generator, **bugpoint** should use the specified code
+ generator as the "safe" code generator. This is a known-good code generator
+ used to generate the "reference output" if it has not been provided, and to
+ compile portions of the program that as they are excluded from the testcase.
+ These options allow you to choose the
+ static native code compiler, or a custom command, (see **--exec-command**)
+ respectively. The interpreter and the JIT backends cannot currently
+ be used as the "safe" backends.
+
+**--exec-command** *command*
+
+ This option defines the command to use with the **--run-custom** and
+ **--safe-custom** options to execute the bitcode testcase. This can
+ be useful for cross-compilation.
+
+**--compile-command** *command*
+
+ This option defines the command to use with the **--compile-custom**
+ option to compile the bitcode testcase. The command should exit with a
+ failure exit code if the file is "interesting" and should exit with a
+ success exit code (i.e. 0) otherwise (this is the same as if it crashed on
+ "interesting" inputs).
+
+ This can be useful for
+ testing compiler output without running any link or execute stages. To
+ generate a reduced unit test, you may add CHECK directives to the
+ testcase and pass the name of an executable compile-command script in this form:
+
+ .. code-block:: sh
+
+      #!/bin/sh
+      llc "$@"
+      not FileCheck [bugpoint input file].ll < bugpoint-test-program.s
+
+ This script will "fail" as long as FileCheck passes. So the result
+ will be the minimum bitcode that passes FileCheck.
+
+**--safe-path** *path*
+
+ This option defines the path to the command to execute with the
+ **--safe-{int,jit,llc,custom}**
+ option.
+
+**--verbose-errors**\ =\ *{true,false}*
+
+ The default behavior of bugpoint is to print "<crash>" when it finds a reduced
+ test that crashes compilation. This flag prints the output of the crashing
+ program to stderr. This is useful to make sure it is the same error being
+ tracked down and not a different error that happens to crash the compiler as
+ well. Defaults to false.
+
+EXIT STATUS
+-----------
+
+If **bugpoint** succeeds in finding a problem, it will exit with 0.  Otherwise,
+if an error occurs, it will exit with a non-zero value.
+
+SEE ALSO
+--------
+
+opt|opt

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/index.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/index.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/index.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/index.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,54 @@
+LLVM Command Guide
+------------------
+
+The following documents are command descriptions for all of the LLVM tools.
+These pages describe how to use the LLVM commands and what their options are.
+Note that these pages do not describe all of the options available for all
+tools. To get a complete listing, pass the ``--help`` (general options) or
+``--help-hidden`` (general and debugging options) arguments to the tool you are
+interested in.
+
+Basic Commands
+~~~~~~~~~~~~~~
+
+.. toctree::
+   :maxdepth: 1
+
+   llvm-as
+   llvm-dis
+   opt
+   llc
+   lli
+   llvm-link
+   llvm-ar
+   llvm-lib
+   llvm-nm
+   llvm-config
+   llvm-diff
+   llvm-cov
+   llvm-profdata
+   llvm-stress
+   llvm-symbolizer
+   llvm-dwarfdump
+
+Debugging Tools
+~~~~~~~~~~~~~~~
+
+.. toctree::
+   :maxdepth: 1
+
+   bugpoint
+   llvm-extract
+   llvm-bcanalyzer
+
+Developer Tools
+~~~~~~~~~~~~~~~
+
+.. toctree::
+   :maxdepth: 1
+
+   FileCheck
+   tblgen
+   lit
+   llvm-build
+   llvm-readobj

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lit.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lit.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lit.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lit.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,448 @@
+lit - LLVM Integrated Tester
+============================
+
+SYNOPSIS
+--------
+
+:program:`lit` [*options*] [*tests*]
+
+DESCRIPTION
+-----------
+
+:program:`lit` is a portable tool for executing LLVM and Clang style test
+suites, summarizing their results, and providing indication of failures.
+:program:`lit` is designed to be a lightweight testing tool with as simple a
+user interface as possible.
+
+:program:`lit` should be run with one or more *tests* to run specified on the
+command line.  Tests can be either individual test files or directories to
+search for tests (see :ref:`test-discovery`).
+
+Each specified test will be executed (potentially in parallel) and once all
+tests have been run :program:`lit` will print summary information on the number
+of tests which passed or failed (see :ref:`test-status-results`).  The
+:program:`lit` program will execute with a non-zero exit code if any tests
+fail.
+
+By default :program:`lit` will use a succinct progress display and will only
+print summary information for test failures.  See :ref:`output-options` for
+options controlling the :program:`lit` progress display and output.
+
+:program:`lit` also includes a number of options for controlling how tests are
+executed (specific features may depend on the particular test format).  See
+:ref:`execution-options` for more information.
+
+Finally, :program:`lit` also supports additional options for only running a
+subset of the options specified on the command line, see
+:ref:`selection-options` for more information.
+
+Users interested in the :program:`lit` architecture or designing a
+:program:`lit` testing implementation should see :ref:`lit-infrastructure`.
+
+GENERAL OPTIONS
+---------------
+
+.. option:: -h, --help
+
+ Show the :program:`lit` help message.
+
+.. option:: -j N, --threads=N
+
+ Run ``N`` tests in parallel.  By default, this is automatically chosen to
+ match the number of detected available CPUs.
+
+.. option:: --config-prefix=NAME
+
+ Search for :file:`{NAME}.cfg` and :file:`{NAME}.site.cfg` when searching for
+ test suites, instead of :file:`lit.cfg` and :file:`lit.site.cfg`.
+
+.. option:: -D NAME, -D NAME=VALUE, --param NAME, --param NAME=VALUE
+
+ Add a user defined parameter ``NAME`` with the given ``VALUE`` (or the empty
+ string if not given).  The meaning and use of these parameters is test suite
+ dependent.
+
+.. _output-options:
+
+OUTPUT OPTIONS
+--------------
+
+.. option:: -q, --quiet
+
+ Suppress any output except for test failures.
+
+.. option:: -s, --succinct
+
+ Show less output, for example don't show information on tests that pass.
+
+.. option:: -v, --verbose
+
+ Show more information on test failures, for example the entire test output
+ instead of just the test result.
+
+.. option:: -a, --show-all
+
+ Show more information about all tests, for example the entire test
+ commandline and output.
+
+.. option:: --no-progress-bar
+
+ Do not use curses based progress bar.
+
+.. option:: --show-unsupported
+
+ Show the names of unsupported tests.
+
+.. option:: --show-xfail
+
+ Show the names of tests that were expected to fail.
+
+.. _execution-options:
+
+EXECUTION OPTIONS
+-----------------
+
+.. option:: --path=PATH
+
+ Specify an additional ``PATH`` to use when searching for executables in tests.
+
+.. option:: --vg
+
+ Run individual tests under valgrind (using the memcheck tool).  The
+ ``--error-exitcode`` argument for valgrind is used so that valgrind failures
+ will cause the program to exit with a non-zero status.
+
+ When this option is enabled, :program:`lit` will also automatically provide a
+ "``valgrind``" feature that can be used to conditionally disable (or expect
+ failure in) certain tests.
+
+.. option:: --vg-arg=ARG
+
+ When :option:`--vg` is used, specify an additional argument to pass to
+ :program:`valgrind` itself.
+
+.. option:: --vg-leak
+
+ When :option:`--vg` is used, enable memory leak checks.  When this option is
+ enabled, :program:`lit` will also automatically provide a "``vg_leak``"
+ feature that can be used to conditionally disable (or expect failure in)
+ certain tests.
+
+.. option:: --time-tests
+
+ Track the wall time individual tests take to execute and includes the results
+ in the summary output.  This is useful for determining which tests in a test
+ suite take the most time to execute.  Note that this option is most useful
+ with ``-j 1``.
+
+.. _selection-options:
+
+SELECTION OPTIONS
+-----------------
+
+.. option:: --max-tests=N
+
+ Run at most ``N`` tests and then terminate.
+
+.. option:: --max-time=N
+
+ Spend at most ``N`` seconds (approximately) running tests and then terminate.
+
+.. option:: --shuffle
+
+ Run the tests in a random order.
+
+ADDITIONAL OPTIONS
+------------------
+
+.. option:: --debug
+
+ Run :program:`lit` in debug mode, for debugging configuration issues and
+ :program:`lit` itself.
+
+.. option:: --show-suites
+
+ List the discovered test suites and exit.
+
+.. option:: --show-tests
+
+ List all of the discovered tests and exit.
+
+EXIT STATUS
+-----------
+
+:program:`lit` will exit with an exit code of 1 if there are any FAIL or XPASS
+results.  Otherwise, it will exit with the status 0.  Other exit codes are used
+for non-test related failures (for example a user error or an internal program
+error).
+
+.. _test-discovery:
+
+TEST DISCOVERY
+--------------
+
+The inputs passed to :program:`lit` can be either individual tests, or entire
+directories or hierarchies of tests to run.  When :program:`lit` starts up, the
+first thing it does is convert the inputs into a complete list of tests to run
+as part of *test discovery*.
+
+In the :program:`lit` model, every test must exist inside some *test suite*.
+:program:`lit` resolves the inputs specified on the command line to test suites
+by searching upwards from the input path until it finds a :file:`lit.cfg` or
+:file:`lit.site.cfg` file.  These files serve as both a marker of test suites
+and as configuration files which :program:`lit` loads in order to understand
+how to find and run the tests inside the test suite.
+
+Once :program:`lit` has mapped the inputs into test suites it traverses the
+list of inputs adding tests for individual files and recursively searching for
+tests in directories.
+
+This behavior makes it easy to specify a subset of tests to run, while still
+allowing the test suite configuration to control exactly how tests are
+interpreted.  In addition, :program:`lit` always identifies tests by the test
+suite they are in, and their relative path inside the test suite.  For
+appropriately configured projects, this allows :program:`lit` to provide
+convenient and flexible support for out-of-tree builds.
+
+.. _test-status-results:
+
+TEST STATUS RESULTS
+-------------------
+
+Each test ultimately produces one of the following six results:
+
+**PASS**
+
+ The test succeeded.
+
+**XFAIL**
+
+ The test failed, but that is expected.  This is used for test formats which allow
+ specifying that a test does not currently work, but wish to leave it in the test
+ suite.
+
+**XPASS**
+
+ The test succeeded, but it was expected to fail.  This is used for tests which
+ were specified as expected to fail, but are now succeeding (generally because
+ the feature they test was broken and has been fixed).
+
+**FAIL**
+
+ The test failed.
+
+**UNRESOLVED**
+
+ The test result could not be determined.  For example, this occurs when the test
+ could not be run, the test itself is invalid, or the test was interrupted.
+
+**UNSUPPORTED**
+
+ The test is not supported in this environment.  This is used by test formats
+ which can report unsupported tests.
+
+Depending on the test format tests may produce additional information about
+their status (generally only for failures).  See the :ref:`output-options`
+section for more information.
+
+.. _lit-infrastructure:
+
+LIT INFRASTRUCTURE
+------------------
+
+This section describes the :program:`lit` testing architecture for users interested in
+creating a new :program:`lit` testing implementation, or extending an existing one.
+
+:program:`lit` proper is primarily an infrastructure for discovering and running
+arbitrary tests, and to expose a single convenient interface to these
+tests. :program:`lit` itself doesn't know how to run tests, rather this logic is
+defined by *test suites*.
+
+TEST SUITES
+~~~~~~~~~~~
+
+As described in :ref:`test-discovery`, tests are always located inside a *test
+suite*.  Test suites serve to define the format of the tests they contain, the
+logic for finding those tests, and any additional information to run the tests.
+
+:program:`lit` identifies test suites as directories containing ``lit.cfg`` or
+``lit.site.cfg`` files (see also :option:`--config-prefix`).  Test suites are
+initially discovered by recursively searching up the directory hierarchy for
+all the input files passed on the command line.  You can use
+:option:`--show-suites` to display the discovered test suites at startup.
+
+Once a test suite is discovered, its config file is loaded.  Config files
+themselves are Python modules which will be executed.  When the config file is
+executed, two important global variables are predefined:
+
+**lit_config**
+
+ The global **lit** configuration object (a *LitConfig* instance), which defines
+ the builtin test formats, global configuration parameters, and other helper
+ routines for implementing test configurations.
+
+**config**
+
+ This is the config object (a *TestingConfig* instance) for the test suite,
+ which the config file is expected to populate.  The following variables are also
+ available on the *config* object, some of which must be set by the config and
+ others are optional or predefined:
+
+ **name** *[required]* The name of the test suite, for use in reports and
+ diagnostics.
+
+ **test_format** *[required]* The test format object which will be used to
+ discover and run tests in the test suite.  Generally this will be a builtin test
+ format available from the *lit.formats* module.
+
+ **test_source_root** The filesystem path to the test suite root.  For out-of-dir
+ builds this is the directory that will be scanned for tests.
+
+ **test_exec_root** For out-of-dir builds, the path to the test suite root inside
+ the object directory.  This is where tests will be run and temporary output files
+ placed.
+
+ **environment** A dictionary representing the environment to use when executing
+ tests in the suite.
+
+ **suffixes** For **lit** test formats which scan directories for tests, this
+ variable is a list of suffixes to identify test files.  Used by: *ShTest*.
+
+ **substitutions** For **lit** test formats which substitute variables into a test
+ script, the list of substitutions to perform.  Used by: *ShTest*.
+
+ **unsupported** Mark an unsupported directory, all tests within it will be
+ reported as unsupported.  Used by: *ShTest*.
+
+ **parent** The parent configuration, this is the config object for the directory
+ containing the test suite, or None.
+
+ **root** The root configuration.  This is the top-most :program:`lit` configuration in
+ the project.
+
+ **pipefail** Normally a test using a shell pipe fails if any of the commands
+ on the pipe fail. If this is not desired, setting this variable to false
+ makes the test fail only if the last command in the pipe fails.
+
+TEST DISCOVERY
+~~~~~~~~~~~~~~
+
+Once test suites are located, :program:`lit` recursively traverses the source
+directory (following *test_source_root*) looking for tests.  When :program:`lit`
+enters a sub-directory, it first checks to see if a nested test suite is
+defined in that directory.  If so, it loads that test suite recursively,
+otherwise it instantiates a local test config for the directory (see
+:ref:`local-configuration-files`).
+
+Tests are identified by the test suite they are contained within, and the
+relative path inside that suite.  Note that the relative path may not refer to
+an actual file on disk; some test formats (such as *GoogleTest*) define
+"virtual tests" which have a path that contains both the path to the actual
+test file and a subpath to identify the virtual test.
+
+.. _local-configuration-files:
+
+LOCAL CONFIGURATION FILES
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+When :program:`lit` loads a subdirectory in a test suite, it instantiates a
+local test configuration by cloning the configuration for the parent directory
+--- the root of this configuration chain will always be a test suite.  Once the
+test configuration is cloned :program:`lit` checks for a *lit.local.cfg* file
+in the subdirectory.  If present, this file will be loaded and can be used to
+specialize the configuration for each individual directory.  This facility can
+be used to define subdirectories of optional tests, or to change other
+configuration parameters --- for example, to change the test format, or the
+suffixes which identify test files.
+
+PRE-DEFINED SUBSTITUTIONS
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+:program:`lit` provides various patterns that can be used with the RUN command.
+These are defined in TestRunner.py.
+
+ ========== ==============
+  Macro      Substitution
+ ========== ==============
+ %s         source path (path to the file currently being run)
+ %S         source dir (directory of the file currently being run)
+ %p         same as %S
+ %{pathsep} path separator
+ %t         temporary file name unique to the test
+ %T         temporary directory unique to the test
+ %%         %
+ %/s        same as %s but replace all / with \\
+ %/S        same as %S but replace all / with \\
+ %/p        same as %p but replace all / with \\
+ %/t        same as %t but replace all / with \\
+ %/T        same as %T but replace all / with \\
+ ========== ==============
+
+Further substitution patterns might be defined by each test module.
+See the modules :ref:`local-configuration-files`.
+
+More information on the testing infrastucture can be found in the
+:doc:`../TestingGuide`.
+
+TEST RUN OUTPUT FORMAT
+~~~~~~~~~~~~~~~~~~~~~~
+
+The :program:`lit` output for a test run conforms to the following schema, in
+both short and verbose modes (although in short mode no PASS lines will be
+shown).  This schema has been chosen to be relatively easy to reliably parse by
+a machine (for example in buildbot log scraping), and for other tools to
+generate.
+
+Each test result is expected to appear on a line that matches:
+
+.. code-block:: none
+
+  <result code>: <test name> (<progress info>)
+
+where ``<result-code>`` is a standard test result such as PASS, FAIL, XFAIL,
+XPASS, UNRESOLVED, or UNSUPPORTED.  The performance result codes of IMPROVED and
+REGRESSED are also allowed.
+
+The ``<test name>`` field can consist of an arbitrary string containing no
+newline.
+
+The ``<progress info>`` field can be used to report progress information such
+as (1/300) or can be empty, but even when empty the parentheses are required.
+
+Each test result may include additional (multiline) log information in the
+following format:
+
+.. code-block:: none
+
+  <log delineator> TEST '(<test name>)' <trailing delineator>
+  ... log message ...
+  <log delineator>
+
+where ``<test name>`` should be the name of a preceding reported test, ``<log
+delineator>`` is a string of "*" characters *at least* four characters long
+(the recommended length is 20), and ``<trailing delineator>`` is an arbitrary
+(unparsed) string.
+
+The following is an example of a test run output which consists of four tests A,
+B, C, and D, and a log message for the failing test C:
+
+.. code-block:: none
+
+  PASS: A (1 of 4)
+  PASS: B (2 of 4)
+  FAIL: C (3 of 4)
+  ******************** TEST 'C' FAILED ********************
+  Test 'C' failed as a result of exit code 1.
+  ********************
+  PASS: D (4 of 4)
+
+LIT EXAMPLE TESTS
+~~~~~~~~~~~~~~~~~
+
+The :program:`lit` distribution contains several example implementations of
+test suites in the *ExampleTests* directory.
+
+SEE ALSO
+--------
+
+valgrind(1)

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llc.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llc.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llc.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llc.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,196 @@
+llc - LLVM static compiler
+==========================
+
+SYNOPSIS
+--------
+
+:program:`llc` [*options*] [*filename*]
+
+DESCRIPTION
+-----------
+
+The :program:`llc` command compiles LLVM source inputs into assembly language
+for a specified architecture.  The assembly language output can then be passed
+through a native assembler and linker to generate a native executable.
+
+The choice of architecture for the output assembly code is automatically
+determined from the input file, unless the :option:`-march` option is used to
+override the default.
+
+OPTIONS
+-------
+
+If ``filename`` is "``-``" or omitted, :program:`llc` reads from standard input.
+Otherwise, it will from ``filename``.  Inputs can be in either the LLVM assembly
+language format (``.ll``) or the LLVM bitcode format (``.bc``).
+
+If the :option:`-o` option is omitted, then :program:`llc` will send its output
+to standard output if the input is from standard input.  If the :option:`-o`
+option specifies "``-``", then the output will also be sent to standard output.
+
+If no :option:`-o` option is specified and an input file other than "``-``" is
+specified, then :program:`llc` creates the output filename by taking the input
+filename, removing any existing ``.bc`` extension, and adding a ``.s`` suffix.
+
+Other :program:`llc` options are described below.
+
+End-user Options
+~~~~~~~~~~~~~~~~
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -O=uint
+
+ Generate code at different optimization levels.  These correspond to the
+ ``-O0``, ``-O1``, ``-O2``, and ``-O3`` optimization levels used by
+ :program:`clang`.
+
+.. option:: -mtriple=<target triple>
+
+ Override the target triple specified in the input file with the specified
+ string.
+
+.. option:: -march=<arch>
+
+ Specify the architecture for which to generate assembly, overriding the target
+ encoded in the input file.  See the output of ``llc -help`` for a list of
+ valid architectures.  By default this is inferred from the target triple or
+ autodetected to the current architecture.
+
+.. option:: -mcpu=<cpuname>
+
+ Specify a specific chip in the current architecture to generate code for.
+ By default this is inferred from the target triple and autodetected to
+ the current architecture.  For a list of available CPUs, use:
+
+ .. code-block:: none
+
+   llvm-as < /dev/null | llc -march=xyz -mcpu=help
+
+.. option:: -filetype=<output file type>
+
+ Specify what kind of output ``llc`` should generated.  Options are: ``asm``
+ for textual assembly ( ``'.s'``), ``obj`` for native object files (``'.o'``)
+ and ``null`` for not emitting anything (for performance testing).
+
+ Note that not all targets support all options.
+
+.. option:: -mattr=a1,+a2,-a3,...
+
+ Override or control specific attributes of the target, such as whether SIMD
+ operations are enabled or not.  The default set of attributes is set by the
+ current CPU.  For a list of available attributes, use:
+
+ .. code-block:: none
+
+   llvm-as < /dev/null | llc -march=xyz -mattr=help
+
+.. option:: --disable-fp-elim
+
+ Disable frame pointer elimination optimization.
+
+.. option:: --disable-excess-fp-precision
+
+ Disable optimizations that may produce excess precision for floating point.
+ Note that this option can dramatically slow down code on some systems
+ (e.g. X86).
+
+.. option:: --enable-no-infs-fp-math
+
+ Enable optimizations that assume no Inf values.
+
+.. option:: --enable-no-nans-fp-math
+
+ Enable optimizations that assume no NAN values.
+
+.. option:: --enable-unsafe-fp-math
+
+ Enable optimizations that make unsafe assumptions about IEEE math (e.g. that
+ addition is associative) or may not work for all input ranges.  These
+ optimizations allow the code generator to make use of some instructions which
+ would otherwise not be usable (such as ``fsin`` on X86).
+
+.. option:: --stats
+
+ Print statistics recorded by code-generation passes.
+
+.. option:: --time-passes
+
+ Record the amount of time needed for each pass and print a report to standard
+ error.
+
+.. option:: --load=<dso_path>
+
+ Dynamically load ``dso_path`` (a path to a dynamically shared object) that
+ implements an LLVM target.  This will permit the target name to be used with
+ the :option:`-march` option so that code can be generated for that target.
+
+.. option:: -meabi=[default|gnu|4|5]
+
+ Specify which EABI version should conform to.  Valid EABI versions are *gnu*,
+ *4* and *5*.  Default value (*default*) depends on the triple.
+
+
+Tuning/Configuration Options
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. option:: --print-machineinstrs
+
+ Print generated machine code between compilation phases (useful for debugging).
+
+.. option:: --regalloc=<allocator>
+
+ Specify the register allocator to use.
+ Valid register allocators are:
+
+ *basic*
+
+  Basic register allocator.
+
+ *fast*
+
+  Fast register allocator. It is the default for unoptimized code.
+
+ *greedy*
+
+  Greedy register allocator. It is the default for optimized code.
+
+ *pbqp*
+
+  Register allocator based on 'Partitioned Boolean Quadratic Programming'.
+
+.. option:: --spiller=<spiller>
+
+ Specify the spiller to use for register allocators that support it.  Currently
+ this option is used only by the linear scan register allocator.  The default
+ ``spiller`` is *local*.  Valid spillers are:
+
+ *simple*
+
+  Simple spiller
+
+ *local*
+
+  Local spiller
+
+Intel IA-32-specific Options
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. option:: --x86-asm-syntax=[att|intel]
+
+ Specify whether to emit assembly code in AT&T syntax (the default) or Intel
+ syntax.
+
+EXIT STATUS
+-----------
+
+If :program:`llc` succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.
+
+SEE ALSO
+--------
+
+lli
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lli.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lli.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lli.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/lli.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,214 @@
+lli - directly execute programs from LLVM bitcode
+=================================================
+
+SYNOPSIS
+--------
+
+:program:`lli` [*options*] [*filename*] [*program args*]
+
+DESCRIPTION
+-----------
+
+:program:`lli` directly executes programs in LLVM bitcode format.  It takes a program
+in LLVM bitcode format and executes it using a just-in-time compiler or an
+interpreter.
+
+:program:`lli` is *not* an emulator. It will not execute IR of different architectures
+and it can only interpret (or JIT-compile) for the host architecture.
+
+The JIT compiler takes the same arguments as other tools, like :program:`llc`,
+but they don't necessarily work for the interpreter.
+
+If `filename` is not specified, then :program:`lli` reads the LLVM bitcode for the
+program from standard input.
+
+The optional *args* specified on the command line are passed to the program as
+arguments.
+
+GENERAL OPTIONS
+---------------
+
+.. option:: -fake-argv0=executable
+
+ Override the ``argv[0]`` value passed into the executing program.
+
+.. option:: -force-interpreter={false,true}
+
+ If set to true, use the interpreter even if a just-in-time compiler is available
+ for this architecture. Defaults to false.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -load=pluginfilename
+
+ Causes :program:`lli` to load the plugin (shared object) named *pluginfilename* and use
+ it for optimization.
+
+.. option:: -stats
+
+ Print statistics from the code-generation passes. This is only meaningful for
+ the just-in-time compiler, at present.
+
+.. option:: -time-passes
+
+ Record the amount of time needed for each code-generation pass and print it to
+ standard error.
+
+.. option:: -version
+
+ Print out the version of :program:`lli` and exit without doing anything else.
+
+TARGET OPTIONS
+--------------
+
+.. option:: -mtriple=target triple
+
+ Override the target triple specified in the input bitcode file with the
+ specified string.  This may result in a crash if you pick an
+ architecture which is not compatible with the current system.
+
+.. option:: -march=arch
+
+ Specify the architecture for which to generate assembly, overriding the target
+ encoded in the bitcode file.  See the output of **llc -help** for a list of
+ valid architectures.  By default this is inferred from the target triple or
+ autodetected to the current architecture.
+
+.. option:: -mcpu=cpuname
+
+ Specify a specific chip in the current architecture to generate code for.
+ By default this is inferred from the target triple and autodetected to
+ the current architecture.  For a list of available CPUs, use:
+ **llvm-as < /dev/null | llc -march=xyz -mcpu=help**
+
+.. option:: -mattr=a1,+a2,-a3,...
+
+ Override or control specific attributes of the target, such as whether SIMD
+ operations are enabled or not.  The default set of attributes is set by the
+ current CPU.  For a list of available attributes, use:
+ **llvm-as < /dev/null | llc -march=xyz -mattr=help**
+
+FLOATING POINT OPTIONS
+----------------------
+
+.. option:: -disable-excess-fp-precision
+
+ Disable optimizations that may increase floating point precision.
+
+.. option:: -enable-no-infs-fp-math
+
+ Enable optimizations that assume no Inf values.
+
+.. option:: -enable-no-nans-fp-math
+
+ Enable optimizations that assume no NAN values.
+
+.. option:: -enable-unsafe-fp-math
+
+ Causes :program:`lli` to enable optimizations that may decrease floating point
+ precision.
+
+.. option:: -soft-float
+
+ Causes :program:`lli` to generate software floating point library calls instead of
+ equivalent hardware instructions.
+
+CODE GENERATION OPTIONS
+-----------------------
+
+.. option:: -code-model=model
+
+ Choose the code model from:
+
+ .. code-block:: perl
+
+      default: Target default code model
+      small: Small code model
+      kernel: Kernel code model
+      medium: Medium code model
+      large: Large code model
+
+.. option:: -disable-post-RA-scheduler
+
+ Disable scheduling after register allocation.
+
+.. option:: -disable-spill-fusing
+
+ Disable fusing of spill code into instructions.
+
+.. option:: -jit-enable-eh
+
+ Exception handling should be enabled in the just-in-time compiler.
+
+.. option:: -join-liveintervals
+
+ Coalesce copies (default=true).
+
+.. option:: -nozero-initialized-in-bss
+
+  Don't place zero-initialized symbols into the BSS section.
+
+.. option:: -pre-RA-sched=scheduler
+
+ Instruction schedulers available (before register allocation):
+
+ .. code-block:: perl
+
+      =default: Best scheduler for the target
+      =none: No scheduling: breadth first sequencing
+      =simple: Simple two pass scheduling: minimize critical path and maximize processor utilization
+      =simple-noitin: Simple two pass scheduling: Same as simple except using generic latency
+      =list-burr: Bottom-up register reduction list scheduling
+      =list-tdrr: Top-down register reduction list scheduling
+      =list-td: Top-down list scheduler -print-machineinstrs - Print generated machine code
+
+.. option:: -regalloc=allocator
+
+ Register allocator to use (default=linearscan)
+
+ .. code-block:: perl
+
+      =bigblock: Big-block register allocator
+      =linearscan: linear scan register allocator =local -   local register allocator
+      =simple: simple register allocator
+
+.. option:: -relocation-model=model
+
+ Choose relocation model from:
+
+ .. code-block:: perl
+
+      =default: Target default relocation model
+      =static: Non-relocatable code =pic -   Fully relocatable, position independent code
+      =dynamic-no-pic: Relocatable external references, non-relocatable code
+
+.. option:: -spiller
+
+ Spiller to use (default=local)
+
+ .. code-block:: perl
+
+      =simple: simple spiller
+      =local: local spiller
+
+.. option:: -x86-asm-syntax=syntax
+
+ Choose style of code to emit from X86 backend:
+
+ .. code-block:: perl
+
+      =att: Emit AT&T-style assembly
+      =intel: Emit Intel-style assembly
+
+EXIT STATUS
+-----------
+
+If :program:`lli` fails to load the program, it will exit with an exit code of 1.
+Otherwise, it will return the exit code of the program it executes.
+
+SEE ALSO
+--------
+
+:program:`llc`

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ar.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ar.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ar.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ar.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,367 @@
+llvm-ar - LLVM archiver
+=======================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-ar** [-]{dmpqrtx}[Rabfikou] [relpos] [count] <archive> [files...]
+
+
+DESCRIPTION
+-----------
+
+
+The **llvm-ar** command is similar to the common Unix utility, ``ar``. It
+archives several files together into a single file. The intent for this is
+to produce archive libraries by LLVM bitcode that can be linked into an
+LLVM program. However, the archive can contain any kind of file. By default,
+**llvm-ar** generates a symbol table that makes linking faster because
+only the symbol table needs to be consulted, not each individual file member
+of the archive.
+
+The **llvm-ar** command can be used to *read* SVR4, GNU and BSD style archive
+files. However, right now it can only write in the GNU format. If an
+SVR4 or BSD style archive is used with the ``r`` (replace) or ``q`` (quick
+update) operations, the archive will be reconstructed in GNU format.
+
+Here's where **llvm-ar** departs from previous ``ar`` implementations:
+
+
+*Symbol Table*
+
+ Since **llvm-ar** supports bitcode files. The symbol table it creates
+ is in GNU format and includes both native and bitcode files.
+
+
+*Long Paths*
+
+ Currently **llvm-ar** can read GNU and BSD long file names, but only writes
+ archives with the GNU format.
+
+
+
+OPTIONS
+-------
+
+
+The options to **llvm-ar** are compatible with other ``ar`` implementations.
+However, there are a few modifiers (*R*) that are not found in other ``ar``
+implementations. The options to **llvm-ar** specify a single basic operation to
+perform on the archive, a variety of modifiers for that operation, the name of
+the archive file, and an optional list of file names. These options are used to
+determine how **llvm-ar** should process the archive file.
+
+The Operations and Modifiers are explained in the sections below. The minimal
+set of options is at least one operator and the name of the archive. Typically
+archive files end with a ``.a`` suffix, but this is not required. Following
+the *archive-name* comes a list of *files* that indicate the specific members
+of the archive to operate on. If the *files* option is not specified, it
+generally means either "none" or "all" members, depending on the operation.
+
+Operations
+~~~~~~~~~~
+
+
+
+d
+
+ Delete files from the archive. No modifiers are applicable to this operation.
+ The *files* options specify which members should be removed from the
+ archive. It is not an error if a specified file does not appear in the archive.
+ If no *files* are specified, the archive is not modified.
+
+
+
+m[abi]
+
+ Move files from one location in the archive to another. The *a*, *b*, and
+ *i* modifiers apply to this operation. The *files* will all be moved
+ to the location given by the modifiers. If no modifiers are used, the files
+ will be moved to the end of the archive. If no *files* are specified, the
+ archive is not modified.
+
+
+
+p
+
+ Print files to the standard output. This operation simply prints the
+ *files* indicated to the standard output. If no *files* are
+ specified, the entire  archive is printed.  Printing bitcode files is
+ ill-advised as they might confuse your terminal settings. The *p*
+ operation never modifies the archive.
+
+
+
+q
+
+ Quickly append files to the end of the archive.  This operation quickly adds the
+ *files* to the archive without checking for duplicates that should be
+ removed first. If no *files* are specified, the archive is not modified.
+ Because of the way that **llvm-ar** constructs the archive file, its dubious
+ whether the *q* operation is any faster than the *r* operation.
+
+
+
+r[abu]
+
+ Replace or insert file members. The *a*, *b*,  and *u*
+ modifiers apply to this operation. This operation will replace existing
+ *files* or insert them at the end of the archive if they do not exist. If no
+ *files* are specified, the archive is not modified.
+
+
+
+t[v]
+
+ Print the table of contents. Without any modifiers, this operation just prints
+ the names of the members to the standard output. With the *v* modifier,
+ **llvm-ar** also prints out the file type (B=bitcode, S=symbol
+ table, blank=regular file), the permission mode, the owner and group, the
+ size, and the date. If any *files* are specified, the listing is only for
+ those files. If no *files* are specified, the table of contents for the
+ whole archive is printed.
+
+
+
+x[oP]
+
+ Extract archive members back to files. The *o* modifier applies to this
+ operation. This operation retrieves the indicated *files* from the archive
+ and writes them back to the operating system's file system. If no
+ *files* are specified, the entire archive is extract.
+
+
+
+
+Modifiers (operation specific)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+
+The modifiers below are specific to certain operations. See the Operations
+section (above) to determine which modifiers are applicable to which operations.
+
+
+[a]
+
+ When inserting or moving member files, this option specifies the destination of
+ the new files as being after the *relpos* member. If *relpos* is not found,
+ the files are placed at the end of the archive.
+
+
+
+[b]
+
+ When inserting or moving member files, this option specifies the destination of
+ the new files as being before the *relpos* member. If *relpos* is not
+ found, the files are placed at the end of the archive. This modifier is
+ identical to the *i* modifier.
+
+
+
+[i]
+
+ A synonym for the *b* option.
+
+
+
+[o]
+
+ When extracting files, this option will cause **llvm-ar** to preserve the
+ original modification times of the files it writes.
+
+
+
+[u]
+
+ When replacing existing files in the archive, only replace those files that have
+ a time stamp than the time stamp of the member in the archive.
+
+
+
+
+Modifiers (generic)
+~~~~~~~~~~~~~~~~~~~
+
+
+The modifiers below may be applied to any operation.
+
+
+[c]
+
+ For all operations, **llvm-ar** will always create the archive if it doesn't
+ exist. Normally, **llvm-ar** will print a warning message indicating that the
+ archive is being created. Using this modifier turns off that warning.
+
+
+
+[s]
+
+ This modifier requests that an archive index (or symbol table) be added to the
+ archive. This is the default mode of operation. The symbol table will contain
+ all the externally visible functions and global variables defined by all the
+ bitcode files in the archive.
+
+
+
+[S]
+
+ This modifier is the opposite of the *s* modifier. It instructs **llvm-ar** to
+ not build the symbol table. If both *s* and *S* are used, the last modifier to
+ occur in the options will prevail.
+
+
+
+[v]
+
+ This modifier instructs **llvm-ar** to be verbose about what it is doing. Each
+ editing operation taken against the archive will produce a line of output saying
+ what is being done.
+
+
+
+
+
+STANDARDS
+---------
+
+
+The **llvm-ar** utility is intended to provide a superset of the IEEE Std 1003.2
+(POSIX.2) functionality for ``ar``. **llvm-ar** can read both SVR4 and BSD4.4 (or
+Mac OS X) archives. If the ``f`` modifier is given to the ``x`` or ``r`` operations
+then **llvm-ar** will write SVR4 compatible archives. Without this modifier,
+**llvm-ar** will write BSD4.4 compatible archives that have long names
+immediately after the header and indicated using the "#1/ddd" notation for the
+name in the header.
+
+
+FILE FORMAT
+-----------
+
+
+The file format for LLVM Archive files is similar to that of BSD 4.4 or Mac OSX
+archive files. In fact, except for the symbol table, the ``ar`` commands on those
+operating systems should be able to read LLVM archive files. The details of the
+file format follow.
+
+Each archive begins with the archive magic number which is the eight printable
+characters "!<arch>\n" where \n represents the newline character (0x0A).
+Following the magic number, the file is composed of even length members that
+begin with an archive header and end with a \n padding character if necessary
+(to make the length even). Each file member is composed of a header (defined
+below), an optional newline-terminated "long file name" and the contents of
+the file.
+
+The fields of the header are described in the items below. All fields of the
+header contain only ASCII characters, are left justified and are right padded
+with space characters.
+
+
+name - char[16]
+
+ This field of the header provides the name of the archive member. If the name is
+ longer than 15 characters or contains a slash (/) character, then this field
+ contains ``#1/nnn`` where ``nnn`` provides the length of the name and the ``#1/``
+ is literal.  In this case, the actual name of the file is provided in the ``nnn``
+ bytes immediately following the header. If the name is 15 characters or less, it
+ is contained directly in this field and terminated with a slash (/) character.
+
+
+
+date - char[12]
+
+ This field provides the date of modification of the file in the form of a
+ decimal encoded number that provides the number of seconds since the epoch
+ (since 00:00:00 Jan 1, 1970) per Posix specifications.
+
+
+
+uid - char[6]
+
+ This field provides the user id of the file encoded as a decimal ASCII string.
+ This field might not make much sense on non-Unix systems. On Unix, it is the
+ same value as the st_uid field of the stat structure returned by the stat(2)
+ operating system call.
+
+
+
+gid - char[6]
+
+ This field provides the group id of the file encoded as a decimal ASCII string.
+ This field might not make much sense on non-Unix systems. On Unix, it is the
+ same value as the st_gid field of the stat structure returned by the stat(2)
+ operating system call.
+
+
+
+mode - char[8]
+
+ This field provides the access mode of the file encoded as an octal ASCII
+ string. This field might not make much sense on non-Unix systems. On Unix, it
+ is the same value as the st_mode field of the stat structure returned by the
+ stat(2) operating system call.
+
+
+
+size - char[10]
+
+ This field provides the size of the file, in bytes, encoded as a decimal ASCII
+ string.
+
+
+
+fmag - char[2]
+
+ This field is the archive file member magic number. Its content is always the
+ two characters back tick (0x60) and newline (0x0A). This provides some measure
+ utility in identifying archive files that have been corrupted.
+
+
+offset - vbr encoded 32-bit integer
+
+ The offset item provides the offset into the archive file where the bitcode
+ member is stored that is associated with the symbol. The offset value is 0
+ based at the start of the first "normal" file member. To derive the actual
+ file offset of the member, you must add the number of bytes occupied by the file
+ signature (8 bytes) and the symbol tables. The value of this item is encoded
+ using variable bit rate encoding to reduce the size of the symbol table.
+ Variable bit rate encoding uses the high bit (0x80) of each byte to indicate
+ if there are more bytes to follow. The remaining 7 bits in each byte carry bits
+ from the value. The final byte does not have the high bit set.
+
+
+
+length - vbr encoded 32-bit integer
+
+ The length item provides the length of the symbol that follows. Like this
+ *offset* item, the length is variable bit rate encoded.
+
+
+
+symbol - character array
+
+ The symbol item provides the text of the symbol that is associated with the
+ *offset*. The symbol is not terminated by any character. Its length is provided
+ by the *length* field. Note that is allowed (but unwise) to use non-printing
+ characters (even 0x00) in the symbol. This allows for multiple encodings of
+ symbol names.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+If **llvm-ar** succeeds, it will exit with 0.  A usage error, results
+in an exit code of 1. A hard (file system typically) error results in an
+exit code of 2. Miscellaneous or unknown errors result in an
+exit code of 3.
+
+
+SEE ALSO
+--------
+
+
+ar(1)

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-as.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-as.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-as.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-as.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,56 @@
+llvm-as - LLVM assembler
+========================
+
+SYNOPSIS
+--------
+
+**llvm-as** [*options*] [*filename*]
+
+DESCRIPTION
+-----------
+
+**llvm-as** is the LLVM assembler.  It reads a file containing human-readable
+LLVM assembly language, translates it to LLVM bitcode, and writes the result
+into a file or to standard output.
+
+If *filename* is omitted or is ``-``, then **llvm-as** reads its input from
+standard input.
+
+If an output file is not specified with the **-o** option, then
+**llvm-as** sends its output to a file or standard output by following
+these rules:
+
+* If the input is standard input, then the output is standard output.
+
+* If the input is a file that ends with ``.ll``, then the output file is of the
+  same name, except that the suffix is changed to ``.bc``.
+
+* If the input is a file that does not end with the ``.ll`` suffix, then the
+  output file has the same name as the input file, except that the ``.bc``
+  suffix is appended.
+
+OPTIONS
+-------
+
+**-f**
+ Enable binary output on terminals.  Normally, **llvm-as** will refuse to
+ write raw bitcode output if the output stream is a terminal. With this option,
+ **llvm-as** will write raw bitcode regardless of the output device.
+
+**-help**
+ Print a summary of command line options.
+
+**-o** *filename*
+ Specify the output file name.  If *filename* is ``-``, then **llvm-as**
+ sends its output to standard output.
+
+EXIT STATUS
+-----------
+
+If **llvm-as** succeeds, it will exit with 0.  Otherwise, if an error occurs, it
+will exit with a non-zero value.
+
+SEE ALSO
+--------
+
+llvm-dis|llvm-dis, gccas|gccas

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-bcanalyzer.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-bcanalyzer.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-bcanalyzer.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-bcanalyzer.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,305 @@
+llvm-bcanalyzer - LLVM bitcode analyzer
+=======================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-bcanalyzer` [*options*] [*filename*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-bcanalyzer` command is a small utility for analyzing bitcode
+files.  The tool reads a bitcode file (such as generated with the
+:program:`llvm-as` tool) and produces a statistical report on the contents of
+the bitcode file.  The tool can also dump a low level but human readable
+version of the bitcode file.  This tool is probably not of much interest or
+utility except for those working directly with the bitcode file format.  Most
+LLVM users can just ignore this tool.
+
+If *filename* is omitted or is ``-``, then :program:`llvm-bcanalyzer` reads its
+input from standard input.  This is useful for combining the tool into a
+pipeline.  Output is written to the standard output.
+
+OPTIONS
+-------
+
+.. program:: llvm-bcanalyzer
+
+.. option:: -nodetails
+
+ Causes :program:`llvm-bcanalyzer` to abbreviate its output by writing out only
+ a module level summary.  The details for individual functions are not
+ displayed.
+
+.. option:: -dump
+
+ Causes :program:`llvm-bcanalyzer` to dump the bitcode in a human readable
+ format.  This format is significantly different from LLVM assembly and
+ provides details about the encoding of the bitcode file.
+
+.. option:: -verify
+
+ Causes :program:`llvm-bcanalyzer` to verify the module produced by reading the
+ bitcode.  This ensures that the statistics generated are based on a consistent
+ module.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+EXIT STATUS
+-----------
+
+If :program:`llvm-bcanalyzer` succeeds, it will exit with 0.  Otherwise, if an
+error occurs, it will exit with a non-zero value, usually 1.
+
+SUMMARY OUTPUT DEFINITIONS
+--------------------------
+
+The following items are always printed by llvm-bcanalyzer.  They comprize the
+summary output.
+
+**Bitcode Analysis Of Module**
+
+ This just provides the name of the module for which bitcode analysis is being
+ generated.
+
+**Bitcode Version Number**
+
+ The bitcode version (not LLVM version) of the file read by the analyzer.
+
+**File Size**
+
+ The size, in bytes, of the entire bitcode file.
+
+**Module Bytes**
+
+ The size, in bytes, of the module block.  Percentage is relative to File Size.
+
+**Function Bytes**
+
+ The size, in bytes, of all the function blocks.  Percentage is relative to File
+ Size.
+
+**Global Types Bytes**
+
+ The size, in bytes, of the Global Types Pool.  Percentage is relative to File
+ Size.  This is the size of the definitions of all types in the bitcode file.
+
+**Constant Pool Bytes**
+
+ The size, in bytes, of the Constant Pool Blocks Percentage is relative to File
+ Size.
+
+**Module Globals Bytes**
+
+ Ths size, in bytes, of the Global Variable Definitions and their initializers.
+ Percentage is relative to File Size.
+
+**Instruction List Bytes**
+
+ The size, in bytes, of all the instruction lists in all the functions.
+ Percentage is relative to File Size.  Note that this value is also included in
+ the Function Bytes.
+
+**Compaction Table Bytes**
+
+ The size, in bytes, of all the compaction tables in all the functions.
+ Percentage is relative to File Size.  Note that this value is also included in
+ the Function Bytes.
+
+**Symbol Table Bytes**
+
+ The size, in bytes, of all the symbol tables in all the functions.  Percentage is
+ relative to File Size.  Note that this value is also included in the Function
+ Bytes.
+
+**Dependent Libraries Bytes**
+
+ The size, in bytes, of the list of dependent libraries in the module.  Percentage
+ is relative to File Size.  Note that this value is also included in the Module
+ Global Bytes.
+
+**Number Of Bitcode Blocks**
+
+ The total number of blocks of any kind in the bitcode file.
+
+**Number Of Functions**
+
+ The total number of function definitions in the bitcode file.
+
+**Number Of Types**
+
+ The total number of types defined in the Global Types Pool.
+
+**Number Of Constants**
+
+ The total number of constants (of any type) defined in the Constant Pool.
+
+**Number Of Basic Blocks**
+
+ The total number of basic blocks defined in all functions in the bitcode file.
+
+**Number Of Instructions**
+
+ The total number of instructions defined in all functions in the bitcode file.
+
+**Number Of Long Instructions**
+
+ The total number of long instructions defined in all functions in the bitcode
+ file.  Long instructions are those taking greater than 4 bytes.  Typically long
+ instructions are GetElementPtr with several indices, PHI nodes, and calls to
+ functions with large numbers of arguments.
+
+**Number Of Operands**
+
+ The total number of operands used in all instructions in the bitcode file.
+
+**Number Of Compaction Tables**
+
+ The total number of compaction tables in all functions in the bitcode file.
+
+**Number Of Symbol Tables**
+
+ The total number of symbol tables in all functions in the bitcode file.
+
+**Number Of Dependent Libs**
+
+ The total number of dependent libraries found in the bitcode file.
+
+**Total Instruction Size**
+
+ The total size of the instructions in all functions in the bitcode file.
+
+**Average Instruction Size**
+
+ The average number of bytes per instruction across all functions in the bitcode
+ file.  This value is computed by dividing Total Instruction Size by Number Of
+ Instructions.
+
+**Maximum Type Slot Number**
+
+ The maximum value used for a type's slot number.  Larger slot number values take
+ more bytes to encode.
+
+**Maximum Value Slot Number**
+
+ The maximum value used for a value's slot number.  Larger slot number values take
+ more bytes to encode.
+
+**Bytes Per Value**
+
+ The average size of a Value definition (of any type).  This is computed by
+ dividing File Size by the total number of values of any type.
+
+**Bytes Per Global**
+
+ The average size of a global definition (constants and global variables).
+
+**Bytes Per Function**
+
+ The average number of bytes per function definition.  This is computed by
+ dividing Function Bytes by Number Of Functions.
+
+**# of VBR 32-bit Integers**
+
+ The total number of 32-bit integers encoded using the Variable Bit Rate
+ encoding scheme.
+
+**# of VBR 64-bit Integers**
+
+ The total number of 64-bit integers encoded using the Variable Bit Rate encoding
+ scheme.
+
+**# of VBR Compressed Bytes**
+
+ The total number of bytes consumed by the 32-bit and 64-bit integers that use
+ the Variable Bit Rate encoding scheme.
+
+**# of VBR Expanded Bytes**
+
+ The total number of bytes that would have been consumed by the 32-bit and 64-bit
+ integers had they not been compressed with the Variable Bit Rage encoding
+ scheme.
+
+**Bytes Saved With VBR**
+
+ The total number of bytes saved by using the Variable Bit Rate encoding scheme.
+ The percentage is relative to # of VBR Expanded Bytes.
+
+DETAILED OUTPUT DEFINITIONS
+---------------------------
+
+The following definitions occur only if the -nodetails option was not given.
+The detailed output provides additional information on a per-function basis.
+
+**Type**
+
+ The type signature of the function.
+
+**Byte Size**
+
+ The total number of bytes in the function's block.
+
+**Basic Blocks**
+
+ The number of basic blocks defined by the function.
+
+**Instructions**
+
+ The number of instructions defined by the function.
+
+**Long Instructions**
+
+ The number of instructions using the long instruction format in the function.
+
+**Operands**
+
+ The number of operands used by all instructions in the function.
+
+**Instruction Size**
+
+ The number of bytes consumed by instructions in the function.
+
+**Average Instruction Size**
+
+ The average number of bytes consumed by the instructions in the function.
+ This value is computed by dividing Instruction Size by Instructions.
+
+**Bytes Per Instruction**
+
+ The average number of bytes used by the function per instruction.  This value
+ is computed by dividing Byte Size by Instructions.  Note that this is not the
+ same as Average Instruction Size.  It computes a number relative to the total
+ function size not just the size of the instruction list.
+
+**Number of VBR 32-bit Integers**
+
+ The total number of 32-bit integers found in this function (for any use).
+
+**Number of VBR 64-bit Integers**
+
+ The total number of 64-bit integers found in this function (for any use).
+
+**Number of VBR Compressed Bytes**
+
+ The total number of bytes in this function consumed by the 32-bit and 64-bit
+ integers that use the Variable Bit Rate encoding scheme.
+
+**Number of VBR Expanded Bytes**
+
+ The total number of bytes in this function that would have been consumed by
+ the 32-bit and 64-bit integers had they not been compressed with the Variable
+ Bit Rate encoding scheme.
+
+**Bytes Saved With VBR**
+
+ The total number of bytes saved in this function by using the Variable Bit
+ Rate encoding scheme.  The percentage is relative to # of VBR Expanded Bytes.
+
+SEE ALSO
+--------
+
+:doc:`/CommandGuide/llvm-dis`, :doc:`/BitCodeFormat`
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-build.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-build.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-build.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-build.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,102 @@
+llvm-build - LLVM Project Build Utility
+=======================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-build** [*options*]
+
+
+DESCRIPTION
+-----------
+
+
+**llvm-build** is a tool for working with LLVM projects that use the LLVMBuild
+system for describing their components.
+
+At heart, **llvm-build** is responsible for loading, verifying, and manipulating
+the project's component data. The tool is primarily designed for use in
+implementing build systems and tools which need access to the project structure
+information.
+
+
+OPTIONS
+-------
+
+
+
+**-h**, **--help**
+
+ Print the builtin program help.
+
+
+
+**--source-root**\ =\ *PATH*
+
+ If given, load the project at the given source root path. If this option is not
+ given, the location of the project sources will be inferred from the location of
+ the **llvm-build** script itself.
+
+
+
+**--print-tree**
+
+ Print the component tree for the project.
+
+
+
+**--write-library-table**
+
+ Write out the C++ fragment which defines the components, library names, and
+ required libraries. This C++ fragment is built into llvm-config|llvm-config
+ in order to provide clients with the list of required libraries for arbitrary
+ component combinations.
+
+
+
+**--write-llvmbuild**
+
+ Write out new *LLVMBuild.txt* files based on the loaded components. This is
+ useful for auto-upgrading the schema of the files. **llvm-build** will try to a
+ limited extent to preserve the comments which were written in the original
+ source file, although at this time it only preserves block comments that precede
+ the section names in the *LLVMBuild* files.
+
+
+
+**--write-cmake-fragment**
+
+ Write out the LLVMBuild in the form of a CMake fragment, so it can easily be
+ consumed by the CMake based build system. The exact contents and format of this
+ file are closely tied to how LLVMBuild is integrated with CMake, see LLVM's
+ top-level CMakeLists.txt.
+
+
+
+**--write-make-fragment**
+
+ Write out the LLVMBuild in the form of a Makefile fragment, so it can easily be
+ consumed by a Make based build system. The exact contents and format of this
+ file are closely tied to how LLVMBuild is integrated with the Makefiles, see
+ LLVM's Makefile.rules.
+
+
+
+**--llvmbuild-source-root**\ =\ *PATH*
+
+ If given, expect the *LLVMBuild* files for the project to be rooted at the
+ given path, instead of inside the source tree itself. This option is primarily
+ designed for use in conjunction with **--write-llvmbuild** to test changes to
+ *LLVMBuild* schema.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+**llvm-build** exits with 0 if operation was successful. Otherwise, it will exist
+with a non-zero value.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-config.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-config.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-config.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-config.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,176 @@
+llvm-config - Print LLVM compilation options
+============================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-config** *option* [*components*...]
+
+
+DESCRIPTION
+-----------
+
+
+**llvm-config** makes it easier to build applications that use LLVM.  It can
+print the compiler flags, linker flags and object libraries needed to link
+against LLVM.
+
+
+EXAMPLES
+--------
+
+
+To link against the JIT:
+
+
+.. code-block:: sh
+
+   g++ `llvm-config --cxxflags` -o HowToUseJIT.o -c HowToUseJIT.cpp
+   g++ `llvm-config --ldflags` -o HowToUseJIT HowToUseJIT.o \
+       `llvm-config --libs engine bcreader scalaropts`
+
+
+
+OPTIONS
+-------
+
+
+
+**--version**
+
+ Print the version number of LLVM.
+
+
+
+**-help**
+
+ Print a summary of **llvm-config** arguments.
+
+
+
+**--prefix**
+
+ Print the installation prefix for LLVM.
+
+
+
+**--src-root**
+
+ Print the source root from which LLVM was built.
+
+
+
+**--obj-root**
+
+ Print the object root used to build LLVM.
+
+
+
+**--bindir**
+
+ Print the installation directory for LLVM binaries.
+
+
+
+**--includedir**
+
+ Print the installation directory for LLVM headers.
+
+
+
+**--libdir**
+
+ Print the installation directory for LLVM libraries.
+
+
+
+**--cxxflags**
+
+ Print the C++ compiler flags needed to use LLVM headers.
+
+
+
+**--ldflags**
+
+ Print the flags needed to link against LLVM libraries.
+
+
+
+**--libs**
+
+ Print all the libraries needed to link against the specified LLVM
+ *components*, including any dependencies.
+
+
+
+**--libnames**
+
+ Similar to **--libs**, but prints the bare filenames of the libraries
+ without **-l** or pathnames.  Useful for linking against a not-yet-installed
+ copy of LLVM.
+
+
+
+**--libfiles**
+
+ Similar to **--libs**, but print the full path to each library file.  This is
+ useful when creating makefile dependencies, to ensure that a tool is relinked if
+ any library it uses changes.
+
+
+
+**--components**
+
+ Print all valid component names.
+
+
+
+**--targets-built**
+
+ Print the component names for all targets supported by this copy of LLVM.
+
+
+
+**--build-mode**
+
+ Print the build mode used when LLVM was built (e.g. Debug or Release)
+
+
+
+
+COMPONENTS
+----------
+
+
+To print a list of all available components, run **llvm-config
+--components**.  In most cases, components correspond directly to LLVM
+libraries.  Useful "virtual" components include:
+
+
+**all**
+
+ Includes all LLVM libraries.  The default if no components are specified.
+
+
+
+**backend**
+
+ Includes either a native backend or the C backend.
+
+
+
+**engine**
+
+ Includes either a native JIT or the bitcode interpreter.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+If **llvm-config** succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-cov.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-cov.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-cov.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-cov.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,317 @@
+llvm-cov - emit coverage information
+====================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-cov` *command* [*args...*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-cov` tool shows code coverage information for
+programs that are instrumented to emit profile data. It can be used to
+work with ``gcov``\-style coverage or with ``clang``\'s instrumentation
+based profiling.
+
+If the program is invoked with a base name of ``gcov``, it will behave as if
+the :program:`llvm-cov gcov` command were called. Otherwise, a command should
+be provided.
+
+COMMANDS
+--------
+
+* :ref:`gcov <llvm-cov-gcov>`
+* :ref:`show <llvm-cov-show>`
+* :ref:`report <llvm-cov-report>`
+
+.. program:: llvm-cov gcov
+
+.. _llvm-cov-gcov:
+
+GCOV COMMAND
+------------
+
+SYNOPSIS
+^^^^^^^^
+
+:program:`llvm-cov gcov` [*options*] *SOURCEFILE*
+
+DESCRIPTION
+^^^^^^^^^^^
+
+The :program:`llvm-cov gcov` tool reads code coverage data files and displays
+the coverage information for a specified source file. It is compatible with the
+``gcov`` tool from version 4.2 of ``GCC`` and may also be compatible with some
+later versions of ``gcov``.
+
+To use :program:`llvm-cov gcov`, you must first build an instrumented version
+of your application that collects coverage data as it runs. Compile with the
+``-fprofile-arcs`` and ``-ftest-coverage`` options to add the
+instrumentation. (Alternatively, you can use the ``--coverage`` option, which
+includes both of those other options.) You should compile with debugging
+information (``-g``) and without optimization (``-O0``); otherwise, the
+coverage data cannot be accurately mapped back to the source code.
+
+At the time you compile the instrumented code, a ``.gcno`` data file will be
+generated for each object file. These ``.gcno`` files contain half of the
+coverage data. The other half of the data comes from ``.gcda`` files that are
+generated when you run the instrumented program, with a separate ``.gcda``
+file for each object file. Each time you run the program, the execution counts
+are summed into any existing ``.gcda`` files, so be sure to remove any old
+files if you do not want their contents to be included.
+
+By default, the ``.gcda`` files are written into the same directory as the
+object files, but you can override that by setting the ``GCOV_PREFIX`` and
+``GCOV_PREFIX_STRIP`` environment variables. The ``GCOV_PREFIX_STRIP``
+variable specifies a number of directory components to be removed from the
+start of the absolute path to the object file directory. After stripping those
+directories, the prefix from the ``GCOV_PREFIX`` variable is added. These
+environment variables allow you to run the instrumented program on a machine
+where the original object file directories are not accessible, but you will
+then need to copy the ``.gcda`` files back to the object file directories
+where :program:`llvm-cov gcov` expects to find them.
+
+Once you have generated the coverage data files, run :program:`llvm-cov gcov`
+for each main source file where you want to examine the coverage results. This
+should be run from the same directory where you previously ran the
+compiler. The results for the specified source file are written to a file named
+by appending a ``.gcov`` suffix. A separate output file is also created for
+each file included by the main source file, also with a ``.gcov`` suffix added.
+
+The basic content of an ``.gcov`` output file is a copy of the source file with
+an execution count and line number prepended to every line. The execution
+count is shown as ``-`` if a line does not contain any executable code. If
+a line contains code but that code was never executed, the count is displayed
+as ``#####``.
+
+OPTIONS
+^^^^^^^
+
+.. option:: -a, --all-blocks
+
+ Display all basic blocks. If there are multiple blocks for a single line of
+ source code, this option causes llvm-cov to show the count for each block
+ instead of just one count for the entire line.
+
+.. option:: -b, --branch-probabilities
+
+ Display conditional branch probabilities and a summary of branch information.
+
+.. option:: -c, --branch-counts
+
+ Display branch counts instead of probabilities (requires -b).
+
+.. option:: -f, --function-summaries
+
+ Show a summary of coverage for each function instead of just one summary for
+ an entire source file.
+
+.. option:: --help
+
+ Display available options (--help-hidden for more).
+
+.. option:: -l, --long-file-names
+
+ For coverage output of files included from the main source file, add the
+ main file name followed by ``##`` as a prefix to the output file names. This
+ can be combined with the --preserve-paths option to use complete paths for
+ both the main file and the included file.
+
+.. option:: -n, --no-output
+
+ Do not output any ``.gcov`` files. Summary information is still
+ displayed.
+
+.. option:: -o=<DIR|FILE>, --object-directory=<DIR>, --object-file=<FILE>
+
+ Find objects in DIR or based on FILE's path. If you specify a particular
+ object file, the coverage data files are expected to have the same base name
+ with ``.gcno`` and ``.gcda`` extensions. If you specify a directory, the
+ files are expected in that directory with the same base name as the source
+ file.
+
+.. option:: -p, --preserve-paths
+
+ Preserve path components when naming the coverage output files. In addition
+ to the source file name, include the directories from the path to that
+ file. The directories are separate by ``#`` characters, with ``.`` directories
+ removed and ``..`` directories replaced by ``^`` characters. When used with
+ the --long-file-names option, this applies to both the main file name and the
+ included file name.
+
+.. option:: -u, --unconditional-branches
+
+ Include unconditional branches in the output for the --branch-probabilities
+ option.
+
+.. option:: -version
+
+ Display the version of llvm-cov.
+
+EXIT STATUS
+^^^^^^^^^^^
+
+:program:`llvm-cov gcov` returns 1 if it cannot read input files.  Otherwise,
+it exits with zero.
+
+
+.. program:: llvm-cov show
+
+.. _llvm-cov-show:
+
+SHOW COMMAND
+------------
+
+SYNOPSIS
+^^^^^^^^
+
+:program:`llvm-cov show` [*options*] -instr-profile *PROFILE* *BIN* [*SOURCES*]
+
+DESCRIPTION
+^^^^^^^^^^^
+
+The :program:`llvm-cov show` command shows line by line coverage of a binary
+*BIN* using the profile data *PROFILE*. It can optionally be filtered to only
+show the coverage for the files listed in *SOURCES*.
+
+To use :program:`llvm-cov show`, you need a program that is compiled with
+instrumentation to emit profile and coverage data. To build such a program with
+``clang`` use the ``-fprofile-instr-generate`` and ``-fcoverage-mapping``
+flags. If linking with the ``clang`` driver, pass ``-fprofile-instr-generate``
+to the link stage to make sure the necessary runtime libraries are linked in.
+
+The coverage information is stored in the built executable or library itself,
+and this is what you should pass to :program:`llvm-cov show` as the *BIN*
+argument. The profile data is generated by running this instrumented program
+normally. When the program exits it will write out a raw profile file,
+typically called ``default.profraw``, which can be converted to a format that
+is suitable for the *PROFILE* argument using the :program:`llvm-profdata merge`
+tool.
+
+OPTIONS
+^^^^^^^
+
+.. option:: -show-line-counts
+
+ Show the execution counts for each line. This is enabled by default, unless
+ another ``-show`` option is used.
+
+.. option:: -show-expansions
+
+ Expand inclusions, such as preprocessor macros or textual inclusions, inline
+ in the display of the source file.
+
+.. option:: -show-instantiations
+
+ For source regions that are instantiated multiple times, such as templates in
+ ``C++``, show each instantiation separately as well as the combined summary.
+
+.. option:: -show-regions
+
+ Show the execution counts for each region by displaying a caret that points to
+ the character where the region starts.
+
+.. option:: -show-line-counts-or-regions
+
+ Show the execution counts for each line if there is only one region on the
+ line, but show the individual regions if there are multiple on the line.
+
+.. option:: -use-color[=VALUE]
+
+ Enable or disable color output. By default this is autodetected.
+
+.. option:: -arch=<name>
+
+ If the covered binary is a universal binary, select the architecture to use.
+ It is an error to specify an architecture that is not included in the
+ universal binary or to use an architecture that does not match a
+ non-universal binary.
+
+.. option:: -name=<NAME>
+
+ Show code coverage only for functions with the given name.
+
+.. option:: -name-regex=<PATTERN>
+
+ Show code coverage only for functions that match the given regular expression.
+
+.. option:: -format=<FORMAT>
+
+ Use the specified output format. The supported formats are: "text", "html".
+
+.. option:: -output-dir=PATH
+
+ Specify a directory to write coverage reports into. If the directory does not
+ exist, it is created. When used in function view mode (i.e when -name or
+ -name-regex are used to select specific functions), the report is written to
+ PATH/functions.EXTENSION. When used in file view mode, a report for each file
+ is written to PATH/REL_PATH_TO_FILE.EXTENSION.
+
+.. option:: -Xdemangler=<TOOL>|<TOOL-OPTION>
+
+ Specify a symbol demangler. This can be used to make reports more
+ human-readable. This option can be specified multiple times to supply
+ arguments to the demangler (e.g `-Xdemangler c++filt -Xdemangler -n` for C++).
+ The demangler is expected to read a newline-separated list of symbols from
+ stdin and write a newline-separated list of the same length to stdout.
+
+.. option:: -line-coverage-gt=<N>
+
+ Show code coverage only for functions with line coverage greater than the
+ given threshold.
+
+.. option:: -line-coverage-lt=<N>
+
+ Show code coverage only for functions with line coverage less than the given
+ threshold.
+
+.. option:: -region-coverage-gt=<N>
+
+ Show code coverage only for functions with region coverage greater than the
+ given threshold.
+
+.. option:: -region-coverage-lt=<N>
+
+ Show code coverage only for functions with region coverage less than the given
+ threshold.
+
+.. program:: llvm-cov report
+
+.. _llvm-cov-report:
+
+REPORT COMMAND
+--------------
+
+SYNOPSIS
+^^^^^^^^
+
+:program:`llvm-cov report` [*options*] -instr-profile *PROFILE* *BIN* [*SOURCES*]
+
+DESCRIPTION
+^^^^^^^^^^^
+
+The :program:`llvm-cov report` command displays a summary of the coverage of a
+binary *BIN* using the profile data *PROFILE*. It can optionally be filtered to
+only show the coverage for the files listed in *SOURCES*.
+
+If no source files are provided, a summary line is printed for each file in the
+coverage data. If any files are provided, summaries are shown for each function
+in the listed files instead.
+
+For information on compiling programs for coverage and generating profile data,
+see :ref:`llvm-cov-show`.
+
+OPTIONS
+^^^^^^^
+
+.. option:: -use-color[=VALUE]
+
+ Enable or disable color output. By default this is autodetected.
+
+.. option:: -arch=<name>
+
+ If the covered binary is a universal binary, select the architecture to use.
+ It is an error to specify an architecture that is not included in the
+ universal binary or to use an architecture that does not match a
+ non-universal binary.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-diff.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-diff.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-diff.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-diff.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,56 @@
+llvm-diff - LLVM structural 'diff'
+==================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-diff** [*options*] *module 1* *module 2* [*global name ...*]
+
+
+DESCRIPTION
+-----------
+
+
+**llvm-diff** compares the structure of two LLVM modules, primarily
+focusing on differences in function definitions.  Insignificant
+differences, such as changes in the ordering of globals or in the
+names of local values, are ignored.
+
+An input module will be interpreted as an assembly file if its name
+ends in '.ll';  otherwise it will be read in as a bitcode file.
+
+If a list of global names is given, just the values with those names
+are compared; otherwise, all global values are compared, and
+diagnostics are produced for globals which only appear in one module
+or the other.
+
+**llvm-diff** compares two functions by comparing their basic blocks,
+beginning with the entry blocks.  If the terminators seem to match,
+then the corresponding successors are compared; otherwise they are
+ignored.  This algorithm is very sensitive to changes in control flow,
+which tend to stop any downstream changes from being detected.
+
+**llvm-diff** is intended as a debugging tool for writers of LLVM
+passes and frontends.  It does not have a stable output format.
+
+
+EXIT STATUS
+-----------
+
+
+If **llvm-diff** finds no differences between the modules, it will exit
+with 0 and produce no output.  Otherwise it will exit with a non-zero
+value.
+
+
+BUGS
+----
+
+
+Many important differences, like changes in linkage or function
+attributes, are not diagnosed.
+
+Changes in memory behavior (for example, coalescing loads) can cause
+massive detected differences in blocks.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dis.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dis.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dis.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dis.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,69 @@
+llvm-dis - LLVM disassembler
+============================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-dis** [*options*] [*filename*]
+
+
+DESCRIPTION
+-----------
+
+
+The **llvm-dis** command is the LLVM disassembler.  It takes an LLVM
+bitcode file and converts it into human-readable LLVM assembly language.
+
+If filename is omitted or specified as ``-``, **llvm-dis** reads its
+input from standard input.
+
+If the input is being read from standard input, then **llvm-dis**
+will send its output to standard output by default.  Otherwise, the
+output will be written to a file named after the input file, with
+a ``.ll`` suffix added (any existing ``.bc`` suffix will first be
+removed).  You can override the choice of output file using the
+**-o** option.
+
+
+OPTIONS
+-------
+
+
+
+**-f**
+
+ Enable binary output on terminals.  Normally, **llvm-dis** will refuse to
+ write raw bitcode output if the output stream is a terminal. With this option,
+ **llvm-dis** will write raw bitcode regardless of the output device.
+
+
+
+**-help**
+
+ Print a summary of command line options.
+
+
+
+**-o** *filename*
+
+ Specify the output file name.  If *filename* is -, then the output is sent
+ to standard output.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+If **llvm-dis** succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.
+
+
+SEE ALSO
+--------
+
+
+llvm-as|llvm-as

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dwarfdump.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dwarfdump.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dwarfdump.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-dwarfdump.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,30 @@
+llvm-dwarfdump - print contents of DWARF sections
+=================================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-dwarfdump` [*options*] [*filenames...*]
+
+DESCRIPTION
+-----------
+
+:program:`llvm-dwarfdump` parses DWARF sections in the object files
+and prints their contents in human-readable form.
+
+OPTIONS
+-------
+
+.. option:: -debug-dump=section
+
+  Specify the DWARF section to dump.
+  For example, use ``abbrev`` to dump the contents of ``.debug_abbrev`` section,
+  ``loc.dwo`` to dump the contents of ``.debug_loc.dwo`` etc.
+  See ``llvm-dwarfdump --help`` for the complete list of supported sections.
+  Use ``all`` to dump all DWARF sections. It is the default.
+
+EXIT STATUS
+-----------
+
+:program:`llvm-dwarfdump` returns 0 if the input files were parsed and dumped
+successfully. Otherwise, it returns 1.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-extract.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-extract.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-extract.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-extract.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,79 @@
+llvm-extract - extract a function from an LLVM module
+=====================================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-extract` [*options*] **--func** *function-name* [*filename*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-extract` command takes the name of a function and extracts
+it from the specified LLVM bitcode file.  It is primarily used as a debugging
+tool to reduce test cases from larger programs that are triggering a bug.
+
+In addition to extracting the bitcode of the specified function,
+:program:`llvm-extract` will also remove unreachable global variables,
+prototypes, and unused types.
+
+The :program:`llvm-extract` command reads its input from standard input if
+filename is omitted or if filename is ``-``.  The output is always written to
+standard output, unless the **-o** option is specified (see below).
+
+OPTIONS
+-------
+
+**-f**
+
+ Enable binary output on terminals.  Normally, :program:`llvm-extract` will
+ refuse to write raw bitcode output if the output stream is a terminal.  With
+ this option, :program:`llvm-extract` will write raw bitcode regardless of the
+ output device.
+
+**--func** *function-name*
+
+ Extract the function named *function-name* from the LLVM bitcode.  May be
+ specified multiple times to extract multiple functions at once.
+
+**--rfunc** *function-regular-expr*
+
+ Extract the function(s) matching *function-regular-expr* from the LLVM bitcode.
+ All functions matching the regular expression will be extracted.  May be
+ specified multiple times.
+
+**--glob** *global-name*
+
+ Extract the global variable named *global-name* from the LLVM bitcode.  May be
+ specified multiple times to extract multiple global variables at once.
+
+**--rglob** *glob-regular-expr*
+
+ Extract the global variable(s) matching *global-regular-expr* from the LLVM
+ bitcode.  All global variables matching the regular expression will be
+ extracted.  May be specified multiple times.
+
+**-help**
+
+ Print a summary of command line options.
+
+**-o** *filename*
+
+ Specify the output filename.  If filename is "-" (the default), then
+ :program:`llvm-extract` sends its output to standard output.
+
+**-S**
+
+ Write output in LLVM intermediate language (instead of bitcode).
+
+EXIT STATUS
+-----------
+
+If :program:`llvm-extract` succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.
+
+SEE ALSO
+--------
+
+bugpoint
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-lib.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-lib.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-lib.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-lib.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,31 @@
+llvm-lib - LLVM lib.exe compatible library tool
+===============================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-lib** [/libpath:<path>] [/out:<output>] [/llvmlibthin]
+[/ignore] [/machine] [/nologo] [files...]
+
+
+DESCRIPTION
+-----------
+
+
+The **llvm-lib** command is intended to be a ``lib.exe`` compatible
+tool. See https://msdn.microsoft.com/en-us/library/7ykb2k5f for the
+general description.
+
+**llvm-lib** has the following extensions:
+
+* Bitcode files in symbol tables.
+  **llvm-lib** includes symbols from both bitcode files and regular
+  object files in the symbol table.
+
+* Creating thin archives.
+  The /llvmlibthin option causes **llvm-lib** to create thin archive
+  that contain only the symbol table and the header for the various
+  members. These files are much smaller, but are not compatible with
+  link.exe (lld can handle them).

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-link.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-link.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-link.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-link.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,56 @@
+llvm-link - LLVM bitcode linker
+===============================
+
+SYNOPSIS
+--------
+
+:program:`llvm-link` [*options*] *filename ...*
+
+DESCRIPTION
+-----------
+
+:program:`llvm-link` takes several LLVM bitcode files and links them together
+into a single LLVM bitcode file.  It writes the output file to standard output,
+unless the :option:`-o` option is used to specify a filename.
+
+OPTIONS
+-------
+
+.. option:: -f
+
+ Enable binary output on terminals.  Normally, :program:`llvm-link` will refuse
+ to write raw bitcode output if the output stream is a terminal. With this
+ option, :program:`llvm-link` will write raw bitcode regardless of the output
+ device.
+
+.. option:: -o filename
+
+ Specify the output file name.  If ``filename`` is "``-``", then
+ :program:`llvm-link` will write its output to standard output.
+
+.. option:: -S
+
+ Write output in LLVM intermediate language (instead of bitcode).
+
+.. option:: -d
+
+ If specified, :program:`llvm-link` prints a human-readable version of the
+ output bitcode file to standard error.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -v
+
+ Verbose mode.  Print information about what :program:`llvm-link` is doing.
+ This typically includes a message for each bitcode file linked in and for each
+ library found.
+
+EXIT STATUS
+-----------
+
+If :program:`llvm-link` succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.
+
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-nm.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-nm.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-nm.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-nm.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,151 @@
+llvm-nm - list LLVM bitcode and object file's symbol table
+==========================================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-nm` [*options*] [*filenames...*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-nm` utility lists the names of symbols from the LLVM bitcode
+files, object files, or :program:`ar` archives containing them, named on the
+command line.  Each symbol is listed along with some simple information about
+its provenance.  If no file name is specified, or *-* is used as a file name,
+:program:`llvm-nm` will process a file on its standard input stream.
+
+:program:`llvm-nm`'s default output format is the traditional BSD :program:`nm`
+output format.  Each such output record consists of an (optional) 8-digit
+hexadecimal address, followed by a type code character, followed by a name, for
+each symbol.  One record is printed per line; fields are separated by spaces.
+When the address is omitted, it is replaced by 8 spaces.
+
+Type code characters currently supported, and their meanings, are as follows:
+
+U
+
+ Named object is referenced but undefined in this bitcode file
+
+C
+
+ Common (multiple definitions link together into one def)
+
+W
+
+ Weak reference (multiple definitions link together into zero or one definitions)
+
+t
+
+ Local function (text) object
+
+T
+
+ Global function (text) object
+
+d
+
+ Local data object
+
+D
+
+ Global data object
+
+?
+
+ Something unrecognizable
+
+Because LLVM bitcode files typically contain objects that are not considered to
+have addresses until they are linked into an executable image or dynamically
+compiled "just-in-time", :program:`llvm-nm` does not print an address for any
+symbol in an LLVM bitcode file, even symbols which are defined in the bitcode
+file.
+
+OPTIONS
+-------
+
+.. program:: llvm-nm
+
+.. option:: -B    (default)
+
+ Use BSD output format.  Alias for `--format=bsd`.
+
+.. option:: -P
+
+ Use POSIX.2 output format.  Alias for `--format=posix`.
+
+.. option:: --debug-syms, -a
+
+ Show all symbols, even debugger only.
+
+.. option:: --defined-only
+
+ Print only symbols defined in this file (as opposed to
+ symbols which may be referenced by objects in this file, but not
+ defined in this file.)
+
+.. option:: --dynamic, -D
+
+ Display dynamic symbols instead of normal symbols.
+
+.. option:: --extern-only, -g
+
+ Print only symbols whose definitions are external; that is, accessible
+ from other files.
+
+.. option:: --format=format, -f format
+
+ Select an output format; *format* may be *sysv*, *posix*, or *bsd*.  The default
+ is *bsd*.
+
+.. option:: -help
+
+ Print a summary of command-line options and their meanings.
+
+.. option:: --no-sort, -p
+
+ Shows symbols in order encountered.
+
+.. option:: --numeric-sort, -n, -v
+
+ Sort symbols by address.
+
+.. option:: --print-file-name, -A, -o
+
+ Precede each symbol with the file it came from.
+
+.. option:: --print-size, -S
+
+ Show symbol size instead of address.
+
+.. option:: --size-sort
+
+ Sort symbols by size.
+
+.. option:: --undefined-only, -u
+
+ Print only symbols referenced but not defined in this file.
+
+.. option:: --radix=RADIX, -t
+
+ Specify the radix of the symbol address(es). Values accepted d(decimal),
+ x(hexadecomal) and o(octal).
+
+BUGS
+----
+
+ * :program:`llvm-nm` cannot demangle C++ mangled names, like GNU :program:`nm`
+   can.
+
+ * :program:`llvm-nm` does not support the full set of arguments that GNU
+   :program:`nm` does.
+
+EXIT STATUS
+-----------
+
+:program:`llvm-nm` exits with an exit code of zero.
+
+SEE ALSO
+--------
+
+llvm-dis, ar(1), nm(1)

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-prof.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-prof.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-prof.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-prof.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,63 @@
+llvm-prof - print execution profile of LLVM program
+===================================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-prof** [*options*] [*bitcode file*] [*llvmprof.out*]
+
+
+DESCRIPTION
+-----------
+
+
+The **llvm-prof** tool reads in an *llvmprof.out* file (which can
+optionally use a specific file with the third program argument), a bitcode file
+for the program, and produces a human readable report, suitable for determining
+where the program hotspots are.
+
+This program is often used in conjunction with the *utils/profile.pl*
+script.  This script automatically instruments a program, runs it with the JIT,
+then runs **llvm-prof** to format a report.  To get more information about
+*utils/profile.pl*, execute it with the **-help** option.
+
+
+OPTIONS
+-------
+
+
+
+**--annotated-llvm** or **-A**
+
+ In addition to the normal report printed, print out the code for the
+ program, annotated with execution frequency information. This can be
+ particularly useful when trying to visualize how frequently basic blocks
+ are executed.  This is most useful with basic block profiling
+ information or better.
+
+
+
+**--print-all-code**
+
+ Using this option enables the **--annotated-llvm** option, but it
+ prints the entire module, instead of just the most commonly executed
+ functions.
+
+
+
+**--time-passes**
+
+ Record the amount of time needed for each pass and print it to standard
+ error.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+**llvm-prof** returns 1 if it cannot load the bitcode file or the profile
+information. Otherwise, it exits with zero.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-profdata.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-profdata.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-profdata.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-profdata.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,198 @@
+llvm-profdata - Profile data tool
+=================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-profdata` *command* [*args...*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-profdata` tool is a small utility for working with profile
+data files.
+
+COMMANDS
+--------
+
+* :ref:`merge <profdata-merge>`
+* :ref:`show <profdata-show>`
+
+.. program:: llvm-profdata merge
+
+.. _profdata-merge:
+
+MERGE
+-----
+
+SYNOPSIS
+^^^^^^^^
+
+:program:`llvm-profdata merge` [*options*] [*filename...*]
+
+DESCRIPTION
+^^^^^^^^^^^
+
+:program:`llvm-profdata merge` takes several profile data files
+generated by PGO instrumentation and merges them together into a single
+indexed profile data file.
+
+By default profile data is merged without modification. This means that the
+relative importance of each input file is proportional to the number of samples
+or counts it contains. In general, the input from a longer training run will be
+interpreted as relatively more important than a shorter run. Depending on the
+nature of the training runs it may be useful to adjust the weight given to each
+input file by using the ``-weighted-input`` option.
+
+Profiles passed in via ``-weighted-input``, ``-input-files``, or via positional
+arguments are processed once for each time they are seen.
+
+
+OPTIONS
+^^^^^^^
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -output=output, -o=output
+
+ Specify the output file name.  *Output* cannot be ``-`` as the resulting
+ indexed profile data can't be written to standard output.
+
+.. option:: -weighted-input=weight,filename
+
+ Specify an input file name along with a weight. The profile counts of the
+ supplied ``filename`` will be scaled (multiplied) by the supplied
+ ``weight``, where where ``weight`` is a decimal integer >= 1.
+ Input files specified without using this option are assigned a default
+ weight of 1. Examples are shown below.
+
+.. option:: -input-files=path, -f=path
+
+  Specify a file which contains a list of files to merge. The entries in this
+  file are newline-separated. Lines starting with '#' are skipped. Entries may
+  be of the form <filename> or <weight>,<filename>.
+
+.. option:: -instr (default)
+
+ Specify that the input profile is an instrumentation-based profile.
+
+.. option:: -sample
+
+ Specify that the input profile is a sample-based profile.
+ 
+ The format of the generated file can be generated in one of three ways:
+
+ .. option:: -binary (default)
+
+ Emit the profile using a binary encoding. For instrumentation-based profile
+ the output format is the indexed binary format. 
+
+ .. option:: -text
+
+ Emit the profile in text mode. This option can also be used with both
+ sample-based and instrumentation-based profile. When this option is used
+ the profile will be dumped in the text format that is parsable by the profile
+ reader.
+
+ .. option:: -gcc
+
+ Emit the profile using GCC's gcov format (Not yet supported).
+
+.. option:: -sparse[=true|false]
+
+ Do not emit function records with 0 execution count. Can only be used in
+ conjunction with -instr. Defaults to false, since it can inhibit compiler
+ optimization during PGO.
+
+EXAMPLES
+^^^^^^^^
+Basic Usage
++++++++++++
+Merge three profiles:
+
+::
+
+    llvm-profdata merge foo.profdata bar.profdata baz.profdata -output merged.profdata
+
+Weighted Input
+++++++++++++++
+The input file `foo.profdata` is especially important, multiply its counts by 10:
+
+::
+
+    llvm-profdata merge -weighted-input=10,foo.profdata bar.profdata baz.profdata -output merged.profdata
+
+Exactly equivalent to the previous invocation (explicit form; useful for programmatic invocation):
+
+::
+
+    llvm-profdata merge -weighted-input=10,foo.profdata -weighted-input=1,bar.profdata -weighted-input=1,baz.profdata -output merged.profdata
+
+.. program:: llvm-profdata show
+
+.. _profdata-show:
+
+SHOW
+----
+
+SYNOPSIS
+^^^^^^^^
+
+:program:`llvm-profdata show` [*options*] [*filename*]
+
+DESCRIPTION
+^^^^^^^^^^^
+
+:program:`llvm-profdata show` takes a profile data file and displays the
+information about the profile counters for this file and
+for any of the specified function(s).
+
+If *filename* is omitted or is ``-``, then **llvm-profdata show** reads its
+input from standard input.
+
+OPTIONS
+^^^^^^^
+
+.. option:: -all-functions
+
+ Print details for every function.
+
+.. option:: -counts
+
+ Print the counter values for the displayed functions.
+
+.. option:: -function=string
+
+ Print details for a function if the function's name contains the given string.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -output=output, -o=output
+
+ Specify the output file name.  If *output* is ``-`` or it isn't specified,
+ then the output is sent to standard output.
+
+.. option:: -instr (default)
+
+ Specify that the input profile is an instrumentation-based profile.
+
+.. option:: -text
+
+ Instruct the profile dumper to show profile counts in the text format of the
+ instrumentation-based profile data representation. By default, the profile
+ information is dumped in a more human readable form (also in text) with
+ annotations.
+
+.. option:: -sample
+
+ Specify that the input profile is a sample-based profile.
+
+EXIT STATUS
+-----------
+
+:program:`llvm-profdata` returns 1 if the command is omitted or is invalid,
+if it cannot read input files, or if there is a mismatch between their data.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ranlib.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ranlib.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ranlib.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-ranlib.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,61 @@
+llvm-ranlib - Generate index for LLVM archive
+=============================================
+
+
+SYNOPSIS
+--------
+
+
+**llvm-ranlib** [--version] [-help] <archive-file>
+
+
+DESCRIPTION
+-----------
+
+
+The **llvm-ranlib** command is similar to the common Unix utility, ``ranlib``. It
+adds or updates the symbol table in an LLVM archive file. Note that using the
+**llvm-ar** modifier *s* is usually more efficient than running **llvm-ranlib**
+which is only provided only for completness and compatibility. Unlike other
+implementations of ``ranlib``, **llvm-ranlib** indexes LLVM bitcode files, not
+native object modules. You can list the contents of the symbol table with the
+``llvm-nm -s`` command.
+
+
+OPTIONS
+-------
+
+
+
+*archive-file*
+
+ Specifies the archive-file to which the symbol table is added or updated.
+
+
+
+*--version*
+
+ Print the version of **llvm-ranlib** and exit without building a symbol table.
+
+
+
+*-help*
+
+ Print usage help for **llvm-ranlib** and exit without building a symbol table.
+
+
+
+
+EXIT STATUS
+-----------
+
+
+If **llvm-ranlib** succeeds, it will exit with 0.  If an error occurs, a non-zero
+exit code will be returned.
+
+
+SEE ALSO
+--------
+
+
+llvm-ar|llvm-ar, ranlib(1)

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-readobj.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-readobj.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-readobj.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-readobj.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,90 @@
+llvm-readobj - LLVM Object Reader
+=================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-readobj` [*options*] [*input...*]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-readobj` tool displays low-level format-specific information
+about one or more object files. The tool and its output is primarily designed
+for use in FileCheck-based tests.
+
+OPTIONS
+-------
+
+If ``input`` is "``-``" or omitted, :program:`llvm-readobj` reads from standard
+input. Otherwise, it will read from the specified ``filenames``.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -version
+
+ Display the version of this program
+
+.. option:: -file-headers, -h
+
+ Display file headers.
+
+.. option:: -sections, -s
+
+ Display all sections.
+
+.. option:: -section-data, -sd
+
+ When used with ``-sections``, display section data for each section shown.
+
+.. option:: -section-relocations, -sr
+
+ When used with ``-sections``, display relocations for each section shown.
+
+.. option:: -section-symbols, -st
+
+ When used with ``-sections``, display symbols for each section shown.
+
+.. option:: -relocations, -r
+
+ Display the relocation entries in the file.
+
+.. option:: -symbols, -t
+
+ Display the symbol table.
+
+.. option:: -dyn-symbols
+
+ Display the dynamic symbol table (only for ELF object files).
+
+.. option:: -unwind, -u
+
+ Display unwind information.
+
+.. option:: -expand-relocs
+
+ When used with ``-relocations``, display each relocation in an expanded
+ multi-line format.
+
+.. option:: -dynamic-table
+
+ Display the ELF .dynamic section table (only for ELF object files).
+
+.. option:: -needed-libs
+
+ Display the needed libraries (only for ELF object files).
+
+.. option:: -program-headers
+
+ Display the ELF program headers (only for ELF object files).
+
+.. option:: -elf-section-groups, -g
+
+ Display section groups (only for ELF object files).
+
+EXIT STATUS
+-----------
+
+:program:`llvm-readobj` returns 0.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-stress.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-stress.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-stress.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-stress.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,34 @@
+llvm-stress - generate random .ll files
+=======================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-stress` [-size=filesize] [-seed=initialseed] [-o=outfile]
+
+DESCRIPTION
+-----------
+
+The :program:`llvm-stress` tool is used to generate random ``.ll`` files that
+can be used to test different components of LLVM.
+
+OPTIONS
+-------
+
+.. option:: -o filename
+
+ Specify the output filename.
+
+.. option:: -size size
+
+ Specify the size of the generated ``.ll`` file.
+
+.. option:: -seed seed
+
+ Specify the seed to be used for the randomly generated instructions.
+
+EXIT STATUS
+-----------
+
+:program:`llvm-stress` returns 0.
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-symbolizer.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-symbolizer.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-symbolizer.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/llvm-symbolizer.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,121 @@
+llvm-symbolizer - convert addresses into source code locations
+==============================================================
+
+SYNOPSIS
+--------
+
+:program:`llvm-symbolizer` [options]
+
+DESCRIPTION
+-----------
+
+:program:`llvm-symbolizer` reads object file names and addresses from standard
+input and prints corresponding source code locations to standard output.
+If object file is specified in command line, :program:`llvm-symbolizer` 
+processes only addresses from standard input, the rest is output verbatim.
+This program uses debug info sections and symbol table in the object files.
+
+EXAMPLE
+--------
+
+.. code-block:: console
+
+  $ cat addr.txt
+  a.out 0x4004f4
+  /tmp/b.out 0x400528
+  /tmp/c.so 0x710
+  /tmp/mach_universal_binary:i386 0x1f84
+  /tmp/mach_universal_binary:x86_64 0x100000f24
+  $ llvm-symbolizer < addr.txt
+  main
+  /tmp/a.cc:4
+  
+  f(int, int)
+  /tmp/b.cc:11
+
+  h_inlined_into_g
+  /tmp/header.h:2
+  g_inlined_into_f
+  /tmp/header.h:7
+  f_inlined_into_main
+  /tmp/source.cc:3
+  main
+  /tmp/source.cc:8
+
+  _main
+  /tmp/source_i386.cc:8
+
+  _main
+  /tmp/source_x86_64.cc:8
+  $ cat addr2.txt
+  0x4004f4
+  0x401000
+  $ llvm-symbolizer -obj=a.out < addr2.txt
+  main
+  /tmp/a.cc:4
+
+  foo(int)
+  /tmp/a.cc:12
+  $cat addr.txt
+  0x40054d
+  $llvm-symbolizer -inlining -print-address -pretty-print -obj=addr.exe < addr.txt
+  0x40054d: inc at /tmp/x.c:3:3
+   (inlined by) main at /tmp/x.c:9:0
+  $llvm-symbolizer -inlining -pretty-print -obj=addr.exe < addr.txt
+  inc at /tmp/x.c:3:3
+   (inlined by) main at /tmp/x.c:9:0
+
+OPTIONS
+-------
+
+.. option:: -obj
+
+  Path to object file to be symbolized.
+
+.. option:: -functions=[none|short|linkage]
+
+  Specify the way function names are printed (omit function name,
+  print short function name, or print full linkage name, respectively).
+  Defaults to ``linkage``.
+
+.. option:: -use-symbol-table
+
+ Prefer function names stored in symbol table to function names
+ in debug info sections. Defaults to true.
+
+.. option:: -demangle
+
+ Print demangled function names. Defaults to true.
+
+.. option:: -inlining 
+
+ If a source code location is in an inlined function, prints all the
+ inlnied frames. Defaults to true.
+
+.. option:: -default-arch
+
+ If a binary contains object files for multiple architectures (e.g. it is a
+ Mach-O universal binary), symbolize the object file for a given architecture.
+ You can also specify architecture by writing ``binary_name:arch_name`` in the
+ input (see example above). If architecture is not specified in either way,
+ address will not be symbolized. Defaults to empty string.
+
+.. option:: -dsym-hint=<path/to/file.dSYM>
+
+ (Darwin-only flag). If the debug info for a binary isn't present in the default
+ location, look for the debug info at the .dSYM path provided via the
+ ``-dsym-hint`` flag. This flag can be used multiple times.
+
+.. option:: -print-address
+
+ Print address before the source code location. Defaults to false.
+
+.. option:: -pretty-print
+
+ Print human readable output. If ``-inlining`` is specified, enclosing scope is
+ prefixed by (inlined by). Refer to listed examples.
+
+EXIT STATUS
+-----------
+
+:program:`llvm-symbolizer` returns 0. Other exit codes imply internal program error.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/opt.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/opt.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/opt.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/opt.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,123 @@
+opt - LLVM optimizer
+====================
+
+SYNOPSIS
+--------
+
+:program:`opt` [*options*] [*filename*]
+
+DESCRIPTION
+-----------
+
+The :program:`opt` command is the modular LLVM optimizer and analyzer.  It
+takes LLVM source files as input, runs the specified optimizations or analyses
+on it, and then outputs the optimized file or the analysis results.  The
+function of :program:`opt` depends on whether the `-analyze` option is
+given.
+
+When `-analyze` is specified, :program:`opt` performs various analyses
+of the input source.  It will usually print the results on standard output, but
+in a few cases, it will print output to standard error or generate a file with
+the analysis output, which is usually done when the output is meant for another
+program.
+
+While `-analyze` is *not* given, :program:`opt` attempts to produce an
+optimized output file.  The optimizations available via :program:`opt` depend
+upon what libraries were linked into it as well as any additional libraries
+that have been loaded with the :option:`-load` option.  Use the :option:`-help`
+option to determine what optimizations you can use.
+
+If ``filename`` is omitted from the command line or is "``-``", :program:`opt`
+reads its input from standard input.  Inputs can be in either the LLVM assembly
+language format (``.ll``) or the LLVM bitcode format (``.bc``).
+
+If an output filename is not specified with the :option:`-o` option,
+:program:`opt` writes its output to the standard output.
+
+OPTIONS
+-------
+
+.. option:: -f
+
+ Enable binary output on terminals.  Normally, :program:`opt` will refuse to
+ write raw bitcode output if the output stream is a terminal.  With this option,
+ :program:`opt` will write raw bitcode regardless of the output device.
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -o <filename>
+
+ Specify the output filename.
+
+.. option:: -S
+
+ Write output in LLVM intermediate language (instead of bitcode).
+
+.. option:: -{passname}
+
+ :program:`opt` provides the ability to run any of LLVM's optimization or
+ analysis passes in any order.  The :option:`-help` option lists all the passes
+ available.  The order in which the options occur on the command line are the
+ order in which they are executed (within pass constraints).
+
+.. option:: -disable-inlining
+
+ This option simply removes the inlining pass from the standard list.
+
+.. option:: -disable-opt
+
+ This option is only meaningful when `-std-link-opts` is given.  It
+ disables most passes.
+
+.. option:: -strip-debug
+
+ This option causes opt to strip debug information from the module before
+ applying other optimizations.  It is essentially the same as `-strip`
+ but it ensures that stripping of debug information is done first.
+
+.. option:: -verify-each
+
+ This option causes opt to add a verify pass after every pass otherwise
+ specified on the command line (including `-verify`).  This is useful
+ for cases where it is suspected that a pass is creating an invalid module but
+ it is not clear which pass is doing it.
+
+.. option:: -stats
+
+ Print statistics.
+
+.. option:: -time-passes
+
+ Record the amount of time needed for each pass and print it to standard
+ error.
+
+.. option:: -debug
+
+ If this is a debug build, this option will enable debug printouts from passes
+ which use the ``DEBUG()`` macro.  See the `LLVM Programmer's Manual
+ <../ProgrammersManual.html>`_, section ``#DEBUG`` for more information.
+
+.. option:: -load=<plugin>
+
+ Load the dynamic object ``plugin``.  This object should register new
+ optimization or analysis passes.  Once loaded, the object will add new command
+ line options to enable various optimizations or analyses.  To see the new
+ complete list of optimizations, use the :option:`-help` and :option:`-load`
+ options together.  For example:
+
+ .. code-block:: sh
+
+     opt -load=plugin.so -help
+
+.. option:: -p
+
+ Print module after each transformation.
+
+EXIT STATUS
+-----------
+
+If :program:`opt` succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.
+

Added: www-releases/trunk/3.9.1/docs/_sources/CommandGuide/tblgen.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandGuide/tblgen.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandGuide/tblgen.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandGuide/tblgen.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,132 @@
+tblgen - Target Description To C++ Code Generator
+=================================================
+
+SYNOPSIS
+--------
+
+:program:`tblgen` [*options*] [*filename*]
+
+DESCRIPTION
+-----------
+
+:program:`tblgen` translates from target description (``.td``) files into C++
+code that can be included in the definition of an LLVM target library.  Most
+users of LLVM will not need to use this program.  It is only for assisting with
+writing an LLVM target backend.
+
+The input and output of :program:`tblgen` is beyond the scope of this short
+introduction; please see the :doc:`introduction to TableGen
+<../TableGen/index>`.
+
+The *filename* argument specifies the name of a Target Description (``.td``)
+file to read as input.
+
+OPTIONS
+-------
+
+.. program:: tblgen
+
+.. option:: -help
+
+ Print a summary of command line options.
+
+.. option:: -o filename
+
+ Specify the output file name.  If ``filename`` is ``-``, then
+ :program:`tblgen` sends its output to standard output.
+
+.. option:: -I directory
+
+ Specify where to find other target description files for inclusion.  The
+ ``directory`` value should be a full or partial path to a directory that
+ contains target description files.
+
+.. option:: -asmparsernum N
+
+ Make -gen-asm-parser emit assembly writer number ``N``.
+
+.. option:: -asmwriternum N
+
+ Make -gen-asm-writer emit assembly writer number ``N``.
+
+.. option:: -class className
+
+ Print the enumeration list for this class.
+
+.. option:: -print-records
+
+ Print all records to standard output (default).
+
+.. option:: -print-enums
+
+ Print enumeration values for a class.
+
+.. option:: -print-sets
+
+ Print expanded sets for testing DAG exprs.
+
+.. option:: -gen-emitter
+
+ Generate machine code emitter.
+
+.. option:: -gen-register-info
+
+ Generate registers and register classes info.
+
+.. option:: -gen-instr-info
+
+ Generate instruction descriptions.
+
+.. option:: -gen-asm-writer
+
+ Generate the assembly writer.
+
+.. option:: -gen-disassembler
+
+ Generate disassembler.
+
+.. option:: -gen-pseudo-lowering
+
+ Generate pseudo instruction lowering.
+
+.. option:: -gen-dag-isel
+
+ Generate a DAG (Directed Acycle Graph) instruction selector.
+
+.. option:: -gen-asm-matcher
+
+ Generate assembly instruction matcher.
+
+.. option:: -gen-dfa-packetizer
+
+ Generate DFA Packetizer for VLIW targets.
+
+.. option:: -gen-fast-isel
+
+ Generate a "fast" instruction selector.
+
+.. option:: -gen-subtarget
+
+ Generate subtarget enumerations.
+
+.. option:: -gen-intrinsic
+
+ Generate intrinsic information.
+
+.. option:: -gen-tgt-intrinsic
+
+ Generate target intrinsic information.
+
+.. option:: -gen-enhanced-disassembly-info
+
+ Generate enhanced disassembly info.
+
+.. option:: -version
+
+ Show the version number of this program.
+
+EXIT STATUS
+-----------
+
+If :program:`tblgen` succeeds, it will exit with 0.  Otherwise, if an error
+occurs, it will exit with a non-zero value.

Added: www-releases/trunk/3.9.1/docs/_sources/CommandLine.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CommandLine.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CommandLine.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CommandLine.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,1744 @@
+==============================
+CommandLine 2.0 Library Manual
+==============================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document describes the CommandLine argument processing library.  It will
+show you how to use it, and what it can do.  The CommandLine library uses a
+declarative approach to specifying the command line options that your program
+takes.  By default, these options declarations implicitly hold the value parsed
+for the option declared (of course this `can be changed`_).
+
+Although there are a **lot** of command line argument parsing libraries out
+there in many different languages, none of them fit well with what I needed.  By
+looking at the features and problems of other libraries, I designed the
+CommandLine library to have the following features:
+
+#. Speed: The CommandLine library is very quick and uses little resources.  The
+   parsing time of the library is directly proportional to the number of
+   arguments parsed, not the number of options recognized.  Additionally,
+   command line argument values are captured transparently into user defined
+   global variables, which can be accessed like any other variable (and with the
+   same performance).
+
+#. Type Safe: As a user of CommandLine, you don't have to worry about
+   remembering the type of arguments that you want (is it an int?  a string? a
+   bool? an enum?) and keep casting it around.  Not only does this help prevent
+   error prone constructs, it also leads to dramatically cleaner source code.
+
+#. No subclasses required: To use CommandLine, you instantiate variables that
+   correspond to the arguments that you would like to capture, you don't
+   subclass a parser.  This means that you don't have to write **any**
+   boilerplate code.
+
+#. Globally accessible: Libraries can specify command line arguments that are
+   automatically enabled in any tool that links to the library.  This is
+   possible because the application doesn't have to keep a list of arguments to
+   pass to the parser.  This also makes supporting `dynamically loaded options`_
+   trivial.
+
+#. Cleaner: CommandLine supports enum and other types directly, meaning that
+   there is less error and more security built into the library.  You don't have
+   to worry about whether your integral command line argument accidentally got
+   assigned a value that is not valid for your enum type.
+
+#. Powerful: The CommandLine library supports many different types of arguments,
+   from simple `boolean flags`_ to `scalars arguments`_ (`strings`_,
+   `integers`_, `enums`_, `doubles`_), to `lists of arguments`_.  This is
+   possible because CommandLine is...
+
+#. Extensible: It is very simple to add a new argument type to CommandLine.
+   Simply specify the parser that you want to use with the command line option
+   when you declare it. `Custom parsers`_ are no problem.
+
+#. Labor Saving: The CommandLine library cuts down on the amount of grunt work
+   that you, the user, have to do.  For example, it automatically provides a
+   ``-help`` option that shows the available command line options for your tool.
+   Additionally, it does most of the basic correctness checking for you.
+
+#. Capable: The CommandLine library can handle lots of different forms of
+   options often found in real programs.  For example, `positional`_ arguments,
+   ``ls`` style `grouping`_ options (to allow processing '``ls -lad``'
+   naturally), ``ld`` style `prefix`_ options (to parse '``-lmalloc
+   -L/usr/lib``'), and interpreter style options.
+
+This document will hopefully let you jump in and start using CommandLine in your
+utility quickly and painlessly.  Additionally it should be a simple reference
+manual to figure out how stuff works.
+
+Quick Start Guide
+=================
+
+This section of the manual runs through a simple CommandLine'ification of a
+basic compiler tool.  This is intended to show you how to jump into using the
+CommandLine library in your own program, and show you some of the cool things it
+can do.
+
+To start out, you need to include the CommandLine header file into your program:
+
+.. code-block:: c++
+
+  #include "llvm/Support/CommandLine.h"
+
+Additionally, you need to add this as the first line of your main program:
+
+.. code-block:: c++
+
+  int main(int argc, char **argv) {
+    cl::ParseCommandLineOptions(argc, argv);
+    ...
+  }
+
+... which actually parses the arguments and fills in the variable declarations.
+
+Now that you are ready to support command line arguments, we need to tell the
+system which ones we want, and what type of arguments they are.  The CommandLine
+library uses a declarative syntax to model command line arguments with the
+global variable declarations that capture the parsed values.  This means that
+for every command line option that you would like to support, there should be a
+global variable declaration to capture the result.  For example, in a compiler,
+we would like to support the Unix-standard '``-o <filename>``' option to specify
+where to put the output.  With the CommandLine library, this is represented like
+this:
+
+.. _scalars arguments:
+.. _here:
+
+.. code-block:: c++
+
+  cl::opt<string> OutputFilename("o", cl::desc("Specify output filename"), cl::value_desc("filename"));
+
+This declares a global variable "``OutputFilename``" that is used to capture the
+result of the "``o``" argument (first parameter).  We specify that this is a
+simple scalar option by using the "``cl::opt``" template (as opposed to the
+"``cl::list``" template), and tell the CommandLine library that the data
+type that we are parsing is a string.
+
+The second and third parameters (which are optional) are used to specify what to
+output for the "``-help``" option.  In this case, we get a line that looks like
+this:
+
+::
+
+  USAGE: compiler [options]
+
+  OPTIONS:
+    -help             - display available options (-help-hidden for more)
+    -o <filename>     - Specify output filename
+
+Because we specified that the command line option should parse using the
+``string`` data type, the variable declared is automatically usable as a real
+string in all contexts that a normal C++ string object may be used.  For
+example:
+
+.. code-block:: c++
+
+  ...
+  std::ofstream Output(OutputFilename.c_str());
+  if (Output.good()) ...
+  ...
+
+There are many different options that you can use to customize the command line
+option handling library, but the above example shows the general interface to
+these options.  The options can be specified in any order, and are specified
+with helper functions like `cl::desc(...)`_, so there are no positional
+dependencies to remember.  The available options are discussed in detail in the
+`Reference Guide`_.
+
+Continuing the example, we would like to have our compiler take an input
+filename as well as an output filename, but we do not want the input filename to
+be specified with a hyphen (ie, not ``-filename.c``).  To support this style of
+argument, the CommandLine library allows for `positional`_ arguments to be
+specified for the program.  These positional arguments are filled with command
+line parameters that are not in option form.  We use this feature like this:
+
+.. code-block:: c++
+
+
+  cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::init("-"));
+
+This declaration indicates that the first positional argument should be treated
+as the input filename.  Here we use the `cl::init`_ option to specify an initial
+value for the command line option, which is used if the option is not specified
+(if you do not specify a `cl::init`_ modifier for an option, then the default
+constructor for the data type is used to initialize the value).  Command line
+options default to being optional, so if we would like to require that the user
+always specify an input filename, we would add the `cl::Required`_ flag, and we
+could eliminate the `cl::init`_ modifier, like this:
+
+.. code-block:: c++
+
+  cl::opt<string> InputFilename(cl::Positional, cl::desc("<input file>"), cl::Required);
+
+Again, the CommandLine library does not require the options to be specified in
+any particular order, so the above declaration is equivalent to:
+
+.. code-block:: c++
+
+  cl::opt<string> InputFilename(cl::Positional, cl::Required, cl::desc("<input file>"));
+
+By simply adding the `cl::Required`_ flag, the CommandLine library will
+automatically issue an error if the argument is not specified, which shifts all
+of the command line option verification code out of your application into the
+library.  This is just one example of how using flags can alter the default
+behaviour of the library, on a per-option basis.  By adding one of the
+declarations above, the ``-help`` option synopsis is now extended to:
+
+::
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    -help             - display available options (-help-hidden for more)
+    -o <filename>     - Specify output filename
+
+... indicating that an input filename is expected.
+
+Boolean Arguments
+-----------------
+
+In addition to input and output filenames, we would like the compiler example to
+support three boolean flags: "``-f``" to force writing binary output to a
+terminal, "``--quiet``" to enable quiet mode, and "``-q``" for backwards
+compatibility with some of our users.  We can support these by declaring options
+of boolean type like this:
+
+.. code-block:: c++
+
+  cl::opt<bool> Force ("f", cl::desc("Enable binary output on terminals"));
+  cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
+  cl::opt<bool> Quiet2("q", cl::desc("Don't print informational messages"), cl::Hidden);
+
+This does what you would expect: it declares three boolean variables
+("``Force``", "``Quiet``", and "``Quiet2``") to recognize these options.  Note
+that the "``-q``" option is specified with the "`cl::Hidden`_" flag.  This
+modifier prevents it from being shown by the standard "``-help``" output (note
+that it is still shown in the "``-help-hidden``" output).
+
+The CommandLine library uses a `different parser`_ for different data types.
+For example, in the string case, the argument passed to the option is copied
+literally into the content of the string variable... we obviously cannot do that
+in the boolean case, however, so we must use a smarter parser.  In the case of
+the boolean parser, it allows no options (in which case it assigns the value of
+true to the variable), or it allows the values "``true``" or "``false``" to be
+specified, allowing any of the following inputs:
+
+::
+
+  compiler -f          # No value, 'Force' == true
+  compiler -f=true     # Value specified, 'Force' == true
+  compiler -f=TRUE     # Value specified, 'Force' == true
+  compiler -f=FALSE    # Value specified, 'Force' == false
+
+... you get the idea.  The `bool parser`_ just turns the string values into
+boolean values, and rejects things like '``compiler -f=foo``'.  Similarly, the
+`float`_, `double`_, and `int`_ parsers work like you would expect, using the
+'``strtol``' and '``strtod``' C library calls to parse the string value into the
+specified data type.
+
+With the declarations above, "``compiler -help``" emits this:
+
+::
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    -f     - Enable binary output on terminals
+    -o     - Override output filename
+    -quiet - Don't print informational messages
+    -help  - display available options (-help-hidden for more)
+
+and "``compiler -help-hidden``" prints this:
+
+::
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    -f     - Enable binary output on terminals
+    -o     - Override output filename
+    -q     - Don't print informational messages
+    -quiet - Don't print informational messages
+    -help  - display available options (-help-hidden for more)
+
+This brief example has shown you how to use the '`cl::opt`_' class to parse
+simple scalar command line arguments.  In addition to simple scalar arguments,
+the CommandLine library also provides primitives to support CommandLine option
+`aliases`_, and `lists`_ of options.
+
+.. _aliases:
+
+Argument Aliases
+----------------
+
+So far, the example works well, except for the fact that we need to check the
+quiet condition like this now:
+
+.. code-block:: c++
+
+  ...
+    if (!Quiet && !Quiet2) printInformationalMessage(...);
+  ...
+
+... which is a real pain!  Instead of defining two values for the same
+condition, we can use the "`cl::alias`_" class to make the "``-q``" option an
+**alias** for the "``-quiet``" option, instead of providing a value itself:
+
+.. code-block:: c++
+
+  cl::opt<bool> Force ("f", cl::desc("Overwrite output files"));
+  cl::opt<bool> Quiet ("quiet", cl::desc("Don't print informational messages"));
+  cl::alias     QuietA("q", cl::desc("Alias for -quiet"), cl::aliasopt(Quiet));
+
+The third line (which is the only one we modified from above) defines a "``-q``"
+alias that updates the "``Quiet``" variable (as specified by the `cl::aliasopt`_
+modifier) whenever it is specified.  Because aliases do not hold state, the only
+thing the program has to query is the ``Quiet`` variable now.  Another nice
+feature of aliases is that they automatically hide themselves from the ``-help``
+output (although, again, they are still visible in the ``-help-hidden output``).
+
+Now the application code can simply use:
+
+.. code-block:: c++
+
+  ...
+    if (!Quiet) printInformationalMessage(...);
+  ...
+
+... which is much nicer!  The "`cl::alias`_" can be used to specify an
+alternative name for any variable type, and has many uses.
+
+.. _unnamed alternatives using the generic parser:
+
+Selecting an alternative from a set of possibilities
+----------------------------------------------------
+
+So far we have seen how the CommandLine library handles builtin types like
+``std::string``, ``bool`` and ``int``, but how does it handle things it doesn't
+know about, like enums or '``int*``'s?
+
+The answer is that it uses a table-driven generic parser (unless you specify
+your own parser, as described in the `Extension Guide`_).  This parser maps
+literal strings to whatever type is required, and requires you to tell it what
+this mapping should be.
+
+Let's say that we would like to add four optimization levels to our optimizer,
+using the standard flags "``-g``", "``-O0``", "``-O1``", and "``-O2``".  We
+could easily implement this with boolean options like above, but there are
+several problems with this strategy:
+
+#. A user could specify more than one of the options at a time, for example,
+   "``compiler -O3 -O2``".  The CommandLine library would not be able to catch
+   this erroneous input for us.
+
+#. We would have to test 4 different variables to see which ones are set.
+
+#. This doesn't map to the numeric levels that we want... so we cannot easily
+   see if some level >= "``-O1``" is enabled.
+
+To cope with these problems, we can use an enum value, and have the CommandLine
+library fill it in with the appropriate level directly, which is used like this:
+
+.. code-block:: c++
+
+  enum OptLevel {
+    g, O1, O2, O3
+  };
+
+  cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
+    cl::values(
+      clEnumVal(g , "No optimizations, enable debugging"),
+      clEnumVal(O1, "Enable trivial optimizations"),
+      clEnumVal(O2, "Enable default optimizations"),
+      clEnumVal(O3, "Enable expensive optimizations"),
+     clEnumValEnd));
+
+  ...
+    if (OptimizationLevel >= O2) doPartialRedundancyElimination(...);
+  ...
+
+This declaration defines a variable "``OptimizationLevel``" of the
+"``OptLevel``" enum type.  This variable can be assigned any of the values that
+are listed in the declaration (Note that the declaration list must be terminated
+with the "``clEnumValEnd``" argument!).  The CommandLine library enforces that
+the user can only specify one of the options, and it ensure that only valid enum
+values can be specified.  The "``clEnumVal``" macros ensure that the command
+line arguments matched the enum values.  With this option added, our help output
+now is:
+
+::
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    Choose optimization level:
+      -g          - No optimizations, enable debugging
+      -O1         - Enable trivial optimizations
+      -O2         - Enable default optimizations
+      -O3         - Enable expensive optimizations
+    -f            - Enable binary output on terminals
+    -help         - display available options (-help-hidden for more)
+    -o <filename> - Specify output filename
+    -quiet        - Don't print informational messages
+
+In this case, it is sort of awkward that flag names correspond directly to enum
+names, because we probably don't want a enum definition named "``g``" in our
+program.  Because of this, we can alternatively write this example like this:
+
+.. code-block:: c++
+
+  enum OptLevel {
+    Debug, O1, O2, O3
+  };
+
+  cl::opt<OptLevel> OptimizationLevel(cl::desc("Choose optimization level:"),
+    cl::values(
+     clEnumValN(Debug, "g", "No optimizations, enable debugging"),
+      clEnumVal(O1        , "Enable trivial optimizations"),
+      clEnumVal(O2        , "Enable default optimizations"),
+      clEnumVal(O3        , "Enable expensive optimizations"),
+     clEnumValEnd));
+
+  ...
+    if (OptimizationLevel == Debug) outputDebugInfo(...);
+  ...
+
+By using the "``clEnumValN``" macro instead of "``clEnumVal``", we can directly
+specify the name that the flag should get.  In general a direct mapping is nice,
+but sometimes you can't or don't want to preserve the mapping, which is when you
+would use it.
+
+Named Alternatives
+------------------
+
+Another useful argument form is a named alternative style.  We shall use this
+style in our compiler to specify different debug levels that can be used.
+Instead of each debug level being its own switch, we want to support the
+following options, of which only one can be specified at a time:
+"``--debug-level=none``", "``--debug-level=quick``",
+"``--debug-level=detailed``".  To do this, we use the exact same format as our
+optimization level flags, but we also specify an option name.  For this case,
+the code looks like this:
+
+.. code-block:: c++
+
+  enum DebugLev {
+    nodebuginfo, quick, detailed
+  };
+
+  // Enable Debug Options to be specified on the command line
+  cl::opt<DebugLev> DebugLevel("debug_level", cl::desc("Set the debugging level:"),
+    cl::values(
+      clEnumValN(nodebuginfo, "none", "disable debug information"),
+       clEnumVal(quick,               "enable quick debug information"),
+       clEnumVal(detailed,            "enable detailed debug information"),
+      clEnumValEnd));
+
+This definition defines an enumerated command line variable of type "``enum
+DebugLev``", which works exactly the same way as before.  The difference here is
+just the interface exposed to the user of your program and the help output by
+the "``-help``" option:
+
+::
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    Choose optimization level:
+      -g          - No optimizations, enable debugging
+      -O1         - Enable trivial optimizations
+      -O2         - Enable default optimizations
+      -O3         - Enable expensive optimizations
+    -debug_level  - Set the debugging level:
+      =none       - disable debug information
+      =quick      - enable quick debug information
+      =detailed   - enable detailed debug information
+    -f            - Enable binary output on terminals
+    -help         - display available options (-help-hidden for more)
+    -o <filename> - Specify output filename
+    -quiet        - Don't print informational messages
+
+Again, the only structural difference between the debug level declaration and
+the optimization level declaration is that the debug level declaration includes
+an option name (``"debug_level"``), which automatically changes how the library
+processes the argument.  The CommandLine library supports both forms so that you
+can choose the form most appropriate for your application.
+
+.. _lists:
+
+Parsing a list of options
+-------------------------
+
+Now that we have the standard run-of-the-mill argument types out of the way,
+lets get a little wild and crazy.  Lets say that we want our optimizer to accept
+a **list** of optimizations to perform, allowing duplicates.  For example, we
+might want to run: "``compiler -dce -constprop -inline -dce -strip``".  In this
+case, the order of the arguments and the number of appearances is very
+important.  This is what the "``cl::list``" template is for.  First, start by
+defining an enum of the optimizations that you would like to perform:
+
+.. code-block:: c++
+
+  enum Opts {
+    // 'inline' is a C++ keyword, so name it 'inlining'
+    dce, constprop, inlining, strip
+  };
+
+Then define your "``cl::list``" variable:
+
+.. code-block:: c++
+
+  cl::list<Opts> OptimizationList(cl::desc("Available Optimizations:"),
+    cl::values(
+      clEnumVal(dce               , "Dead Code Elimination"),
+      clEnumVal(constprop         , "Constant Propagation"),
+     clEnumValN(inlining, "inline", "Procedure Integration"),
+      clEnumVal(strip             , "Strip Symbols"),
+    clEnumValEnd));
+
+This defines a variable that is conceptually of the type
+"``std::vector<enum Opts>``".  Thus, you can access it with standard vector
+methods:
+
+.. code-block:: c++
+
+  for (unsigned i = 0; i != OptimizationList.size(); ++i)
+    switch (OptimizationList[i])
+       ...
+
+... to iterate through the list of options specified.
+
+Note that the "``cl::list``" template is completely general and may be used with
+any data types or other arguments that you can use with the "``cl::opt``"
+template.  One especially useful way to use a list is to capture all of the
+positional arguments together if there may be more than one specified.  In the
+case of a linker, for example, the linker takes several '``.o``' files, and
+needs to capture them into a list.  This is naturally specified as:
+
+.. code-block:: c++
+
+  ...
+  cl::list<std::string> InputFilenames(cl::Positional, cl::desc("<Input files>"), cl::OneOrMore);
+  ...
+
+This variable works just like a "``vector<string>``" object.  As such, accessing
+the list is simple, just like above.  In this example, we used the
+`cl::OneOrMore`_ modifier to inform the CommandLine library that it is an error
+if the user does not specify any ``.o`` files on our command line.  Again, this
+just reduces the amount of checking we have to do.
+
+Collecting options as a set of flags
+------------------------------------
+
+Instead of collecting sets of options in a list, it is also possible to gather
+information for enum values in a **bit vector**.  The representation used by the
+`cl::bits`_ class is an ``unsigned`` integer.  An enum value is represented by a
+0/1 in the enum's ordinal value bit position. 1 indicating that the enum was
+specified, 0 otherwise.  As each specified value is parsed, the resulting enum's
+bit is set in the option's bit vector:
+
+.. code-block:: c++
+
+  bits |= 1 << (unsigned)enum;
+
+Options that are specified multiple times are redundant.  Any instances after
+the first are discarded.
+
+Reworking the above list example, we could replace `cl::list`_ with `cl::bits`_:
+
+.. code-block:: c++
+
+  cl::bits<Opts> OptimizationBits(cl::desc("Available Optimizations:"),
+    cl::values(
+      clEnumVal(dce               , "Dead Code Elimination"),
+      clEnumVal(constprop         , "Constant Propagation"),
+     clEnumValN(inlining, "inline", "Procedure Integration"),
+      clEnumVal(strip             , "Strip Symbols"),
+    clEnumValEnd));
+
+To test to see if ``constprop`` was specified, we can use the ``cl:bits::isSet``
+function:
+
+.. code-block:: c++
+
+  if (OptimizationBits.isSet(constprop)) {
+    ...
+  }
+
+It's also possible to get the raw bit vector using the ``cl::bits::getBits``
+function:
+
+.. code-block:: c++
+
+  unsigned bits = OptimizationBits.getBits();
+
+Finally, if external storage is used, then the location specified must be of
+**type** ``unsigned``. In all other ways a `cl::bits`_ option is equivalent to a
+`cl::list`_ option.
+
+.. _additional extra text:
+
+Adding freeform text to help output
+-----------------------------------
+
+As our program grows and becomes more mature, we may decide to put summary
+information about what it does into the help output.  The help output is styled
+to look similar to a Unix ``man`` page, providing concise information about a
+program.  Unix ``man`` pages, however often have a description about what the
+program does.  To add this to your CommandLine program, simply pass a third
+argument to the `cl::ParseCommandLineOptions`_ call in main.  This additional
+argument is then printed as the overview information for your program, allowing
+you to include any additional information that you want.  For example:
+
+.. code-block:: c++
+
+  int main(int argc, char **argv) {
+    cl::ParseCommandLineOptions(argc, argv, " CommandLine compiler example\n\n"
+                                "  This program blah blah blah...\n");
+    ...
+  }
+
+would yield the help output:
+
+::
+
+  **OVERVIEW: CommandLine compiler example
+
+    This program blah blah blah...**
+
+  USAGE: compiler [options] <input file>
+
+  OPTIONS:
+    ...
+    -help             - display available options (-help-hidden for more)
+    -o <filename>     - Specify output filename
+
+.. _grouping options into categories:
+
+Grouping options into categories
+--------------------------------
+
+If our program has a large number of options it may become difficult for users
+of our tool to navigate the output of ``-help``. To alleviate this problem we
+can put our options into categories. This can be done by declaring option
+categories (`cl::OptionCategory`_ objects) and then placing our options into
+these categories using the `cl::cat`_ option attribute. For example:
+
+.. code-block:: c++
+
+  cl::OptionCategory StageSelectionCat("Stage Selection Options",
+                                       "These control which stages are run.");
+
+  cl::opt<bool> Preprocessor("E",cl::desc("Run preprocessor stage."),
+                             cl::cat(StageSelectionCat));
+
+  cl::opt<bool> NoLink("c",cl::desc("Run all stages except linking."),
+                       cl::cat(StageSelectionCat));
+
+The output of ``-help`` will become categorized if an option category is
+declared. The output looks something like ::
+
+  OVERVIEW: This is a small program to demo the LLVM CommandLine API
+  USAGE: Sample [options]
+
+  OPTIONS:
+
+    General options:
+
+      -help              - Display available options (-help-hidden for more)
+      -help-list         - Display list of available options (-help-list-hidden for more)
+
+
+    Stage Selection Options:
+    These control which stages are run.
+
+      -E                 - Run preprocessor stage.
+      -c                 - Run all stages except linking.
+
+In addition to the behaviour of ``-help`` changing when an option category is
+declared, the command line option ``-help-list`` becomes visible which will
+print the command line options as uncategorized list.
+
+Note that Options that are not explicitly categorized will be placed in the
+``cl::GeneralCategory`` category.
+
+.. _Reference Guide:
+
+Reference Guide
+===============
+
+Now that you know the basics of how to use the CommandLine library, this section
+will give you the detailed information you need to tune how command line options
+work, as well as information on more "advanced" command line option processing
+capabilities.
+
+.. _positional:
+.. _positional argument:
+.. _Positional Arguments:
+.. _Positional arguments section:
+.. _positional options:
+
+Positional Arguments
+--------------------
+
+Positional arguments are those arguments that are not named, and are not
+specified with a hyphen.  Positional arguments should be used when an option is
+specified by its position alone.  For example, the standard Unix ``grep`` tool
+takes a regular expression argument, and an optional filename to search through
+(which defaults to standard input if a filename is not specified).  Using the
+CommandLine library, this would be specified as:
+
+.. code-block:: c++
+
+  cl::opt<string> Regex   (cl::Positional, cl::desc("<regular expression>"), cl::Required);
+  cl::opt<string> Filename(cl::Positional, cl::desc("<input file>"), cl::init("-"));
+
+Given these two option declarations, the ``-help`` output for our grep
+replacement would look like this:
+
+::
+
+  USAGE: spiffygrep [options] <regular expression> <input file>
+
+  OPTIONS:
+    -help - display available options (-help-hidden for more)
+
+... and the resultant program could be used just like the standard ``grep``
+tool.
+
+Positional arguments are sorted by their order of construction.  This means that
+command line options will be ordered according to how they are listed in a .cpp
+file, but will not have an ordering defined if the positional arguments are
+defined in multiple .cpp files.  The fix for this problem is simply to define
+all of your positional arguments in one .cpp file.
+
+Specifying positional options with hyphens
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sometimes you may want to specify a value to your positional argument that
+starts with a hyphen (for example, searching for '``-foo``' in a file).  At
+first, you will have trouble doing this, because it will try to find an argument
+named '``-foo``', and will fail (and single quotes will not save you).  Note
+that the system ``grep`` has the same problem:
+
+::
+
+  $ spiffygrep '-foo' test.txt
+  Unknown command line argument '-foo'.  Try: spiffygrep -help'
+
+  $ grep '-foo' test.txt
+  grep: illegal option -- f
+  grep: illegal option -- o
+  grep: illegal option -- o
+  Usage: grep -hblcnsviw pattern file . . .
+
+The solution for this problem is the same for both your tool and the system
+version: use the '``--``' marker.  When the user specifies '``--``' on the
+command line, it is telling the program that all options after the '``--``'
+should be treated as positional arguments, not options.  Thus, we can use it
+like this:
+
+::
+
+  $ spiffygrep -- -foo test.txt
+    ...output...
+
+Determining absolute position with getPosition()
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Sometimes an option can affect or modify the meaning of another option. For
+example, consider ``gcc``'s ``-x LANG`` option. This tells ``gcc`` to ignore the
+suffix of subsequent positional arguments and force the file to be interpreted
+as if it contained source code in language ``LANG``. In order to handle this
+properly, you need to know the absolute position of each argument, especially
+those in lists, so their interaction(s) can be applied correctly. This is also
+useful for options like ``-llibname`` which is actually a positional argument
+that starts with a dash.
+
+So, generally, the problem is that you have two ``cl::list`` variables that
+interact in some way. To ensure the correct interaction, you can use the
+``cl::list::getPosition(optnum)`` method. This method returns the absolute
+position (as found on the command line) of the ``optnum`` item in the
+``cl::list``.
+
+The idiom for usage is like this:
+
+.. code-block:: c++
+
+  static cl::list<std::string> Files(cl::Positional, cl::OneOrMore);
+  static cl::list<std::string> Libraries("l", cl::ZeroOrMore);
+
+  int main(int argc, char**argv) {
+    // ...
+    std::vector<std::string>::iterator fileIt = Files.begin();
+    std::vector<std::string>::iterator libIt  = Libraries.begin();
+    unsigned libPos = 0, filePos = 0;
+    while ( 1 ) {
+      if ( libIt != Libraries.end() )
+        libPos = Libraries.getPosition( libIt - Libraries.begin() );
+      else
+        libPos = 0;
+      if ( fileIt != Files.end() )
+        filePos = Files.getPosition( fileIt - Files.begin() );
+      else
+        filePos = 0;
+
+      if ( filePos != 0 && (libPos == 0 || filePos < libPos) ) {
+        // Source File Is next
+        ++fileIt;
+      }
+      else if ( libPos != 0 && (filePos == 0 || libPos < filePos) ) {
+        // Library is next
+        ++libIt;
+      }
+      else
+        break; // we're done with the list
+    }
+  }
+
+Note that, for compatibility reasons, the ``cl::opt`` also supports an
+``unsigned getPosition()`` option that will provide the absolute position of
+that option. You can apply the same approach as above with a ``cl::opt`` and a
+``cl::list`` option as you can with two lists.
+
+.. _interpreter style options:
+.. _cl::ConsumeAfter:
+.. _this section for more information:
+
+The ``cl::ConsumeAfter`` modifier
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::ConsumeAfter`` `formatting option`_ is used to construct programs that
+use "interpreter style" option processing.  With this style of option
+processing, all arguments specified after the last positional argument are
+treated as special interpreter arguments that are not interpreted by the command
+line argument.
+
+As a concrete example, lets say we are developing a replacement for the standard
+Unix Bourne shell (``/bin/sh``).  To run ``/bin/sh``, first you specify options
+to the shell itself (like ``-x`` which turns on trace output), then you specify
+the name of the script to run, then you specify arguments to the script.  These
+arguments to the script are parsed by the Bourne shell command line option
+processor, but are not interpreted as options to the shell itself.  Using the
+CommandLine library, we would specify this as:
+
+.. code-block:: c++
+
+  cl::opt<string> Script(cl::Positional, cl::desc("<input script>"), cl::init("-"));
+  cl::list<string>  Argv(cl::ConsumeAfter, cl::desc("<program arguments>..."));
+  cl::opt<bool>    Trace("x", cl::desc("Enable trace output"));
+
+which automatically provides the help output:
+
+::
+
+  USAGE: spiffysh [options] <input script> <program arguments>...
+
+  OPTIONS:
+    -help - display available options (-help-hidden for more)
+    -x    - Enable trace output
+
+At runtime, if we run our new shell replacement as ```spiffysh -x test.sh -a -x
+-y bar``', the ``Trace`` variable will be set to true, the ``Script`` variable
+will be set to "``test.sh``", and the ``Argv`` list will contain ``["-a", "-x",
+"-y", "bar"]``, because they were specified after the last positional argument
+(which is the script name).
+
+There are several limitations to when ``cl::ConsumeAfter`` options can be
+specified.  For example, only one ``cl::ConsumeAfter`` can be specified per
+program, there must be at least one `positional argument`_ specified, there must
+not be any `cl::list`_ positional arguments, and the ``cl::ConsumeAfter`` option
+should be a `cl::list`_ option.
+
+.. _can be changed:
+.. _Internal vs External Storage:
+
+Internal vs External Storage
+----------------------------
+
+By default, all command line options automatically hold the value that they
+parse from the command line.  This is very convenient in the common case,
+especially when combined with the ability to define command line options in the
+files that use them.  This is called the internal storage model.
+
+Sometimes, however, it is nice to separate the command line option processing
+code from the storage of the value parsed.  For example, lets say that we have a
+'``-debug``' option that we would like to use to enable debug information across
+the entire body of our program.  In this case, the boolean value controlling the
+debug code should be globally accessible (in a header file, for example) yet the
+command line option processing code should not be exposed to all of these
+clients (requiring lots of .cpp files to ``#include CommandLine.h``).
+
+To do this, set up your .h file with your option, like this for example:
+
+.. code-block:: c++
+
+  // DebugFlag.h - Get access to the '-debug' command line option
+  //
+
+  // DebugFlag - This boolean is set to true if the '-debug' command line option
+  // is specified.  This should probably not be referenced directly, instead, use
+  // the DEBUG macro below.
+  //
+  extern bool DebugFlag;
+
+  // DEBUG macro - This macro should be used by code to emit debug information.
+  // In the '-debug' option is specified on the command line, and if this is a
+  // debug build, then the code specified as the option to the macro will be
+  // executed.  Otherwise it will not be.
+  #ifdef NDEBUG
+  #define DEBUG(X)
+  #else
+  #define DEBUG(X) do { if (DebugFlag) { X; } } while (0)
+  #endif
+
+This allows clients to blissfully use the ``DEBUG()`` macro, or the
+``DebugFlag`` explicitly if they want to.  Now we just need to be able to set
+the ``DebugFlag`` boolean when the option is set.  To do this, we pass an
+additional argument to our command line argument processor, and we specify where
+to fill in with the `cl::location`_ attribute:
+
+.. code-block:: c++
+
+  bool DebugFlag;                  // the actual value
+  static cl::opt<bool, true>       // The parser
+  Debug("debug", cl::desc("Enable debug output"), cl::Hidden, cl::location(DebugFlag));
+
+In the above example, we specify "``true``" as the second argument to the
+`cl::opt`_ template, indicating that the template should not maintain a copy of
+the value itself.  In addition to this, we specify the `cl::location`_
+attribute, so that ``DebugFlag`` is automatically set.
+
+Option Attributes
+-----------------
+
+This section describes the basic attributes that you can specify on options.
+
+* The option name attribute (which is required for all options, except
+  `positional options`_) specifies what the option name is.  This option is
+  specified in simple double quotes:
+
+  .. code-block:: c++
+
+    cl::opt<bool> Quiet("quiet");
+
+.. _cl::desc(...):
+
+* The **cl::desc** attribute specifies a description for the option to be
+  shown in the ``-help`` output for the program. This attribute supports
+  multi-line descriptions with lines separated by '\n'.
+
+.. _cl::value_desc:
+
+* The **cl::value_desc** attribute specifies a string that can be used to
+  fine tune the ``-help`` output for a command line option.  Look `here`_ for an
+  example.
+
+.. _cl::init:
+
+* The **cl::init** attribute specifies an initial value for a `scalar`_
+  option.  If this attribute is not specified then the command line option value
+  defaults to the value created by the default constructor for the
+  type.
+
+  .. warning::
+
+    If you specify both **cl::init** and **cl::location** for an option, you
+    must specify **cl::location** first, so that when the command-line parser
+    sees **cl::init**, it knows where to put the initial value. (You will get an
+    error at runtime if you don't put them in the right order.)
+
+.. _cl::location:
+
+* The **cl::location** attribute where to store the value for a parsed command
+  line option if using external storage.  See the section on `Internal vs
+  External Storage`_ for more information.
+
+.. _cl::aliasopt:
+
+* The **cl::aliasopt** attribute specifies which option a `cl::alias`_ option is
+  an alias for.
+
+.. _cl::values:
+
+* The **cl::values** attribute specifies the string-to-value mapping to be used
+  by the generic parser.  It takes a **clEnumValEnd terminated** list of
+  (option, value, description) triplets that specify the option name, the value
+  mapped to, and the description shown in the ``-help`` for the tool.  Because
+  the generic parser is used most frequently with enum values, two macros are
+  often useful:
+
+  #. The **clEnumVal** macro is used as a nice simple way to specify a triplet
+     for an enum.  This macro automatically makes the option name be the same as
+     the enum name.  The first option to the macro is the enum, the second is
+     the description for the command line option.
+
+  #. The **clEnumValN** macro is used to specify macro options where the option
+     name doesn't equal the enum name.  For this macro, the first argument is
+     the enum value, the second is the flag name, and the second is the
+     description.
+
+  You will get a compile time error if you try to use cl::values with a parser
+  that does not support it.
+
+.. _cl::multi_val:
+
+* The **cl::multi_val** attribute specifies that this option takes has multiple
+  values (example: ``-sectalign segname sectname sectvalue``). This attribute
+  takes one unsigned argument - the number of values for the option. This
+  attribute is valid only on ``cl::list`` options (and will fail with compile
+  error if you try to use it with other option types). It is allowed to use all
+  of the usual modifiers on multi-valued options (besides
+  ``cl::ValueDisallowed``, obviously).
+
+.. _cl::cat:
+
+* The **cl::cat** attribute specifies the option category that the option
+  belongs to. The category should be a `cl::OptionCategory`_ object.
+
+Option Modifiers
+----------------
+
+Option modifiers are the flags and expressions that you pass into the
+constructors for `cl::opt`_ and `cl::list`_.  These modifiers give you the
+ability to tweak how options are parsed and how ``-help`` output is generated to
+fit your application well.
+
+These options fall into five main categories:
+
+#. Hiding an option from ``-help`` output
+
+#. Controlling the number of occurrences required and allowed
+
+#. Controlling whether or not a value must be specified
+
+#. Controlling other formatting options
+
+#. Miscellaneous option modifiers
+
+It is not possible to specify two options from the same category (you'll get a
+runtime error) to a single option, except for options in the miscellaneous
+category.  The CommandLine library specifies defaults for all of these settings
+that are the most useful in practice and the most common, which mean that you
+usually shouldn't have to worry about these.
+
+Hiding an option from ``-help`` output
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::NotHidden``, ``cl::Hidden``, and ``cl::ReallyHidden`` modifiers are
+used to control whether or not an option appears in the ``-help`` and
+``-help-hidden`` output for the compiled program:
+
+.. _cl::NotHidden:
+
+* The **cl::NotHidden** modifier (which is the default for `cl::opt`_ and
+  `cl::list`_ options) indicates the option is to appear in both help
+  listings.
+
+.. _cl::Hidden:
+
+* The **cl::Hidden** modifier (which is the default for `cl::alias`_ options)
+  indicates that the option should not appear in the ``-help`` output, but
+  should appear in the ``-help-hidden`` output.
+
+.. _cl::ReallyHidden:
+
+* The **cl::ReallyHidden** modifier indicates that the option should not appear
+  in any help output.
+
+Controlling the number of occurrences required and allowed
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This group of options is used to control how many time an option is allowed (or
+required) to be specified on the command line of your program.  Specifying a
+value for this setting allows the CommandLine library to do error checking for
+you.
+
+The allowed values for this option group are:
+
+.. _cl::Optional:
+
+* The **cl::Optional** modifier (which is the default for the `cl::opt`_ and
+  `cl::alias`_ classes) indicates that your program will allow either zero or
+  one occurrence of the option to be specified.
+
+.. _cl::ZeroOrMore:
+
+* The **cl::ZeroOrMore** modifier (which is the default for the `cl::list`_
+  class) indicates that your program will allow the option to be specified zero
+  or more times.
+
+.. _cl::Required:
+
+* The **cl::Required** modifier indicates that the specified option must be
+  specified exactly one time.
+
+.. _cl::OneOrMore:
+
+* The **cl::OneOrMore** modifier indicates that the option must be specified at
+  least one time.
+
+* The **cl::ConsumeAfter** modifier is described in the `Positional arguments
+  section`_.
+
+If an option is not specified, then the value of the option is equal to the
+value specified by the `cl::init`_ attribute.  If the ``cl::init`` attribute is
+not specified, the option value is initialized with the default constructor for
+the data type.
+
+If an option is specified multiple times for an option of the `cl::opt`_ class,
+only the last value will be retained.
+
+Controlling whether or not a value must be specified
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This group of options is used to control whether or not the option allows a
+value to be present.  In the case of the CommandLine library, a value is either
+specified with an equal sign (e.g. '``-index-depth=17``') or as a trailing
+string (e.g. '``-o a.out``').
+
+The allowed values for this option group are:
+
+.. _cl::ValueOptional:
+
+* The **cl::ValueOptional** modifier (which is the default for ``bool`` typed
+  options) specifies that it is acceptable to have a value, or not.  A boolean
+  argument can be enabled just by appearing on the command line, or it can have
+  an explicit '``-foo=true``'.  If an option is specified with this mode, it is
+  illegal for the value to be provided without the equal sign.  Therefore
+  '``-foo true``' is illegal.  To get this behavior, you must use
+  the `cl::ValueRequired`_ modifier.
+
+.. _cl::ValueRequired:
+
+* The **cl::ValueRequired** modifier (which is the default for all other types
+  except for `unnamed alternatives using the generic parser`_) specifies that a
+  value must be provided.  This mode informs the command line library that if an
+  option is not provides with an equal sign, that the next argument provided
+  must be the value.  This allows things like '``-o a.out``' to work.
+
+.. _cl::ValueDisallowed:
+
+* The **cl::ValueDisallowed** modifier (which is the default for `unnamed
+  alternatives using the generic parser`_) indicates that it is a runtime error
+  for the user to specify a value.  This can be provided to disallow users from
+  providing options to boolean options (like '``-foo=true``').
+
+In general, the default values for this option group work just like you would
+want them to.  As mentioned above, you can specify the `cl::ValueDisallowed`_
+modifier to a boolean argument to restrict your command line parser.  These
+options are mostly useful when `extending the library`_.
+
+.. _formatting option:
+
+Controlling other formatting options
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The formatting option group is used to specify that the command line option has
+special abilities and is otherwise different from other command line arguments.
+As usual, you can only specify one of these arguments at most.
+
+.. _cl::NormalFormatting:
+
+* The **cl::NormalFormatting** modifier (which is the default all options)
+  specifies that this option is "normal".
+
+.. _cl::Positional:
+
+* The **cl::Positional** modifier specifies that this is a positional argument
+  that does not have a command line option associated with it.  See the
+  `Positional Arguments`_ section for more information.
+
+* The **cl::ConsumeAfter** modifier specifies that this option is used to
+  capture "interpreter style" arguments.  See `this section for more
+  information`_.
+
+.. _prefix:
+.. _cl::Prefix:
+
+* The **cl::Prefix** modifier specifies that this option prefixes its value.
+  With 'Prefix' options, the equal sign does not separate the value from the
+  option name specified. Instead, the value is everything after the prefix,
+  including any equal sign if present. This is useful for processing odd
+  arguments like ``-lmalloc`` and ``-L/usr/lib`` in a linker tool or
+  ``-DNAME=value`` in a compiler tool.  Here, the '``l``', '``D``' and '``L``'
+  options are normal string (or list) options, that have the **cl::Prefix**
+  modifier added to allow the CommandLine library to recognize them.  Note that
+  **cl::Prefix** options must not have the **cl::ValueDisallowed** modifier
+  specified.
+
+.. _grouping:
+.. _cl::Grouping:
+
+* The **cl::Grouping** modifier is used to implement Unix-style tools (like
+  ``ls``) that have lots of single letter arguments, but only require a single
+  dash.  For example, the '``ls -labF``' command actually enables four different
+  options, all of which are single letters.  Note that **cl::Grouping** options
+  cannot have values.
+
+The CommandLine library does not restrict how you use the **cl::Prefix** or
+**cl::Grouping** modifiers, but it is possible to specify ambiguous argument
+settings.  Thus, it is possible to have multiple letter options that are prefix
+or grouping options, and they will still work as designed.
+
+To do this, the CommandLine library uses a greedy algorithm to parse the input
+option into (potentially multiple) prefix and grouping options.  The strategy
+basically looks like this:
+
+::
+
+  parse(string OrigInput) {
+
+  1. string input = OrigInput;
+  2. if (isOption(input)) return getOption(input).parse();  // Normal option
+  3. while (!isOption(input) && !input.empty()) input.pop_back();  // Remove the last letter
+  4. if (input.empty()) return error();  // No matching option
+  5. if (getOption(input).isPrefix())
+       return getOption(input).parse(input);
+  6. while (!input.empty()) {  // Must be grouping options
+       getOption(input).parse();
+       OrigInput.erase(OrigInput.begin(), OrigInput.begin()+input.length());
+       input = OrigInput;
+       while (!isOption(input) && !input.empty()) input.pop_back();
+     }
+  7. if (!OrigInput.empty()) error();
+
+  }
+
+Miscellaneous option modifiers
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The miscellaneous option modifiers are the only flags where you can specify more
+than one flag from the set: they are not mutually exclusive.  These flags
+specify boolean properties that modify the option.
+
+.. _cl::CommaSeparated:
+
+* The **cl::CommaSeparated** modifier indicates that any commas specified for an
+  option's value should be used to split the value up into multiple values for
+  the option.  For example, these two options are equivalent when
+  ``cl::CommaSeparated`` is specified: "``-foo=a -foo=b -foo=c``" and
+  "``-foo=a,b,c``".  This option only makes sense to be used in a case where the
+  option is allowed to accept one or more values (i.e. it is a `cl::list`_
+  option).
+
+.. _cl::PositionalEatsArgs:
+
+* The **cl::PositionalEatsArgs** modifier (which only applies to positional
+  arguments, and only makes sense for lists) indicates that positional argument
+  should consume any strings after it (including strings that start with a "-")
+  up until another recognized positional argument.  For example, if you have two
+  "eating" positional arguments, "``pos1``" and "``pos2``", the string "``-pos1
+  -foo -bar baz -pos2 -bork``" would cause the "``-foo -bar -baz``" strings to
+  be applied to the "``-pos1``" option and the "``-bork``" string to be applied
+  to the "``-pos2``" option.
+
+.. _cl::Sink:
+
+* The **cl::Sink** modifier is used to handle unknown options. If there is at
+  least one option with ``cl::Sink`` modifier specified, the parser passes
+  unrecognized option strings to it as values instead of signaling an error. As
+  with ``cl::CommaSeparated``, this modifier only makes sense with a `cl::list`_
+  option.
+
+So far, these are the only three miscellaneous option modifiers.
+
+.. _response files:
+
+Response files
+^^^^^^^^^^^^^^
+
+Some systems, such as certain variants of Microsoft Windows and some older
+Unices have a relatively low limit on command-line length. It is therefore
+customary to use the so-called 'response files' to circumvent this
+restriction. These files are mentioned on the command-line (using the "@file")
+syntax. The program reads these files and inserts the contents into argv,
+thereby working around the command-line length limits. Response files are
+enabled by an optional fourth argument to `cl::ParseEnvironmentOptions`_ and
+`cl::ParseCommandLineOptions`_.
+
+Top-Level Classes and Functions
+-------------------------------
+
+Despite all of the built-in flexibility, the CommandLine option library really
+only consists of one function `cl::ParseCommandLineOptions`_) and three main
+classes: `cl::opt`_, `cl::list`_, and `cl::alias`_.  This section describes
+these three classes in detail.
+
+.. _cl::getRegisteredOptions:
+
+The ``cl::getRegisteredOptions`` function
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::getRegisteredOptions`` function is designed to give a programmer
+access to declared non-positional command line options so that how they appear
+in ``-help`` can be modified prior to calling `cl::ParseCommandLineOptions`_.
+Note this method should not be called during any static initialisation because
+it cannot be guaranteed that all options will have been initialised. Hence it
+should be called from ``main``.
+
+This function can be used to gain access to options declared in libraries that
+the tool writter may not have direct access to.
+
+The function retrieves a :ref:`StringMap <dss_stringmap>` that maps the option
+string (e.g. ``-help``) to an ``Option*``.
+
+Here is an example of how the function could be used:
+
+.. code-block:: c++
+
+  using namespace llvm;
+  int main(int argc, char **argv) {
+    cl::OptionCategory AnotherCategory("Some options");
+
+    StringMap<cl::Option*> Map;
+    cl::getRegisteredOptions(Map);
+
+    //Unhide useful option and put it in a different category
+    assert(Map.count("print-all-options") > 0);
+    Map["print-all-options"]->setHiddenFlag(cl::NotHidden);
+    Map["print-all-options"]->setCategory(AnotherCategory);
+
+    //Hide an option we don't want to see
+    assert(Map.count("enable-no-infs-fp-math") > 0);
+    Map["enable-no-infs-fp-math"]->setHiddenFlag(cl::Hidden);
+
+    //Change --version to --show-version
+    assert(Map.count("version") > 0);
+    Map["version"]->setArgStr("show-version");
+
+    //Change --help description
+    assert(Map.count("help") > 0);
+    Map["help"]->setDescription("Shows help");
+
+    cl::ParseCommandLineOptions(argc, argv, "This is a small program to demo the LLVM CommandLine API");
+    ...
+  }
+
+
+.. _cl::ParseCommandLineOptions:
+
+The ``cl::ParseCommandLineOptions`` function
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::ParseCommandLineOptions`` function is designed to be called directly
+from ``main``, and is used to fill in the values of all of the command line
+option variables once ``argc`` and ``argv`` are available.
+
+The ``cl::ParseCommandLineOptions`` function requires two parameters (``argc``
+and ``argv``), but may also take an optional third parameter which holds
+`additional extra text`_ to emit when the ``-help`` option is invoked, and a
+fourth boolean parameter that enables `response files`_.
+
+.. _cl::ParseEnvironmentOptions:
+
+The ``cl::ParseEnvironmentOptions`` function
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::ParseEnvironmentOptions`` function has mostly the same effects as
+`cl::ParseCommandLineOptions`_, except that it is designed to take values for
+options from an environment variable, for those cases in which reading the
+command line is not convenient or desired. It fills in the values of all the
+command line option variables just like `cl::ParseCommandLineOptions`_ does.
+
+It takes four parameters: the name of the program (since ``argv`` may not be
+available, it can't just look in ``argv[0]``), the name of the environment
+variable to examine, the optional `additional extra text`_ to emit when the
+``-help`` option is invoked, and the boolean switch that controls whether
+`response files`_ should be read.
+
+``cl::ParseEnvironmentOptions`` will break the environment variable's value up
+into words and then process them using `cl::ParseCommandLineOptions`_.
+**Note:** Currently ``cl::ParseEnvironmentOptions`` does not support quoting, so
+an environment variable containing ``-option "foo bar"`` will be parsed as three
+words, ``-option``, ``"foo``, and ``bar"``, which is different from what you
+would get from the shell with the same input.
+
+The ``cl::SetVersionPrinter`` function
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::SetVersionPrinter`` function is designed to be called directly from
+``main`` and *before* ``cl::ParseCommandLineOptions``. Its use is optional. It
+simply arranges for a function to be called in response to the ``--version``
+option instead of having the ``CommandLine`` library print out the usual version
+string for LLVM. This is useful for programs that are not part of LLVM but wish
+to use the ``CommandLine`` facilities. Such programs should just define a small
+function that takes no arguments and returns ``void`` and that prints out
+whatever version information is appropriate for the program. Pass the address of
+that function to ``cl::SetVersionPrinter`` to arrange for it to be called when
+the ``--version`` option is given by the user.
+
+.. _cl::opt:
+.. _scalar:
+
+The ``cl::opt`` class
+^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::opt`` class is the class used to represent scalar command line
+options, and is the one used most of the time.  It is a templated class which
+can take up to three arguments (all except for the first have default values
+though):
+
+.. code-block:: c++
+
+  namespace cl {
+    template <class DataType, bool ExternalStorage = false,
+              class ParserClass = parser<DataType> >
+    class opt;
+  }
+
+The first template argument specifies what underlying data type the command line
+argument is, and is used to select a default parser implementation.  The second
+template argument is used to specify whether the option should contain the
+storage for the option (the default) or whether external storage should be used
+to contain the value parsed for the option (see `Internal vs External Storage`_
+for more information).
+
+The third template argument specifies which parser to use.  The default value
+selects an instantiation of the ``parser`` class based on the underlying data
+type of the option.  In general, this default works well for most applications,
+so this option is only used when using a `custom parser`_.
+
+.. _lists of arguments:
+.. _cl::list:
+
+The ``cl::list`` class
+^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::list`` class is the class used to represent a list of command line
+options.  It too is a templated class which can take up to three arguments:
+
+.. code-block:: c++
+
+  namespace cl {
+    template <class DataType, class Storage = bool,
+              class ParserClass = parser<DataType> >
+    class list;
+  }
+
+This class works the exact same as the `cl::opt`_ class, except that the second
+argument is the **type** of the external storage, not a boolean value.  For this
+class, the marker type '``bool``' is used to indicate that internal storage
+should be used.
+
+.. _cl::bits:
+
+The ``cl::bits`` class
+^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::bits`` class is the class used to represent a list of command line
+options in the form of a bit vector.  It is also a templated class which can
+take up to three arguments:
+
+.. code-block:: c++
+
+  namespace cl {
+    template <class DataType, class Storage = bool,
+              class ParserClass = parser<DataType> >
+    class bits;
+  }
+
+This class works the exact same as the `cl::list`_ class, except that the second
+argument must be of **type** ``unsigned`` if external storage is used.
+
+.. _cl::alias:
+
+The ``cl::alias`` class
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::alias`` class is a nontemplated class that is used to form aliases for
+other arguments.
+
+.. code-block:: c++
+
+  namespace cl {
+    class alias;
+  }
+
+The `cl::aliasopt`_ attribute should be used to specify which option this is an
+alias for.  Alias arguments default to being `cl::Hidden`_, and use the aliased
+options parser to do the conversion from string to data.
+
+.. _cl::extrahelp:
+
+The ``cl::extrahelp`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::extrahelp`` class is a nontemplated class that allows extra help text
+to be printed out for the ``-help`` option.
+
+.. code-block:: c++
+
+  namespace cl {
+    struct extrahelp;
+  }
+
+To use the extrahelp, simply construct one with a ``const char*`` parameter to
+the constructor. The text passed to the constructor will be printed at the
+bottom of the help message, verbatim. Note that multiple ``cl::extrahelp``
+**can** be used, but this practice is discouraged. If your tool needs to print
+additional help information, put all that help into a single ``cl::extrahelp``
+instance.
+
+For example:
+
+.. code-block:: c++
+
+  cl::extrahelp("\nADDITIONAL HELP:\n\n  This is the extra help\n");
+
+.. _cl::OptionCategory:
+
+The ``cl::OptionCategory`` class
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The ``cl::OptionCategory`` class is a simple class for declaring
+option categories.
+
+.. code-block:: c++
+
+  namespace cl {
+    class OptionCategory;
+  }
+
+An option category must have a name and optionally a description which are
+passed to the constructor as ``const char*``.
+
+Note that declaring an option category and associating it with an option before
+parsing options (e.g. statically) will change the output of ``-help`` from
+uncategorized to categorized. If an option category is declared but not
+associated with an option then it will be hidden from the output of ``-help``
+but will be shown in the output of ``-help-hidden``.
+
+.. _different parser:
+.. _discussed previously:
+
+Builtin parsers
+---------------
+
+Parsers control how the string value taken from the command line is translated
+into a typed value, suitable for use in a C++ program.  By default, the
+CommandLine library uses an instance of ``parser<type>`` if the command line
+option specifies that it uses values of type '``type``'.  Because of this,
+custom option processing is specified with specializations of the '``parser``'
+class.
+
+The CommandLine library provides the following builtin parser specializations,
+which are sufficient for most applications. It can, however, also be extended to
+work with new data types and new ways of interpreting the same data.  See the
+`Writing a Custom Parser`_ for more details on this type of library extension.
+
+.. _enums:
+.. _cl::parser:
+
+* The generic ``parser<t>`` parser can be used to map strings values to any data
+  type, through the use of the `cl::values`_ property, which specifies the
+  mapping information.  The most common use of this parser is for parsing enum
+  values, which allows you to use the CommandLine library for all of the error
+  checking to make sure that only valid enum values are specified (as opposed to
+  accepting arbitrary strings).  Despite this, however, the generic parser class
+  can be used for any data type.
+
+.. _boolean flags:
+.. _bool parser:
+
+* The **parser<bool> specialization** is used to convert boolean strings to a
+  boolean value.  Currently accepted strings are "``true``", "``TRUE``",
+  "``True``", "``1``", "``false``", "``FALSE``", "``False``", and "``0``".
+
+* The **parser<boolOrDefault> specialization** is used for cases where the value
+  is boolean, but we also need to know whether the option was specified at all.
+  boolOrDefault is an enum with 3 values, BOU_UNSET, BOU_TRUE and BOU_FALSE.
+  This parser accepts the same strings as **``parser<bool>``**.
+
+.. _strings:
+
+* The **parser<string> specialization** simply stores the parsed string into the
+  string value specified.  No conversion or modification of the data is
+  performed.
+
+.. _integers:
+.. _int:
+
+* The **parser<int> specialization** uses the C ``strtol`` function to parse the
+  string input.  As such, it will accept a decimal number (with an optional '+'
+  or '-' prefix) which must start with a non-zero digit.  It accepts octal
+  numbers, which are identified with a '``0``' prefix digit, and hexadecimal
+  numbers with a prefix of '``0x``' or '``0X``'.
+
+.. _doubles:
+.. _float:
+.. _double:
+
+* The **parser<double>** and **parser<float> specializations** use the standard
+  C ``strtod`` function to convert floating point strings into floating point
+  values.  As such, a broad range of string formats is supported, including
+  exponential notation (ex: ``1.7e15``) and properly supports locales.
+
+.. _Extension Guide:
+.. _extending the library:
+
+Extension Guide
+===============
+
+Although the CommandLine library has a lot of functionality built into it
+already (as discussed previously), one of its true strengths lie in its
+extensibility.  This section discusses how the CommandLine library works under
+the covers and illustrates how to do some simple, common, extensions.
+
+.. _Custom parsers:
+.. _custom parser:
+.. _Writing a Custom Parser:
+
+Writing a custom parser
+-----------------------
+
+One of the simplest and most common extensions is the use of a custom parser.
+As `discussed previously`_, parsers are the portion of the CommandLine library
+that turns string input from the user into a particular parsed data type,
+validating the input in the process.
+
+There are two ways to use a new parser:
+
+#. Specialize the `cl::parser`_ template for your custom data type.
+
+   This approach has the advantage that users of your custom data type will
+   automatically use your custom parser whenever they define an option with a
+   value type of your data type.  The disadvantage of this approach is that it
+   doesn't work if your fundamental data type is something that is already
+   supported.
+
+#. Write an independent class, using it explicitly from options that need it.
+
+   This approach works well in situations where you would line to parse an
+   option using special syntax for a not-very-special data-type.  The drawback
+   of this approach is that users of your parser have to be aware that they are
+   using your parser instead of the builtin ones.
+
+To guide the discussion, we will discuss a custom parser that accepts file
+sizes, specified with an optional unit after the numeric size.  For example, we
+would like to parse "102kb", "41M", "1G" into the appropriate integer value.  In
+this case, the underlying data type we want to parse into is '``unsigned``'.  We
+choose approach #2 above because we don't want to make this the default for all
+``unsigned`` options.
+
+To start out, we declare our new ``FileSizeParser`` class:
+
+.. code-block:: c++
+
+  struct FileSizeParser : public cl::parser<unsigned> {
+    // parse - Return true on error.
+    bool parse(cl::Option &O, StringRef ArgName, const std::string &ArgValue,
+               unsigned &Val);
+  };
+
+Our new class inherits from the ``cl::parser`` template class to fill in
+the default, boiler plate code for us.  We give it the data type that we parse
+into, the last argument to the ``parse`` method, so that clients of our custom
+parser know what object type to pass in to the parse method.  (Here we declare
+that we parse into '``unsigned``' variables.)
+
+For most purposes, the only method that must be implemented in a custom parser
+is the ``parse`` method.  The ``parse`` method is called whenever the option is
+invoked, passing in the option itself, the option name, the string to parse, and
+a reference to a return value.  If the string to parse is not well-formed, the
+parser should output an error message and return true.  Otherwise it should
+return false and set '``Val``' to the parsed value.  In our example, we
+implement ``parse`` as:
+
+.. code-block:: c++
+
+  bool FileSizeParser::parse(cl::Option &O, StringRef ArgName,
+                             const std::string &Arg, unsigned &Val) {
+    const char *ArgStart = Arg.c_str();
+    char *End;
+
+    // Parse integer part, leaving 'End' pointing to the first non-integer char
+    Val = (unsigned)strtol(ArgStart, &End, 0);
+
+    while (1) {
+      switch (*End++) {
+      case 0: return false;   // No error
+      case 'i':               // Ignore the 'i' in KiB if people use that
+      case 'b': case 'B':     // Ignore B suffix
+        break;
+
+      case 'g': case 'G': Val *= 1024*1024*1024; break;
+      case 'm': case 'M': Val *= 1024*1024;      break;
+      case 'k': case 'K': Val *= 1024;           break;
+
+      default:
+        // Print an error message if unrecognized character!
+        return O.error("'" + Arg + "' value invalid for file size argument!");
+      }
+    }
+  }
+
+This function implements a very simple parser for the kinds of strings we are
+interested in.  Although it has some holes (it allows "``123KKK``" for example),
+it is good enough for this example.  Note that we use the option itself to print
+out the error message (the ``error`` method always returns true) in order to get
+a nice error message (shown below).  Now that we have our parser class, we can
+use it like this:
+
+.. code-block:: c++
+
+  static cl::opt<unsigned, false, FileSizeParser>
+  MFS("max-file-size", cl::desc("Maximum file size to accept"),
+      cl::value_desc("size"));
+
+Which adds this to the output of our program:
+
+::
+
+  OPTIONS:
+    -help                 - display available options (-help-hidden for more)
+    ...
+    -max-file-size=<size> - Maximum file size to accept
+
+And we can test that our parse works correctly now (the test program just prints
+out the max-file-size argument value):
+
+::
+
+  $ ./test
+  MFS: 0
+  $ ./test -max-file-size=123MB
+  MFS: 128974848
+  $ ./test -max-file-size=3G
+  MFS: 3221225472
+  $ ./test -max-file-size=dog
+  -max-file-size option: 'dog' value invalid for file size argument!
+
+It looks like it works.  The error message that we get is nice and helpful, and
+we seem to accept reasonable file sizes.  This wraps up the "custom parser"
+tutorial.
+
+Exploiting external storage
+---------------------------
+
+Several of the LLVM libraries define static ``cl::opt`` instances that will
+automatically be included in any program that links with that library.  This is
+a feature. However, sometimes it is necessary to know the value of the command
+line option outside of the library. In these cases the library does or should
+provide an external storage location that is accessible to users of the
+library. Examples of this include the ``llvm::DebugFlag`` exported by the
+``lib/Support/Debug.cpp`` file and the ``llvm::TimePassesIsEnabled`` flag
+exported by the ``lib/VMCore/PassManager.cpp`` file.
+
+.. todo::
+
+  TODO: complete this section
+
+.. _dynamically loaded options:
+
+Dynamically adding command line options
+---------------------------------------
+
+.. todo::
+
+  TODO: fill in this section

Added: www-releases/trunk/3.9.1/docs/_sources/CompileCudaWithLLVM.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CompileCudaWithLLVM.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CompileCudaWithLLVM.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CompileCudaWithLLVM.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,260 @@
+===================================
+Compiling CUDA C/C++ with LLVM
+===================================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document contains the user guides and the internals of compiling CUDA
+C/C++ with LLVM. It is aimed at both users who want to compile CUDA with LLVM
+and developers who want to improve LLVM for GPUs. This document assumes a basic
+familiarity with CUDA. Information about CUDA programming can be found in the
+`CUDA programming guide
+<http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html>`_.
+
+How to Build LLVM with CUDA Support
+===================================
+
+CUDA support is still in development and works the best in the trunk version
+of LLVM. Below is a quick summary of downloading and building the trunk
+version. Consult the `Getting Started
+<http://llvm.org/docs/GettingStarted.html>`_ page for more details on setting
+up LLVM.
+
+#. Checkout LLVM
+
+   .. code-block:: console
+
+     $ cd where-you-want-llvm-to-live
+     $ svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm
+
+#. Checkout Clang
+
+   .. code-block:: console
+
+     $ cd where-you-want-llvm-to-live
+     $ cd llvm/tools
+     $ svn co http://llvm.org/svn/llvm-project/cfe/trunk clang
+
+#. Configure and build LLVM and Clang
+
+   .. code-block:: console
+
+     $ cd where-you-want-llvm-to-live
+     $ mkdir build
+     $ cd build
+     $ cmake [options] ..
+     $ make
+
+How to Compile CUDA C/C++ with LLVM
+===================================
+
+We assume you have installed the CUDA driver and runtime. Consult the `NVIDIA
+CUDA installation guide
+<https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html>`_ if
+you have not.
+
+Suppose you want to compile and run the following CUDA program (``axpy.cu``)
+which multiplies a ``float`` array by a ``float`` scalar (AXPY).
+
+.. code-block:: c++
+
+  #include <iostream>
+
+  __global__ void axpy(float a, float* x, float* y) {
+    y[threadIdx.x] = a * x[threadIdx.x];
+  }
+
+  int main(int argc, char* argv[]) {
+    const int kDataLen = 4;
+
+    float a = 2.0f;
+    float host_x[kDataLen] = {1.0f, 2.0f, 3.0f, 4.0f};
+    float host_y[kDataLen];
+
+    // Copy input data to device.
+    float* device_x;
+    float* device_y;
+    cudaMalloc(&device_x, kDataLen * sizeof(float));
+    cudaMalloc(&device_y, kDataLen * sizeof(float));
+    cudaMemcpy(device_x, host_x, kDataLen * sizeof(float),
+               cudaMemcpyHostToDevice);
+
+    // Launch the kernel.
+    axpy<<<1, kDataLen>>>(a, device_x, device_y);
+
+    // Copy output data to host.
+    cudaDeviceSynchronize();
+    cudaMemcpy(host_y, device_y, kDataLen * sizeof(float),
+               cudaMemcpyDeviceToHost);
+
+    // Print the results.
+    for (int i = 0; i < kDataLen; ++i) {
+      std::cout << "y[" << i << "] = " << host_y[i] << "\n";
+    }
+
+    cudaDeviceReset();
+    return 0;
+  }
+
+The command line for compilation is similar to what you would use for C++.
+
+.. code-block:: console
+
+  $ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch>  \
+      -L<CUDA install path>/<lib64 or lib>              \
+      -lcudart_static -ldl -lrt -pthread
+  $ ./axpy
+  y[0] = 2
+  y[1] = 4
+  y[2] = 6
+  y[3] = 8
+
+``<CUDA install path>`` is the root directory where you installed CUDA SDK,
+typically ``/usr/local/cuda``. ``<GPU arch>`` is `the compute capability of
+your GPU <https://developer.nvidia.com/cuda-gpus>`_. For example, if you want
+to run your program on a GPU with compute capability of 3.5, you should specify
+``--cuda-gpu-arch=sm_35``.
+
+Detecting clang vs NVCC
+=======================
+
+Although clang's CUDA implementation is largely compatible with NVCC's, you may
+still want to detect when you're compiling CUDA code specifically with clang.
+
+This is tricky, because NVCC may invoke clang as part of its own compilation
+process!  For example, NVCC uses the host compiler's preprocessor when
+compiling for device code, and that host compiler may in fact be clang.
+
+When clang is actually compiling CUDA code -- rather than being used as a
+subtool of NVCC's -- it defines the ``__CUDA__`` macro.  ``__CUDA_ARCH__`` is
+defined only in device mode (but will be defined if NVCC is using clang as a
+preprocessor).  So you can use the following incantations to detect clang CUDA
+compilation, in host and device modes:
+
+.. code-block:: c++
+
+  #if defined(__clang__) && defined(__CUDA__) && !defined(__CUDA_ARCH__)
+    // clang compiling CUDA code, host mode.
+  #endif
+
+  #if defined(__clang__) && defined(__CUDA__) && defined(__CUDA_ARCH__)
+    // clang compiling CUDA code, device mode.
+  #endif
+
+Both clang and nvcc define ``__CUDACC__`` during CUDA compilation.  You can
+detect NVCC specifically by looking for ``__NVCC__``.
+
+Flags that control numerical code
+=================================
+
+If you're using GPUs, you probably care about making numerical code run fast.
+GPU hardware allows for more control over numerical operations than most CPUs,
+but this results in more compiler options for you to juggle.
+
+Flags you may wish to tweak include:
+
+* ``-ffp-contract={on,off,fast}`` (defaults to ``fast`` on host and device when
+  compiling CUDA) Controls whether the compiler emits fused multiply-add
+  operations.
+
+  * ``off``: never emit fma operations, and prevent ptxas from fusing multiply
+    and add instructions.
+  * ``on``: fuse multiplies and adds within a single statement, but never
+    across statements (C11 semantics).  Prevent ptxas from fusing other
+    multiplies and adds.
+  * ``fast``: fuse multiplies and adds wherever profitable, even across
+    statements.  Doesn't prevent ptxas from fusing additional multiplies and
+    adds.
+
+  Fused multiply-add instructions can be much faster than the unfused
+  equivalents, but because the intermediate result in an fma is not rounded,
+  this flag can affect numerical code.
+
+* ``-fcuda-flush-denormals-to-zero`` (default: off) When this is enabled,
+  floating point operations may flush `denormal
+  <https://en.wikipedia.org/wiki/Denormal_number>`_ inputs and/or outputs to 0.
+  Operations on denormal numbers are often much slower than the same operations
+  on normal numbers.
+
+* ``-fcuda-approx-transcendentals`` (default: off) When this is enabled, the
+  compiler may emit calls to faster, approximate versions of transcendental
+  functions, instead of using the slower, fully IEEE-compliant versions.  For
+  example, this flag allows clang to emit the ptx ``sin.approx.f32``
+  instruction.
+
+  This is implied by ``-ffast-math``.
+
+Optimizations
+=============
+
+CPU and GPU have different design philosophies and architectures. For example, a
+typical CPU has branch prediction, out-of-order execution, and is superscalar,
+whereas a typical GPU has none of these. Due to such differences, an
+optimization pipeline well-tuned for CPUs may be not suitable for GPUs.
+
+LLVM performs several general and CUDA-specific optimizations for GPUs. The
+list below shows some of the more important optimizations for GPUs. Most of
+them have been upstreamed to ``lib/Transforms/Scalar`` and
+``lib/Target/NVPTX``. A few of them have not been upstreamed due to lack of a
+customizable target-independent optimization pipeline.
+
+* **Straight-line scalar optimizations**. These optimizations reduce redundancy
+  in straight-line code. Details can be found in the `design document for
+  straight-line scalar optimizations <https://goo.gl/4Rb9As>`_.
+
+* **Inferring memory spaces**. `This optimization
+  <https://github.com/llvm-mirror/llvm/blob/master/lib/Target/NVPTX/NVPTXInferAddressSpaces.cpp>`_
+  infers the memory space of an address so that the backend can emit faster
+  special loads and stores from it.
+
+* **Aggressive loop unrooling and function inlining**. Loop unrolling and
+  function inlining need to be more aggressive for GPUs than for CPUs because
+  control flow transfer in GPU is more expensive. They also promote other
+  optimizations such as constant propagation and SROA which sometimes speed up
+  code by over 10x. An empirical inline threshold for GPUs is 1100. This
+  configuration has yet to be upstreamed with a target-specific optimization
+  pipeline. LLVM also provides `loop unrolling pragmas
+  <http://clang.llvm.org/docs/AttributeReference.html#pragma-unroll-pragma-nounroll>`_
+  and ``__attribute__((always_inline))`` for programmers to force unrolling and
+  inling.
+
+* **Aggressive speculative execution**. `This transformation
+  <http://llvm.org/docs/doxygen/html/SpeculativeExecution_8cpp_source.html>`_ is
+  mainly for promoting straight-line scalar optimizations which are most
+  effective on code along dominator paths.
+
+* **Memory-space alias analysis**. `This alias analysis
+  <http://reviews.llvm.org/D12414>`_ infers that two pointers in different
+  special memory spaces do not alias. It has yet to be integrated to the new
+  alias analysis infrastructure; the new infrastructure does not run
+  target-specific alias analysis.
+
+* **Bypassing 64-bit divides**. `An existing optimization
+  <http://llvm.org/docs/doxygen/html/BypassSlowDivision_8cpp_source.html>`_
+  enabled in the NVPTX backend. 64-bit integer divides are much slower than
+  32-bit ones on NVIDIA GPUs due to lack of a divide unit. Many of the 64-bit
+  divides in our benchmarks have a divisor and dividend which fit in 32-bits at
+  runtime. This optimization provides a fast path for this common case.
+
+Publication
+===========
+
+| `gpucc: An Open-Source GPGPU Compiler <http://dl.acm.org/citation.cfm?id=2854041>`_
+| Jingyue Wu, Artem Belevich, Eli Bendersky, Mark Heffernan, Chris Leary, Jacques Pienaar, Bjarke Roune, Rob Springer, Xuetian Weng, Robert Hundt
+| *Proceedings of the 2016 International Symposium on Code Generation and Optimization (CGO 2016)*
+| `Slides for the CGO talk <http://wujingyue.com/docs/gpucc-talk.pdf>`_
+
+Tutorial
+========
+
+`CGO 2016 gpucc tutorial <http://wujingyue.com/docs/gpucc-tutorial.pdf>`_
+
+Obtaining Help
+==============
+
+To obtain help on LLVM in general and its CUDA support, see `the LLVM
+community <http://llvm.org/docs/#mailing-lists>`_.

Added: www-releases/trunk/3.9.1/docs/_sources/CompilerWriterInfo.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CompilerWriterInfo.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CompilerWriterInfo.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CompilerWriterInfo.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,150 @@
+========================================================
+Architecture & Platform Information for Compiler Writers
+========================================================
+
+.. contents::
+   :local:
+
+.. note::
+
+  This document is a work-in-progress.  Additions and clarifications are
+  welcome.
+
+Hardware
+========
+
+AArch64 & ARM
+-------------
+
+* `ARMv8-A Architecture Reference Manual <http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.h/index.html>`_ (authentication required, free sign-up). This document covers both AArch64 and ARM instructions
+
+* `ARMv7-M Architecture Reference Manual` <http://infocenter.arm.com/help/topic/com.arm.doc.ddi0403e.b/index.html>`_ (authentication required, free sign-up). This covers the Thumb2-only microcontrollers
+
+* `ARMv6-M Architecture Reference Manual` <http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html>_ (authentication required, free sign-up). This covers the Thumb1-only microcontrollers
+
+* `ARM C Language Extensions <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0053c/IHI0053C_acle_2_0.pdf>`_
+
+* AArch32 `ABI Addenda and Errata <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0045d/IHI0045D_ABI_addenda.pdf>`_
+
+Itanium (ia64)
+--------------
+
+* `Itanium documentation <http://developer.intel.com/design/itanium2/documentation.htm>`_
+
+MIPS
+----
+
+* `MIPS Processor Architecture <http://imgtec.com/mips/mips-architectures.asp>`_
+
+* `MIPS 64-bit ELF Object File Specification <http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf>`_
+
+PowerPC
+-------
+
+IBM - Official manuals and docs
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* `Power Instruction Set Architecture, Versions 2.03 through 2.06 (authentication required, free sign-up) <https://www.power.org/technology-introduction/standards-specifications>`_
+
+* `PowerPC Compiler Writer's Guide <http://www.ibm.com/chips/techlib/techlib.nsf/techdocs/852569B20050FF7785256996007558C6>`_
+
+* `Intro to PowerPC Architecture <http://www.ibm.com/developerworks/linux/library/l-powarch/>`_
+
+* `PowerPC Processor Manuals (embedded) <http://www.ibm.com/chips/techlib/techlib.nsf/products/PowerPC>`_
+
+* `Various IBM specifications and white papers <https://www.power.org/documentation/?document_company=105&document_category=all&publish_year=all&grid_order=DESC&grid_sort=title>`_
+
+* `IBM AIX/5L for POWER Assembly Reference <http://publibn.boulder.ibm.com/doc_link/en_US/a_doc_lib/aixassem/alangref/alangreftfrm.htm>`_
+
+Other documents, collections, notes
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+* `PowerPC ABI documents <http://penguinppc.org/dev/#library>`_
+* `PowerPC64 alignment of long doubles (from GCC) <http://gcc.gnu.org/ml/gcc-patches/2003-09/msg00997.html>`_
+* `Long branch stubs for powerpc64-linux (from binutils) <http://sources.redhat.com/ml/binutils/2002-04/msg00573.html>`_
+
+AMDGPU
+------
+
+* `AMD R6xx shader ISA <http://developer.amd.com/wordpress/media/2012/10/R600_Instruction_Set_Architecture.pdf>`_
+* `AMD R7xx shader ISA <http://developer.amd.com/wordpress/media/2012/10/R700-Family_Instruction_Set_Architecture.pdf>`_
+* `AMD Evergreen shader ISA <http://developer.amd.com/wordpress/media/2012/10/AMD_Evergreen-Family_Instruction_Set_Architecture.pdf>`_
+* `AMD Cayman/Trinity shader ISA <http://developer.amd.com/wordpress/media/2012/10/AMD_HD_6900_Series_Instruction_Set_Architecture.pdf>`_
+* `AMD Southern Islands Series ISA <http://developer.amd.com/wordpress/media/2012/12/AMD_Southern_Islands_Instruction_Set_Architecture.pdf>`_
+* `AMD Sea Islands Series ISA <http://developer.amd.com/wordpress/media/2013/07/AMD_Sea_Islands_Instruction_Set_Architecture.pdf>`_
+* `AMD GPU Programming Guide <http://developer.amd.com/download/AMD_Accelerated_Parallel_Processing_OpenCL_Programming_Guide.pdf>`_
+* `AMD Compute Resources <http://developer.amd.com/tools/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/documentation/>`_
+
+SPARC
+-----
+
+* `SPARC standards <http://sparc.org/standards>`_
+* `SPARC V9 ABI <http://sparc.org/standards/64.psabi.1.35.ps.Z>`_
+* `SPARC V8 ABI <http://sparc.org/standards/psABI3rd.pdf>`_
+
+SystemZ
+-------
+
+* `z/Architecture Principles of Operation (registration required, free sign-up) <http://www-01.ibm.com/support/docview.wss?uid=isg2b9de5f05a9d57819852571c500428f9a>`_
+
+X86
+---
+
+* `AMD processor manuals <http://www.amd.com/us-en/Processors/TechnicalResources/0,,30_182_739,00.html>`_
+* `Intel 64 and IA-32 manuals <http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html>`_
+* `Intel Itanium documentation <http://www.intel.com/design/itanium/documentation.htm?iid=ipp_srvr_proc_itanium2+techdocs>`_
+* `X86 and X86-64 SysV psABI <https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI>`_
+* `Calling conventions for different C++ compilers and operating systems  <http://www.agner.org/optimize/calling_conventions.pdf>`_
+
+XCore
+-----
+
+* `The XMOS XS1 Architecture (ISA) <https://www.xmos.com/en/download/public/The-XMOS-XS1-Architecture%28X7879A%29.pdf>`_
+* `Tools Development Guide (includes ABI) <https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf>`_
+
+Other relevant lists
+--------------------
+
+* `GCC reading list <http://gcc.gnu.org/readings.html>`_
+
+ABI
+===
+
+* `System V Application Binary Interface <http://www.sco.com/developers/gabi/latest/contents.html>`_
+* `Itanium C++ ABI <http://mentorembedded.github.io/cxx-abi/>`_
+
+Linux
+-----
+
+* `Linux extensions to gabi <https://github.com/hjl-tools/linux-abi/wiki/Linux-Extensions-to-gABI>`_
+* `PowerPC 64-bit ELF ABI Supplement <http://www.linuxbase.org/spec/ELF/ppc64/>`_
+* `Procedure Call Standard for the AArch64 Architecture <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055a/IHI0055A_aapcs64.pdf>`_
+* `ELF for the ARM Architecture <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0044e/IHI0044E_aaelf.pdf>`_
+* `ELF for the ARM 64-bit Architecture (AArch64) <http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056a/IHI0056A_aaelf64.pdf>`_
+* `System z ELF ABI Supplement <http://legacy.redhat.com/pub/redhat/linux/7.1/es/os/s390x/doc/lzsabi0.pdf>`_
+
+OS X
+----
+
+* `Mach-O Runtime Architecture <http://developer.apple.com/documentation/Darwin/RuntimeArchitecture-date.html>`_
+* `Notes on Mach-O ABI <http://www.unsanity.org/archives/000044.php>`_
+
+Windows
+-------
+
+* `Microsoft PE/COFF Specification <http://www.microsoft.com/whdc/system/platform/firmware/pecoff.mspx>`_
+
+NVPTX
+=====
+
+* `CUDA Documentation <http://docs.nvidia.com/cuda/index.html>`_ includes the PTX
+  ISA and Driver API documentation
+
+Miscellaneous Resources
+=======================
+
+* `Executable File Format library <http://www.nondot.org/sabre/os/articles/ExecutableFileFormats/>`_
+
+* `GCC prefetch project <http://gcc.gnu.org/projects/prefetch.html>`_ page has a
+  good survey of the prefetching capabilities of a variety of modern
+  processors.

Added: www-releases/trunk/3.9.1/docs/_sources/CoverageMappingFormat.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/CoverageMappingFormat.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/CoverageMappingFormat.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/CoverageMappingFormat.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,605 @@
+.. role:: raw-html(raw)
+   :format: html
+
+=================================
+LLVM Code Coverage Mapping Format
+=================================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+LLVM's code coverage mapping format is used to provide code coverage
+analysis using LLVM's and Clang's instrumenation based profiling
+(Clang's ``-fprofile-instr-generate`` option).
+
+This document is aimed at those who use LLVM's code coverage mapping to provide
+code coverage analysis for their own programs, and for those who would like
+to know how it works under the hood. A prior knowledge of how Clang's profile
+guided optimization works is useful, but not required.
+
+We start by showing how to use LLVM and Clang for code coverage analysis,
+then we briefly desribe LLVM's code coverage mapping format and the
+way that Clang and LLVM's code coverage tool work with this format. After
+the basics are down, more advanced features of the coverage mapping format
+are discussed - such as the data structures, LLVM IR representation and
+the binary encoding.
+
+Quick Start
+===========
+
+Here's a short story that describes how to generate code coverage overview
+for a sample source file called *test.c*.
+
+* First, compile an instrumented version of your program using Clang's
+  ``-fprofile-instr-generate`` option with the additional ``-fcoverage-mapping``
+  option:
+
+  ``clang -o test -fprofile-instr-generate -fcoverage-mapping test.c``
+* Then, run the instrumented binary. The runtime will produce a file called
+  *default.profraw* containing the raw profile instrumentation data:
+
+  ``./test``
+* After that, merge the profile data using the *llvm-profdata* tool:
+
+  ``llvm-profdata merge -o test.profdata default.profraw``
+* Finally, run LLVM's code coverage tool (*llvm-cov*) to produce the code
+  coverage overview for the sample source file:
+
+  ``llvm-cov show ./test -instr-profile=test.profdata test.c``
+
+High Level Overview
+===================
+
+LLVM's code coverage mapping format is designed to be a self contained
+data format, that can be embedded into the LLVM IR and object files.
+It's described in this document as a **mapping** format because its goal is
+to store the data that is required for a code coverage tool to map between
+the specific source ranges in a file and the execution counts obtained
+after running the instrumented version of the program.
+
+The mapping data is used in two places in the code coverage process:
+
+1. When clang compiles a source file with ``-fcoverage-mapping``, it
+   generates the mapping information that describes the mapping between the
+   source ranges and the profiling instrumentation counters.
+   This information gets embedded into the LLVM IR and conveniently
+   ends up in the final executable file when the program is linked.
+
+2. It is also used by *llvm-cov* - the mapping information is extracted from an
+   object file and is used to associate the execution counts (the values of the
+   profile instrumentation counters), and the source ranges in a file.
+   After that, the tool is able to generate various code coverage reports
+   for the program.
+
+The coverage mapping format aims to be a "universal format" that would be
+suitable for usage by any frontend, and not just by Clang. It also aims to
+provide the frontend the possibility of generating the minimal coverage mapping
+data in order to reduce the size of the IR and object files - for example,
+instead of emitting mapping information for each statement in a function, the
+frontend is allowed to group the statements with the same execution count into
+regions of code, and emit the mapping information only for those regions.
+
+Advanced Concepts
+=================
+
+The remainder of this guide is meant to give you insight into the way the
+coverage mapping format works.
+
+The coverage mapping format operates on a per-function level as the
+profile instrumentation counters are associated with a specific function.
+For each function that requires code coverage, the frontend has to create
+coverage mapping data that can map between the source code ranges and
+the profile instrumentation counters for that function.
+
+Mapping Region
+--------------
+
+The function's coverage mapping data contains an array of mapping regions.
+A mapping region stores the `source code range`_ that is covered by this region,
+the `file id <coverage file id_>`_, the `coverage mapping counter`_ and
+the region's kind.
+There are several kinds of mapping regions:
+
+* Code regions associate portions of source code and `coverage mapping
+  counters`_. They make up the majority of the mapping regions. They are used
+  by the code coverage tool to compute the execution counts for lines,
+  highlight the regions of code that were never executed, and to obtain
+  the various code coverage statistics for a function.
+  For example:
+
+  :raw-html:`<pre class='highlight' style='line-height:initial;'><span>int main(int argc, const char *argv[]) </span><span style='background-color:#4A789C'>{    </span> <span class='c1'>// Code Region from 1:40 to 9:2</span>
+  <span style='background-color:#4A789C'>                                            </span>
+  <span style='background-color:#4A789C'>  if (argc > 1) </span><span style='background-color:#85C1F5'>{                         </span>   <span class='c1'>// Code Region from 3:17 to 5:4</span>
+  <span style='background-color:#85C1F5'>    printf("%s\n", argv[1]);              </span>
+  <span style='background-color:#85C1F5'>  }</span><span style='background-color:#4A789C'> else </span><span style='background-color:#F6D55D'>{                                </span>   <span class='c1'>// Code Region from 5:10 to 7:4</span>
+  <span style='background-color:#F6D55D'>    printf("\n");                         </span>
+  <span style='background-color:#F6D55D'>  }</span><span style='background-color:#4A789C'>                                         </span>
+  <span style='background-color:#4A789C'>  return 0;                                 </span>
+  <span style='background-color:#4A789C'>}</span>
+  </pre>`
+* Skipped regions are used to represent source ranges that were skipped
+  by Clang's preprocessor. They don't associate with
+  `coverage mapping counters`_, as the frontend knows that they are never
+  executed. They are used by the code coverage tool to mark the skipped lines
+  inside a function as non-code lines that don't have execution counts.
+  For example:
+
+  :raw-html:`<pre class='highlight' style='line-height:initial;'><span>int main() </span><span style='background-color:#4A789C'>{               </span> <span class='c1'>// Code Region from 1:12 to 6:2</span>
+  <span style='background-color:#85C1F5'>#ifdef DEBUG             </span>   <span class='c1'>// Skipped Region from 2:1 to 4:2</span>
+  <span style='background-color:#85C1F5'>  printf("Hello world"); </span>
+  <span style='background-color:#85C1F5'>#</span><span style='background-color:#4A789C'>endif                     </span>
+  <span style='background-color:#4A789C'>  return 0;                </span>
+  <span style='background-color:#4A789C'>}</span>
+  </pre>`
+* Expansion regions are used to represent Clang's macro expansions. They
+  have an additional property - *expanded file id*. This property can be
+  used by the code coverage tool to find the mapping regions that are created
+  as a result of this macro expansion, by checking if their file id matches the
+  expanded file id. They don't associate with `coverage mapping counters`_,
+  as the code coverage tool can determine the execution count for this region
+  by looking up the execution count of the first region with a corresponding
+  file id.
+  For example:
+
+  :raw-html:`<pre class='highlight' style='line-height:initial;'><span>int func(int x) </span><span style='background-color:#4A789C'>{                             </span>
+  <span style='background-color:#4A789C'>  #define MAX(x,y) </span><span style='background-color:#85C1F5'>((x) > (y)? </span><span style='background-color:#F6D55D'>(x)</span><span style='background-color:#85C1F5'> : </span><span style='background-color:#F4BA70'>(y)</span><span style='background-color:#85C1F5'>)</span><span style='background-color:#4A789C'>     </span>
+  <span style='background-color:#4A789C'>  return </span><span style='background-color:#7FCA9F'>MAX</span><span style='background-color:#4A789C'>(x, 42);                          </span> <span class='c1'>// Expansion Region from 3:10 to 3:13</span>
+  <span style='background-color:#4A789C'>}</span>
+  </pre>`
+
+.. _source code range:
+
+Source Range:
+^^^^^^^^^^^^^
+
+The source range record contains the starting and ending location of a certain
+mapping region. Both locations include the line and the column numbers.
+
+.. _coverage file id:
+
+File ID:
+^^^^^^^^
+
+The file id an integer value that tells us
+in which source file or macro expansion is this region located.
+It enables Clang to produce mapping information for the code
+defined inside macros, like this example demonstrates:
+
+:raw-html:`<pre class='highlight' style='line-height:initial;'><span>void func(const char *str) </span><span style='background-color:#4A789C'>{        </span> <span class='c1'>// Code Region from 1:28 to 6:2 with file id 0</span>
+<span style='background-color:#4A789C'>  #define PUT </span><span style='background-color:#85C1F5'>printf("%s\n", str)</span><span style='background-color:#4A789C'>   </span> <span class='c1'>// 2 Code Regions from 2:15 to 2:34 with file ids 1 and 2</span>
+<span style='background-color:#4A789C'>  if(*str)                          </span>
+<span style='background-color:#4A789C'>    </span><span style='background-color:#F6D55D'>PUT</span><span style='background-color:#4A789C'>;                            </span> <span class='c1'>// Expansion Region from 4:5 to 4:8 with file id 0 that expands a macro with file id 1</span>
+<span style='background-color:#4A789C'>  </span><span style='background-color:#F6D55D'>PUT</span><span style='background-color:#4A789C'>;                              </span> <span class='c1'>// Expansion Region from 5:3 to 5:6 with file id 0 that expands a macro with file id 2</span>
+<span style='background-color:#4A789C'>}</span>
+</pre>`
+
+.. _coverage mapping counter:
+.. _coverage mapping counters:
+
+Counter:
+^^^^^^^^
+
+A coverage mapping counter can represents a reference to the profile
+instrumentation counter. The execution count for a region with such counter
+is determined by looking up the value of the corresponding profile
+instrumentation counter.
+
+It can also represent a binary arithmetical expression that operates on
+coverage mapping counters or other expressions.
+The execution count for a region with an expression counter is determined by
+evaluating the expression's arguments and then adding them together or
+subtracting them from one another.
+In the example below, a subtraction expression is used to compute the execution
+count for the compound statement that follows the *else* keyword:
+
+:raw-html:`<pre class='highlight' style='line-height:initial;'><span>int main(int argc, const char *argv[]) </span><span style='background-color:#4A789C'>{   </span> <span class='c1'>// Region's counter is a reference to the profile counter #0</span>
+<span style='background-color:#4A789C'>                                           </span>
+<span style='background-color:#4A789C'>  if (argc > 1) </span><span style='background-color:#85C1F5'>{                        </span>   <span class='c1'>// Region's counter is a reference to the profile counter #1</span>
+<span style='background-color:#85C1F5'>    printf("%s\n", argv[1]);             </span><span>   </span>
+<span style='background-color:#85C1F5'>  }</span><span style='background-color:#4A789C'> else </span><span style='background-color:#F6D55D'>{                               </span>   <span class='c1'>// Region's counter is an expression (reference to the profile counter #0 - reference to the profile counter #1)</span>
+<span style='background-color:#F6D55D'>    printf("\n");                        </span>
+<span style='background-color:#F6D55D'>  }</span><span style='background-color:#4A789C'>                                        </span>
+<span style='background-color:#4A789C'>  return 0;                                </span>
+<span style='background-color:#4A789C'>}</span>
+</pre>`
+
+Finally, a coverage mapping counter can also represent an execution count of
+of zero. The zero counter is used to provide coverage mapping for
+unreachable statements and expressions, like in the example below:
+
+:raw-html:`<pre class='highlight' style='line-height:initial;'><span>int main() </span><span style='background-color:#4A789C'>{                  </span>
+<span style='background-color:#4A789C'>  return 0;                   </span>
+<span style='background-color:#4A789C'>  </span><span style='background-color:#85C1F5'>printf("Hello world!\n")</span><span style='background-color:#4A789C'>;   </span> <span class='c1'>// Unreachable region's counter is zero</span>
+<span style='background-color:#4A789C'>}</span>
+</pre>`
+
+The zero counters allow the code coverage tool to display proper line execution
+counts for the unreachable lines and highlight the unreachable code.
+Without them, the tool would think that those lines and regions were still
+executed, as it doesn't possess the frontend's knowledge.
+
+LLVM IR Representation
+======================
+
+The coverage mapping data is stored in the LLVM IR using a single global
+constant structure variable called *__llvm_coverage_mapping*
+with the *__llvm_covmap* section specifier.
+
+For example, let’s consider a C file and how it gets compiled to LLVM:
+
+.. _coverage mapping sample:
+
+.. code-block:: c
+
+  int foo() {
+    return 42;
+  }
+  int bar() {
+    return 13;
+  }
+
+The coverage mapping variable generated by Clang has 3 fields:
+
+* Coverage mapping header.
+
+* An array of function records.
+
+* Coverage mapping data which is an array of bytes. Zero paddings are added at the end to force 8 byte alignment.
+
+.. code-block:: llvm
+
+  @__llvm_coverage_mapping = internal constant { { i32, i32, i32, i32 }, [2 x { i64, i32, i64 }], [40 x i8] }
+  { 
+    { i32, i32, i32, i32 } ; Coverage map header
+    {
+      i32 2,  ; The number of function records
+      i32 20, ; The length of the string that contains the encoded translation unit filenames
+      i32 20, ; The length of the string that contains the encoded coverage mapping data
+      i32 1,  ; Coverage mapping format version
+    },
+    [2 x { i64, i32, i64 }] [ ; Function records
+     { i64, i32, i64 } {
+       i64 0x5cf8c24cdb18bdac, ; Function's name MD5
+       i32 9, ; Function's encoded coverage mapping data string length
+       i64 0  ; Function's structural hash
+     },
+     { i64, i32, i64 } { 
+       i64 0xe413754a191db537, ; Function's name MD5
+       i32 9, ; Function's encoded coverage mapping data string length
+       i64 0  ; Function's structural hash
+     }],
+   [40 x i8] c"..." ; Encoded data (dissected later)
+  }, section "__llvm_covmap", align 8
+
+The function record layout has evolved since version 1. In version 1, the function record for *foo* is defined as follows:
+
+.. code-block:: llvm
+
+     { i8*, i32, i32, i64 } { i8* getelementptr inbounds ([3 x i8]* @__profn_foo, i32 0, i32 0), ; Function's name
+       i32 3, ; Function's name length
+       i32 9, ; Function's encoded coverage mapping data string length
+       i64 0  ; Function's structural hash
+     }
+
+
+Coverage Mapping Header:
+------------------------
+
+The coverage mapping header has the following fields:
+
+* The number of function records.
+
+* The length of the string in the third field of *__llvm_coverage_mapping* that contains the encoded translation unit filenames.
+
+* The length of the string in the third field of *__llvm_coverage_mapping* that contains the encoded coverage mapping data.
+
+* The format version. The current version is 2 (encoded as a 1).
+
+.. _function records:
+
+Function record:
+----------------
+
+A function record is a structure of the following type:
+
+.. code-block:: llvm
+
+  { i64, i32, i64 }
+
+It contains function name's MD5, the length of the encoded mapping data for that function, and function's 
+structural hash value.
+
+Encoded data:
+-------------
+
+The encoded data is stored in a single string that contains
+the encoded filenames used by this translation unit and the encoded coverage
+mapping data for each function in this translation unit.
+
+The encoded data has the following structure:
+
+``[filenames, coverageMappingDataForFunctionRecord0, coverageMappingDataForFunctionRecord1, ..., padding]``
+
+If necessary, the encoded data is padded with zeroes so that the size
+of the data string is rounded up to the nearest multiple of 8 bytes.
+
+Dissecting the sample:
+^^^^^^^^^^^^^^^^^^^^^^
+
+Here's an overview of the encoded data that was stored in the
+IR for the `coverage mapping sample`_ that was shown earlier:
+
+* The IR contains the following string constant that represents the encoded
+  coverage mapping data for the sample translation unit:
+
+  .. code-block:: llvm
+
+    c"\01\12/Users/alex/test.c\01\00\00\01\01\01\0C\02\02\01\00\00\01\01\04\0C\02\02\00\00"
+
+* The string contains values that are encoded in the LEB128 format, which is
+  used throughout for storing integers. It also contains a string value.
+
+* The length of the substring that contains the encoded translation unit
+  filenames is the value of the second field in the *__llvm_coverage_mapping*
+  structure, which is 20, thus the filenames are encoded in this string:
+
+  .. code-block:: llvm
+
+    c"\01\12/Users/alex/test.c"
+
+  This string contains the following data:
+
+  * Its first byte has a value of ``0x01``. It stores the number of filenames
+    contained in this string.
+  * Its second byte stores the length of the first filename in this string.
+  * The remaining 18 bytes are used to store the first filename.
+
+* The length of the substring that contains the encoded coverage mapping data
+  for the first function is the value of the third field in the first
+  structure in an array of `function records`_ stored in the
+  third field of the *__llvm_coverage_mapping* structure, which is the 9.
+  Therefore, the coverage mapping for the first function record is encoded
+  in this string:
+
+  .. code-block:: llvm
+
+    c"\01\00\00\01\01\01\0C\02\02"
+
+  This string consists of the following bytes:
+
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x01`` | The number of file ids used by this function. There is only one file id used by the mapping data in this function.      |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x00`` | An index into the filenames array which corresponds to the file "/Users/alex/test.c".                                   |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x00`` | The number of counter expressions used by this function. This function doesn't use any expressions.                     |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x01`` | The number of mapping regions that are stored in an array for the function's file id #0.                                |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x01`` | The coverage mapping counter for the first region in this function. The value of 1 tells us that it's a coverage        |
+  |          | mapping counter that is a reference to the profile instrumentation counter with an index of 0.                          |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x01`` | The starting line of the first mapping region in this function.                                                         |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x0C`` | The starting column of the first mapping region in this function.                                                       |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x02`` | The ending line of the first mapping region in this function.                                                           |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+  | ``0x02`` | The ending column of the first mapping region in this function.                                                         |
+  +----------+-------------------------------------------------------------------------------------------------------------------------+
+
+* The length of the substring that contains the encoded coverage mapping data
+  for the second function record is also 9. It's structured like the mapping data
+  for the first function record.
+
+* The two trailing bytes are zeroes and are used to pad the coverage mapping
+  data to give it the 8 byte alignment.
+
+Encoding
+========
+
+The per-function coverage mapping data is encoded as a stream of bytes,
+with a simple structure. The structure consists of the encoding
+`types <cvmtypes_>`_ like variable-length unsigned integers, that
+are used to encode `File ID Mapping`_, `Counter Expressions`_ and
+the `Mapping Regions`_.
+
+The format of the structure follows:
+
+  ``[file id mapping, counter expressions, mapping regions]``
+
+The translation unit filenames are encoded using the same encoding
+`types <cvmtypes_>`_ as the per-function coverage mapping data, with the
+following structure:
+
+  ``[numFilenames : LEB128, filename0 : string, filename1 : string, ...]``
+
+.. _cvmtypes:
+
+Types
+-----
+
+This section describes the basic types that are used by the encoding format
+and can appear after ``:`` in the ``[foo : type]`` description.
+
+.. _LEB128:
+
+LEB128
+^^^^^^
+
+LEB128 is an unsigned integer value that is encoded using DWARF's LEB128
+encoding, optimizing for the case where values are small
+(1 byte for values less than 128).
+
+.. _Strings:
+
+Strings
+^^^^^^^
+
+``[length : LEB128, characters...]``
+
+String values are encoded with a `LEB value <LEB128_>`_ for the length
+of the string and a sequence of bytes for its characters.
+
+.. _file id mapping:
+
+File ID Mapping
+---------------
+
+``[numIndices : LEB128, filenameIndex0 : LEB128, filenameIndex1 : LEB128, ...]``
+
+File id mapping in a function's coverage mapping stream
+contains the indices into the translation unit's filenames array.
+
+Counter
+-------
+
+``[value : LEB128]``
+
+A `coverage mapping counter`_ is stored in a single `LEB value <LEB128_>`_.
+It is composed of two things --- the `tag <counter-tag_>`_
+which is stored in the lowest 2 bits, and the `counter data`_ which is stored
+in the remaining bits.
+
+.. _counter-tag:
+
+Tag:
+^^^^
+
+The counter's tag encodes the counter's kind
+and, if the counter is an expression, the expression's kind.
+The possible tag values are:
+
+* 0 - The counter is zero.
+
+* 1 - The counter is a reference to the profile instrumentation counter.
+
+* 2 - The counter is a subtraction expression.
+
+* 3 - The counter is an addition expression.
+
+.. _counter data:
+
+Data:
+^^^^^
+
+The counter's data is interpreted in the following manner:
+
+* When the counter is a reference to the profile instrumentation counter,
+  then the counter's data is the id of the profile counter.
+* When the counter is an expression, then the counter's data
+  is the index into the array of counter expressions.
+
+.. _Counter Expressions:
+
+Counter Expressions
+-------------------
+
+``[numExpressions : LEB128, expr0LHS : LEB128, expr0RHS : LEB128, expr1LHS : LEB128, expr1RHS : LEB128, ...]``
+
+Counter expressions consist of two counters as they
+represent binary arithmetic operations.
+The expression's kind is determined from the `tag <counter-tag_>`_ of the
+counter that references this expression.
+
+.. _Mapping Regions:
+
+Mapping Regions
+---------------
+
+``[numRegionArrays : LEB128, regionsForFile0, regionsForFile1, ...]``
+
+The mapping regions are stored in an array of sub-arrays where every
+region in a particular sub-array has the same file id.
+
+The file id for a sub-array of regions is the index of that
+sub-array in the main array e.g. The first sub-array will have the file id
+of 0.
+
+Sub-Array of Regions
+^^^^^^^^^^^^^^^^^^^^
+
+``[numRegions : LEB128, region0, region1, ...]``
+
+The mapping regions for a specific file id are stored in an array that is
+sorted in an ascending order by the region's starting location.
+
+Mapping Region
+^^^^^^^^^^^^^^
+
+``[header, source range]``
+
+The mapping region record contains two sub-records ---
+the `header`_, which stores the counter and/or the region's kind,
+and the `source range`_ that contains the starting and ending
+location of this region.
+
+.. _header:
+
+Header
+^^^^^^
+
+``[counter]``
+
+or
+
+``[pseudo-counter]``
+
+The header encodes the region's counter and the region's kind.
+
+The value of the counter's tag distinguishes between the counters and
+pseudo-counters --- if the tag is zero, than this header contains a
+pseudo-counter, otherwise this header contains an ordinary counter.
+
+Counter:
+""""""""
+
+A mapping region whose header has a counter with a non-zero tag is
+a code region.
+
+Pseudo-Counter:
+"""""""""""""""
+
+``[value : LEB128]``
+
+A pseudo-counter is stored in a single `LEB value <LEB128_>`_, just like
+the ordinary counter. It has the following interpretation:
+
+* bits 0-1: tag, which is always 0.
+
+* bit 2: expansionRegionTag. If this bit is set, then this mapping region
+  is an expansion region.
+
+* remaining bits: data. If this region is an expansion region, then the data
+  contains the expanded file id of that region.
+
+  Otherwise, the data contains the region's kind. The possible region
+  kind values are:
+
+  * 0 - This mapping region is a code region with a counter of zero.
+  * 2 - This mapping region is a skipped region.
+
+.. _source range:
+
+Source Range
+^^^^^^^^^^^^
+
+``[deltaLineStart : LEB128, columnStart : LEB128, numLines : LEB128, columnEnd : LEB128]``
+
+The source range record contains the following fields:
+
+* *deltaLineStart*: The difference between the starting line of the
+  current mapping region and the starting line of the previous mapping region.
+
+  If the current mapping region is the first region in the current
+  sub-array, then it stores the starting line of that region.
+
+* *columnStart*: The starting column of the mapping region.
+
+* *numLines*: The difference between the ending line and the starting line
+  of the current mapping region.
+
+* *columnEnd*: The ending column of the mapping region.

Added: www-releases/trunk/3.9.1/docs/_sources/DebuggingJITedCode.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/DebuggingJITedCode.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/DebuggingJITedCode.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/DebuggingJITedCode.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,143 @@
+==============================
+Debugging JIT-ed Code With GDB
+==============================
+
+Background
+==========
+
+Without special runtime support, debugging dynamically generated code with
+GDB (as well as most debuggers) can be quite painful.  Debuggers generally
+read debug information from the object file of the code, but for JITed
+code, there is no such file to look for.
+
+In order to communicate the necessary debug info to GDB, an interface for
+registering JITed code with debuggers has been designed and implemented for
+GDB and LLVM MCJIT.  At a high level, whenever MCJIT generates new machine code,
+it does so in an in-memory object file that contains the debug information in
+DWARF format.  MCJIT then adds this in-memory object file to a global list of
+dynamically generated object files and calls a special function
+(``__jit_debug_register_code``) marked noinline that GDB knows about.  When
+GDB attaches to a process, it puts a breakpoint in this function and loads all
+of the object files in the global list.  When MCJIT calls the registration
+function, GDB catches the breakpoint signal, loads the new object file from
+the inferior's memory, and resumes the execution.  In this way, GDB can get the
+necessary debug information.
+
+GDB Version
+===========
+
+In order to debug code JIT-ed by LLVM, you need GDB 7.0 or newer, which is
+available on most modern distributions of Linux.  The version of GDB that
+Apple ships with Xcode has been frozen at 6.3 for a while.  LLDB may be a
+better option for debugging JIT-ed code on Mac OS X.
+
+
+Debugging MCJIT-ed code
+=======================
+
+The emerging MCJIT component of LLVM allows full debugging of JIT-ed code with
+GDB.  This is due to MCJIT's ability to use the MC emitter to provide full
+DWARF debugging information to GDB.
+
+Note that lli has to be passed the ``-use-mcjit`` flag to JIT the code with
+MCJIT instead of the old JIT.
+
+Example
+-------
+
+Consider the following C code (with line numbers added to make the example
+easier to follow):
+
+..
+   FIXME:
+   Sphinx has the ability to automatically number these lines by adding
+   :linenos: on the line immediately following the `.. code-block:: c`, but
+   it looks like garbage; the line numbers don't even line up with the
+   lines. Is this a Sphinx bug, or is it a CSS problem?
+
+.. code-block:: c
+
+   1   int compute_factorial(int n)
+   2   {
+   3       if (n <= 1)
+   4           return 1;
+   5
+   6       int f = n;
+   7       while (--n > 1)
+   8           f *= n;
+   9       return f;
+   10  }
+   11
+   12
+   13  int main(int argc, char** argv)
+   14  {
+   15      if (argc < 2)
+   16          return -1;
+   17      char firstletter = argv[1][0];
+   18      int result = compute_factorial(firstletter - '0');
+   19
+   20      // Returned result is clipped at 255...
+   21      return result;
+   22  }
+
+Here is a sample command line session that shows how to build and run this
+code via ``lli`` inside GDB:
+
+.. code-block:: bash
+
+   $ $BINPATH/clang -cc1 -O0 -g -emit-llvm showdebug.c
+   $ gdb --quiet --args $BINPATH/lli -use-mcjit showdebug.ll 5
+   Reading symbols from $BINPATH/lli...done.
+   (gdb) b showdebug.c:6
+   No source file named showdebug.c.
+   Make breakpoint pending on future shared library load? (y or [n]) y
+   Breakpoint 1 (showdebug.c:6) pending.
+   (gdb) r
+   Starting program: $BINPATH/lli -use-mcjit showdebug.ll 5
+   [Thread debugging using libthread_db enabled]
+
+   Breakpoint 1, compute_factorial (n=5) at showdebug.c:6
+   6	    int f = n;
+   (gdb) p n
+   $1 = 5
+   (gdb) p f
+   $2 = 0
+   (gdb) n
+   7	    while (--n > 1)
+   (gdb) p f
+   $3 = 5
+   (gdb) b showdebug.c:9
+   Breakpoint 2 at 0x7ffff7ed404c: file showdebug.c, line 9.
+   (gdb) c
+   Continuing.
+
+   Breakpoint 2, compute_factorial (n=1) at showdebug.c:9
+   9	    return f;
+   (gdb) p f
+   $4 = 120
+   (gdb) bt
+   #0  compute_factorial (n=1) at showdebug.c:9
+   #1  0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
+   #2  0x3500000001652748 in ?? ()
+   #3  0x00000000016677e0 in ?? ()
+   #4  0x0000000000000002 in ?? ()
+   #5  0x0000000000d953b3 in llvm::MCJIT::runFunction (this=0x16151f0, F=0x1603020, ArgValues=...) at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/MCJIT/MCJIT.cpp:161
+   #6  0x0000000000dc8872 in llvm::ExecutionEngine::runFunctionAsMain (this=0x16151f0, Fn=0x1603020, argv=..., envp=0x7fffffffe040)
+       at /home/ebenders_test/llvm_svn_rw/lib/ExecutionEngine/ExecutionEngine.cpp:397
+   #7  0x000000000059c583 in main (argc=4, argv=0x7fffffffe018, envp=0x7fffffffe040) at /home/ebenders_test/llvm_svn_rw/tools/lli/lli.cpp:324
+   (gdb) finish
+   Run till exit from #0  compute_factorial (n=1) at showdebug.c:9
+   0x00007ffff7ed40a9 in main (argc=2, argv=0x16677e0) at showdebug.c:18
+   18	    int result = compute_factorial(firstletter - '0');
+   Value returned is $5 = 120
+   (gdb) p result
+   $6 = 23406408
+   (gdb) n
+   21	    return result;
+   (gdb) p result
+   $7 = 120
+   (gdb) c
+   Continuing.
+
+   Program exited with code 0170.
+   (gdb)

Added: www-releases/trunk/3.9.1/docs/_sources/DeveloperPolicy.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/DeveloperPolicy.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/DeveloperPolicy.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/DeveloperPolicy.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,664 @@
+=====================
+LLVM Developer Policy
+=====================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document contains the LLVM Developer Policy which defines the project's
+policy towards developers and their contributions. The intent of this policy is
+to eliminate miscommunication, rework, and confusion that might arise from the
+distributed nature of LLVM's development.  By stating the policy in clear terms,
+we hope each developer can know ahead of time what to expect when making LLVM
+contributions.  This policy covers all llvm.org subprojects, including Clang,
+LLDB, libc++, etc.
+
+This policy is also designed to accomplish the following objectives:
+
+#. Attract both users and developers to the LLVM project.
+
+#. Make life as simple and easy for contributors as possible.
+
+#. Keep the top of Subversion trees as stable as possible.
+
+#. Establish awareness of the project's :ref:`copyright, license, and patent
+   policies <copyright-license-patents>` with contributors to the project.
+
+This policy is aimed at frequent contributors to LLVM. People interested in
+contributing one-off patches can do so in an informal way by sending them to the
+`llvm-commits mailing list
+<http://lists.llvm.org/mailman/listinfo/llvm-commits>`_ and engaging another
+developer to see it through the process.
+
+Developer Policies
+==================
+
+This section contains policies that pertain to frequent LLVM developers.  We
+always welcome `one-off patches`_ from people who do not routinely contribute to
+LLVM, but we expect more from frequent contributors to keep the system as
+efficient as possible for everyone.  Frequent LLVM contributors are expected to
+meet the following requirements in order for LLVM to maintain a high standard of
+quality.
+
+Stay Informed
+-------------
+
+Developers should stay informed by reading at least the "dev" mailing list for
+the projects you are interested in, such as `llvm-dev
+<http://lists.llvm.org/mailman/listinfo/llvm-dev>`_ for LLVM, `cfe-dev
+<http://lists.llvm.org/mailman/listinfo/cfe-dev>`_ for Clang, or `lldb-dev
+<http://lists.llvm.org/mailman/listinfo/lldb-dev>`_ for LLDB.  If you are
+doing anything more than just casual work on LLVM, it is suggested that you also
+subscribe to the "commits" mailing list for the subproject you're interested in,
+such as `llvm-commits
+<http://lists.llvm.org/mailman/listinfo/llvm-commits>`_, `cfe-commits
+<http://lists.llvm.org/mailman/listinfo/cfe-commits>`_, or `lldb-commits
+<http://lists.llvm.org/mailman/listinfo/lldb-commits>`_.  Reading the
+"commits" list and paying attention to changes being made by others is a good
+way to see what other people are interested in and watching the flow of the
+project as a whole.
+
+We recommend that active developers register an email account with `LLVM
+Bugzilla <http://llvm.org/bugs/>`_ and preferably subscribe to the `llvm-bugs
+<http://lists.llvm.org/mailman/listinfo/llvm-bugs>`_ email list to keep track
+of bugs and enhancements occurring in LLVM.  We really appreciate people who are
+proactive at catching incoming bugs in their components and dealing with them
+promptly.
+
+Please be aware that all public LLVM mailing lists are public and archived, and
+that notices of confidentiality or non-disclosure cannot be respected.
+
+.. _patch:
+.. _one-off patches:
+
+Making and Submitting a Patch
+-----------------------------
+
+When making a patch for review, the goal is to make it as easy for the reviewer
+to read it as possible.  As such, we recommend that you:
+
+#. Make your patch against the Subversion trunk, not a branch, and not an old
+   version of LLVM.  This makes it easy to apply the patch.  For information on
+   how to check out SVN trunk, please see the `Getting Started
+   Guide <GettingStarted.html#checkout>`_.
+
+#. Similarly, patches should be submitted soon after they are generated.  Old
+   patches may not apply correctly if the underlying code changes between the
+   time the patch was created and the time it is applied.
+
+#. Patches should be made with ``svn diff``, or similar. If you use a
+   different tool, make sure it uses the ``diff -u`` format and that it
+   doesn't contain clutter which makes it hard to read.
+
+#. If you are modifying generated files, such as the top-level ``configure``
+   script, please separate out those changes into a separate patch from the rest
+   of your changes.
+
+Once your patch is ready, submit it by emailing it to the appropriate project's
+commit mailing list (or commit it directly if applicable). Alternatively, some
+patches get sent to the project's development list or component of the LLVM bug
+tracker, but the commit list is the primary place for reviews and should
+generally be preferred.
+
+When sending a patch to a mailing list, it is a good idea to send it as an
+*attachment* to the message, not embedded into the text of the message.  This
+ensures that your mailer will not mangle the patch when it sends it (e.g. by
+making whitespace changes or by wrapping lines).
+
+*For Thunderbird users:* Before submitting a patch, please open *Preferences >
+Advanced > General > Config Editor*, find the key
+``mail.content_disposition_type``, and set its value to ``1``. Without this
+setting, Thunderbird sends your attachment using ``Content-Disposition: inline``
+rather than ``Content-Disposition: attachment``. Apple Mail gamely displays such
+a file inline, making it difficult to work with for reviewers using that
+program.
+
+When submitting patches, please do not add confidentiality or non-disclosure
+notices to the patches themselves.  These notices conflict with the `LLVM
+License`_ and may result in your contribution being excluded.
+
+.. _code review:
+
+Code Reviews
+------------
+
+LLVM has a code review policy. Code review is one way to increase the quality of
+software. We generally follow these policies:
+
+#. All developers are required to have significant changes reviewed before they
+   are committed to the repository.
+
+#. Code reviews are conducted by email on the relevant project's commit mailing
+   list, or alternatively on the project's development list or bug tracker.
+
+#. Code can be reviewed either before it is committed or after.  We expect major
+   changes to be reviewed before being committed, but smaller changes (or
+   changes where the developer owns the component) can be reviewed after commit.
+
+#. The developer responsible for a code change is also responsible for making
+   all necessary review-related changes.
+
+#. Code review can be an iterative process, which continues until the patch is
+   ready to be committed. Specifically, once a patch is sent out for review, it
+   needs an explicit "looks good" before it is submitted. Do not assume silent
+   approval, or request active objections to the patch with a deadline.
+
+Sometimes code reviews will take longer than you would hope for, especially for
+larger features. Accepted ways to speed up review times for your patches are:
+
+* Review other people's patches. If you help out, everybody will be more
+  willing to do the same for you; goodwill is our currency.
+* Ping the patch. If it is urgent, provide reasons why it is important to you to
+  get this patch landed and ping it every couple of days. If it is
+  not urgent, the common courtesy ping rate is one week. Remember that you're
+  asking for valuable time from other professional developers.
+* Ask for help on IRC. Developers on IRC will be able to either help you
+  directly, or tell you who might be a good reviewer.
+* Split your patch into multiple smaller patches that build on each other. The
+  smaller your patch, the higher the probability that somebody will take a quick
+  look at it.
+
+Developers should participate in code reviews as both reviewers and
+reviewees. If someone is kind enough to review your code, you should return the
+favor for someone else.  Note that anyone is welcome to review and give feedback
+on a patch, but only people with Subversion write access can approve it.
+
+There is a web based code review tool that can optionally be used
+for code reviews. See :doc:`Phabricator`.
+
+Code Owners
+-----------
+
+The LLVM Project relies on two features of its process to maintain rapid
+development in addition to the high quality of its source base: the combination
+of code review plus post-commit review for trusted maintainers.  Having both is
+a great way for the project to take advantage of the fact that most people do
+the right thing most of the time, and only commit patches without pre-commit
+review when they are confident they are right.
+
+The trick to this is that the project has to guarantee that all patches that are
+committed are reviewed after they go in: you don't want everyone to assume
+someone else will review it, allowing the patch to go unreviewed.  To solve this
+problem, we have a notion of an 'owner' for a piece of the code.  The sole
+responsibility of a code owner is to ensure that a commit to their area of the
+code is appropriately reviewed, either by themself or by someone else.  The list
+of current code owners can be found in the file
+`CODE_OWNERS.TXT <http://llvm.org/klaus/llvm/blob/master/CODE_OWNERS.TXT>`_
+in the root of the LLVM source tree.
+
+Note that code ownership is completely different than reviewers: anyone can
+review a piece of code, and we welcome code review from anyone who is
+interested.  Code owners are the "last line of defense" to guarantee that all
+patches that are committed are actually reviewed.
+
+Being a code owner is a somewhat unglamorous position, but it is incredibly
+important for the ongoing success of the project.  Because people get busy,
+interests change, and unexpected things happen, code ownership is purely opt-in,
+and anyone can choose to resign their "title" at any time. For now, we do not
+have an official policy on how one gets elected to be a code owner.
+
+.. _include a testcase:
+
+Test Cases
+----------
+
+Developers are required to create test cases for any bugs fixed and any new
+features added.  Some tips for getting your testcase approved:
+
+* All feature and regression test cases are added to the ``llvm/test``
+  directory. The appropriate sub-directory should be selected (see the
+  :doc:`Testing Guide <TestingGuide>` for details).
+
+* Test cases should be written in :doc:`LLVM assembly language <LangRef>`.
+
+* Test cases, especially for regressions, should be reduced as much as possible,
+  by :doc:`bugpoint <Bugpoint>` or manually. It is unacceptable to place an
+  entire failing program into ``llvm/test`` as this creates a *time-to-test*
+  burden on all developers. Please keep them short.
+
+Note that llvm/test and clang/test are designed for regression and small feature
+tests only. More extensive test cases (e.g., entire applications, benchmarks,
+etc) should be added to the ``llvm-test`` test suite.  The llvm-test suite is
+for coverage (correctness, performance, etc) testing, not feature or regression
+testing.
+
+Quality
+-------
+
+The minimum quality standards that any change must satisfy before being
+committed to the main development branch are:
+
+#. Code must adhere to the `LLVM Coding Standards <CodingStandards.html>`_.
+
+#. Code must compile cleanly (no errors, no warnings) on at least one platform.
+
+#. Bug fixes and new features should `include a testcase`_ so we know if the
+   fix/feature ever regresses in the future.
+
+#. Code must pass the ``llvm/test`` test suite.
+
+#. The code must not cause regressions on a reasonable subset of llvm-test,
+   where "reasonable" depends on the contributor's judgement and the scope of
+   the change (more invasive changes require more testing). A reasonable subset
+   might be something like "``llvm-test/MultiSource/Benchmarks``".
+
+Additionally, the committer is responsible for addressing any problems found in
+the future that the change is responsible for.  For example:
+
+* The code should compile cleanly on all supported platforms.
+
+* The changes should not cause any correctness regressions in the ``llvm-test``
+  suite and must not cause any major performance regressions.
+
+* The change set should not cause performance or correctness regressions for the
+  LLVM tools.
+
+* The changes should not cause performance or correctness regressions in code
+  compiled by LLVM on all applicable targets.
+
+* You are expected to address any `Bugzilla bugs <http://llvm.org/bugs/>`_ that
+  result from your change.
+
+We prefer for this to be handled before submission but understand that it isn't
+possible to test all of this for every submission.  Our build bots and nightly
+testing infrastructure normally finds these problems.  A good rule of thumb is
+to check the nightly testers for regressions the day after your change.  Build
+bots will directly email you if a group of commits that included yours caused a
+failure.  You are expected to check the build bot messages to see if they are
+your fault and, if so, fix the breakage.
+
+Commits that violate these quality standards (e.g. are very broken) may be
+reverted. This is necessary when the change blocks other developers from making
+progress. The developer is welcome to re-commit the change after the problem has
+been fixed.
+
+.. _commit messages:
+
+Commit messages
+---------------
+
+Although we don't enforce the format of commit messages, we prefer that
+you follow these guidelines to help review, search in logs, email formatting
+and so on. These guidelines are very similar to rules used by other open source
+projects.
+
+Most importantly, the contents of the message should be carefully written to
+convey the rationale of the change (without delving too much in detail). It
+also should avoid being vague or overly specific. For example, "bits were not
+set right" will leave the reviewer wondering about which bits, and why they
+weren't right, while "Correctly set overflow bits in TargetInfo" conveys almost
+all there is to the change.
+
+Below are some guidelines about the format of the message itself:
+
+* Separate the commit message into title, body and, if you're not the original
+  author, a "Patch by" attribution line (see below).
+
+* The title should be concise. Because all commits are emailed to the list with
+  the first line as the subject, long titles are frowned upon.  Short titles
+  also look better in `git log`.
+
+* When the changes are restricted to a specific part of the code (e.g. a
+  back-end or optimization pass), it is customary to add a tag to the
+  beginning of the line in square brackets.  For example, "[SCEV] ..."
+  or "[OpenMP] ...". This helps email filters and searches for post-commit
+  reviews.
+
+* The body, if it exists, should be separated from the title by an empty line.
+
+* The body should be concise, but explanatory, including a complete
+  reasoning.  Unless it is required to understand the change, examples,
+  code snippets and gory details should be left to bug comments, web
+  review or the mailing list.
+
+* If the patch fixes a bug in bugzilla, please include the PR# in the message.
+
+* `Attribution of Changes`_ should be in a separate line, after the end of
+  the body, as simple as "Patch by John Doe.". This is how we officially
+  handle attribution, and there are automated processes that rely on this
+  format.
+
+* Text formatting and spelling should follow the same rules as documentation
+  and in-code comments, ex. capitalization, full stop, etc.
+
+* If the commit is a bug fix on top of another recently committed patch, or a
+  revert or reapply of a patch, include the svn revision number of the prior
+  related commit. This could be as simple as "Revert rNNNN because it caused
+  PR#".
+
+For minor violations of these recommendations, the community normally favors
+reminding the contributor of this policy over reverting. Minor corrections and
+omissions can be handled by sending a reply to the commits mailing list.
+
+Obtaining Commit Access
+-----------------------
+
+We grant commit access to contributors with a track record of submitting high
+quality patches.  If you would like commit access, please send an email to
+`Chris <mailto:clattner at llvm.org>`_ with the following information:
+
+#. The user name you want to commit with, e.g. "hacker".
+
+#. The full name and email address you want message to llvm-commits to come
+   from, e.g. "J. Random Hacker <hacker at yoyodyne.com>".
+
+#. A "password hash" of the password you want to use, e.g. "``2ACR96qjUqsyM``".
+   Note that you don't ever tell us what your password is; you just give it to
+   us in an encrypted form.  To get this, run "``htpasswd``" (a utility that
+   comes with apache) in *crypt* mode (often enabled with "``-d``"), or find a web
+   page that will do it for you.  Note that our system does not work with MD5
+   hashes.  These are significantly longer than a crypt hash - e.g.
+   "``$apr1$vea6bBV2$Z8IFx.AfeD8LhqlZFqJer0``", we only accept the shorter crypt hash.
+
+Once you've been granted commit access, you should be able to check out an LLVM
+tree with an SVN URL of "https://username@llvm.org/..." instead of the normal
+anonymous URL of "http://llvm.org/...".  The first time you commit you'll have
+to type in your password.  Note that you may get a warning from SVN about an
+untrusted key; you can ignore this.  To verify that your commit access works,
+please do a test commit (e.g. change a comment or add a blank line).  Your first
+commit to a repository may require the autogenerated email to be approved by a
+mailing list.  This is normal and will be done when the mailing list owner has
+time.
+
+If you have recently been granted commit access, these policies apply:
+
+#. You are granted *commit-after-approval* to all parts of LLVM.  To get
+   approval, submit a `patch`_ to `llvm-commits
+   <http://lists.llvm.org/mailman/listinfo/llvm-commits>`_. When approved,
+   you may commit it yourself.
+
+#. You are allowed to commit patches without approval which you think are
+   obvious. This is clearly a subjective decision --- we simply expect you to
+   use good judgement.  Examples include: fixing build breakage, reverting
+   obviously broken patches, documentation/comment changes, any other minor
+   changes.
+
+#. You are allowed to commit patches without approval to those portions of LLVM
+   that you have contributed or maintain (i.e., have been assigned
+   responsibility for), with the proviso that such commits must not break the
+   build.  This is a "trust but verify" policy, and commits of this nature are
+   reviewed after they are committed.
+
+#. Multiple violations of these policies or a single egregious violation may
+   cause commit access to be revoked.
+
+In any case, your changes are still subject to `code review`_ (either before or
+after they are committed, depending on the nature of the change).  You are
+encouraged to review other peoples' patches as well, but you aren't required
+to do so.
+
+.. _discuss the change/gather consensus:
+
+Making a Major Change
+---------------------
+
+When a developer begins a major new project with the aim of contributing it back
+to LLVM, they should inform the community with an email to the `llvm-dev
+<http://lists.llvm.org/mailman/listinfo/llvm-dev>`_ email list, to the extent
+possible. The reason for this is to:
+
+#. keep the community informed about future changes to LLVM,
+
+#. avoid duplication of effort by preventing multiple parties working on the
+   same thing and not knowing about it, and
+
+#. ensure that any technical issues around the proposed work are discussed and
+   resolved before any significant work is done.
+
+The design of LLVM is carefully controlled to ensure that all the pieces fit
+together well and are as consistent as possible. If you plan to make a major
+change to the way LLVM works or want to add a major new extension, it is a good
+idea to get consensus with the development community before you start working on
+it.
+
+Once the design of the new feature is finalized, the work itself should be done
+as a series of `incremental changes`_, not as a long-term development branch.
+
+.. _incremental changes:
+
+Incremental Development
+-----------------------
+
+In the LLVM project, we do all significant changes as a series of incremental
+patches.  We have a strong dislike for huge changes or long-term development
+branches.  Long-term development branches have a number of drawbacks:
+
+#. Branches must have mainline merged into them periodically.  If the branch
+   development and mainline development occur in the same pieces of code,
+   resolving merge conflicts can take a lot of time.
+
+#. Other people in the community tend to ignore work on branches.
+
+#. Huge changes (produced when a branch is merged back onto mainline) are
+   extremely difficult to `code review`_.
+
+#. Branches are not routinely tested by our nightly tester infrastructure.
+
+#. Changes developed as monolithic large changes often don't work until the
+   entire set of changes is done.  Breaking it down into a set of smaller
+   changes increases the odds that any of the work will be committed to the main
+   repository.
+
+To address these problems, LLVM uses an incremental development style and we
+require contributors to follow this practice when making a large/invasive
+change.  Some tips:
+
+* Large/invasive changes usually have a number of secondary changes that are
+  required before the big change can be made (e.g. API cleanup, etc).  These
+  sorts of changes can often be done before the major change is done,
+  independently of that work.
+
+* The remaining inter-related work should be decomposed into unrelated sets of
+  changes if possible.  Once this is done, define the first increment and get
+  consensus on what the end goal of the change is.
+
+* Each change in the set can be stand alone (e.g. to fix a bug), or part of a
+  planned series of changes that works towards the development goal.
+
+* Each change should be kept as small as possible. This simplifies your work
+  (into a logical progression), simplifies code review and reduces the chance
+  that you will get negative feedback on the change. Small increments also
+  facilitate the maintenance of a high quality code base.
+
+* Often, an independent precursor to a big change is to add a new API and slowly
+  migrate clients to use the new API.  Each change to use the new API is often
+  "obvious" and can be committed without review.  Once the new API is in place
+  and used, it is much easier to replace the underlying implementation of the
+  API.  This implementation change is logically separate from the API
+  change.
+
+If you are interested in making a large change, and this scares you, please make
+sure to first `discuss the change/gather consensus`_ then ask about the best way
+to go about making the change.
+
+Attribution of Changes
+----------------------
+
+When contributors submit a patch to an LLVM project, other developers with
+commit access may commit it for the author once appropriate (based on the
+progression of code review, etc.). When doing so, it is important to retain
+correct attribution of contributions to their contributors. However, we do not
+want the source code to be littered with random attributions "this code written
+by J. Random Hacker" (this is noisy and distracting). In practice, the revision
+control system keeps a perfect history of who changed what, and the CREDITS.txt
+file describes higher-level contributions. If you commit a patch for someone
+else, please follow the attribution of changes in the simple manner as outlined
+by the `commit messages`_ section. Overall, please do not add contributor names
+to the source code.
+
+Also, don't commit patches authored by others unless they have submitted the
+patch to the project or you have been authorized to submit them on their behalf
+(you work together and your company authorized you to contribute the patches,
+etc.). The author should first submit them to the relevant project's commit
+list, development list, or LLVM bug tracker component. If someone sends you
+a patch privately, encourage them to submit it to the appropriate list first.
+
+
+IR Backwards Compatibility
+--------------------------
+
+When the IR format has to be changed, keep in mind that we try to maintain some
+backwards compatibility. The rules are intended as a balance between convenience
+for llvm users and not imposing a big burden on llvm developers:
+
+* The textual format is not backwards compatible. We don't change it too often,
+  but there are no specific promises.
+
+* Additions and changes to the IR should be reflected in
+  ``test/Bitcode/compatibility.ll``.
+
+* The bitcode format produced by a X.Y release will be readable by all
+  following X.Z releases and the (X+1).0 release.
+
+* After each X.Y release, ``compatibility.ll`` must be copied to
+  ``compatibility-X.Y.ll``. The corresponding bitcode file should be assembled
+  using the X.Y build and committed as ``compatibility-X.Y.ll.bc``.
+
+* Newer releases can ignore features from older releases, but they cannot
+  miscompile them. For example, if nsw is ever replaced with something else,
+  dropping it would be a valid way to upgrade the IR.
+
+* Debug metadata is special in that it is currently dropped during upgrades.
+
+* Non-debug metadata is defined to be safe to drop, so a valid way to upgrade
+  it is to drop it. That is not very user friendly and a bit more effort is
+  expected, but no promises are made.
+
+C API Changes
+----------------
+
+* Stability Guarantees: The C API is, in general, a "best effort" for stability.
+  This means that we make every attempt to keep the C API stable, but that
+  stability will be limited by the abstractness of the interface and the
+  stability of the C++ API that it wraps. In practice, this means that things
+  like "create debug info" or "create this type of instruction" are likely to be
+  less stable than "take this IR file and JIT it for my current machine".
+
+* Release stability: We won't break the C API on the release branch with patches
+  that go on that branch, with the exception that we will fix an unintentional
+  C API break that will keep the release consistent with both the previous and
+  next release.
+
+* Testing: Patches to the C API are expected to come with tests just like any
+  other patch.
+
+* Including new things into the API: If an LLVM subcomponent has a C API already
+  included, then expanding that C API is acceptable. Adding C API for
+  subcomponents that don't currently have one needs to be discussed on the
+  mailing list for design and maintainability feedback prior to implementation.
+
+* Documentation: Any changes to the C API are required to be documented in the
+  release notes so that it's clear to external users who do not follow the
+  project how the C API is changing and evolving.
+
+.. _copyright-license-patents:
+
+Copyright, License, and Patents
+===============================
+
+.. note::
+
+   This section deals with legal matters but does not provide legal advice.  We
+   are not lawyers --- please seek legal counsel from an attorney.
+
+This section addresses the issues of copyright, license and patents for the LLVM
+project.  The copyright for the code is held by the individual contributors of
+the code and the terms of its license to LLVM users and developers is the
+`University of Illinois/NCSA Open Source License
+<http://www.opensource.org/licenses/UoI-NCSA.php>`_ (with portions dual licensed
+under the `MIT License <http://www.opensource.org/licenses/mit-license.php>`_,
+see below).  As contributor to the LLVM project, you agree to allow any
+contributions to the project to licensed under these terms.
+
+Copyright
+---------
+
+The LLVM project does not require copyright assignments, which means that the
+copyright for the code in the project is held by its respective contributors who
+have each agreed to release their contributed code under the terms of the `LLVM
+License`_.
+
+An implication of this is that the LLVM license is unlikely to ever change:
+changing it would require tracking down all the contributors to LLVM and getting
+them to agree that a license change is acceptable for their contribution.  Since
+there are no plans to change the license, this is not a cause for concern.
+
+As a contributor to the project, this means that you (or your company) retain
+ownership of the code you contribute, that it cannot be used in a way that
+contradicts the license (which is a liberal BSD-style license), and that the
+license for your contributions won't change without your approval in the
+future.
+
+.. _LLVM License:
+
+License
+-------
+
+We intend to keep LLVM perpetually open source and to use a liberal open source
+license. **As a contributor to the project, you agree that any contributions be
+licensed under the terms of the corresponding subproject.** All of the code in
+LLVM is available under the `University of Illinois/NCSA Open Source License
+<http://www.opensource.org/licenses/UoI-NCSA.php>`_, which boils down to
+this:
+
+* You can freely distribute LLVM.
+* You must retain the copyright notice if you redistribute LLVM.
+* Binaries derived from LLVM must reproduce the copyright notice (e.g. in an
+  included readme file).
+* You can't use our names to promote your LLVM derived products.
+* There's no warranty on LLVM at all.
+
+We believe this fosters the widest adoption of LLVM because it **allows
+commercial products to be derived from LLVM** with few restrictions and without
+a requirement for making any derived works also open source (i.e.  LLVM's
+license is not a "copyleft" license like the GPL). We suggest that you read the
+`License <http://www.opensource.org/licenses/UoI-NCSA.php>`_ if further
+clarification is needed.
+
+In addition to the UIUC license, the runtime library components of LLVM
+(**compiler_rt, libc++, and libclc**) are also licensed under the `MIT License
+<http://www.opensource.org/licenses/mit-license.php>`_, which does not contain
+the binary redistribution clause.  As a user of these runtime libraries, it
+means that you can choose to use the code under either license (and thus don't
+need the binary redistribution clause), and as a contributor to the code that
+you agree that any contributions to these libraries be licensed under both
+licenses.  We feel that this is important for runtime libraries, because they
+are implicitly linked into applications and therefore should not subject those
+applications to the binary redistribution clause. This also means that it is ok
+to move code from (e.g.)  libc++ to the LLVM core without concern, but that code
+cannot be moved from the LLVM core to libc++ without the copyright owner's
+permission.
+
+Note that the LLVM Project does distribute dragonegg, **which is
+GPL.** This means that anything "linked" into dragonegg must itself be compatible
+with the GPL, and must be releasable under the terms of the GPL.  This implies
+that **any code linked into dragonegg and distributed to others may be subject to
+the viral aspects of the GPL** (for example, a proprietary code generator linked
+into dragonegg must be made available under the GPL).  This is not a problem for
+code already distributed under a more liberal license (like the UIUC license),
+and GPL-containing subprojects are kept in separate SVN repositories whose
+LICENSE.txt files specifically indicate that they contain GPL code.
+
+We have no plans to change the license of LLVM.  If you have questions or
+comments about the license, please contact the `LLVM Developer's Mailing
+List <mailto:llvm-dev at lists.llvm.org>`_.
+
+Patents
+-------
+
+To the best of our knowledge, LLVM does not infringe on any patents (we have
+actually removed code from LLVM in the past that was found to infringe).  Having
+code in LLVM that infringes on patents would violate an important goal of the
+project by making it hard or impossible to reuse the code for arbitrary purposes
+(including commercial use).
+
+When contributing code, we expect contributors to notify us of any potential for
+patent-related trouble with their changes (including from third parties).  If
+you or your employer own the rights to a patent and would like to contribute
+code to LLVM that relies on it, we require that the copyright owner sign an
+agreement that allows any other user of LLVM to freely use your patent.  Please
+contact the `LLVM Foundation Board of Directors <mailto:board at llvm.org>`_ for more
+details.

Added: www-releases/trunk/3.9.1/docs/_sources/ExceptionHandling.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/ExceptionHandling.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/ExceptionHandling.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/ExceptionHandling.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,841 @@
+==========================
+Exception Handling in LLVM
+==========================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document is the central repository for all information pertaining to
+exception handling in LLVM.  It describes the format that LLVM exception
+handling information takes, which is useful for those interested in creating
+front-ends or dealing directly with the information.  Further, this document
+provides specific examples of what exception handling information is used for in
+C and C++.
+
+Itanium ABI Zero-cost Exception Handling
+----------------------------------------
+
+Exception handling for most programming languages is designed to recover from
+conditions that rarely occur during general use of an application.  To that end,
+exception handling should not interfere with the main flow of an application's
+algorithm by performing checkpointing tasks, such as saving the current pc or
+register state.
+
+The Itanium ABI Exception Handling Specification defines a methodology for
+providing outlying data in the form of exception tables without inlining
+speculative exception handling code in the flow of an application's main
+algorithm.  Thus, the specification is said to add "zero-cost" to the normal
+execution of an application.
+
+A more complete description of the Itanium ABI exception handling runtime
+support of can be found at `Itanium C++ ABI: Exception Handling
+<http://mentorembedded.github.com/cxx-abi/abi-eh.html>`_. A description of the
+exception frame format can be found at `Exception Frames
+<http://refspecs.linuxfoundation.org/LSB_3.0.0/LSB-Core-generic/LSB-Core-generic/ehframechpt.html>`_,
+with details of the DWARF 4 specification at `DWARF 4 Standard
+<http://dwarfstd.org/Dwarf4Std.php>`_.  A description for the C++ exception
+table formats can be found at `Exception Handling Tables
+<http://mentorembedded.github.com/cxx-abi/exceptions.pdf>`_.
+
+Setjmp/Longjmp Exception Handling
+---------------------------------
+
+Setjmp/Longjmp (SJLJ) based exception handling uses LLVM intrinsics
+`llvm.eh.sjlj.setjmp`_ and `llvm.eh.sjlj.longjmp`_ to handle control flow for
+exception handling.
+
+For each function which does exception processing --- be it ``try``/``catch``
+blocks or cleanups --- that function registers itself on a global frame
+list. When exceptions are unwinding, the runtime uses this list to identify
+which functions need processing.
+
+Landing pad selection is encoded in the call site entry of the function
+context. The runtime returns to the function via `llvm.eh.sjlj.longjmp`_, where
+a switch table transfers control to the appropriate landing pad based on the
+index stored in the function context.
+
+In contrast to DWARF exception handling, which encodes exception regions and
+frame information in out-of-line tables, SJLJ exception handling builds and
+removes the unwind frame context at runtime. This results in faster exception
+handling at the expense of slower execution when no exceptions are thrown. As
+exceptions are, by their nature, intended for uncommon code paths, DWARF
+exception handling is generally preferred to SJLJ.
+
+Windows Runtime Exception Handling
+-----------------------------------
+
+LLVM supports handling exceptions produced by the Windows runtime, but it
+requires a very different intermediate representation. It is not based on the
+":ref:`landingpad <i_landingpad>`" instruction like the other two models, and is
+described later in this document under :ref:`wineh`.
+
+Overview
+--------
+
+When an exception is thrown in LLVM code, the runtime does its best to find a
+handler suited to processing the circumstance.
+
+The runtime first attempts to find an *exception frame* corresponding to the
+function where the exception was thrown.  If the programming language supports
+exception handling (e.g. C++), the exception frame contains a reference to an
+exception table describing how to process the exception.  If the language does
+not support exception handling (e.g. C), or if the exception needs to be
+forwarded to a prior activation, the exception frame contains information about
+how to unwind the current activation and restore the state of the prior
+activation.  This process is repeated until the exception is handled. If the
+exception is not handled and no activations remain, then the application is
+terminated with an appropriate error message.
+
+Because different programming languages have different behaviors when handling
+exceptions, the exception handling ABI provides a mechanism for
+supplying *personalities*. An exception handling personality is defined by
+way of a *personality function* (e.g. ``__gxx_personality_v0`` in C++),
+which receives the context of the exception, an *exception structure*
+containing the exception object type and value, and a reference to the exception
+table for the current function.  The personality function for the current
+compile unit is specified in a *common exception frame*.
+
+The organization of an exception table is language dependent. For C++, an
+exception table is organized as a series of code ranges defining what to do if
+an exception occurs in that range. Typically, the information associated with a
+range defines which types of exception objects (using C++ *type info*) that are
+handled in that range, and an associated action that should take place. Actions
+typically pass control to a *landing pad*.
+
+A landing pad corresponds roughly to the code found in the ``catch`` portion of
+a ``try``/``catch`` sequence. When execution resumes at a landing pad, it
+receives an *exception structure* and a *selector value* corresponding to the
+*type* of exception thrown. The selector is then used to determine which *catch*
+should actually process the exception.
+
+LLVM Code Generation
+====================
+
+From a C++ developer's perspective, exceptions are defined in terms of the
+``throw`` and ``try``/``catch`` statements. In this section we will describe the
+implementation of LLVM exception handling in terms of C++ examples.
+
+Throw
+-----
+
+Languages that support exception handling typically provide a ``throw``
+operation to initiate the exception process. Internally, a ``throw`` operation
+breaks down into two steps.
+
+#. A request is made to allocate exception space for an exception structure.
+   This structure needs to survive beyond the current activation. This structure
+   will contain the type and value of the object being thrown.
+
+#. A call is made to the runtime to raise the exception, passing the exception
+   structure as an argument.
+
+In C++, the allocation of the exception structure is done by the
+``__cxa_allocate_exception`` runtime function. The exception raising is handled
+by ``__cxa_throw``. The type of the exception is represented using a C++ RTTI
+structure.
+
+Try/Catch
+---------
+
+A call within the scope of a *try* statement can potentially raise an
+exception. In those circumstances, the LLVM C++ front-end replaces the call with
+an ``invoke`` instruction. Unlike a call, the ``invoke`` has two potential
+continuation points:
+
+#. where to continue when the call succeeds as per normal, and
+
+#. where to continue if the call raises an exception, either by a throw or the
+   unwinding of a throw
+
+The term used to define the place where an ``invoke`` continues after an
+exception is called a *landing pad*. LLVM landing pads are conceptually
+alternative function entry points where an exception structure reference and a
+type info index are passed in as arguments. The landing pad saves the exception
+structure reference and then proceeds to select the catch block that corresponds
+to the type info of the exception object.
+
+The LLVM :ref:`i_landingpad` is used to convey information about the landing
+pad to the back end. For C++, the ``landingpad`` instruction returns a pointer
+and integer pair corresponding to the pointer to the *exception structure* and
+the *selector value* respectively.
+
+The ``landingpad`` instruction looks for a reference to the personality
+function to be used for this ``try``/``catch`` sequence in the parent
+function's attribute list. The instruction contains a list of *cleanup*,
+*catch*, and *filter* clauses. The exception is tested against the clauses
+sequentially from first to last. The clauses have the following meanings:
+
+-  ``catch <type> @ExcType``
+
+   - This clause means that the landingpad block should be entered if the
+     exception being thrown is of type ``@ExcType`` or a subtype of
+     ``@ExcType``. For C++, ``@ExcType`` is a pointer to the ``std::type_info``
+     object (an RTTI object) representing the C++ exception type.
+
+   - If ``@ExcType`` is ``null``, any exception matches, so the landingpad
+     should always be entered. This is used for C++ catch-all blocks ("``catch
+     (...)``").
+
+   - When this clause is matched, the selector value will be equal to the value
+     returned by "``@llvm.eh.typeid.for(i8* @ExcType)``". This will always be a
+     positive value.
+
+-  ``filter <type> [<type> @ExcType1, ..., <type> @ExcTypeN]``
+
+   - This clause means that the landingpad should be entered if the exception
+     being thrown does *not* match any of the types in the list (which, for C++,
+     are again specified as ``std::type_info`` pointers).
+
+   - C++ front-ends use this to implement C++ exception specifications, such as
+     "``void foo() throw (ExcType1, ..., ExcTypeN) { ... }``".
+
+   - When this clause is matched, the selector value will be negative.
+
+   - The array argument to ``filter`` may be empty; for example, "``[0 x i8**]
+     undef``". This means that the landingpad should always be entered. (Note
+     that such a ``filter`` would not be equivalent to "``catch i8* null``",
+     because ``filter`` and ``catch`` produce negative and positive selector
+     values respectively.)
+
+-  ``cleanup``
+
+   - This clause means that the landingpad should always be entered.
+
+   - C++ front-ends use this for calling objects' destructors.
+
+   - When this clause is matched, the selector value will be zero.
+
+   - The runtime may treat "``cleanup``" differently from "``catch <type>
+     null``".
+
+     In C++, if an unhandled exception occurs, the language runtime will call
+     ``std::terminate()``, but it is implementation-defined whether the runtime
+     unwinds the stack and calls object destructors first. For example, the GNU
+     C++ unwinder does not call object destructors when an unhandled exception
+     occurs. The reason for this is to improve debuggability: it ensures that
+     ``std::terminate()`` is called from the context of the ``throw``, so that
+     this context is not lost by unwinding the stack. A runtime will typically
+     implement this by searching for a matching non-``cleanup`` clause, and
+     aborting if it does not find one, before entering any landingpad blocks.
+
+Once the landing pad has the type info selector, the code branches to the code
+for the first catch. The catch then checks the value of the type info selector
+against the index of type info for that catch.  Since the type info index is not
+known until all the type infos have been gathered in the backend, the catch code
+must call the `llvm.eh.typeid.for`_ intrinsic to determine the index for a given
+type info. If the catch fails to match the selector then control is passed on to
+the next catch.
+
+Finally, the entry and exit of catch code is bracketed with calls to
+``__cxa_begin_catch`` and ``__cxa_end_catch``.
+
+* ``__cxa_begin_catch`` takes an exception structure reference as an argument
+  and returns the value of the exception object.
+
+* ``__cxa_end_catch`` takes no arguments. This function:
+
+  #. Locates the most recently caught exception and decrements its handler
+     count,
+
+  #. Removes the exception from the *caught* stack if the handler count goes to
+     zero, and
+
+  #. Destroys the exception if the handler count goes to zero and the exception
+     was not re-thrown by throw.
+
+  .. note::
+
+    a rethrow from within the catch may replace this call with a
+    ``__cxa_rethrow``.
+
+Cleanups
+--------
+
+A cleanup is extra code which needs to be run as part of unwinding a scope.  C++
+destructors are a typical example, but other languages and language extensions
+provide a variety of different kinds of cleanups. In general, a landing pad may
+need to run arbitrary amounts of cleanup code before actually entering a catch
+block. To indicate the presence of cleanups, a :ref:`i_landingpad` should have
+a *cleanup* clause.  Otherwise, the unwinder will not stop at the landing pad if
+there are no catches or filters that require it to.
+
+.. note::
+
+  Do not allow a new exception to propagate out of the execution of a
+  cleanup. This can corrupt the internal state of the unwinder.  Different
+  languages describe different high-level semantics for these situations: for
+  example, C++ requires that the process be terminated, whereas Ada cancels both
+  exceptions and throws a third.
+
+When all cleanups are finished, if the exception is not handled by the current
+function, resume unwinding by calling the :ref:`resume instruction <i_resume>`,
+passing in the result of the ``landingpad`` instruction for the original
+landing pad.
+
+Throw Filters
+-------------
+
+C++ allows the specification of which exception types may be thrown from a
+function. To represent this, a top level landing pad may exist to filter out
+invalid types. To express this in LLVM code the :ref:`i_landingpad` will have a
+filter clause. The clause consists of an array of type infos.
+``landingpad`` will return a negative value
+if the exception does not match any of the type infos. If no match is found then
+a call to ``__cxa_call_unexpected`` should be made, otherwise
+``_Unwind_Resume``.  Each of these functions requires a reference to the
+exception structure.  Note that the most general form of a ``landingpad``
+instruction can have any number of catch, cleanup, and filter clauses (though
+having more than one cleanup is pointless). The LLVM C++ front-end can generate
+such ``landingpad`` instructions due to inlining creating nested exception
+handling scopes.
+
+.. _undefined:
+
+Restrictions
+------------
+
+The unwinder delegates the decision of whether to stop in a call frame to that
+call frame's language-specific personality function. Not all unwinders guarantee
+that they will stop to perform cleanups. For example, the GNU C++ unwinder
+doesn't do so unless the exception is actually caught somewhere further up the
+stack.
+
+In order for inlining to behave correctly, landing pads must be prepared to
+handle selector results that they did not originally advertise. Suppose that a
+function catches exceptions of type ``A``, and it's inlined into a function that
+catches exceptions of type ``B``. The inliner will update the ``landingpad``
+instruction for the inlined landing pad to include the fact that ``B`` is also
+caught. If that landing pad assumes that it will only be entered to catch an
+``A``, it's in for a rude awakening.  Consequently, landing pads must test for
+the selector results they understand and then resume exception propagation with
+the `resume instruction <LangRef.html#i_resume>`_ if none of the conditions
+match.
+
+Exception Handling Intrinsics
+=============================
+
+In addition to the ``landingpad`` and ``resume`` instructions, LLVM uses several
+intrinsic functions (name prefixed with ``llvm.eh``) to provide exception
+handling information at various points in generated code.
+
+.. _llvm.eh.typeid.for:
+
+``llvm.eh.typeid.for``
+----------------------
+
+.. code-block:: llvm
+
+  i32 @llvm.eh.typeid.for(i8* %type_info)
+
+
+This intrinsic returns the type info index in the exception table of the current
+function.  This value can be used to compare against the result of
+``landingpad`` instruction.  The single argument is a reference to a type info.
+
+Uses of this intrinsic are generated by the C++ front-end.
+
+.. _llvm.eh.begincatch:
+
+``llvm.eh.begincatch``
+----------------------
+
+.. code-block:: llvm
+
+  void @llvm.eh.begincatch(i8* %ehptr, i8* %ehobj)
+
+
+This intrinsic marks the beginning of catch handling code within the blocks
+following a ``landingpad`` instruction.  The exact behavior of this function
+depends on the compilation target and the personality function associated
+with the ``landingpad`` instruction.
+
+The first argument to this intrinsic is a pointer that was previously extracted
+from the aggregate return value of the ``landingpad`` instruction.  The second
+argument to the intrinsic is a pointer to stack space where the exception object
+should be stored. The runtime handles the details of copying the exception
+object into the slot. If the second parameter is null, no copy occurs.
+
+Uses of this intrinsic are generated by the C++ front-end.  Many targets will
+use implementation-specific functions (such as ``__cxa_begin_catch``) instead
+of this intrinsic.  The intrinsic is provided for targets that require a more
+abstract interface.
+
+When used in the native Windows C++ exception handling implementation, this
+intrinsic serves as a placeholder to delimit code before a catch handler is
+outlined.  When the handler is is outlined, this intrinsic will be replaced
+by instructions that retrieve the exception object pointer from the frame
+allocation block.
+
+
+.. _llvm.eh.endcatch:
+
+``llvm.eh.endcatch``
+----------------------
+
+.. code-block:: llvm
+
+  void @llvm.eh.endcatch()
+
+
+This intrinsic marks the end of catch handling code within the current block,
+which will be a successor of a block which called ``llvm.eh.begincatch''.
+The exact behavior of this function depends on the compilation target and the
+personality function associated with the corresponding ``landingpad``
+instruction.
+
+There may be more than one call to ``llvm.eh.endcatch`` for any given call to
+``llvm.eh.begincatch`` with each ``llvm.eh.endcatch`` call corresponding to the
+end of a different control path.  All control paths following a call to
+``llvm.eh.begincatch`` must reach a call to ``llvm.eh.endcatch``.
+
+Uses of this intrinsic are generated by the C++ front-end.  Many targets will
+use implementation-specific functions (such as ``__cxa_begin_catch``) instead
+of this intrinsic.  The intrinsic is provided for targets that require a more
+abstract interface.
+
+When used in the native Windows C++ exception handling implementation, this
+intrinsic serves as a placeholder to delimit code before a catch handler is
+outlined.  After the handler is outlined, this intrinsic is simply removed.
+
+
+.. _llvm.eh.exceptionpointer:
+
+``llvm.eh.exceptionpointer``
+----------------------------
+
+.. code-block:: text
+
+  i8 addrspace(N)* @llvm.eh.padparam.pNi8(token %catchpad)
+
+
+This intrinsic retrieves a pointer to the exception caught by the given
+``catchpad``.
+
+
+SJLJ Intrinsics
+---------------
+
+The ``llvm.eh.sjlj`` intrinsics are used internally within LLVM's
+backend.  Uses of them are generated by the backend's
+``SjLjEHPrepare`` pass.
+
+.. _llvm.eh.sjlj.setjmp:
+
+``llvm.eh.sjlj.setjmp``
+~~~~~~~~~~~~~~~~~~~~~~~
+
+.. code-block:: text
+
+  i32 @llvm.eh.sjlj.setjmp(i8* %setjmp_buf)
+
+For SJLJ based exception handling, this intrinsic forces register saving for the
+current function and stores the address of the following instruction for use as
+a destination address by `llvm.eh.sjlj.longjmp`_. The buffer format and the
+overall functioning of this intrinsic is compatible with the GCC
+``__builtin_setjmp`` implementation allowing code built with the clang and GCC
+to interoperate.
+
+The single parameter is a pointer to a five word buffer in which the calling
+context is saved. The front end places the frame pointer in the first word, and
+the target implementation of this intrinsic should place the destination address
+for a `llvm.eh.sjlj.longjmp`_ in the second word. The following three words are
+available for use in a target-specific manner.
+
+.. _llvm.eh.sjlj.longjmp:
+
+``llvm.eh.sjlj.longjmp``
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. code-block:: llvm
+
+  void @llvm.eh.sjlj.longjmp(i8* %setjmp_buf)
+
+For SJLJ based exception handling, the ``llvm.eh.sjlj.longjmp`` intrinsic is
+used to implement ``__builtin_longjmp()``. The single parameter is a pointer to
+a buffer populated by `llvm.eh.sjlj.setjmp`_. The frame pointer and stack
+pointer are restored from the buffer, then control is transferred to the
+destination address.
+
+``llvm.eh.sjlj.lsda``
+~~~~~~~~~~~~~~~~~~~~~
+
+.. code-block:: llvm
+
+  i8* @llvm.eh.sjlj.lsda()
+
+For SJLJ based exception handling, the ``llvm.eh.sjlj.lsda`` intrinsic returns
+the address of the Language Specific Data Area (LSDA) for the current
+function. The SJLJ front-end code stores this address in the exception handling
+function context for use by the runtime.
+
+``llvm.eh.sjlj.callsite``
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. code-block:: llvm
+
+  void @llvm.eh.sjlj.callsite(i32 %call_site_num)
+
+For SJLJ based exception handling, the ``llvm.eh.sjlj.callsite`` intrinsic
+identifies the callsite value associated with the following ``invoke``
+instruction. This is used to ensure that landing pad entries in the LSDA are
+generated in matching order.
+
+Asm Table Formats
+=================
+
+There are two tables that are used by the exception handling runtime to
+determine which actions should be taken when an exception is thrown.
+
+Exception Handling Frame
+------------------------
+
+An exception handling frame ``eh_frame`` is very similar to the unwind frame
+used by DWARF debug info. The frame contains all the information necessary to
+tear down the current frame and restore the state of the prior frame. There is
+an exception handling frame for each function in a compile unit, plus a common
+exception handling frame that defines information common to all functions in the
+unit.
+
+The format of this call frame information (CFI) is often platform-dependent,
+however. ARM, for example, defines their own format. Apple has their own compact
+unwind info format.  On Windows, another format is used for all architectures
+since 32-bit x86.  LLVM will emit whatever information is required by the
+target.
+
+Exception Tables
+----------------
+
+An exception table contains information about what actions to take when an
+exception is thrown in a particular part of a function's code. This is typically
+referred to as the language-specific data area (LSDA). The format of the LSDA
+table is specific to the personality function, but the majority of personalities
+out there use a variation of the tables consumed by ``__gxx_personality_v0``.
+There is one exception table per function, except leaf functions and functions
+that have calls only to non-throwing functions. They do not need an exception
+table.
+
+.. _wineh:
+
+Exception Handling using the Windows Runtime
+=================================================
+
+Background on Windows exceptions
+---------------------------------
+
+Interacting with exceptions on Windows is significantly more complicated than
+on Itanium C++ ABI platforms. The fundamental difference between the two models
+is that Itanium EH is designed around the idea of "successive unwinding," while
+Windows EH is not.
+
+Under Itanium, throwing an exception typically involes allocating thread local
+memory to hold the exception, and calling into the EH runtime. The runtime
+identifies frames with appropriate exception handling actions, and successively
+resets the register context of the current thread to the most recently active
+frame with actions to run. In LLVM, execution resumes at a ``landingpad``
+instruction, which produces register values provided by the runtime. If a
+function is only cleaning up allocated resources, the function is responsible
+for calling ``_Unwind_Resume`` to transition to the next most recently active
+frame after it is finished cleaning up. Eventually, the frame responsible for
+handling the exception calls ``__cxa_end_catch`` to destroy the exception,
+release its memory, and resume normal control flow.
+
+The Windows EH model does not use these successive register context resets.
+Instead, the active exception is typically described by a frame on the stack.
+In the case of C++ exceptions, the exception object is allocated in stack memory
+and its address is passed to ``__CxxThrowException``. General purpose structured
+exceptions (SEH) are more analogous to Linux signals, and they are dispatched by
+userspace DLLs provided with Windows. Each frame on the stack has an assigned EH
+personality routine, which decides what actions to take to handle the exception.
+There are a few major personalities for C and C++ code: the C++ personality
+(``__CxxFrameHandler3``) and the SEH personalities (``_except_handler3``,
+``_except_handler4``, and ``__C_specific_handler``). All of them implement
+cleanups by calling back into a "funclet" contained in the parent function.
+
+Funclets, in this context, are regions of the parent function that can be called
+as though they were a function pointer with a very special calling convention.
+The frame pointer of the parent frame is passed into the funclet either using
+the standard EBP register or as the first parameter register, depending on the
+architecture. The funclet implements the EH action by accessing local variables
+in memory through the frame pointer, and returning some appropriate value,
+continuing the EH process.  No variables live in to or out of the funclet can be
+allocated in registers.
+
+The C++ personality also uses funclets to contain the code for catch blocks
+(i.e. all user code between the braces in ``catch (Type obj) { ... }``). The
+runtime must use funclets for catch bodies because the C++ exception object is
+allocated in a child stack frame of the function handling the exception. If the
+runtime rewound the stack back to frame of the catch, the memory holding the
+exception would be overwritten quickly by subsequent function calls.  The use of
+funclets also allows ``__CxxFrameHandler3`` to implement rethrow without
+resorting to TLS. Instead, the runtime throws a special exception, and then uses
+SEH (``__try / __except``) to resume execution with new information in the child
+frame.
+
+In other words, the successive unwinding approach is incompatible with Visual
+C++ exceptions and general purpose Windows exception handling. Because the C++
+exception object lives in stack memory, LLVM cannot provide a custom personality
+function that uses landingpads.  Similarly, SEH does not provide any mechanism
+to rethrow an exception or continue unwinding.  Therefore, LLVM must use the IR
+constructs described later in this document to implement compatible exception
+handling.
+
+SEH filter expressions
+-----------------------
+
+The SEH personality functions also use funclets to implement filter expressions,
+which allow executing arbitrary user code to decide which exceptions to catch.
+Filter expressions should not be confused with the ``filter`` clause of the LLVM
+``landingpad`` instruction.  Typically filter expressions are used to determine
+if the exception came from a particular DLL or code region, or if code faulted
+while accessing a particular memory address range. LLVM does not currently have
+IR to represent filter expressions because it is difficult to represent their
+control dependencies.  Filter expressions run during the first phase of EH,
+before cleanups run, making it very difficult to build a faithful control flow
+graph.  For now, the new EH instructions cannot represent SEH filter
+expressions, and frontends must outline them ahead of time. Local variables of
+the parent function can be escaped and accessed using the ``llvm.localescape``
+and ``llvm.localrecover`` intrinsics.
+
+New exception handling instructions
+------------------------------------
+
+The primary design goal of the new EH instructions is to support funclet
+generation while preserving information about the CFG so that SSA formation
+still works.  As a secondary goal, they are designed to be generic across MSVC
+and Itanium C++ exceptions. They make very few assumptions about the data
+required by the personality, so long as it uses the familiar core EH actions:
+catch, cleanup, and terminate.  However, the new instructions are hard to modify
+without knowing details of the EH personality. While they can be used to
+represent Itanium EH, the landingpad model is strictly better for optimization
+purposes.
+
+The following new instructions are considered "exception handling pads", in that
+they must be the first non-phi instruction of a basic block that may be the
+unwind destination of an EH flow edge:
+``catchswitch``, ``catchpad``, and ``cleanuppad``.
+As with landingpads, when entering a try scope, if the
+frontend encounters a call site that may throw an exception, it should emit an
+invoke that unwinds to a ``catchswitch`` block. Similarly, inside the scope of a
+C++ object with a destructor, invokes should unwind to a ``cleanuppad``.
+
+New instructions are also used to mark the points where control is transferred
+out of a catch/cleanup handler (which will correspond to exits from the
+generated funclet).  A catch handler which reaches its end by normal execution
+executes a ``catchret`` instruction, which is a terminator indicating where in
+the function control is returned to.  A cleanup handler which reaches its end
+by normal execution executes a ``cleanupret`` instruction, which is a terminator
+indicating where the active exception will unwind to next.
+
+Each of these new EH pad instructions has a way to identify which action should
+be considered after this action. The ``catchswitch`` instruction is a terminator
+and has an unwind destination operand analogous to the unwind destination of an
+invoke.  The ``cleanuppad`` instruction is not
+a terminator, so the unwind destination is stored on the ``cleanupret``
+instruction instead. Successfully executing a catch handler should resume
+normal control flow, so neither ``catchpad`` nor ``catchret`` instructions can
+unwind. All of these "unwind edges" may refer to a basic block that contains an
+EH pad instruction, or they may unwind to the caller.  Unwinding to the caller
+has roughly the same semantics as the ``resume`` instruction in the landingpad
+model. When inlining through an invoke, instructions that unwind to the caller
+are hooked up to unwind to the unwind destination of the call site.
+
+Putting things together, here is a hypothetical lowering of some C++ that uses
+all of the new IR instructions:
+
+.. code-block:: c
+
+  struct Cleanup {
+    Cleanup();
+    ~Cleanup();
+    int m;
+  };
+  void may_throw();
+  int f() noexcept {
+    try {
+      Cleanup obj;
+      may_throw();
+    } catch (int e) {
+      may_throw();
+      return e;
+    }
+    return 0;
+  }
+
+.. code-block:: text
+
+  define i32 @f() nounwind personality i32 (...)* @__CxxFrameHandler3 {
+  entry:
+    %obj = alloca %struct.Cleanup, align 4
+    %e = alloca i32, align 4
+    %call = invoke %struct.Cleanup* @"\01??0Cleanup@@QEAA at XZ"(%struct.Cleanup* nonnull %obj)
+            to label %invoke.cont unwind label %lpad.catch
+
+  invoke.cont:                                      ; preds = %entry
+    invoke void @"\01?may_throw@@YAXXZ"()
+            to label %invoke.cont.2 unwind label %lpad.cleanup
+
+  invoke.cont.2:                                    ; preds = %invoke.cont
+    call void @"\01??_DCleanup@@QEAA at XZ"(%struct.Cleanup* nonnull %obj) nounwind
+    br label %return
+
+  return:                                           ; preds = %invoke.cont.3, %invoke.cont.2
+    %retval.0 = phi i32 [ 0, %invoke.cont.2 ], [ %3, %invoke.cont.3 ]
+    ret i32 %retval.0
+
+  lpad.cleanup:                                     ; preds = %invoke.cont.2
+    %0 = cleanuppad within none []
+    call void @"\01??1Cleanup@@QEAA at XZ"(%struct.Cleanup* nonnull %obj) nounwind
+    cleanupret %0 unwind label %lpad.catch
+
+  lpad.catch:                                       ; preds = %lpad.cleanup, %entry
+    %1 = catchswitch within none [label %catch.body] unwind label %lpad.terminate
+
+  catch.body:                                       ; preds = %lpad.catch
+    %catch = catchpad within %1 [%rtti.TypeDescriptor2* @"\01??_R0H at 8", i32 0, i32* %e]
+    invoke void @"\01?may_throw@@YAXXZ"()
+            to label %invoke.cont.3 unwind label %lpad.terminate
+
+  invoke.cont.3:                                    ; preds = %catch.body
+    %3 = load i32, i32* %e, align 4
+    catchret from %catch to label %return
+
+  lpad.terminate:                                   ; preds = %catch.body, %lpad.catch
+    cleanuppad within none []
+    call void @"\01?terminate@@YAXXZ"
+    unreachable
+  }
+
+Funclet parent tokens
+-----------------------
+
+In order to produce tables for EH personalities that use funclets, it is
+necessary to recover the nesting that was present in the source. This funclet
+parent relationship is encoded in the IR using tokens produced by the new "pad"
+instructions. The token operand of a "pad" or "ret" instruction indicates which
+funclet it is in, or "none" if it is not nested within another funclet.
+
+The ``catchpad`` and ``cleanuppad`` instructions establish new funclets, and
+their tokens are consumed by other "pad" instructions to establish membership.
+The ``catchswitch`` instruction does not create a funclet, but it produces a
+token that is always consumed by its immediate successor ``catchpad``
+instructions. This ensures that every catch handler modelled by a ``catchpad``
+belongs to exactly one ``catchswitch``, which models the dispatch point after a
+C++ try.
+
+Here is an example of what this nesting looks like using some hypothetical
+C++ code:
+
+.. code-block:: c
+
+  void f() {
+    try {
+      throw;
+    } catch (...) {
+      try {
+        throw;
+      } catch (...) {
+      }
+    }
+  }
+
+.. code-block:: text
+
+  define void @f() #0 personality i8* bitcast (i32 (...)* @__CxxFrameHandler3 to i8*) {
+  entry:
+    invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1
+            to label %unreachable unwind label %catch.dispatch
+
+  catch.dispatch:                                   ; preds = %entry
+    %0 = catchswitch within none [label %catch] unwind to caller
+
+  catch:                                            ; preds = %catch.dispatch
+    %1 = catchpad within %0 [i8* null, i32 64, i8* null]
+    invoke void @_CxxThrowException(i8* null, %eh.ThrowInfo* null) #1
+            to label %unreachable unwind label %catch.dispatch2
+
+  catch.dispatch2:                                  ; preds = %catch
+    %2 = catchswitch within %1 [label %catch3] unwind to caller
+
+  catch3:                                           ; preds = %catch.dispatch2
+    %3 = catchpad within %2 [i8* null, i32 64, i8* null]
+    catchret from %3 to label %try.cont
+
+  try.cont:                                         ; preds = %catch3
+    catchret from %1 to label %try.cont6
+
+  try.cont6:                                        ; preds = %try.cont
+    ret void
+
+  unreachable:                                      ; preds = %catch, %entry
+    unreachable
+  }
+
+The "inner" ``catchswitch`` consumes ``%1`` which is produced by the outer
+catchswitch.
+
+.. _wineh-constraints:
+
+Funclet transitions
+-----------------------
+
+The EH tables for personalities that use funclets make implicit use of the
+funclet nesting relationship to encode unwind destinations, and so are
+constrained in the set of funclet transitions they can represent.  The related
+LLVM IR instructions accordingly have constraints that ensure encodability of
+the EH edges in the flow graph.
+
+A ``catchswitch``, ``catchpad``, or ``cleanuppad`` is said to be "entered"
+when it executes.  It may subsequently be "exited" by any of the following
+means:
+
+* A ``catchswitch`` is immediately exited when none of its constituent
+  ``catchpad``\ s are appropriate for the in-flight exception and it unwinds
+  to its unwind destination or the caller.
+* A ``catchpad`` and its parent ``catchswitch`` are both exited when a
+  ``catchret`` from the ``catchpad`` is executed.
+* A ``cleanuppad`` is exited when a ``cleanupret`` from it is executed.
+* Any of these pads is exited when control unwinds to the function's caller,
+  either by a ``call`` which unwinds all the way to the function's caller,
+  a nested ``catchswitch`` marked "``unwinds to caller``", or a nested
+  ``cleanuppad``\ 's ``cleanupret`` marked "``unwinds to caller"``.
+* Any of these pads is exited when an unwind edge (from an ``invoke``,
+  nested ``catchswitch``, or nested ``cleanuppad``\ 's ``cleanupret``)
+  unwinds to a destination pad that is not a descendant of the given pad.
+
+Note that the ``ret`` instruction is *not* a valid way to exit a funclet pad;
+it is undefined behavior to execute a ``ret`` when a pad has been entered but
+not exited.
+
+A single unwind edge may exit any number of pads (with the restrictions that
+the edge from a ``catchswitch`` must exit at least itself, and the edge from
+a ``cleanupret`` must exit at least its ``cleanuppad``), and then must enter
+exactly one pad, which must be distinct from all the exited pads.  The parent
+of the pad that an unwind edge enters must be the most-recently-entered
+not-yet-exited pad (after exiting from any pads that the unwind edge exits),
+or "none" if there is no such pad.  This ensures that the stack of executing
+funclets at run-time always corresponds to some path in the funclet pad tree
+that the parent tokens encode.
+
+All unwind edges which exit any given funclet pad (including ``cleanupret``
+edges exiting their ``cleanuppad`` and ``catchswitch`` edges exiting their
+``catchswitch``) must share the same unwind destination.  Similarly, any
+funclet pad which may be exited by unwind to caller must not be exited by
+any exception edges which unwind anywhere other than the caller.  This
+ensures that each funclet as a whole has only one unwind destination, which
+EH tables for funclet personalities may require.  Note that any unwind edge
+which exits a ``catchpad`` also exits its parent ``catchswitch``, so this
+implies that for any given ``catchswitch``, its unwind destination must also
+be the unwind destination of any unwind edge that exits any of its constituent
+``catchpad``\s.  Because ``catchswitch`` has no ``nounwind`` variant, and
+because IR producers are not *required* to annotate calls which will not
+unwind as ``nounwind``, it is legal to nest a ``call`` or an "``unwind to
+caller``\ " ``catchswitch`` within a funclet pad that has an unwind
+destination other than caller; it is undefined behavior for such a ``call``
+or ``catchswitch`` to unwind.
+
+Finally, the funclet pads' unwind destinations cannot form a cycle.  This
+ensures that EH lowering can construct "try regions" with a tree-like
+structure, which funclet-based personalities may require.

Added: www-releases/trunk/3.9.1/docs/_sources/ExtendingLLVM.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/ExtendingLLVM.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/ExtendingLLVM.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/ExtendingLLVM.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,327 @@
+============================================================
+Extending LLVM: Adding instructions, intrinsics, types, etc.
+============================================================
+
+Introduction and Warning
+========================
+
+
+During the course of using LLVM, you may wish to customize it for your research
+project or for experimentation. At this point, you may realize that you need to
+add something to LLVM, whether it be a new fundamental type, a new intrinsic
+function, or a whole new instruction.
+
+When you come to this realization, stop and think. Do you really need to extend
+LLVM? Is it a new fundamental capability that LLVM does not support at its
+current incarnation or can it be synthesized from already pre-existing LLVM
+elements? If you are not sure, ask on the `LLVM-dev
+<http://lists.llvm.org/mailman/listinfo/llvm-dev>`_ list. The reason is that
+extending LLVM will get involved as you need to update all the different passes
+that you intend to use with your extension, and there are ``many`` LLVM analyses
+and transformations, so it may be quite a bit of work.
+
+Adding an `intrinsic function`_ is far easier than adding an
+instruction, and is transparent to optimization passes.  If your added
+functionality can be expressed as a function call, an intrinsic function is the
+method of choice for LLVM extension.
+
+Before you invest a significant amount of effort into a non-trivial extension,
+**ask on the list** if what you are looking to do can be done with
+already-existing infrastructure, or if maybe someone else is already working on
+it. You will save yourself a lot of time and effort by doing so.
+
+.. _intrinsic function:
+
+Adding a new intrinsic function
+===============================
+
+Adding a new intrinsic function to LLVM is much easier than adding a new
+instruction.  Almost all extensions to LLVM should start as an intrinsic
+function and then be turned into an instruction if warranted.
+
+#. ``llvm/docs/LangRef.html``:
+
+   Document the intrinsic.  Decide whether it is code generator specific and
+   what the restrictions are.  Talk to other people about it so that you are
+   sure it's a good idea.
+
+#. ``llvm/include/llvm/IR/Intrinsics*.td``:
+
+   Add an entry for your intrinsic.  Describe its memory access characteristics
+   for optimization (this controls whether it will be DCE'd, CSE'd, etc). Note
+   that any intrinsic using one of the ``llvm_any*_ty`` types for an argument or
+   return type will be deemed by ``tblgen`` as overloaded and the corresponding
+   suffix will be required on the intrinsic's name.
+
+#. ``llvm/lib/Analysis/ConstantFolding.cpp``:
+
+   If it is possible to constant fold your intrinsic, add support to it in the
+   ``canConstantFoldCallTo`` and ``ConstantFoldCall`` functions.
+
+#. ``llvm/test/*``:
+
+   Add test cases for your test cases to the test suite
+
+Once the intrinsic has been added to the system, you must add code generator
+support for it.  Generally you must do the following steps:
+
+Add support to the .td file for the target(s) of your choice in
+``lib/Target/*/*.td``.
+
+  This is usually a matter of adding a pattern to the .td file that matches the
+  intrinsic, though it may obviously require adding the instructions you want to
+  generate as well.  There are lots of examples in the PowerPC and X86 backend
+  to follow.
+
+Adding a new SelectionDAG node
+==============================
+
+As with intrinsics, adding a new SelectionDAG node to LLVM is much easier than
+adding a new instruction.  New nodes are often added to help represent
+instructions common to many targets.  These nodes often map to an LLVM
+instruction (add, sub) or intrinsic (byteswap, population count).  In other
+cases, new nodes have been added to allow many targets to perform a common task
+(converting between floating point and integer representation) or capture more
+complicated behavior in a single node (rotate).
+
+#. ``include/llvm/CodeGen/ISDOpcodes.h``:
+
+   Add an enum value for the new SelectionDAG node.
+
+#. ``lib/CodeGen/SelectionDAG/SelectionDAG.cpp``:
+
+   Add code to print the node to ``getOperationName``.  If your new node can be
+    evaluated at compile time when given constant arguments (such as an add of a
+    constant with another constant), find the ``getNode`` method that takes the
+    appropriate number of arguments, and add a case for your node to the switch
+    statement that performs constant folding for nodes that take the same number
+    of arguments as your new node.
+
+#. ``lib/CodeGen/SelectionDAG/LegalizeDAG.cpp``:
+
+   Add code to `legalize, promote, and expand
+   <CodeGenerator.html#selectiondag_legalize>`_ the node as necessary.  At a
+   minimum, you will need to add a case statement for your node in
+   ``LegalizeOp`` which calls LegalizeOp on the node's operands, and returns a
+   new node if any of the operands changed as a result of being legalized.  It
+   is likely that not all targets supported by the SelectionDAG framework will
+   natively support the new node.  In this case, you must also add code in your
+   node's case statement in ``LegalizeOp`` to Expand your node into simpler,
+   legal operations.  The case for ``ISD::UREM`` for expanding a remainder into
+   a divide, multiply, and a subtract is a good example.
+
+#. ``lib/CodeGen/SelectionDAG/LegalizeDAG.cpp``:
+
+   If targets may support the new node being added only at certain sizes, you
+    will also need to add code to your node's case statement in ``LegalizeOp``
+    to Promote your node's operands to a larger size, and perform the correct
+    operation.  You will also need to add code to ``PromoteOp`` to do this as
+    well.  For a good example, see ``ISD::BSWAP``, which promotes its operand to
+    a wider size, performs the byteswap, and then shifts the correct bytes right
+    to emulate the narrower byteswap in the wider type.
+
+#. ``lib/CodeGen/SelectionDAG/LegalizeDAG.cpp``:
+
+   Add a case for your node in ``ExpandOp`` to teach the legalizer how to
+   perform the action represented by the new node on a value that has been split
+   into high and low halves.  This case will be used to support your node with a
+   64 bit operand on a 32 bit target.
+
+#. ``lib/CodeGen/SelectionDAG/DAGCombiner.cpp``:
+
+   If your node can be combined with itself, or other existing nodes in a
+   peephole-like fashion, add a visit function for it, and call that function
+   from. There are several good examples for simple combines you can do;
+   ``visitFABS`` and ``visitSRL`` are good starting places.
+
+#. ``lib/Target/PowerPC/PPCISelLowering.cpp``:
+
+   Each target has an implementation of the ``TargetLowering`` class, usually in
+   its own file (although some targets include it in the same file as the
+   DAGToDAGISel).  The default behavior for a target is to assume that your new
+   node is legal for all types that are legal for that target.  If this target
+   does not natively support your node, then tell the target to either Promote
+   it (if it is supported at a larger type) or Expand it.  This will cause the
+   code you wrote in ``LegalizeOp`` above to decompose your new node into other
+   legal nodes for this target.
+
+#. ``lib/Target/TargetSelectionDAG.td``:
+
+   Most current targets supported by LLVM generate code using the DAGToDAG
+   method, where SelectionDAG nodes are pattern matched to target-specific
+   nodes, which represent individual instructions.  In order for the targets to
+   match an instruction to your new node, you must add a def for that node to
+   the list in this file, with the appropriate type constraints. Look at
+   ``add``, ``bswap``, and ``fadd`` for examples.
+
+#. ``lib/Target/PowerPC/PPCInstrInfo.td``:
+
+   Each target has a tablegen file that describes the target's instruction set.
+   For targets that use the DAGToDAG instruction selection framework, add a
+   pattern for your new node that uses one or more target nodes.  Documentation
+   for this is a bit sparse right now, but there are several decent examples.
+   See the patterns for ``rotl`` in ``PPCInstrInfo.td``.
+
+#. TODO: document complex patterns.
+
+#. ``llvm/test/CodeGen/*``:
+
+   Add test cases for your new node to the test suite.
+   ``llvm/test/CodeGen/X86/bswap.ll`` is a good example.
+
+Adding a new instruction
+========================
+
+.. warning::
+
+  Adding instructions changes the bitcode format, and it will take some effort
+  to maintain compatibility with the previous version. Only add an instruction
+  if it is absolutely necessary.
+
+#. ``llvm/include/llvm/IR/Instruction.def``:
+
+   add a number for your instruction and an enum name
+
+#. ``llvm/include/llvm/IR/Instructions.h``:
+
+   add a definition for the class that will represent your instruction
+
+#. ``llvm/include/llvm/IR/InstVisitor.h``:
+
+   add a prototype for a visitor to your new instruction type
+
+#. ``llvm/lib/AsmParser/LLLexer.cpp``:
+
+   add a new token to parse your instruction from assembly text file
+
+#. ``llvm/lib/AsmParser/LLParser.cpp``:
+
+   add the grammar on how your instruction can be read and what it will
+   construct as a result
+
+#. ``llvm/lib/Bitcode/Reader/BitcodeReader.cpp``:
+
+   add a case for your instruction and how it will be parsed from bitcode
+
+#. ``llvm/lib/Bitcode/Writer/BitcodeWriter.cpp``:
+
+   add a case for your instruction and how it will be parsed from bitcode
+
+#. ``llvm/lib/IR/Instruction.cpp``:
+
+   add a case for how your instruction will be printed out to assembly
+
+#. ``llvm/lib/IR/Instructions.cpp``:
+
+   implement the class you defined in ``llvm/include/llvm/Instructions.h``
+
+#. Test your instruction
+
+#. ``llvm/lib/Target/*``:
+
+   add support for your instruction to code generators, or add a lowering pass.
+
+#. ``llvm/test/*``:
+
+   add your test cases to the test suite.
+
+Also, you need to implement (or modify) any analyses or passes that you want to
+understand this new instruction.
+
+Adding a new type
+=================
+
+.. warning::
+
+  Adding new types changes the bitcode format, and will break compatibility with
+  currently-existing LLVM installations. Only add new types if it is absolutely
+  necessary.
+
+Adding a fundamental type
+-------------------------
+
+#. ``llvm/include/llvm/IR/Type.h``:
+
+   add enum for the new type; add static ``Type*`` for this type
+
+#. ``llvm/lib/IR/Type.cpp`` and ``llvm/lib/IR/ValueTypes.cpp``:
+
+   add mapping from ``TypeID`` => ``Type*``; initialize the static ``Type*``
+
+#. ``llvm/llvm/llvm-c/Core.cpp``:
+
+   add enum ``LLVMTypeKind`` and modify
+   ``LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty)`` for the new type
+
+#. ``llvm/include/llvm/IR/TypeBuilder.h``:
+
+   add new class to represent new type in the hierarchy
+
+#. ``llvm/lib/AsmParser/LLLexer.cpp``:
+
+   add ability to parse in the type from text assembly
+
+#. ``llvm/lib/AsmParser/LLParser.cpp``:
+
+   add a token for that type
+
+#. ``llvm/lib/Bitcode/Writer/BitcodeWriter.cpp``:
+
+   modify ``static void WriteTypeTable(const ValueEnumerator &VE,
+   BitstreamWriter &Stream)`` to serialize your type
+
+#. ``llvm/lib/Bitcode/Reader/BitcodeReader.cpp``:
+
+   modify ``bool BitcodeReader::ParseTypeType()`` to read your data type
+
+#. ``include/llvm/Bitcode/LLVMBitCodes.h``:
+
+   add enum ``TypeCodes`` for the new type
+
+Adding a derived type
+---------------------
+
+#. ``llvm/include/llvm/IR/Type.h``:
+
+   add enum for the new type; add a forward declaration of the type also
+
+#. ``llvm/include/llvm/IR/DerivedTypes.h``:
+
+   add new class to represent new class in the hierarchy; add forward
+   declaration to the TypeMap value type
+
+#. ``llvm/lib/IR/Type.cpp`` and ``llvm/lib/IR/ValueTypes.cpp``:
+
+   add support for derived type, notably `enum TypeID` and `is`, `get` methods.
+
+#. ``llvm/llvm/llvm-c/Core.cpp``:
+
+   add enum ``LLVMTypeKind`` and modify
+   `LLVMTypeKind LLVMGetTypeKind(LLVMTypeRef Ty)` for the new type
+
+#. ``llvm/include/llvm/IR/TypeBuilder.h``:
+
+   add new class to represent new class in the hierarchy
+
+#. ``llvm/lib/AsmParser/LLLexer.cpp``:
+
+   modify ``lltok::Kind LLLexer::LexIdentifier()`` to add ability to
+   parse in the type from text assembly
+
+#. ``llvm/lib/Bitcode/Writer/BitcodeWriter.cpp``:
+
+   modify ``static void WriteTypeTable(const ValueEnumerator &VE,
+   BitstreamWriter &Stream)`` to serialize your type
+
+#. ``llvm/lib/Bitcode/Reader/BitcodeReader.cpp``:
+
+   modify ``bool BitcodeReader::ParseTypeType()`` to read your data type
+
+#. ``include/llvm/Bitcode/LLVMBitCodes.h``:
+
+   add enum ``TypeCodes`` for the new type
+
+#. ``llvm/lib/IR/AsmWriter.cpp``:
+
+   modify ``void TypePrinting::print(Type *Ty, raw_ostream &OS)``
+   to output the new derived type

Added: www-releases/trunk/3.9.1/docs/_sources/Extensions.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/Extensions.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/Extensions.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/Extensions.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,234 @@
+===============
+LLVM Extensions
+===============
+
+.. contents::
+   :local:
+
+.. toctree::
+   :hidden:
+
+Introduction
+============
+
+This document describes extensions to tools and formats LLVM seeks compatibility
+with.
+
+General Assembly Syntax
+===========================
+
+C99-style Hexadecimal Floating-point Constants
+----------------------------------------------
+
+LLVM's assemblers allow floating-point constants to be written in C99's
+hexadecimal format instead of decimal if desired.
+
+.. code-block:: gas
+
+  .section .data
+  .float 0x1c2.2ap3
+
+Machine-specific Assembly Syntax
+================================
+
+X86/COFF-Dependent
+------------------
+
+Relocations
+^^^^^^^^^^^
+
+The following additional relocation types are supported:
+
+**@IMGREL** (AT&T syntax only) generates an image-relative relocation that
+corresponds to the COFF relocation types ``IMAGE_REL_I386_DIR32NB`` (32-bit) or
+``IMAGE_REL_AMD64_ADDR32NB`` (64-bit).
+
+.. code-block:: text
+
+  .text
+  fun:
+    mov foo at IMGREL(%ebx, %ecx, 4), %eax
+
+  .section .pdata
+    .long fun at IMGREL
+    .long (fun at imgrel + 0x3F)
+    .long $unwind$fun at imgrel
+
+**.secrel32** generates a relocation that corresponds to the COFF relocation
+types ``IMAGE_REL_I386_SECREL`` (32-bit) or ``IMAGE_REL_AMD64_SECREL`` (64-bit).
+
+**.secidx** relocation generates an index of the section that contains
+the target.  It corresponds to the COFF relocation types
+``IMAGE_REL_I386_SECTION`` (32-bit) or ``IMAGE_REL_AMD64_SECTION`` (64-bit).
+
+.. code-block:: gas
+
+  .section .debug$S,"rn"
+    .long 4
+    .long 242
+    .long 40
+    .secrel32 _function_name
+    .secidx   _function_name
+    ...
+
+``.linkonce`` Directive
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Syntax:
+
+   ``.linkonce [ comdat type ]``
+
+Supported COMDAT types:
+
+``discard``
+   Discards duplicate sections with the same COMDAT symbol. This is the default
+   if no type is specified.
+
+``one_only``
+   If the symbol is defined multiple times, the linker issues an error.
+
+``same_size``
+   Duplicates are discarded, but the linker issues an error if any have
+   different sizes.
+
+``same_contents``
+   Duplicates are discarded, but the linker issues an error if any duplicates
+   do not have exactly the same content.
+
+``largest``
+   Links the largest section from among the duplicates.
+
+``newest``
+   Links the newest section from among the duplicates.
+
+
+.. code-block:: gas
+
+  .section .text$foo
+  .linkonce
+    ...
+
+``.section`` Directive
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+MC supports passing the information in ``.linkonce`` at the end of
+``.section``. For example,  these two codes are equivalent
+
+.. code-block:: gas
+
+  .section secName, "dr", discard, "Symbol1"
+  .globl Symbol1
+  Symbol1:
+  .long 1
+
+.. code-block:: gas
+
+  .section secName, "dr"
+  .linkonce discard
+  .globl Symbol1
+  Symbol1:
+  .long 1
+
+Note that in the combined form the COMDAT symbol is explicit. This
+extension exists to support multiple sections with the same name in
+different COMDATs:
+
+
+.. code-block:: gas
+
+  .section secName, "dr", discard, "Symbol1"
+  .globl Symbol1
+  Symbol1:
+  .long 1
+
+  .section secName, "dr", discard, "Symbol2"
+  .globl Symbol2
+  Symbol2:
+  .long 1
+
+In addition to the types allowed with ``.linkonce``, ``.section`` also accepts
+``associative``. The meaning is that the section is linked  if a certain other
+COMDAT section is linked. This other section is indicated by the comdat symbol
+in this directive. It can be any symbol defined in the associated section, but
+is usually the associated section's comdat.
+
+   The following restrictions apply to the associated section:
+
+   1. It must be a COMDAT section.
+   2. It cannot be another associative COMDAT section.
+
+In the following example the symobl ``sym`` is the comdat symbol of ``.foo``
+and ``.bar`` is associated to ``.foo``.
+
+.. code-block:: gas
+
+	.section	.foo,"bw",discard, "sym"
+	.section	.bar,"rd",associative, "sym"
+
+
+ELF-Dependent
+-------------
+
+``.section`` Directive
+^^^^^^^^^^^^^^^^^^^^^^
+
+In order to support creating multiple sections with the same name and comdat,
+it is possible to add an unique number at the end of the ``.seciton`` directive.
+For example, the following code creates two sections named ``.text``.
+
+.. code-block:: gas
+
+	.section	.text,"ax", at progbits,unique,1
+        nop
+
+	.section	.text,"ax", at progbits,unique,2
+        nop
+
+
+The unique number is not present in the resulting object at all. It is just used
+in the assembler to differentiate the sections.
+
+Target Specific Behaviour
+=========================
+
+Windows on ARM
+--------------
+
+Stack Probe Emission
+^^^^^^^^^^^^^^^^^^^^
+
+The reference implementation (Microsoft Visual Studio 2012) emits stack probes
+in the following fashion:
+
+.. code-block:: gas
+
+  movw r4, #constant
+  bl __chkstk
+  sub.w sp, sp, r4
+
+However, this has the limitation of 32 MiB (±16MiB).  In order to accommodate
+larger binaries, LLVM supports the use of ``-mcode-model=large`` to allow a 4GiB
+range via a slight deviation.  It will generate an indirect jump as follows:
+
+.. code-block:: gas
+
+  movw r4, #constant
+  movw r12, :lower16:__chkstk
+  movt r12, :upper16:__chkstk
+  blx r12
+  sub.w sp, sp, r4
+
+Variable Length Arrays
+^^^^^^^^^^^^^^^^^^^^^^
+
+The reference implementation (Microsoft Visual Studio 2012) does not permit the
+emission of Variable Length Arrays (VLAs).
+
+The Windows ARM Itanium ABI extends the base ABI by adding support for emitting
+a dynamic stack allocation.  When emitting a variable stack allocation, a call
+to ``__chkstk`` is emitted unconditionally to ensure that guard pages are setup
+properly.  The emission of this stack probe emission is handled similar to the
+standard stack probe emission.
+
+The MSVC environment does not emit code for VLAs currently.
+

Added: www-releases/trunk/3.9.1/docs/_sources/FAQ.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/FAQ.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/FAQ.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/FAQ.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,345 @@
+================================
+Frequently Asked Questions (FAQ)
+================================
+
+.. contents::
+   :local:
+
+
+License
+=======
+
+Does the University of Illinois Open Source License really qualify as an "open source" license?
+-----------------------------------------------------------------------------------------------
+Yes, the license is `certified
+<http://www.opensource.org/licenses/UoI-NCSA.php>`_ by the Open Source
+Initiative (OSI).
+
+
+Can I modify LLVM source code and redistribute the modified source?
+-------------------------------------------------------------------
+Yes.  The modified source distribution must retain the copyright notice and
+follow the three bulletted conditions listed in the `LLVM license
+<http://llvm.org/svn/llvm-project/llvm/trunk/LICENSE.TXT>`_.
+
+
+Can I modify the LLVM source code and redistribute binaries or other tools based on it, without redistributing the source?
+--------------------------------------------------------------------------------------------------------------------------
+Yes. This is why we distribute LLVM under a less restrictive license than GPL,
+as explained in the first question above.
+
+
+Source Code
+===========
+
+In what language is LLVM written?
+---------------------------------
+All of the LLVM tools and libraries are written in C++ with extensive use of
+the STL.
+
+
+How portable is the LLVM source code?
+-------------------------------------
+The LLVM source code should be portable to most modern Unix-like operating
+systems.  Most of the code is written in standard C++ with operating system
+services abstracted to a support library.  The tools required to build and
+test LLVM have been ported to a plethora of platforms.
+
+Some porting problems may exist in the following areas:
+
+* The autoconf/makefile build system relies heavily on UNIX shell tools,
+  like the Bourne Shell and sed.  Porting to systems without these tools
+  (MacOS 9, Plan 9) will require more effort.
+
+What API do I use to store a value to one of the virtual registers in LLVM IR's SSA representation?
+---------------------------------------------------------------------------------------------------
+
+In short: you can't. It's actually kind of a silly question once you grok
+what's going on. Basically, in code like:
+
+.. code-block:: llvm
+
+    %result = add i32 %foo, %bar
+
+, ``%result`` is just a name given to the ``Value`` of the ``add``
+instruction. In other words, ``%result`` *is* the add instruction. The
+"assignment" doesn't explicitly "store" anything to any "virtual register";
+the "``=``" is more like the mathematical sense of equality.
+
+Longer explanation: In order to generate a textual representation of the
+IR, some kind of name has to be given to each instruction so that other
+instructions can textually reference it. However, the isomorphic in-memory
+representation that you manipulate from C++ has no such restriction since
+instructions can simply keep pointers to any other ``Value``'s that they
+reference. In fact, the names of dummy numbered temporaries like ``%1`` are
+not explicitly represented in the in-memory representation at all (see
+``Value::getName()``).
+
+
+Source Languages
+================
+
+What source languages are supported?
+------------------------------------
+
+LLVM currently has full support for C and C++ source languages through
+`Clang <http://clang.llvm.org/>`_. Many other language frontends have
+been written using LLVM, and an incomplete list is available at
+`projects with LLVM <http://llvm.org/ProjectsWithLLVM/>`_.
+
+
+I'd like to write a self-hosting LLVM compiler. How should I interface with the LLVM middle-end optimizers and back-end code generators?
+----------------------------------------------------------------------------------------------------------------------------------------
+Your compiler front-end will communicate with LLVM by creating a module in the
+LLVM intermediate representation (IR) format. Assuming you want to write your
+language's compiler in the language itself (rather than C++), there are 3
+major ways to tackle generating LLVM IR from a front-end:
+
+1. **Call into the LLVM libraries code using your language's FFI (foreign
+   function interface).**
+
+  * *for:* best tracks changes to the LLVM IR, .ll syntax, and .bc format
+
+  * *for:* enables running LLVM optimization passes without a emit/parse
+    overhead
+
+  * *for:* adapts well to a JIT context
+
+  * *against:* lots of ugly glue code to write
+
+2. **Emit LLVM assembly from your compiler's native language.**
+
+  * *for:* very straightforward to get started
+
+  * *against:* the .ll parser is slower than the bitcode reader when
+    interfacing to the middle end
+
+  * *against:* it may be harder to track changes to the IR
+
+3. **Emit LLVM bitcode from your compiler's native language.**
+
+  * *for:* can use the more-efficient bitcode reader when interfacing to the
+    middle end
+
+  * *against:* you'll have to re-engineer the LLVM IR object model and bitcode
+    writer in your language
+
+  * *against:* it may be harder to track changes to the IR
+
+If you go with the first option, the C bindings in include/llvm-c should help
+a lot, since most languages have strong support for interfacing with C. The
+most common hurdle with calling C from managed code is interfacing with the
+garbage collector. The C interface was designed to require very little memory
+management, and so is straightforward in this regard.
+
+What support is there for a higher level source language constructs for building a compiler?
+--------------------------------------------------------------------------------------------
+Currently, there isn't much. LLVM supports an intermediate representation
+which is useful for code representation but will not support the high level
+(abstract syntax tree) representation needed by most compilers. There are no
+facilities for lexical nor semantic analysis.
+
+
+I don't understand the ``GetElementPtr`` instruction. Help!
+-----------------------------------------------------------
+See `The Often Misunderstood GEP Instruction <GetElementPtr.html>`_.
+
+
+Using the C and C++ Front Ends
+==============================
+
+Can I compile C or C++ code to platform-independent LLVM bitcode?
+-----------------------------------------------------------------
+No. C and C++ are inherently platform-dependent languages. The most obvious
+example of this is the preprocessor. A very common way that C code is made
+portable is by using the preprocessor to include platform-specific code. In
+practice, information about other platforms is lost after preprocessing, so
+the result is inherently dependent on the platform that the preprocessing was
+targeting.
+
+Another example is ``sizeof``. It's common for ``sizeof(long)`` to vary
+between platforms. In most C front-ends, ``sizeof`` is expanded to a
+constant immediately, thus hard-wiring a platform-specific detail.
+
+Also, since many platforms define their ABIs in terms of C, and since LLVM is
+lower-level than C, front-ends currently must emit platform-specific IR in
+order to have the result conform to the platform ABI.
+
+
+Questions about code generated by the demo page
+===============================================
+
+What is this ``llvm.global_ctors`` and ``_GLOBAL__I_a...`` stuff that happens when I ``#include <iostream>``?
+-------------------------------------------------------------------------------------------------------------
+If you ``#include`` the ``<iostream>`` header into a C++ translation unit,
+the file will probably use the ``std::cin``/``std::cout``/... global objects.
+However, C++ does not guarantee an order of initialization between static
+objects in different translation units, so if a static ctor/dtor in your .cpp
+file used ``std::cout``, for example, the object would not necessarily be
+automatically initialized before your use.
+
+To make ``std::cout`` and friends work correctly in these scenarios, the STL
+that we use declares a static object that gets created in every translation
+unit that includes ``<iostream>``.  This object has a static constructor
+and destructor that initializes and destroys the global iostream objects
+before they could possibly be used in the file.  The code that you see in the
+``.ll`` file corresponds to the constructor and destructor registration code.
+
+If you would like to make it easier to *understand* the LLVM code generated
+by the compiler in the demo page, consider using ``printf()`` instead of
+``iostream``\s to print values.
+
+
+Where did all of my code go??
+-----------------------------
+If you are using the LLVM demo page, you may often wonder what happened to
+all of the code that you typed in.  Remember that the demo script is running
+the code through the LLVM optimizers, so if your code doesn't actually do
+anything useful, it might all be deleted.
+
+To prevent this, make sure that the code is actually needed.  For example, if
+you are computing some expression, return the value from the function instead
+of leaving it in a local variable.  If you really want to constrain the
+optimizer, you can read from and assign to ``volatile`` global variables.
+
+
+What is this "``undef``" thing that shows up in my code?
+--------------------------------------------------------
+``undef`` is the LLVM way of representing a value that is not defined.  You
+can get these if you do not initialize a variable before you use it.  For
+example, the C function:
+
+.. code-block:: c
+
+   int X() { int i; return i; }
+
+Is compiled to "``ret i32 undef``" because "``i``" never has a value specified
+for it.
+
+
+Why does instcombine + simplifycfg turn a call to a function with a mismatched calling convention into "unreachable"? Why not make the verifier reject it?
+----------------------------------------------------------------------------------------------------------------------------------------------------------
+This is a common problem run into by authors of front-ends that are using
+custom calling conventions: you need to make sure to set the right calling
+convention on both the function and on each call to the function.  For
+example, this code:
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+       ret void
+   }
+   define void @bar() {
+       call void @foo()
+       ret void
+   }
+
+Is optimized to:
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+       ret void
+   }
+   define void @bar() {
+       unreachable
+   }
+
+... with "``opt -instcombine -simplifycfg``".  This often bites people because
+"all their code disappears".  Setting the calling convention on the caller and
+callee is required for indirect calls to work, so people often ask why not
+make the verifier reject this sort of thing.
+
+The answer is that this code has undefined behavior, but it is not illegal.
+If we made it illegal, then every transformation that could potentially create
+this would have to ensure that it doesn't, and there is valid code that can
+create this sort of construct (in dead code).  The sorts of things that can
+cause this to happen are fairly contrived, but we still need to accept them.
+Here's an example:
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+       ret void
+   }
+   define internal void @bar(void()* %FP, i1 %cond) {
+       br i1 %cond, label %T, label %F
+   T:
+       call void %FP()
+       ret void
+   F:
+       call fastcc void %FP()
+       ret void
+   }
+   define void @test() {
+       %X = or i1 false, false
+       call void @bar(void()* @foo, i1 %X)
+       ret void
+   }
+
+In this example, "test" always passes ``@foo``/``false`` into ``bar``, which
+ensures that it is dynamically called with the right calling conv (thus, the
+code is perfectly well defined).  If you run this through the inliner, you
+get this (the explicit "or" is there so that the inliner doesn't dead code
+eliminate a bunch of stuff):
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+       ret void
+   }
+   define void @test() {
+       %X = or i1 false, false
+       br i1 %X, label %T.i, label %F.i
+   T.i:
+       call void @foo()
+       br label %bar.exit
+   F.i:
+       call fastcc void @foo()
+       br label %bar.exit
+   bar.exit:
+       ret void
+   }
+
+Here you can see that the inlining pass made an undefined call to ``@foo``
+with the wrong calling convention.  We really don't want to make the inliner
+have to know about this sort of thing, so it needs to be valid code.  In this
+case, dead code elimination can trivially remove the undefined code.  However,
+if ``%X`` was an input argument to ``@test``, the inliner would produce this:
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+       ret void
+   }
+
+   define void @test(i1 %X) {
+       br i1 %X, label %T.i, label %F.i
+   T.i:
+       call void @foo()
+       br label %bar.exit
+   F.i:
+       call fastcc void @foo()
+       br label %bar.exit
+   bar.exit:
+       ret void
+   }
+
+The interesting thing about this is that ``%X`` *must* be false for the
+code to be well-defined, but no amount of dead code elimination will be able
+to delete the broken call as unreachable.  However, since
+``instcombine``/``simplifycfg`` turns the undefined call into unreachable, we
+end up with a branch on a condition that goes to unreachable: a branch to
+unreachable can never happen, so "``-inline -instcombine -simplifycfg``" is
+able to produce:
+
+.. code-block:: llvm
+
+   define fastcc void @foo() {
+      ret void
+   }
+   define void @test(i1 %X) {
+   F.i:
+      call fastcc void @foo()
+      ret void
+   }

Added: www-releases/trunk/3.9.1/docs/_sources/FaultMaps.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/FaultMaps.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/FaultMaps.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/FaultMaps.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,127 @@
+==============================
+FaultMaps and implicit checks
+==============================
+
+.. contents::
+   :local:
+   :depth: 2
+
+Motivation
+==========
+
+Code generated by managed language runtimes tend to have checks that
+are required for safety but never fail in practice.  In such cases, it
+is profitable to make the non-failing case cheaper even if it makes
+the failing case significantly more expensive.  This asymmetry can be
+exploited by folding such safety checks into operations that can be
+made to fault reliably if the check would have failed, and recovering
+from such a fault by using a signal handler.
+
+For example, Java requires null checks on objects before they are read
+from or written to.  If the object is ``null`` then a
+``NullPointerException`` has to be thrown, interrupting normal
+execution.  In practice, however, dereferencing a ``null`` pointer is
+extremely rare in well-behaved Java programs, and typically the null
+check can be folded into a nearby memory operation that operates on
+the same memory location.
+
+The Fault Map Section
+=====================
+
+Information about implicit checks generated by LLVM are put in a
+special "fault map" section.  On Darwin this section is named
+``__llvm_faultmaps``.
+
+The format of this section is
+
+.. code-block:: none
+
+  Header {
+    uint8  : Fault Map Version (current version is 1)
+    uint8  : Reserved (expected to be 0)
+    uint16 : Reserved (expected to be 0)
+  }
+  uint32 : NumFunctions
+  FunctionInfo[NumFunctions] {
+    uint64 : FunctionAddress
+    uint32 : NumFaultingPCs
+    uint32 : Reserved (expected to be 0)
+    FunctionFaultInfo[NumFaultingPCs] {
+      uint32  : FaultKind = FaultMaps::FaultingLoad (only legal value currently)
+      uint32  : FaultingPCOffset
+      uint32  : HandlerPCOffset
+    }
+  }
+
+
+The ``ImplicitNullChecks`` pass
+===============================
+
+The ``ImplicitNullChecks`` pass transforms explicit control flow for
+checking if a pointer is ``null``, like:
+
+.. code-block:: llvm
+
+    %ptr = call i32* @get_ptr()
+    %ptr_is_null = icmp i32* %ptr, null
+    br i1 %ptr_is_null, label %is_null, label %not_null, !make.implicit !0
+  
+  not_null:
+    %t = load i32, i32* %ptr
+    br label %do_something_with_t
+    
+  is_null:
+    call void @HFC()
+    unreachable
+  
+  !0 = !{}
+
+to control flow implicit in the instruction loading or storing through
+the pointer being null checked:
+
+.. code-block:: llvm
+
+    %ptr = call i32* @get_ptr()
+    %t = load i32, i32* %ptr  ;; handler-pc = label %is_null
+    br label %do_something_with_t
+    
+  is_null:
+    call void @HFC()
+    unreachable
+
+This transform happens at the ``MachineInstr`` level, not the LLVM IR
+level (so the above example is only representative, not literal).  The
+``ImplicitNullChecks`` pass runs during codegen, if
+``-enable-implicit-null-checks`` is passed to ``llc``.
+
+The ``ImplicitNullChecks`` pass adds entries to the
+``__llvm_faultmaps`` section described above as needed.
+
+``make.implicit`` metadata
+--------------------------
+
+Making null checks implicit is an aggressive optimization, and it can
+be a net performance pessimization if too many memory operations end
+up faulting because of it.  A language runtime typically needs to
+ensure that only a negligible number of implicit null checks actually
+fault once the application has reached a steady state.  A standard way
+of doing this is by healing failed implicit null checks into explicit
+null checks via code patching or recompilation.  It follows that there
+are two requirements an explicit null check needs to satisfy for it to
+be profitable to convert it to an implicit null check:
+
+  1. The case where the pointer is actually null (i.e. the "failing"
+     case) is extremely rare.
+
+  2. The failing path heals the implicit null check into an explicit
+     null check so that the application does not repeatedly page
+     fault.
+
+The frontend is expected to mark branches that satisfy (1) and (2)
+using a ``!make.implicit`` metadata node (the actual content of the
+metadata node is ignored).  Only branches that are marked with
+``!make.implicit`` metadata are considered as candidates for
+conversion into implicit null checks.
+
+(Note that while we could deal with (1) using profiling data, dealing
+with (2) requires some information not present in branch profiles.)

Added: www-releases/trunk/3.9.1/docs/_sources/Frontend/PerformanceTips.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/Frontend/PerformanceTips.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/Frontend/PerformanceTips.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/Frontend/PerformanceTips.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,296 @@
+=====================================
+Performance Tips for Frontend Authors
+=====================================
+
+.. contents::
+   :local:
+   :depth: 2
+
+Abstract
+========
+
+The intended audience of this document is developers of language frontends 
+targeting LLVM IR. This document is home to a collection of tips on how to 
+generate IR that optimizes well.  
+
+IR Best Practices
+=================
+
+As with any optimizer, LLVM has its strengths and weaknesses.  In some cases, 
+surprisingly small changes in the source IR can have a large effect on the 
+generated code.  
+
+Beyond the specific items on the list below, it's worth noting that the most 
+mature frontend for LLVM is Clang.  As a result, the further your IR gets from what Clang might emit, the less likely it is to be effectively optimized.  It 
+can often be useful to write a quick C program with the semantics you're trying
+to model and see what decisions Clang's IRGen makes about what IR to emit.  
+Studying Clang's CodeGen directory can also be a good source of ideas.  Note 
+that Clang and LLVM are explicitly version locked so you'll need to make sure 
+you're using a Clang built from the same svn revision or release as the LLVM 
+library you're using.  As always, it's *strongly* recommended that you track 
+tip of tree development, particularly during bring up of a new project.
+
+The Basics
+^^^^^^^^^^^
+
+#. Make sure that your Modules contain both a data layout specification and 
+   target triple. Without these pieces, non of the target specific optimization
+   will be enabled.  This can have a major effect on the generated code quality.
+
+#. For each function or global emitted, use the most private linkage type
+   possible (private, internal or linkonce_odr preferably).  Doing so will 
+   make LLVM's inter-procedural optimizations much more effective.
+
+#. Avoid high in-degree basic blocks (e.g. basic blocks with dozens or hundreds
+   of predecessors).  Among other issues, the register allocator is known to 
+   perform badly with confronted with such structures.  The only exception to 
+   this guidance is that a unified return block with high in-degree is fine.
+
+Use of allocas
+^^^^^^^^^^^^^^
+
+An alloca instruction can be used to represent a function scoped stack slot, 
+but can also represent dynamic frame expansion.  When representing function 
+scoped variables or locations, placing alloca instructions at the beginning of 
+the entry block should be preferred.   In particular, place them before any 
+call instructions. Call instructions might get inlined and replaced with 
+multiple basic blocks. The end result is that a following alloca instruction 
+would no longer be in the entry basic block afterward.
+
+The SROA (Scalar Replacement Of Aggregates) and Mem2Reg passes only attempt
+to eliminate alloca instructions that are in the entry basic block.  Given 
+SSA is the canonical form expected by much of the optimizer; if allocas can 
+not be eliminated by Mem2Reg or SROA, the optimizer is likely to be less 
+effective than it could be.
+
+Avoid loads and stores of large aggregate type
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+LLVM currently does not optimize well loads and stores of large :ref:`aggregate
+types <t_aggregate>` (i.e. structs and arrays).  As an alternative, consider 
+loading individual fields from memory.
+
+Aggregates that are smaller than the largest (performant) load or store 
+instruction supported by the targeted hardware are well supported.  These can 
+be an effective way to represent collections of small packed fields.  
+
+Prefer zext over sext when legal
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+On some architectures (X86_64 is one), sign extension can involve an extra 
+instruction whereas zero extension can be folded into a load.  LLVM will try to
+replace a sext with a zext when it can be proven safe, but if you have 
+information in your source language about the range of a integer value, it can 
+be profitable to use a zext rather than a sext.  
+
+Alternatively, you can :ref:`specify the range of the value using metadata 
+<range-metadata>` and LLVM can do the sext to zext conversion for you.
+
+Zext GEP indices to machine register width
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Internally, LLVM often promotes the width of GEP indices to machine register
+width.  When it does so, it will default to using sign extension (sext) 
+operations for safety.  If your source language provides information about 
+the range of the index, you may wish to manually extend indices to machine 
+register width using a zext instruction.
+
+When to specify alignment
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+LLVM will always generate correct code if you don’t specify alignment, but may
+generate inefficient code.  For example, if you are targeting MIPS (or older 
+ARM ISAs) then the hardware does not handle unaligned loads and stores, and 
+so you will enter a trap-and-emulate path if you do a load or store with 
+lower-than-natural alignment.  To avoid this, LLVM will emit a slower 
+sequence of loads, shifts and masks (or load-right + load-left on MIPS) for 
+all cases where the load / store does not have a sufficiently high alignment 
+in the IR.
+
+The alignment is used to guarantee the alignment on allocas and globals, 
+though in most cases this is unnecessary (most targets have a sufficiently 
+high default alignment that they’ll be fine).  It is also used to provide a 
+contract to the back end saying ‘either this load/store has this alignment, or
+it is undefined behavior’.  This means that the back end is free to emit 
+instructions that rely on that alignment (and mid-level optimizers are free to 
+perform transforms that require that alignment).  For x86, it doesn’t make 
+much difference, as almost all instructions are alignment-independent.  For 
+MIPS, it can make a big difference.
+
+Note that if your loads and stores are atomic, the backend will be unable to 
+lower an under aligned access into a sequence of natively aligned accesses.  
+As a result, alignment is mandatory for atomic loads and stores.
+
+Other Things to Consider
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+#. Use ptrtoint/inttoptr sparingly (they interfere with pointer aliasing 
+   analysis), prefer GEPs
+
+#. Prefer globals over inttoptr of a constant address - this gives you 
+   dereferencability information.  In MCJIT, use getSymbolAddress to provide 
+   actual address.
+
+#. Be wary of ordered and atomic memory operations.  They are hard to optimize 
+   and may not be well optimized by the current optimizer.  Depending on your
+   source language, you may consider using fences instead.
+
+#. If calling a function which is known to throw an exception (unwind), use 
+   an invoke with a normal destination which contains an unreachable 
+   instruction.  This form conveys to the optimizer that the call returns 
+   abnormally.  For an invoke which neither returns normally or requires unwind
+   code in the current function, you can use a noreturn call instruction if 
+   desired.  This is generally not required because the optimizer will convert
+   an invoke with an unreachable unwind destination to a call instruction.
+
+#. Use profile metadata to indicate statically known cold paths, even if 
+   dynamic profiling information is not available.  This can make a large 
+   difference in code placement and thus the performance of tight loops.
+
+#. When generating code for loops, try to avoid terminating the header block of
+   the loop earlier than necessary.  If the terminator of the loop header 
+   block is a loop exiting conditional branch, the effectiveness of LICM will
+   be limited for loads not in the header.  (This is due to the fact that LLVM 
+   may not know such a load is safe to speculatively execute and thus can't 
+   lift an otherwise loop invariant load unless it can prove the exiting 
+   condition is not taken.)  It can be profitable, in some cases, to emit such 
+   instructions into the header even if they are not used along a rarely 
+   executed path that exits the loop.  This guidance specifically does not 
+   apply if the condition which terminates the loop header is itself invariant,
+   or can be easily discharged by inspecting the loop index variables.
+
+#. In hot loops, consider duplicating instructions from small basic blocks 
+   which end in highly predictable terminators into their successor blocks.  
+   If a hot successor block contains instructions which can be vectorized 
+   with the duplicated ones, this can provide a noticeable throughput
+   improvement.  Note that this is not always profitable and does involve a 
+   potentially large increase in code size.
+
+#. When checking a value against a constant, emit the check using a consistent
+   comparison type.  The GVN pass *will* optimize redundant equalities even if
+   the type of comparison is inverted, but GVN only runs late in the pipeline.
+   As a result, you may miss the opportunity to run other important 
+   optimizations.  Improvements to EarlyCSE to remove this issue are tracked in 
+   Bug 23333.
+
+#. Avoid using arithmetic intrinsics unless you are *required* by your source 
+   language specification to emit a particular code sequence.  The optimizer 
+   is quite good at reasoning about general control flow and arithmetic, it is
+   not anywhere near as strong at reasoning about the various intrinsics.  If 
+   profitable for code generation purposes, the optimizer will likely form the 
+   intrinsics itself late in the optimization pipeline.  It is *very* rarely 
+   profitable to emit these directly in the language frontend.  This item
+   explicitly includes the use of the :ref:`overflow intrinsics <int_overflow>`.
+
+#. Avoid using the :ref:`assume intrinsic <int_assume>` until you've 
+   established that a) there's no other way to express the given fact and b) 
+   that fact is critical for optimization purposes.  Assumes are a great 
+   prototyping mechanism, but they can have negative effects on both compile 
+   time and optimization effectiveness.  The former is fixable with enough 
+   effort, but the later is fairly fundamental to their designed purpose.
+
+
+Describing Language Specific Properties
+=======================================
+
+When translating a source language to LLVM, finding ways to express concepts 
+and guarantees available in your source language which are not natively 
+provided by LLVM IR will greatly improve LLVM's ability to optimize your code. 
+As an example, C/C++'s ability to mark every add as "no signed wrap (nsw)" goes
+a long way to assisting the optimizer in reasoning about loop induction 
+variables and thus generating more optimal code for loops.  
+
+The LLVM LangRef includes a number of mechanisms for annotating the IR with 
+additional semantic information.  It is *strongly* recommended that you become 
+highly familiar with this document.  The list below is intended to highlight a 
+couple of items of particular interest, but is by no means exhaustive.
+
+Restricted Operation Semantics
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+#. Add nsw/nuw flags as appropriate.  Reasoning about overflow is 
+   generally hard for an optimizer so providing these facts from the frontend 
+   can be very impactful.  
+
+#. Use fast-math flags on floating point operations if legal.  If you don't 
+   need strict IEEE floating point semantics, there are a number of additional 
+   optimizations that can be performed.  This can be highly impactful for 
+   floating point intensive computations.
+
+Describing Aliasing Properties
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+#. Add noalias/align/dereferenceable/nonnull to function arguments and return 
+   values as appropriate
+
+#. Use pointer aliasing metadata, especially tbaa metadata, to communicate 
+   otherwise-non-deducible pointer aliasing facts
+
+#. Use inbounds on geps.  This can help to disambiguate some aliasing queries.
+
+
+Modeling Memory Effects
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+#. Mark functions as readnone/readonly/argmemonly or noreturn/nounwind when
+   known.  The optimizer will try to infer these flags, but may not always be
+   able to.  Manual annotations are particularly important for external 
+   functions that the optimizer can not analyze.
+
+#. Use the lifetime.start/lifetime.end and invariant.start/invariant.end 
+   intrinsics where possible.  Common profitable uses are for stack like data 
+   structures (thus allowing dead store elimination) and for describing 
+   life times of allocas (thus allowing smaller stack sizes).  
+
+#. Mark invariant locations using !invariant.load and TBAA's constant flags
+
+Pass Ordering
+^^^^^^^^^^^^^
+
+One of the most common mistakes made by new language frontend projects is to 
+use the existing -O2 or -O3 pass pipelines as is.  These pass pipelines make a
+good starting point for an optimizing compiler for any language, but they have 
+been carefully tuned for C and C++, not your target language.  You will almost 
+certainly need to use a custom pass order to achieve optimal performance.  A 
+couple specific suggestions:
+
+#. For languages with numerous rarely executed guard conditions (e.g. null 
+   checks, type checks, range checks) consider adding an extra execution or 
+   two of LoopUnswith and LICM to your pass order.  The standard pass order, 
+   which is tuned for C and C++ applications, may not be sufficient to remove 
+   all dischargeable checks from loops.
+
+#. If you language uses range checks, consider using the IRCE pass.  It is not 
+   currently part of the standard pass order.
+
+#. A useful sanity check to run is to run your optimized IR back through the 
+   -O2 pipeline again.  If you see noticeable improvement in the resulting IR, 
+   you likely need to adjust your pass order.
+
+
+I Still Can't Find What I'm Looking For
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+If you didn't find what you were looking for above, consider proposing an piece
+of metadata which provides the optimization hint you need.  Such extensions are
+relatively common and are generally well received by the community.  You will 
+need to ensure that your proposal is sufficiently general so that it benefits 
+others if you wish to contribute it upstream.
+
+You should also consider describing the problem you're facing on `llvm-dev 
+<http://lists.llvm.org/mailman/listinfo/llvm-dev>`_ and asking for advice.  
+It's entirely possible someone has encountered your problem before and can 
+give good advice.  If there are multiple interested parties, that also 
+increases the chances that a metadata extension would be well received by the
+community as a whole.  
+
+Adding to this document
+=======================
+
+If you run across a case that you feel deserves to be covered here, please send
+a patch to `llvm-commits
+<http://lists.llvm.org/mailman/listinfo/llvm-commits>`_ for review.
+
+If you have questions on these items, please direct them to `llvm-dev 
+<http://lists.llvm.org/mailman/listinfo/llvm-dev>`_.  The more relevant 
+context you are able to give to your question, the more likely it is to be 
+answered.
+

Added: www-releases/trunk/3.9.1/docs/_sources/GarbageCollection.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/GarbageCollection.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/GarbageCollection.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/GarbageCollection.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,1098 @@
+=====================================
+Garbage Collection with LLVM
+=====================================
+
+.. contents::
+   :local:
+
+Abstract
+========
+
+This document covers how to integrate LLVM into a compiler for a language which
+supports garbage collection.  **Note that LLVM itself does not provide a 
+garbage collector.**  You must provide your own.  
+
+Quick Start
+============
+
+First, you should pick a collector strategy.  LLVM includes a number of built 
+in ones, but you can also implement a loadable plugin with a custom definition.
+Note that the collector strategy is a description of how LLVM should generate 
+code such that it interacts with your collector and runtime, not a description
+of the collector itself.
+
+Next, mark your generated functions as using your chosen collector strategy.  
+From c++, you can call: 
+
+.. code-block:: c++
+
+  F.setGC(<collector description name>);
+
+
+This will produce IR like the following fragment:
+
+.. code-block:: llvm
+
+  define void @foo() gc "<collector description name>" { ... }
+
+
+When generating LLVM IR for your functions, you will need to:
+
+* Use ``@llvm.gcread`` and/or ``@llvm.gcwrite`` in place of standard load and 
+  store instructions.  These intrinsics are used to represent load and store 
+  barriers.  If you collector does not require such barriers, you can skip 
+  this step.  
+
+* Use the memory allocation routines provided by your garbage collector's 
+  runtime library.
+
+* If your collector requires them, generate type maps according to your 
+  runtime's binary interface.  LLVM is not involved in the process.  In 
+  particular, the LLVM type system is not suitable for conveying such 
+  information though the compiler.
+
+* Insert any coordination code required for interacting with your collector.  
+  Many collectors require running application code to periodically check a
+  flag and conditionally call a runtime function.  This is often referred to 
+  as a safepoint poll.  
+
+You will need to identify roots (i.e. references to heap objects your collector 
+needs to know about) in your generated IR, so that LLVM can encode them into 
+your final stack maps.  Depending on the collector strategy chosen, this is 
+accomplished by using either the ``@llvm.gcroot`` intrinsics or an 
+``gc.statepoint`` relocation sequence. 
+
+Don't forget to create a root for each intermediate value that is generated when
+evaluating an expression.  In ``h(f(), g())``, the result of ``f()`` could 
+easily be collected if evaluating ``g()`` triggers a collection.
+
+Finally, you need to link your runtime library with the generated program 
+executable (for a static compiler) or ensure the appropriate symbols are 
+available for the runtime linker (for a JIT compiler).  
+
+
+Introduction
+============
+
+What is Garbage Collection?
+---------------------------
+
+Garbage collection is a widely used technique that frees the programmer from
+having to know the lifetimes of heap objects, making software easier to produce
+and maintain.  Many programming languages rely on garbage collection for
+automatic memory management.  There are two primary forms of garbage collection:
+conservative and accurate.
+
+Conservative garbage collection often does not require any special support from
+either the language or the compiler: it can handle non-type-safe programming
+languages (such as C/C++) and does not require any special information from the
+compiler.  The `Boehm collector
+<http://www.hpl.hp.com/personal/Hans_Boehm/gc/>`__ is an example of a
+state-of-the-art conservative collector.
+
+Accurate garbage collection requires the ability to identify all pointers in the
+program at run-time (which requires that the source-language be type-safe in
+most cases).  Identifying pointers at run-time requires compiler support to
+locate all places that hold live pointer variables at run-time, including the
+:ref:`processor stack and registers <gcroot>`.
+
+Conservative garbage collection is attractive because it does not require any
+special compiler support, but it does have problems.  In particular, because the
+conservative garbage collector cannot *know* that a particular word in the
+machine is a pointer, it cannot move live objects in the heap (preventing the
+use of compacting and generational GC algorithms) and it can occasionally suffer
+from memory leaks due to integer values that happen to point to objects in the
+program.  In addition, some aggressive compiler transformations can break
+conservative garbage collectors (though these seem rare in practice).
+
+Accurate garbage collectors do not suffer from any of these problems, but they
+can suffer from degraded scalar optimization of the program.  In particular,
+because the runtime must be able to identify and update all pointers active in
+the program, some optimizations are less effective.  In practice, however, the
+locality and performance benefits of using aggressive garbage collection
+techniques dominates any low-level losses.
+
+This document describes the mechanisms and interfaces provided by LLVM to
+support accurate garbage collection.
+
+Goals and non-goals
+-------------------
+
+LLVM's intermediate representation provides :ref:`garbage collection intrinsics
+<gc_intrinsics>` that offer support for a broad class of collector models.  For
+instance, the intrinsics permit:
+
+* semi-space collectors
+
+* mark-sweep collectors
+
+* generational collectors
+
+* incremental collectors
+
+* concurrent collectors
+
+* cooperative collectors
+
+* reference counting
+
+We hope that the support built into the LLVM IR is sufficient to support a 
+broad class of garbage collected languages including Scheme, ML, Java, C#, 
+Perl, Python, Lua, Ruby, other scripting languages, and more.
+
+Note that LLVM **does not itself provide a garbage collector** --- this should
+be part of your language's runtime library.  LLVM provides a framework for
+describing the garbage collectors requirements to the compiler.  In particular,
+LLVM provides support for generating stack maps at call sites, polling for a 
+safepoint, and emitting load and store barriers.  You can also extend LLVM - 
+possibly through a loadable :ref:`code generation plugins <plugin>` - to
+generate code and data structures which conforms to the *binary interface*
+specified by the *runtime library*.  This is similar to the relationship between
+LLVM and DWARF debugging info, for example.  The difference primarily lies in
+the lack of an established standard in the domain of garbage collection --- thus
+the need for a flexible extension mechanism.
+
+The aspects of the binary interface with which LLVM's GC support is
+concerned are:
+
+* Creation of GC safepoints within code where collection is allowed to execute
+  safely.
+
+* Computation of the stack map.  For each safe point in the code, object
+  references within the stack frame must be identified so that the collector may
+  traverse and perhaps update them.
+
+* Write barriers when storing object references to the heap.  These are commonly
+  used to optimize incremental scans in generational collectors.
+
+* Emission of read barriers when loading object references.  These are useful
+  for interoperating with concurrent collectors.
+
+There are additional areas that LLVM does not directly address:
+
+* Registration of global roots with the runtime.
+
+* Registration of stack map entries with the runtime.
+
+* The functions used by the program to allocate memory, trigger a collection,
+  etc.
+
+* Computation or compilation of type maps, or registration of them with the
+  runtime.  These are used to crawl the heap for object references.
+
+In general, LLVM's support for GC does not include features which can be
+adequately addressed with other features of the IR and does not specify a
+particular binary interface.  On the plus side, this means that you should be
+able to integrate LLVM with an existing runtime.  On the other hand, it can 
+have the effect of leaving a lot of work for the developer of a novel 
+language.  We try to mitigate this by providing built in collector strategy 
+descriptions that can work with many common collector designs and easy 
+extension points.  If you don't already have a specific binary interface 
+you need to support, we recommend trying to use one of these built in collector 
+strategies.
+
+.. _gc_intrinsics:
+
+LLVM IR Features
+================
+
+This section describes the garbage collection facilities provided by the
+:doc:`LLVM intermediate representation <LangRef>`.  The exact behavior of these
+IR features is specified by the selected :ref:`GC strategy description 
+<plugin>`. 
+
+Specifying GC code generation: ``gc "..."``
+-------------------------------------------
+
+.. code-block:: text
+
+  define <returntype> @name(...) gc "name" { ... }
+
+The ``gc`` function attribute is used to specify the desired GC strategy to the
+compiler.  Its programmatic equivalent is the ``setGC`` method of ``Function``.
+
+Setting ``gc "name"`` on a function triggers a search for a matching subclass
+of GCStrategy.  Some collector strategies are built in.  You can add others 
+using either the loadable plugin mechanism, or by patching your copy of LLVM.
+It is the selected GC strategy which defines the exact nature of the code 
+generated to support GC.  If none is found, the compiler will raise an error.
+
+Specifying the GC style on a per-function basis allows LLVM to link together
+programs that use different garbage collection algorithms (or none at all).
+
+.. _gcroot:
+
+Identifying GC roots on the stack
+----------------------------------
+
+LLVM currently supports two different mechanisms for describing references in
+compiled code at safepoints.  ``llvm.gcroot`` is the older mechanism; 
+``gc.statepoint`` has been added more recently.  At the moment, you can choose 
+either implementation (on a per :ref:`GC strategy <plugin>` basis).  Longer 
+term, we will probably either migrate away from ``llvm.gcroot`` entirely, or 
+substantially merge their implementations. Note that most new development 
+work is focused on ``gc.statepoint``.  
+
+Using ``gc.statepoint``
+^^^^^^^^^^^^^^^^^^^^^^^^
+:doc:`This page <Statepoints>` contains detailed documentation for 
+``gc.statepoint``. 
+
+Using ``llvm.gcwrite``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+  void @llvm.gcroot(i8** %ptrloc, i8* %metadata)
+
+The ``llvm.gcroot`` intrinsic is used to inform LLVM that a stack variable
+references an object on the heap and is to be tracked for garbage collection.
+The exact impact on generated code is specified by the Function's selected 
+:ref:`GC strategy <plugin>`.  All calls to ``llvm.gcroot`` **must** reside 
+inside the first basic block.
+
+The first argument **must** be a value referring to an alloca instruction or a
+bitcast of an alloca.  The second contains a pointer to metadata that should be
+associated with the pointer, and **must** be a constant or global value
+address.  If your target collector uses tags, use a null pointer for metadata.
+
+A compiler which performs manual SSA construction **must** ensure that SSA 
+values representing GC references are stored in to the alloca passed to the
+respective ``gcroot`` before every call site and reloaded after every call.  
+A compiler which uses mem2reg to raise imperative code using ``alloca`` into 
+SSA form need only add a call to ``@llvm.gcroot`` for those variables which 
+are pointers into the GC heap.  
+
+It is also important to mark intermediate values with ``llvm.gcroot``.  For
+example, consider ``h(f(), g())``.  Beware leaking the result of ``f()`` in the
+case that ``g()`` triggers a collection.  Note, that stack variables must be
+initialized and marked with ``llvm.gcroot`` in function's prologue.
+
+The ``%metadata`` argument can be used to avoid requiring heap objects to have
+'isa' pointers or tag bits. [Appel89_, Goldberg91_, Tolmach94_] If specified,
+its value will be tracked along with the location of the pointer in the stack
+frame.
+
+Consider the following fragment of Java code:
+
+.. code-block:: java
+
+   {
+     Object X;   // A null-initialized reference to an object
+     ...
+   }
+
+This block (which may be located in the middle of a function or in a loop nest),
+could be compiled to this LLVM code:
+
+.. code-block:: llvm
+
+  Entry:
+     ;; In the entry block for the function, allocate the
+     ;; stack space for X, which is an LLVM pointer.
+     %X = alloca %Object*
+
+     ;; Tell LLVM that the stack space is a stack root.
+     ;; Java has type-tags on objects, so we pass null as metadata.
+     %tmp = bitcast %Object** %X to i8**
+     call void @llvm.gcroot(i8** %tmp, i8* null)
+     ...
+
+     ;; "CodeBlock" is the block corresponding to the start
+     ;;  of the scope above.
+  CodeBlock:
+     ;; Java null-initializes pointers.
+     store %Object* null, %Object** %X
+
+     ...
+
+     ;; As the pointer goes out of scope, store a null value into
+     ;; it, to indicate that the value is no longer live.
+     store %Object* null, %Object** %X
+     ...
+
+Reading and writing references in the heap
+------------------------------------------
+
+Some collectors need to be informed when the mutator (the program that needs
+garbage collection) either reads a pointer from or writes a pointer to a field
+of a heap object.  The code fragments inserted at these points are called *read
+barriers* and *write barriers*, respectively.  The amount of code that needs to
+be executed is usually quite small and not on the critical path of any
+computation, so the overall performance impact of the barrier is tolerable.
+
+Barriers often require access to the *object pointer* rather than the *derived
+pointer* (which is a pointer to the field within the object).  Accordingly,
+these intrinsics take both pointers as separate arguments for completeness.  In
+this snippet, ``%object`` is the object pointer, and ``%derived`` is the derived
+pointer:
+
+.. code-block:: llvm
+
+  ;; An array type.
+  %class.Array = type { %class.Object, i32, [0 x %class.Object*] }
+  ...
+
+  ;; Load the object pointer from a gcroot.
+  %object = load %class.Array** %object_addr
+
+  ;; Compute the derived pointer.
+  %derived = getelementptr %object, i32 0, i32 2, i32 %n
+
+LLVM does not enforce this relationship between the object and derived pointer
+(although a particular :ref:`collector strategy <plugin>` might).  However, it
+would be an unusual collector that violated it.
+
+The use of these intrinsics is naturally optional if the target GC does not 
+require the corresponding barrier.  The GC strategy used with such a collector 
+should replace the intrinsic calls with the corresponding ``load`` or 
+``store`` instruction if they are used.
+
+One known deficiency with the current design is that the barrier intrinsics do 
+not include the size or alignment of the underlying operation performed.  It is 
+currently assumed that the operation is of pointer size and the alignment is
+assumed to be the target machine's default alignment.
+
+Write barrier: ``llvm.gcwrite``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+  void @llvm.gcwrite(i8* %value, i8* %object, i8** %derived)
+
+For write barriers, LLVM provides the ``llvm.gcwrite`` intrinsic function.  It
+has exactly the same semantics as a non-volatile ``store`` to the derived
+pointer (the third argument).  The exact code generated is specified by the
+Function's selected :ref:`GC strategy <plugin>`.
+
+Many important algorithms require write barriers, including generational and
+concurrent collectors.  Additionally, write barriers could be used to implement
+reference counting.
+
+Read barrier: ``llvm.gcread``
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+.. code-block:: llvm
+
+  i8* @llvm.gcread(i8* %object, i8** %derived)
+
+For read barriers, LLVM provides the ``llvm.gcread`` intrinsic function.  It has
+exactly the same semantics as a non-volatile ``load`` from the derived pointer
+(the second argument).  The exact code generated is specified by the Function's
+selected :ref:`GC strategy <plugin>`.
+
+Read barriers are needed by fewer algorithms than write barriers, and may have a
+greater performance impact since pointer reads are more frequent than writes.
+
+.. _plugin:
+
+.. _builtin-gc-strategies:
+
+Built In GC Strategies
+======================
+
+LLVM includes built in support for several varieties of garbage collectors.  
+
+The Shadow Stack GC
+----------------------
+
+To use this collector strategy, mark your functions with:
+
+.. code-block:: c++
+
+  F.setGC("shadow-stack");
+
+Unlike many GC algorithms which rely on a cooperative code generator to compile
+stack maps, this algorithm carefully maintains a linked list of stack roots
+[:ref:`Henderson2002 <henderson02>`].  This so-called "shadow stack" mirrors the
+machine stack.  Maintaining this data structure is slower than using a stack map
+compiled into the executable as constant data, but has a significant portability
+advantage because it requires no special support from the target code generator,
+and does not require tricky platform-specific code to crawl the machine stack.
+
+The tradeoff for this simplicity and portability is:
+
+* High overhead per function call.
+
+* Not thread-safe.
+
+Still, it's an easy way to get started.  After your compiler and runtime are up
+and running, writing a :ref:`plugin <plugin>` will allow you to take advantage
+of :ref:`more advanced GC features <collector-algos>` of LLVM in order to
+improve performance.
+
+
+The shadow stack doesn't imply a memory allocation algorithm.  A semispace
+collector or building atop ``malloc`` are great places to start, and can be
+implemented with very little code.
+
+When it comes time to collect, however, your runtime needs to traverse the stack
+roots, and for this it needs to integrate with the shadow stack.  Luckily, doing
+so is very simple. (This code is heavily commented to help you understand the
+data structure, but there are only 20 lines of meaningful code.)
+
+.. code-block:: c++
+
+  /// @brief The map for a single function's stack frame.  One of these is
+  ///        compiled as constant data into the executable for each function.
+  ///
+  /// Storage of metadata values is elided if the %metadata parameter to
+  /// @llvm.gcroot is null.
+  struct FrameMap {
+    int32_t NumRoots;    //< Number of roots in stack frame.
+    int32_t NumMeta;     //< Number of metadata entries.  May be < NumRoots.
+    const void *Meta[0]; //< Metadata for each root.
+  };
+
+  /// @brief A link in the dynamic shadow stack.  One of these is embedded in
+  ///        the stack frame of each function on the call stack.
+  struct StackEntry {
+    StackEntry *Next;    //< Link to next stack entry (the caller's).
+    const FrameMap *Map; //< Pointer to constant FrameMap.
+    void *Roots[0];      //< Stack roots (in-place array).
+  };
+
+  /// @brief The head of the singly-linked list of StackEntries.  Functions push
+  ///        and pop onto this in their prologue and epilogue.
+  ///
+  /// Since there is only a global list, this technique is not threadsafe.
+  StackEntry *llvm_gc_root_chain;
+
+  /// @brief Calls Visitor(root, meta) for each GC root on the stack.
+  ///        root and meta are exactly the values passed to
+  ///        @llvm.gcroot.
+  ///
+  /// Visitor could be a function to recursively mark live objects.  Or it
+  /// might copy them to another heap or generation.
+  ///
+  /// @param Visitor A function to invoke for every GC root on the stack.
+  void visitGCRoots(void (*Visitor)(void **Root, const void *Meta)) {
+    for (StackEntry *R = llvm_gc_root_chain; R; R = R->Next) {
+      unsigned i = 0;
+
+      // For roots [0, NumMeta), the metadata pointer is in the FrameMap.
+      for (unsigned e = R->Map->NumMeta; i != e; ++i)
+        Visitor(&R->Roots[i], R->Map->Meta[i]);
+
+      // For roots [NumMeta, NumRoots), the metadata pointer is null.
+      for (unsigned e = R->Map->NumRoots; i != e; ++i)
+        Visitor(&R->Roots[i], NULL);
+    }
+  }
+
+
+The 'Erlang' and 'Ocaml' GCs
+-----------------------------
+
+LLVM ships with two example collectors which leverage the ``gcroot`` 
+mechanisms.  To our knowledge, these are not actually used by any language 
+runtime, but they do provide a reasonable starting point for someone interested 
+in writing an ``gcroot`` compatible GC plugin.  In particular, these are the 
+only in tree examples of how to produce a custom binary stack map format using 
+a ``gcroot`` strategy.
+
+As there names imply, the binary format produced is intended to model that 
+used by the Erlang and OCaml compilers respectively.  
+
+.. _statepoint_example_gc:
+
+The Statepoint Example GC
+-------------------------
+
+.. code-block:: c++
+
+  F.setGC("statepoint-example");
+
+This GC provides an example of how one might use the infrastructure provided 
+by ``gc.statepoint``. This example GC is compatible with the 
+:ref:`PlaceSafepoints` and :ref:`RewriteStatepointsForGC` utility passes 
+which simplify ``gc.statepoint`` sequence insertion. If you need to build a 
+custom GC strategy around the ``gc.statepoints`` mechanisms, it is recommended
+that you use this one as a starting point.
+
+This GC strategy does not support read or write barriers.  As a result, these 
+intrinsics are lowered to normal loads and stores.
+
+The stack map format generated by this GC strategy can be found in the 
+:ref:`stackmap-section` using a format documented :ref:`here 
+<statepoint-stackmap-format>`. This format is intended to be the standard 
+format supported by LLVM going forward.
+
+The CoreCLR GC
+-------------------------
+
+.. code-block:: c++
+
+  F.setGC("coreclr");
+
+This GC leverages the ``gc.statepoint`` mechanism to support the 
+`CoreCLR <https://github.com/dotnet/coreclr>`__ runtime.
+
+Support for this GC strategy is a work in progress. This strategy will 
+differ from 
+:ref:`statepoint-example GC<statepoint_example_gc>` strategy in 
+certain aspects like:
+
+* Base-pointers of interior pointers are not explicitly 
+  tracked and reported.
+
+* A different format is used for encoding stack maps.
+
+* Safe-point polls are only needed before loop-back edges
+  and before tail-calls (not needed at function-entry).
+
+Custom GC Strategies
+====================
+
+If none of the built in GC strategy descriptions met your needs above, you will
+need to define a custom GCStrategy and possibly, a custom LLVM pass to perform 
+lowering.  Your best example of where to start defining a custom GCStrategy 
+would be to look at one of the built in strategies.
+
+You may be able to structure this additional code as a loadable plugin library.
+Loadable plugins are sufficient if all you need is to enable a different 
+combination of built in functionality, but if you need to provide a custom 
+lowering pass, you will need to build a patched version of LLVM.  If you think 
+you need a patched build, please ask for advice on llvm-dev.  There may be an 
+easy way we can extend the support to make it work for your use case without 
+requiring a custom build.  
+
+Collector Requirements
+----------------------
+
+You should be able to leverage any existing collector library that includes the following elements:
+
+#. A memory allocator which exposes an allocation function your compiled 
+   code can call.
+
+#. A binary format for the stack map.  A stack map describes the location
+   of references at a safepoint and is used by precise collectors to identify
+   references within a stack frame on the machine stack. Note that collectors
+   which conservatively scan the stack don't require such a structure.
+
+#. A stack crawler to discover functions on the call stack, and enumerate the
+   references listed in the stack map for each call site.  
+
+#. A mechanism for identifying references in global locations (e.g. global 
+   variables).
+
+#. If you collector requires them, an LLVM IR implementation of your collectors
+   load and store barriers.  Note that since many collectors don't require 
+   barriers at all, LLVM defaults to lowering such barriers to normal loads 
+   and stores unless you arrange otherwise.
+
+
+Implementing a collector plugin
+-------------------------------
+
+User code specifies which GC code generation to use with the ``gc`` function
+attribute or, equivalently, with the ``setGC`` method of ``Function``.
+
+To implement a GC plugin, it is necessary to subclass ``llvm::GCStrategy``,
+which can be accomplished in a few lines of boilerplate code.  LLVM's
+infrastructure provides access to several important algorithms.  For an
+uncontroversial collector, all that remains may be to compile LLVM's computed
+stack map to assembly code (using the binary representation expected by the
+runtime library).  This can be accomplished in about 100 lines of code.
+
+This is not the appropriate place to implement a garbage collected heap or a
+garbage collector itself.  That code should exist in the language's runtime
+library.  The compiler plugin is responsible for generating code which conforms
+to the binary interface defined by library, most essentially the :ref:`stack map
+<stack-map>`.
+
+To subclass ``llvm::GCStrategy`` and register it with the compiler:
+
+.. code-block:: c++
+
+  // lib/MyGC/MyGC.cpp - Example LLVM GC plugin
+
+  #include "llvm/CodeGen/GCStrategy.h"
+  #include "llvm/CodeGen/GCMetadata.h"
+  #include "llvm/Support/Compiler.h"
+
+  using namespace llvm;
+
+  namespace {
+    class LLVM_LIBRARY_VISIBILITY MyGC : public GCStrategy {
+    public:
+      MyGC() {}
+    };
+
+    GCRegistry::Add<MyGC>
+    X("mygc", "My bespoke garbage collector.");
+  }
+
+This boilerplate collector does nothing.  More specifically:
+
+* ``llvm.gcread`` calls are replaced with the corresponding ``load``
+  instruction.
+
+* ``llvm.gcwrite`` calls are replaced with the corresponding ``store``
+  instruction.
+
+* No safe points are added to the code.
+
+* The stack map is not compiled into the executable.
+
+Using the LLVM makefiles, this code
+can be compiled as a plugin using a simple makefile:
+
+.. code-block:: make
+
+  # lib/MyGC/Makefile
+
+  LEVEL := ../..
+  LIBRARYNAME = MyGC
+  LOADABLE_MODULE = 1
+
+  include $(LEVEL)/Makefile.common
+
+Once the plugin is compiled, code using it may be compiled using ``llc
+-load=MyGC.so`` (though MyGC.so may have some other platform-specific
+extension):
+
+::
+
+  $ cat sample.ll
+  define void @f() gc "mygc" {
+  entry:
+    ret void
+  }
+  $ llvm-as < sample.ll | llc -load=MyGC.so
+
+It is also possible to statically link the collector plugin into tools, such as
+a language-specific compiler front-end.
+
+.. _collector-algos:
+
+Overview of available features
+------------------------------
+
+``GCStrategy`` provides a range of features through which a plugin may do useful
+work.  Some of these are callbacks, some are algorithms that can be enabled,
+disabled, or customized.  This matrix summarizes the supported (and planned)
+features and correlates them with the collection techniques which typically
+require them.
+
+.. |v| unicode:: 0x2714
+   :trim:
+
+.. |x| unicode:: 0x2718
+   :trim:
+
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| Algorithm  | Done | Shadow | refcount | mark- | copying | incremental | threaded | concurrent |
+|            |      | stack  |          | sweep |         |             |          |            |
++============+======+========+==========+=======+=========+=============+==========+============+
+| stack map  | |v|  |        |          | |x|   | |x|     | |x|         | |x|      | |x|        |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| initialize | |v|  | |x|    | |x|      | |x|   | |x|     | |x|         | |x|      | |x|        |
+| roots      |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| derived    | NO   |        |          |       |         |             | **N**\*  | **N**\*    |
+| pointers   |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **custom   | |v|  |        |          |       |         |             |          |            |
+| lowering** |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcroot*   | |v|  | |x|    | |x|      |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcwrite*  | |v|  |        | |x|      |       |         | |x|         |          | |x|        |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *gcread*   | |v|  |        |          |       |         |             |          | |x|        |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **safe     |      |        |          |       |         |             |          |            |
+| points**   |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *in        | |v|  |        |          | |x|   | |x|     | |x|         | |x|      | |x|        |
+| calls*     |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *before    | |v|  |        |          |       |         |             | |x|      | |x|        |
+| calls*     |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *for       | NO   |        |          |       |         |             | **N**    | **N**      |
+| loops*     |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *before    | |v|  |        |          |       |         |             | |x|      | |x|        |
+| escape*    |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| emit code  | NO   |        |          |       |         |             | **N**    | **N**      |
+| at safe    |      |        |          |       |         |             |          |            |
+| points     |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **output** |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *assembly* | |v|  |        |          | |x|   | |x|     | |x|         | |x|      | |x|        |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *JIT*      | NO   |        |          | **?** | **?**   | **?**       | **?**    | **?**      |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| *obj*      | NO   |        |          | **?** | **?**   | **?**       | **?**    | **?**      |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| live       | NO   |        |          | **?** | **?**   | **?**       | **?**    | **?**      |
+| analysis   |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| register   | NO   |        |          | **?** | **?**   | **?**       | **?**    | **?**      |
+| map        |      |        |          |       |         |             |          |            |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| \* Derived pointers only pose a hasard to copying collections.                                |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+| **?** denotes a feature which could be utilized if available.                                 |
++------------+------+--------+----------+-------+---------+-------------+----------+------------+
+
+To be clear, the collection techniques above are defined as:
+
+Shadow Stack
+  The mutator carefully maintains a linked list of stack roots.
+
+Reference Counting
+  The mutator maintains a reference count for each object and frees an object
+  when its count falls to zero.
+
+Mark-Sweep
+  When the heap is exhausted, the collector marks reachable objects starting
+  from the roots, then deallocates unreachable objects in a sweep phase.
+
+Copying
+  As reachability analysis proceeds, the collector copies objects from one heap
+  area to another, compacting them in the process.  Copying collectors enable
+  highly efficient "bump pointer" allocation and can improve locality of
+  reference.
+
+Incremental
+  (Including generational collectors.) Incremental collectors generally have all
+  the properties of a copying collector (regardless of whether the mature heap
+  is compacting), but bring the added complexity of requiring write barriers.
+
+Threaded
+  Denotes a multithreaded mutator; the collector must still stop the mutator
+  ("stop the world") before beginning reachability analysis.  Stopping a
+  multithreaded mutator is a complicated problem.  It generally requires highly
+  platform-specific code in the runtime, and the production of carefully
+  designed machine code at safe points.
+
+Concurrent
+  In this technique, the mutator and the collector run concurrently, with the
+  goal of eliminating pause times.  In a *cooperative* collector, the mutator
+  further aids with collection should a pause occur, allowing collection to take
+  advantage of multiprocessor hosts.  The "stop the world" problem of threaded
+  collectors is generally still present to a limited extent.  Sophisticated
+  marking algorithms are necessary.  Read barriers may be necessary.
+
+As the matrix indicates, LLVM's garbage collection infrastructure is already
+suitable for a wide variety of collectors, but does not currently extend to
+multithreaded programs.  This will be added in the future as there is
+interest.
+
+.. _stack-map:
+
+Computing stack maps
+--------------------
+
+LLVM automatically computes a stack map.  One of the most important features
+of a ``GCStrategy`` is to compile this information into the executable in
+the binary representation expected by the runtime library.
+
+The stack map consists of the location and identity of each GC root in the
+each function in the module.  For each root:
+
+* ``RootNum``: The index of the root.
+
+* ``StackOffset``: The offset of the object relative to the frame pointer.
+
+* ``RootMetadata``: The value passed as the ``%metadata`` parameter to the
+  ``@llvm.gcroot`` intrinsic.
+
+Also, for the function as a whole:
+
+* ``getFrameSize()``: The overall size of the function's initial stack frame,
+   not accounting for any dynamic allocation.
+
+* ``roots_size()``: The count of roots in the function.
+
+To access the stack map, use ``GCFunctionMetadata::roots_begin()`` and
+-``end()`` from the :ref:`GCMetadataPrinter <assembly>`:
+
+.. code-block:: c++
+
+  for (iterator I = begin(), E = end(); I != E; ++I) {
+    GCFunctionInfo *FI = *I;
+    unsigned FrameSize = FI->getFrameSize();
+    size_t RootCount = FI->roots_size();
+
+    for (GCFunctionInfo::roots_iterator RI = FI->roots_begin(),
+                                        RE = FI->roots_end();
+                                        RI != RE; ++RI) {
+      int RootNum = RI->Num;
+      int RootStackOffset = RI->StackOffset;
+      Constant *RootMetadata = RI->Metadata;
+    }
+  }
+
+If the ``llvm.gcroot`` intrinsic is eliminated before code generation by a
+custom lowering pass, LLVM will compute an empty stack map.  This may be useful
+for collector plugins which implement reference counting or a shadow stack.
+
+.. _init-roots:
+
+Initializing roots to null: ``InitRoots``
+-----------------------------------------
+
+.. code-block:: c++
+
+  MyGC::MyGC() {
+    InitRoots = true;
+  }
+
+When set, LLVM will automatically initialize each root to ``null`` upon entry to
+the function.  This prevents the GC's sweep phase from visiting uninitialized
+pointers, which will almost certainly cause it to crash.  This initialization
+occurs before custom lowering, so the two may be used together.
+
+Since LLVM does not yet compute liveness information, there is no means of
+distinguishing an uninitialized stack root from an initialized one.  Therefore,
+this feature should be used by all GC plugins.  It is enabled by default.
+
+Custom lowering of intrinsics: ``CustomRoots``, ``CustomReadBarriers``, and ``CustomWriteBarriers``
+---------------------------------------------------------------------------------------------------
+
+For GCs which use barriers or unusual treatment of stack roots, these 
+flags allow the collector to perform arbitrary transformations of the
+LLVM IR:
+
+.. code-block:: c++
+
+  class MyGC : public GCStrategy {
+  public:
+    MyGC() {
+      CustomRoots = true;
+      CustomReadBarriers = true;
+      CustomWriteBarriers = true;
+    }
+  };
+
+If any of these flags are set, LLVM suppresses its default lowering for
+the corresponding intrinsics.  Instead, you must provide a custom Pass
+which lowers the intrinsics as desired.  If you have opted in to custom
+lowering of a particular intrinsic your pass **must** eliminate all 
+instances of the corresponding intrinsic in functions which opt in to
+your GC.  The best example of such a pass is the ShadowStackGC and it's 
+ShadowStackGCLowering pass.  
+
+There is currently no way to register such a custom lowering pass 
+without building a custom copy of LLVM.
+
+.. _safe-points:
+
+Generating safe points: ``NeededSafePoints``
+--------------------------------------------
+
+LLVM can compute four kinds of safe points:
+
+.. code-block:: c++
+
+  namespace GC {
+    /// PointKind - The type of a collector-safe point.
+    ///
+    enum PointKind {
+      Loop,    //< Instr is a loop (backwards branch).
+      Return,  //< Instr is a return instruction.
+      PreCall, //< Instr is a call instruction.
+      PostCall //< Instr is the return address of a call.
+    };
+  }
+
+A collector can request any combination of the four by setting the
+``NeededSafePoints`` mask:
+
+.. code-block:: c++
+
+  MyGC::MyGC()  {
+    NeededSafePoints = 1 << GC::Loop
+                     | 1 << GC::Return
+                     | 1 << GC::PreCall
+                     | 1 << GC::PostCall;
+  }
+
+It can then use the following routines to access safe points.
+
+.. code-block:: c++
+
+  for (iterator I = begin(), E = end(); I != E; ++I) {
+    GCFunctionInfo *MD = *I;
+    size_t PointCount = MD->size();
+
+    for (GCFunctionInfo::iterator PI = MD->begin(),
+                                  PE = MD->end(); PI != PE; ++PI) {
+      GC::PointKind PointKind = PI->Kind;
+      unsigned PointNum = PI->Num;
+    }
+  }
+
+Almost every collector requires ``PostCall`` safe points, since these correspond
+to the moments when the function is suspended during a call to a subroutine.
+
+Threaded programs generally require ``Loop`` safe points to guarantee that the
+application will reach a safe point within a bounded amount of time, even if it
+is executing a long-running loop which contains no function calls.
+
+Threaded collectors may also require ``Return`` and ``PreCall`` safe points to
+implement "stop the world" techniques using self-modifying code, where it is
+important that the program not exit the function without reaching a safe point
+(because only the topmost function has been patched).
+
+.. _assembly:
+
+Emitting assembly code: ``GCMetadataPrinter``
+---------------------------------------------
+
+LLVM allows a plugin to print arbitrary assembly code before and after the rest
+of a module's assembly code.  At the end of the module, the GC can compile the
+LLVM stack map into assembly code. (At the beginning, this information is not
+yet computed.)
+
+Since AsmWriter and CodeGen are separate components of LLVM, a separate abstract
+base class and registry is provided for printing assembly code, the
+``GCMetadaPrinter`` and ``GCMetadataPrinterRegistry``.  The AsmWriter will look
+for such a subclass if the ``GCStrategy`` sets ``UsesMetadata``:
+
+.. code-block:: c++
+
+  MyGC::MyGC() {
+    UsesMetadata = true;
+  }
+
+This separation allows JIT-only clients to be smaller.
+
+Note that LLVM does not currently have analogous APIs to support code generation
+in the JIT, nor using the object writers.
+
+.. code-block:: c++
+
+  // lib/MyGC/MyGCPrinter.cpp - Example LLVM GC printer
+
+  #include "llvm/CodeGen/GCMetadataPrinter.h"
+  #include "llvm/Support/Compiler.h"
+
+  using namespace llvm;
+
+  namespace {
+    class LLVM_LIBRARY_VISIBILITY MyGCPrinter : public GCMetadataPrinter {
+    public:
+      virtual void beginAssembly(AsmPrinter &AP);
+
+      virtual void finishAssembly(AsmPrinter &AP);
+    };
+
+    GCMetadataPrinterRegistry::Add<MyGCPrinter>
+    X("mygc", "My bespoke garbage collector.");
+  }
+
+The collector should use ``AsmPrinter`` to print portable assembly code.  The
+collector itself contains the stack map for the entire module, and may access
+the ``GCFunctionInfo`` using its own ``begin()`` and ``end()`` methods.  Here's
+a realistic example:
+
+.. code-block:: c++
+
+  #include "llvm/CodeGen/AsmPrinter.h"
+  #include "llvm/IR/Function.h"
+  #include "llvm/IR/DataLayout.h"
+  #include "llvm/Target/TargetAsmInfo.h"
+  #include "llvm/Target/TargetMachine.h"
+
+  void MyGCPrinter::beginAssembly(AsmPrinter &AP) {
+    // Nothing to do.
+  }
+
+  void MyGCPrinter::finishAssembly(AsmPrinter &AP) {
+    MCStreamer &OS = AP.OutStreamer;
+    unsigned IntPtrSize = AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
+
+    // Put this in the data section.
+    OS.SwitchSection(AP.getObjFileLowering().getDataSection());
+
+    // For each function...
+    for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
+      GCFunctionInfo &MD = **FI;
+
+      // A compact GC layout. Emit this data structure:
+      //
+      // struct {
+      //   int32_t PointCount;
+      //   void *SafePointAddress[PointCount];
+      //   int32_t StackFrameSize; // in words
+      //   int32_t StackArity;
+      //   int32_t LiveCount;
+      //   int32_t LiveOffsets[LiveCount];
+      // } __gcmap_<FUNCTIONNAME>;
+
+      // Align to address width.
+      AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
+
+      // Emit PointCount.
+      OS.AddComment("safe point count");
+      AP.EmitInt32(MD.size());
+
+      // And each safe point...
+      for (GCFunctionInfo::iterator PI = MD.begin(),
+                                    PE = MD.end(); PI != PE; ++PI) {
+        // Emit the address of the safe point.
+        OS.AddComment("safe point address");
+        MCSymbol *Label = PI->Label;
+        AP.EmitLabelPlusOffset(Label/*Hi*/, 0/*Offset*/, 4/*Size*/);
+      }
+
+      // Stack information never change in safe points! Only print info from the
+      // first call-site.
+      GCFunctionInfo::iterator PI = MD.begin();
+
+      // Emit the stack frame size.
+      OS.AddComment("stack frame size (in words)");
+      AP.EmitInt32(MD.getFrameSize() / IntPtrSize);
+
+      // Emit stack arity, i.e. the number of stacked arguments.
+      unsigned RegisteredArgs = IntPtrSize == 4 ? 5 : 6;
+      unsigned StackArity = MD.getFunction().arg_size() > RegisteredArgs ?
+                            MD.getFunction().arg_size() - RegisteredArgs : 0;
+      OS.AddComment("stack arity");
+      AP.EmitInt32(StackArity);
+
+      // Emit the number of live roots in the function.
+      OS.AddComment("live root count");
+      AP.EmitInt32(MD.live_size(PI));
+
+      // And for each live root...
+      for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
+                                         LE = MD.live_end(PI);
+                                         LI != LE; ++LI) {
+        // Emit live root's offset within the stack frame.
+        OS.AddComment("stack index (offset / wordsize)");
+        AP.EmitInt32(LI->StackOffset);
+      }
+    }
+  }
+
+References
+==========
+
+.. _appel89:
+
+[Appel89] Runtime Tags Aren't Necessary. Andrew W. Appel. Lisp and Symbolic
+Computation 19(7):703-705, July 1989.
+
+.. _goldberg91:
+
+[Goldberg91] Tag-free garbage collection for strongly typed programming
+languages. Benjamin Goldberg. ACM SIGPLAN PLDI'91.
+
+.. _tolmach94:
+
+[Tolmach94] Tag-free garbage collection using explicit type parameters. Andrew
+Tolmach. Proceedings of the 1994 ACM conference on LISP and functional
+programming.
+
+.. _henderson02:
+
+[Henderson2002] `Accurate Garbage Collection in an Uncooperative Environment
+<http://citeseer.ist.psu.edu/henderson02accurate.html>`__

Added: www-releases/trunk/3.9.1/docs/_sources/GetElementPtr.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/GetElementPtr.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/GetElementPtr.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/GetElementPtr.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,536 @@
+=======================================
+The Often Misunderstood GEP Instruction
+=======================================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document seeks to dispel the mystery and confusion surrounding LLVM's
+`GetElementPtr <LangRef.html#i_getelementptr>`_ (GEP) instruction.  Questions
+about the wily GEP instruction are probably the most frequently occurring
+questions once a developer gets down to coding with LLVM. Here we lay out the
+sources of confusion and show that the GEP instruction is really quite simple.
+
+Address Computation
+===================
+
+When people are first confronted with the GEP instruction, they tend to relate
+it to known concepts from other programming paradigms, most notably C array
+indexing and field selection. GEP closely resembles C array indexing and field
+selection, however it is a little different and this leads to the following
+questions.
+
+What is the first index of the GEP instruction?
+-----------------------------------------------
+
+Quick answer: The index stepping through the first operand.
+
+The confusion with the first index usually arises from thinking about the
+GetElementPtr instruction as if it was a C index operator. They aren't the
+same. For example, when we write, in "C":
+
+.. code-block:: c++
+
+  AType *Foo;
+  ...
+  X = &Foo->F;
+
+it is natural to think that there is only one index, the selection of the field
+``F``.  However, in this example, ``Foo`` is a pointer. That pointer
+must be indexed explicitly in LLVM. C, on the other hand, indices through it
+transparently.  To arrive at the same address location as the C code, you would
+provide the GEP instruction with two index operands. The first operand indexes
+through the pointer; the second operand indexes the field ``F`` of the
+structure, just as if you wrote:
+
+.. code-block:: c++
+
+  X = &Foo[0].F;
+
+Sometimes this question gets rephrased as:
+
+.. _GEP index through first pointer:
+
+  *Why is it okay to index through the first pointer, but subsequent pointers
+  won't be dereferenced?*
+
+The answer is simply because memory does not have to be accessed to perform the
+computation. The first operand to the GEP instruction must be a value of a
+pointer type. The value of the pointer is provided directly to the GEP
+instruction as an operand without any need for accessing memory. It must,
+therefore be indexed and requires an index operand. Consider this example:
+
+.. code-block:: c++
+
+  struct munger_struct {
+    int f1;
+    int f2;
+  };
+  void munge(struct munger_struct *P) {
+    P[0].f1 = P[1].f1 + P[2].f2;
+  }
+  ...
+  munger_struct Array[3];
+  ...
+  munge(Array);
+
+In this "C" example, the front end compiler (Clang) will generate three GEP
+instructions for the three indices through "P" in the assignment statement.  The
+function argument ``P`` will be the first operand of each of these GEP
+instructions.  The second operand indexes through that pointer.  The third
+operand will be the field offset into the ``struct munger_struct`` type, for
+either the ``f1`` or ``f2`` field. So, in LLVM assembly the ``munge`` function
+looks like:
+
+.. code-block:: llvm
+
+  void %munge(%struct.munger_struct* %P) {
+  entry:
+    %tmp = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 1, i32 0
+    %tmp = load i32* %tmp
+    %tmp6 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 2, i32 1
+    %tmp7 = load i32* %tmp6
+    %tmp8 = add i32 %tmp7, %tmp
+    %tmp9 = getelementptr %struct.munger_struct, %struct.munger_struct* %P, i32 0, i32 0
+    store i32 %tmp8, i32* %tmp9
+    ret void
+  }
+
+In each case the first operand is the pointer through which the GEP instruction
+starts. The same is true whether the first operand is an argument, allocated
+memory, or a global variable.
+
+To make this clear, let's consider a more obtuse example:
+
+.. code-block:: text
+
+  %MyVar = uninitialized global i32
+  ...
+  %idx1 = getelementptr i32, i32* %MyVar, i64 0
+  %idx2 = getelementptr i32, i32* %MyVar, i64 1
+  %idx3 = getelementptr i32, i32* %MyVar, i64 2
+
+These GEP instructions are simply making address computations from the base
+address of ``MyVar``.  They compute, as follows (using C syntax):
+
+.. code-block:: c++
+
+  idx1 = (char*) &MyVar + 0
+  idx2 = (char*) &MyVar + 4
+  idx3 = (char*) &MyVar + 8
+
+Since the type ``i32`` is known to be four bytes long, the indices 0, 1 and 2
+translate into memory offsets of 0, 4, and 8, respectively. No memory is
+accessed to make these computations because the address of ``%MyVar`` is passed
+directly to the GEP instructions.
+
+The obtuse part of this example is in the cases of ``%idx2`` and ``%idx3``. They
+result in the computation of addresses that point to memory past the end of the
+``%MyVar`` global, which is only one ``i32`` long, not three ``i32``\s long.
+While this is legal in LLVM, it is inadvisable because any load or store with
+the pointer that results from these GEP instructions would produce undefined
+results.
+
+Why is the extra 0 index required?
+----------------------------------
+
+Quick answer: there are no superfluous indices.
+
+This question arises most often when the GEP instruction is applied to a global
+variable which is always a pointer type. For example, consider this:
+
+.. code-block:: text
+
+  %MyStruct = uninitialized global { float*, i32 }
+  ...
+  %idx = getelementptr { float*, i32 }, { float*, i32 }* %MyStruct, i64 0, i32 1
+
+The GEP above yields an ``i32*`` by indexing the ``i32`` typed field of the
+structure ``%MyStruct``. When people first look at it, they wonder why the ``i64
+0`` index is needed. However, a closer inspection of how globals and GEPs work
+reveals the need. Becoming aware of the following facts will dispel the
+confusion:
+
+#. The type of ``%MyStruct`` is *not* ``{ float*, i32 }`` but rather ``{ float*,
+   i32 }*``. That is, ``%MyStruct`` is a pointer to a structure containing a
+   pointer to a ``float`` and an ``i32``.
+
+#. Point #1 is evidenced by noticing the type of the first operand of the GEP
+   instruction (``%MyStruct``) which is ``{ float*, i32 }*``.
+
+#. The first index, ``i64 0`` is required to step over the global variable
+   ``%MyStruct``.  Since the first argument to the GEP instruction must always
+   be a value of pointer type, the first index steps through that pointer. A
+   value of 0 means 0 elements offset from that pointer.
+
+#. The second index, ``i32 1`` selects the second field of the structure (the
+   ``i32``).
+
+What is dereferenced by GEP?
+----------------------------
+
+Quick answer: nothing.
+
+The GetElementPtr instruction dereferences nothing. That is, it doesn't access
+memory in any way. That's what the Load and Store instructions are for.  GEP is
+only involved in the computation of addresses. For example, consider this:
+
+.. code-block:: text
+
+  %MyVar = uninitialized global { [40 x i32 ]* }
+  ...
+  %idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %MyVar, i64 0, i32 0, i64 0, i64 17
+
+In this example, we have a global variable, ``%MyVar`` that is a pointer to a
+structure containing a pointer to an array of 40 ints. The GEP instruction seems
+to be accessing the 18th integer of the structure's array of ints. However, this
+is actually an illegal GEP instruction. It won't compile. The reason is that the
+pointer in the structure *must* be dereferenced in order to index into the
+array of 40 ints. Since the GEP instruction never accesses memory, it is
+illegal.
+
+In order to access the 18th integer in the array, you would need to do the
+following:
+
+.. code-block:: text
+
+  %idx = getelementptr { [40 x i32]* }, { [40 x i32]* }* %, i64 0, i32 0
+  %arr = load [40 x i32]** %idx
+  %idx = getelementptr [40 x i32], [40 x i32]* %arr, i64 0, i64 17
+
+In this case, we have to load the pointer in the structure with a load
+instruction before we can index into the array. If the example was changed to:
+
+.. code-block:: text
+
+  %MyVar = uninitialized global { [40 x i32 ] }
+  ...
+  %idx = getelementptr { [40 x i32] }, { [40 x i32] }*, i64 0, i32 0, i64 17
+
+then everything works fine. In this case, the structure does not contain a
+pointer and the GEP instruction can index through the global variable, into the
+first field of the structure and access the 18th ``i32`` in the array there.
+
+Why don't GEP x,0,0,1 and GEP x,1 alias?
+----------------------------------------
+
+Quick Answer: They compute different address locations.
+
+If you look at the first indices in these GEP instructions you find that they
+are different (0 and 1), therefore the address computation diverges with that
+index. Consider this example:
+
+.. code-block:: llvm
+
+  %MyVar = global { [10 x i32] }
+  %idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 0, i32 0, i64 1
+  %idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1
+
+In this example, ``idx1`` computes the address of the second integer in the
+array that is in the structure in ``%MyVar``, that is ``MyVar+4``. The type of
+``idx1`` is ``i32*``. However, ``idx2`` computes the address of *the next*
+structure after ``%MyVar``. The type of ``idx2`` is ``{ [10 x i32] }*`` and its
+value is equivalent to ``MyVar + 40`` because it indexes past the ten 4-byte
+integers in ``MyVar``. Obviously, in such a situation, the pointers don't
+alias.
+
+Why do GEP x,1,0,0 and GEP x,1 alias?
+-------------------------------------
+
+Quick Answer: They compute the same address location.
+
+These two GEP instructions will compute the same address because indexing
+through the 0th element does not change the address. However, it does change the
+type. Consider this example:
+
+.. code-block:: llvm
+
+  %MyVar = global { [10 x i32] }
+  %idx1 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1, i32 0, i64 0
+  %idx2 = getelementptr { [10 x i32] }, { [10 x i32] }* %MyVar, i64 1
+
+In this example, the value of ``%idx1`` is ``%MyVar+40`` and its type is
+``i32*``. The value of ``%idx2`` is also ``MyVar+40`` but its type is ``{ [10 x
+i32] }*``.
+
+Can GEP index into vector elements?
+-----------------------------------
+
+This hasn't always been forcefully disallowed, though it's not recommended.  It
+leads to awkward special cases in the optimizers, and fundamental inconsistency
+in the IR. In the future, it will probably be outright disallowed.
+
+What effect do address spaces have on GEPs?
+-------------------------------------------
+
+None, except that the address space qualifier on the first operand pointer type
+always matches the address space qualifier on the result type.
+
+How is GEP different from ``ptrtoint``, arithmetic, and ``inttoptr``?
+---------------------------------------------------------------------
+
+It's very similar; there are only subtle differences.
+
+With ptrtoint, you have to pick an integer type. One approach is to pick i64;
+this is safe on everything LLVM supports (LLVM internally assumes pointers are
+never wider than 64 bits in many places), and the optimizer will actually narrow
+the i64 arithmetic down to the actual pointer size on targets which don't
+support 64-bit arithmetic in most cases. However, there are some cases where it
+doesn't do this. With GEP you can avoid this problem.
+
+Also, GEP carries additional pointer aliasing rules. It's invalid to take a GEP
+from one object, address into a different separately allocated object, and
+dereference it. IR producers (front-ends) must follow this rule, and consumers
+(optimizers, specifically alias analysis) benefit from being able to rely on
+it. See the `Rules`_ section for more information.
+
+And, GEP is more concise in common cases.
+
+However, for the underlying integer computation implied, there is no
+difference.
+
+
+I'm writing a backend for a target which needs custom lowering for GEP. How do I do this?
+-----------------------------------------------------------------------------------------
+
+You don't. The integer computation implied by a GEP is target-independent.
+Typically what you'll need to do is make your backend pattern-match expressions
+trees involving ADD, MUL, etc., which are what GEP is lowered into. This has the
+advantage of letting your code work correctly in more cases.
+
+GEP does use target-dependent parameters for the size and layout of data types,
+which targets can customize.
+
+If you require support for addressing units which are not 8 bits, you'll need to
+fix a lot of code in the backend, with GEP lowering being only a small piece of
+the overall picture.
+
+How does VLA addressing work with GEPs?
+---------------------------------------
+
+GEPs don't natively support VLAs. LLVM's type system is entirely static, and GEP
+address computations are guided by an LLVM type.
+
+VLA indices can be implemented as linearized indices. For example, an expression
+like ``X[a][b][c]``, must be effectively lowered into a form like
+``X[a*m+b*n+c]``, so that it appears to the GEP as a single-dimensional array
+reference.
+
+This means if you want to write an analysis which understands array indices and
+you want to support VLAs, your code will have to be prepared to reverse-engineer
+the linearization. One way to solve this problem is to use the ScalarEvolution
+library, which always presents VLA and non-VLA indexing in the same manner.
+
+.. _Rules:
+
+Rules
+=====
+
+What happens if an array index is out of bounds?
+------------------------------------------------
+
+There are two senses in which an array index can be out of bounds.
+
+First, there's the array type which comes from the (static) type of the first
+operand to the GEP. Indices greater than the number of elements in the
+corresponding static array type are valid. There is no problem with out of
+bounds indices in this sense. Indexing into an array only depends on the size of
+the array element, not the number of elements.
+
+A common example of how this is used is arrays where the size is not known.
+It's common to use array types with zero length to represent these. The fact
+that the static type says there are zero elements is irrelevant; it's perfectly
+valid to compute arbitrary element indices, as the computation only depends on
+the size of the array element, not the number of elements. Note that zero-sized
+arrays are not a special case here.
+
+This sense is unconnected with ``inbounds`` keyword. The ``inbounds`` keyword is
+designed to describe low-level pointer arithmetic overflow conditions, rather
+than high-level array indexing rules.
+
+Analysis passes which wish to understand array indexing should not assume that
+the static array type bounds are respected.
+
+The second sense of being out of bounds is computing an address that's beyond
+the actual underlying allocated object.
+
+With the ``inbounds`` keyword, the result value of the GEP is undefined if the
+address is outside the actual underlying allocated object and not the address
+one-past-the-end.
+
+Without the ``inbounds`` keyword, there are no restrictions on computing
+out-of-bounds addresses. Obviously, performing a load or a store requires an
+address of allocated and sufficiently aligned memory. But the GEP itself is only
+concerned with computing addresses.
+
+Can array indices be negative?
+------------------------------
+
+Yes. This is basically a special case of array indices being out of bounds.
+
+Can I compare two values computed with GEPs?
+--------------------------------------------
+
+Yes. If both addresses are within the same allocated object, or
+one-past-the-end, you'll get the comparison result you expect. If either is
+outside of it, integer arithmetic wrapping may occur, so the comparison may not
+be meaningful.
+
+Can I do GEP with a different pointer type than the type of the underlying object?
+----------------------------------------------------------------------------------
+
+Yes. There are no restrictions on bitcasting a pointer value to an arbitrary
+pointer type. The types in a GEP serve only to define the parameters for the
+underlying integer computation. They need not correspond with the actual type of
+the underlying object.
+
+Furthermore, loads and stores don't have to use the same types as the type of
+the underlying object. Types in this context serve only to specify memory size
+and alignment. Beyond that there are merely a hint to the optimizer indicating
+how the value will likely be used.
+
+Can I cast an object's address to integer and add it to null?
+-------------------------------------------------------------
+
+You can compute an address that way, but if you use GEP to do the add, you can't
+use that pointer to actually access the object, unless the object is managed
+outside of LLVM.
+
+The underlying integer computation is sufficiently defined; null has a defined
+value --- zero --- and you can add whatever value you want to it.
+
+However, it's invalid to access (load from or store to) an LLVM-aware object
+with such a pointer. This includes ``GlobalVariables``, ``Allocas``, and objects
+pointed to by noalias pointers.
+
+If you really need this functionality, you can do the arithmetic with explicit
+integer instructions, and use inttoptr to convert the result to an address. Most
+of GEP's special aliasing rules do not apply to pointers computed from ptrtoint,
+arithmetic, and inttoptr sequences.
+
+Can I compute the distance between two objects, and add that value to one address to compute the other address?
+---------------------------------------------------------------------------------------------------------------
+
+As with arithmetic on null, you can use GEP to compute an address that way, but
+you can't use that pointer to actually access the object if you do, unless the
+object is managed outside of LLVM.
+
+Also as above, ptrtoint and inttoptr provide an alternative way to do this which
+do not have this restriction.
+
+Can I do type-based alias analysis on LLVM IR?
+----------------------------------------------
+
+You can't do type-based alias analysis using LLVM's built-in type system,
+because LLVM has no restrictions on mixing types in addressing, loads or stores.
+
+LLVM's type-based alias analysis pass uses metadata to describe a different type
+system (such as the C type system), and performs type-based aliasing on top of
+that.  Further details are in the `language reference <LangRef.html#tbaa>`_.
+
+What happens if a GEP computation overflows?
+--------------------------------------------
+
+If the GEP lacks the ``inbounds`` keyword, the value is the result from
+evaluating the implied two's complement integer computation. However, since
+there's no guarantee of where an object will be allocated in the address space,
+such values have limited meaning.
+
+If the GEP has the ``inbounds`` keyword, the result value is undefined (a "trap
+value") if the GEP overflows (i.e. wraps around the end of the address space).
+
+As such, there are some ramifications of this for inbounds GEPs: scales implied
+by array/vector/pointer indices are always known to be "nsw" since they are
+signed values that are scaled by the element size.  These values are also
+allowed to be negative (e.g. "``gep i32 *%P, i32 -1``") but the pointer itself
+is logically treated as an unsigned value.  This means that GEPs have an
+asymmetric relation between the pointer base (which is treated as unsigned) and
+the offset applied to it (which is treated as signed). The result of the
+additions within the offset calculation cannot have signed overflow, but when
+applied to the base pointer, there can be signed overflow.
+
+How can I tell if my front-end is following the rules?
+------------------------------------------------------
+
+There is currently no checker for the getelementptr rules. Currently, the only
+way to do this is to manually check each place in your front-end where
+GetElementPtr operators are created.
+
+It's not possible to write a checker which could find all rule violations
+statically. It would be possible to write a checker which works by instrumenting
+the code with dynamic checks though. Alternatively, it would be possible to
+write a static checker which catches a subset of possible problems. However, no
+such checker exists today.
+
+Rationale
+=========
+
+Why is GEP designed this way?
+-----------------------------
+
+The design of GEP has the following goals, in rough unofficial order of
+priority:
+
+* Support C, C-like languages, and languages which can be conceptually lowered
+  into C (this covers a lot).
+
+* Support optimizations such as those that are common in C compilers. In
+  particular, GEP is a cornerstone of LLVM's `pointer aliasing
+  model <LangRef.html#pointeraliasing>`_.
+
+* Provide a consistent method for computing addresses so that address
+  computations don't need to be a part of load and store instructions in the IR.
+
+* Support non-C-like languages, to the extent that it doesn't interfere with
+  other goals.
+
+* Minimize target-specific information in the IR.
+
+Why do struct member indices always use ``i32``?
+------------------------------------------------
+
+The specific type i32 is probably just a historical artifact, however it's wide
+enough for all practical purposes, so there's been no need to change it.  It
+doesn't necessarily imply i32 address arithmetic; it's just an identifier which
+identifies a field in a struct. Requiring that all struct indices be the same
+reduces the range of possibilities for cases where two GEPs are effectively the
+same but have distinct operand types.
+
+What's an uglygep?
+------------------
+
+Some LLVM optimizers operate on GEPs by internally lowering them into more
+primitive integer expressions, which allows them to be combined with other
+integer expressions and/or split into multiple separate integer expressions. If
+they've made non-trivial changes, translating back into LLVM IR can involve
+reverse-engineering the structure of the addressing in order to fit it into the
+static type of the original first operand. It isn't always possibly to fully
+reconstruct this structure; sometimes the underlying addressing doesn't
+correspond with the static type at all. In such cases the optimizer instead will
+emit a GEP with the base pointer casted to a simple address-unit pointer, using
+the name "uglygep". This isn't pretty, but it's just as valid, and it's
+sufficient to preserve the pointer aliasing guarantees that GEP provides.
+
+Summary
+=======
+
+In summary, here's some things to always remember about the GetElementPtr
+instruction:
+
+
+#. The GEP instruction never accesses memory, it only provides pointer
+   computations.
+
+#. The first operand to the GEP instruction is always a pointer and it must be
+   indexed.
+
+#. There are no superfluous indices for the GEP instruction.
+
+#. Trailing zero indices are superfluous for pointer aliasing, but not for the
+   types of the pointers.
+
+#. Leading zero indices are not superfluous for pointer aliasing nor the types
+   of the pointers.

Added: www-releases/trunk/3.9.1/docs/_sources/GettingStarted.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/GettingStarted.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/GettingStarted.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/GettingStarted.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,1262 @@
+====================================
+Getting Started with the LLVM System
+====================================
+
+.. contents::
+   :local:
+
+Overview
+========
+
+Welcome to LLVM! In order to get started, you first need to know some basic
+information.
+
+First, LLVM comes in three pieces. The first piece is the LLVM suite. This
+contains all of the tools, libraries, and header files needed to use LLVM.  It
+contains an assembler, disassembler, bitcode analyzer and bitcode optimizer.  It
+also contains basic regression tests that can be used to test the LLVM tools and
+the Clang front end.
+
+The second piece is the `Clang <http://clang.llvm.org/>`_ front end.  This
+component compiles C, C++, Objective C, and Objective C++ code into LLVM
+bitcode. Once compiled into LLVM bitcode, a program can be manipulated with the
+LLVM tools from the LLVM suite.
+
+There is a third, optional piece called Test Suite.  It is a suite of programs
+with a testing harness that can be used to further test LLVM's functionality
+and performance.
+
+Getting Started Quickly (A Summary)
+===================================
+
+The LLVM Getting Started documentation may be out of date.  So, the `Clang
+Getting Started <http://clang.llvm.org/get_started.html>`_ page might also be a
+good place to start.
+
+Here's the short story for getting up and running quickly with LLVM:
+
+#. Read the documentation.
+#. Read the documentation.
+#. Remember that you were warned twice about reading the documentation.
+
+   * In particular, the *relative paths specified are important*.
+
+#. Checkout LLVM:
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm``
+
+#. Checkout Clang:
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``cd llvm/tools``
+   * ``svn co http://llvm.org/svn/llvm-project/cfe/trunk clang``
+
+#. Checkout Compiler-RT (required to build the sanitizers) **[Optional]**:
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``cd llvm/projects``
+   * ``svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt``
+
+#. Checkout Libomp (required for OpenMP support) **[Optional]**:
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``cd llvm/projects``
+   * ``svn co http://llvm.org/svn/llvm-project/openmp/trunk openmp``
+
+#. Checkout libcxx and libcxxabi **[Optional]**:
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``cd llvm/projects``
+   * ``svn co http://llvm.org/svn/llvm-project/libcxx/trunk libcxx``
+   * ``svn co http://llvm.org/svn/llvm-project/libcxxabi/trunk libcxxabi``
+
+#. Get the Test Suite Source Code **[Optional]**
+
+   * ``cd where-you-want-llvm-to-live``
+   * ``cd llvm/projects``
+   * ``svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite``
+
+#. Configure and build LLVM and Clang:
+
+   *Warning:* Make sure you've checked out *all of* the source code 
+   before trying to configure with cmake.  cmake does not pickup newly
+   added source directories in incremental builds. 
+
+   The build uses `CMake <CMake.html>`_. LLVM requires CMake 3.4.3 to build. It
+   is generally recommended to use a recent CMake, especially if you're
+   generating Ninja build files. This is because the CMake project is constantly
+   improving the quality of the generators, and the Ninja generator gets a lot
+   of attention.
+
+   * ``cd where you want to build llvm``
+   * ``mkdir build``
+   * ``cd build``
+   * ``cmake -G <generator> [options] <path to llvm sources>``
+
+     Some common generators are:
+
+     * ``Unix Makefiles`` --- for generating make-compatible parallel makefiles.
+     * ``Ninja`` --- for generating `Ninja <https://ninja-build.org>`_
+       build files. Most llvm developers use Ninja.
+     * ``Visual Studio`` --- for generating Visual Studio projects and
+       solutions.
+     * ``Xcode`` --- for generating Xcode projects.
+
+     Some Common options:
+
+     * ``-DCMAKE_INSTALL_PREFIX=directory`` --- Specify for *directory* the full
+       pathname of where you want the LLVM tools and libraries to be installed
+       (default ``/usr/local``).
+
+     * ``-DCMAKE_BUILD_TYPE=type`` --- Valid options for *type* are Debug,
+       Release, RelWithDebInfo, and MinSizeRel. Default is Debug.
+
+     * ``-DLLVM_ENABLE_ASSERTIONS=On`` --- Compile with assertion checks enabled
+       (default is Yes for Debug builds, No for all other build types).
+
+   * Run your build tool of choice!
+
+     * The default target (i.e. ``make``) will build all of LLVM
+
+     * The ``check-all`` target (i.e. ``make check-all``) will run the
+       regression tests to ensure everything is in working order.
+
+     * CMake will generate build targets for each tool and library, and most
+       LLVM sub-projects generate their own ``check-<project>`` target.
+
+     * Running a serial build will be *slow*.  Make sure you run a 
+       parallel build; for ``make``, use ``make -j``.  
+
+   * For more information see `CMake <CMake.html>`_
+
+   * If you get an "internal compiler error (ICE)" or test failures, see
+     `below`_.
+
+Consult the `Getting Started with LLVM`_ section for detailed information on
+configuring and compiling LLVM.  Go to `Directory Layout`_ to learn about the 
+layout of the source code tree.
+
+Requirements
+============
+
+Before you begin to use the LLVM system, review the requirements given below.
+This may save you some trouble by knowing ahead of time what hardware and
+software you will need.
+
+Hardware
+--------
+
+LLVM is known to work on the following host platforms:
+
+================== ===================== =============
+OS                 Arch                  Compilers
+================== ===================== =============
+Linux              x86\ :sup:`1`         GCC, Clang
+Linux              amd64                 GCC, Clang
+Linux              ARM\ :sup:`4`         GCC, Clang
+Linux              PowerPC               GCC, Clang
+Solaris            V9 (Ultrasparc)       GCC
+FreeBSD            x86\ :sup:`1`         GCC, Clang
+FreeBSD            amd64                 GCC, Clang
+MacOS X\ :sup:`2`  PowerPC               GCC
+MacOS X            x86                   GCC, Clang
+Cygwin/Win32       x86\ :sup:`1, 3`      GCC
+Windows            x86\ :sup:`1`         Visual Studio
+Windows x64        x86-64                Visual Studio
+================== ===================== =============
+
+.. note::
+
+  #. Code generation supported for Pentium processors and up
+  #. Code generation supported for 32-bit ABI only
+  #. To use LLVM modules on Win32-based system, you may configure LLVM
+     with ``-DBUILD_SHARED_LIBS=On``.
+  #. MCJIT not working well pre-v7, old JIT engine not supported any more.
+
+Note that Debug builds require a lot of time and disk space.  An LLVM-only build
+will need about 1-3 GB of space.  A full build of LLVM and Clang will need around
+15-20 GB of disk space.  The exact space requirements will vary by system.  (It
+is so large because of all the debugging information and the fact that the 
+libraries are statically linked into multiple tools).  
+
+If you you are space-constrained, you can build only selected tools or only 
+selected targets.  The Release build requires considerably less space.
+
+The LLVM suite *may* compile on other platforms, but it is not guaranteed to do
+so.  If compilation is successful, the LLVM utilities should be able to
+assemble, disassemble, analyze, and optimize LLVM bitcode.  Code generation
+should work as well, although the generated native code may not work on your
+platform.
+
+Software
+--------
+
+Compiling LLVM requires that you have several software packages installed. The
+table below lists those required packages. The Package column is the usual name
+for the software package that LLVM depends on. The Version column provides
+"known to work" versions of the package. The Notes column describes how LLVM
+uses the package and provides other details.
+
+=========================================================== ============ ==========================================
+Package                                                     Version      Notes
+=========================================================== ============ ==========================================
+`GNU Make <http://savannah.gnu.org/projects/make>`_         3.79, 3.79.1 Makefile/build processor
+`GCC <http://gcc.gnu.org/>`_                                >=4.7.0      C/C++ compiler\ :sup:`1`
+`python <http://www.python.org/>`_                          >=2.7        Automated test suite\ :sup:`2`
+`zlib <http://zlib.net>`_                                   >=1.2.3.4    Compression library\ :sup:`3`
+=========================================================== ============ ==========================================
+
+.. note::
+
+   #. Only the C and C++ languages are needed so there's no need to build the
+      other languages for LLVM's purposes. See `below` for specific version
+      info.
+   #. Only needed if you want to run the automated test suite in the
+      ``llvm/test`` directory.
+   #. Optional, adds compression / uncompression capabilities to selected LLVM
+      tools.
+
+Additionally, your compilation host is expected to have the usual plethora of
+Unix utilities. Specifically:
+
+* **ar** --- archive library builder
+* **bzip2** --- bzip2 command for distribution generation
+* **bunzip2** --- bunzip2 command for distribution checking
+* **chmod** --- change permissions on a file
+* **cat** --- output concatenation utility
+* **cp** --- copy files
+* **date** --- print the current date/time
+* **echo** --- print to standard output
+* **egrep** --- extended regular expression search utility
+* **find** --- find files/dirs in a file system
+* **grep** --- regular expression search utility
+* **gzip** --- gzip command for distribution generation
+* **gunzip** --- gunzip command for distribution checking
+* **install** --- install directories/files
+* **mkdir** --- create a directory
+* **mv** --- move (rename) files
+* **ranlib** --- symbol table builder for archive libraries
+* **rm** --- remove (delete) files and directories
+* **sed** --- stream editor for transforming output
+* **sh** --- Bourne shell for make build scripts
+* **tar** --- tape archive for distribution generation
+* **test** --- test things in file system
+* **unzip** --- unzip command for distribution checking
+* **zip** --- zip command for distribution generation
+
+.. _below:
+.. _check here:
+
+Host C++ Toolchain, both Compiler and Standard Library
+------------------------------------------------------
+
+LLVM is very demanding of the host C++ compiler, and as such tends to expose
+bugs in the compiler. We are also planning to follow improvements and
+developments in the C++ language and library reasonably closely. As such, we
+require a modern host C++ toolchain, both compiler and standard library, in
+order to build LLVM.
+
+For the most popular host toolchains we check for specific minimum versions in
+our build systems:
+
+* Clang 3.1
+* GCC 4.7
+* Visual Studio 2013
+
+Anything older than these toolchains *may* work, but will require forcing the
+build system with a special option and is not really a supported host platform.
+Also note that older versions of these compilers have often crashed or
+miscompiled LLVM.
+
+For less widely used host toolchains such as ICC or xlC, be aware that a very
+recent version may be required to support all of the C++ features used in LLVM.
+
+We track certain versions of software that are *known* to fail when used as
+part of the host toolchain. These even include linkers at times.
+
+**GCC 4.6.3 on ARM**: Miscompiles ``llvm-readobj`` at ``-O3``. A test failure
+in ``test/Object/readobj-shared-object.test`` is one symptom of the problem.
+
+**GNU ld 2.16.X**. Some 2.16.X versions of the ld linker will produce very long
+warning messages complaining that some "``.gnu.linkonce.t.*``" symbol was
+defined in a discarded section. You can safely ignore these messages as they are
+erroneous and the linkage is correct.  These messages disappear using ld 2.17.
+
+**GNU binutils 2.17**: Binutils 2.17 contains `a bug
+<http://sourceware.org/bugzilla/show_bug.cgi?id=3111>`__ which causes huge link
+times (minutes instead of seconds) when building LLVM.  We recommend upgrading
+to a newer version (2.17.50.0.4 or later).
+
+**GNU Binutils 2.19.1 Gold**: This version of Gold contained `a bug
+<http://sourceware.org/bugzilla/show_bug.cgi?id=9836>`__ which causes
+intermittent failures when building LLVM with position independent code.  The
+symptom is an error about cyclic dependencies.  We recommend upgrading to a
+newer version of Gold.
+
+**Clang 3.0 with libstdc++ 4.7.x**: a few Linux distributions (Ubuntu 12.10,
+Fedora 17) have both Clang 3.0 and libstdc++ 4.7 in their repositories.  Clang
+3.0 does not implement a few builtins that are used in this library.  We
+recommend using the system GCC to compile LLVM and Clang in this case.
+
+**Clang 3.0 on Mageia 2**.  There's a packaging issue: Clang can not find at
+least some (``cxxabi.h``) libstdc++ headers.
+
+**Clang in C++11 mode and libstdc++ 4.7.2**.  This version of libstdc++
+contained `a bug <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53841>`__ which
+causes Clang to refuse to compile condition_variable header file.  At the time
+of writing, this breaks LLD build.
+
+Getting a Modern Host C++ Toolchain
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+This section mostly applies to Linux and older BSDs. On Mac OS X, you should
+have a sufficiently modern Xcode, or you will likely need to upgrade until you
+do. On Windows, just use Visual Studio 2013 as the host compiler, it is
+explicitly supported and widely available. FreeBSD 10.0 and newer have a modern
+Clang as the system compiler.
+
+However, some Linux distributions and some other or older BSDs sometimes have
+extremely old versions of GCC. These steps attempt to help you upgrade you
+compiler even on such a system. However, if at all possible, we encourage you
+to use a recent version of a distribution with a modern system compiler that
+meets these requirements. Note that it is tempting to to install a prior
+version of Clang and libc++ to be the host compiler, however libc++ was not
+well tested or set up to build on Linux until relatively recently. As
+a consequence, this guide suggests just using libstdc++ and a modern GCC as the
+initial host in a bootstrap, and then using Clang (and potentially libc++).
+
+The first step is to get a recent GCC toolchain installed. The most common
+distribution on which users have struggled with the version requirements is
+Ubuntu Precise, 12.04 LTS. For this distribution, one easy option is to install
+the `toolchain testing PPA`_ and use it to install a modern GCC. There is
+a really nice discussions of this on the `ask ubuntu stack exchange`_. However,
+not all users can use PPAs and there are many other distributions, so it may be
+necessary (or just useful, if you're here you *are* doing compiler development
+after all) to build and install GCC from source. It is also quite easy to do
+these days.
+
+.. _toolchain testing PPA:
+  https://launchpad.net/~ubuntu-toolchain-r/+archive/test
+.. _ask ubuntu stack exchange:
+  http://askubuntu.com/questions/271388/how-to-install-gcc-4-8-in-ubuntu-12-04-from-the-terminal
+
+Easy steps for installing GCC 4.8.2:
+
+.. code-block:: console
+
+  % wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2
+  % wget https://ftp.gnu.org/gnu/gcc/gcc-4.8.2/gcc-4.8.2.tar.bz2.sig
+  % wget https://ftp.gnu.org/gnu/gnu-keyring.gpg
+  % signature_invalid=`gpg --verify --no-default-keyring --keyring ./gnu-keyring.gpg gcc-4.8.2.tar.bz2.sig`
+  % if [ $signature_invalid ]; then echo "Invalid signature" ; exit 1 ; fi
+  % tar -xvjf gcc-4.8.2.tar.bz2
+  % cd gcc-4.8.2
+  % ./contrib/download_prerequisites
+  % cd ..
+  % mkdir gcc-4.8.2-build
+  % cd gcc-4.8.2-build
+  % $PWD/../gcc-4.8.2/configure --prefix=$HOME/toolchains --enable-languages=c,c++
+  % make -j$(nproc)
+  % make install
+
+For more details, check out the excellent `GCC wiki entry`_, where I got most
+of this information from.
+
+.. _GCC wiki entry:
+  http://gcc.gnu.org/wiki/InstallingGCC
+
+Once you have a GCC toolchain, configure your build of LLVM to use the new
+toolchain for your host compiler and C++ standard library. Because the new
+version of libstdc++ is not on the system library search path, you need to pass
+extra linker flags so that it can be found at link time (``-L``) and at runtime
+(``-rpath``). If you are using CMake, this invocation should produce working
+binaries:
+
+.. code-block:: console
+
+  % mkdir build
+  % cd build
+  % CC=$HOME/toolchains/bin/gcc CXX=$HOME/toolchains/bin/g++ \
+    cmake .. -DCMAKE_CXX_LINK_FLAGS="-Wl,-rpath,$HOME/toolchains/lib64 -L$HOME/toolchains/lib64"
+
+If you fail to set rpath, most LLVM binaries will fail on startup with a message
+from the loader similar to ``libstdc++.so.6: version `GLIBCXX_3.4.20' not
+found``. This means you need to tweak the -rpath linker flag.
+
+When you build Clang, you will need to give *it* access to modern C++11
+standard library in order to use it as your new host in part of a bootstrap.
+There are two easy ways to do this, either build (and install) libc++ along
+with Clang and then use it with the ``-stdlib=libc++`` compile and link flag,
+or install Clang into the same prefix (``$HOME/toolchains`` above) as GCC.
+Clang will look within its own prefix for libstdc++ and use it if found. You
+can also add an explicit prefix for Clang to look in for a GCC toolchain with
+the ``--gcc-toolchain=/opt/my/gcc/prefix`` flag, passing it to both compile and
+link commands when using your just-built-Clang to bootstrap.
+
+.. _Getting Started with LLVM:
+
+Getting Started with LLVM
+=========================
+
+The remainder of this guide is meant to get you up and running with LLVM and to
+give you some basic information about the LLVM environment.
+
+The later sections of this guide describe the `general layout`_ of the LLVM
+source tree, a `simple example`_ using the LLVM tool chain, and `links`_ to find
+more information about LLVM or to get help via e-mail.
+
+Terminology and Notation
+------------------------
+
+Throughout this manual, the following names are used to denote paths specific to
+the local system and working environment.  *These are not environment variables
+you need to set but just strings used in the rest of this document below*.  In
+any of the examples below, simply replace each of these names with the
+appropriate pathname on your local system.  All these paths are absolute:
+
+``SRC_ROOT``
+
+  This is the top level directory of the LLVM source tree.
+
+``OBJ_ROOT``
+
+  This is the top level directory of the LLVM object tree (i.e. the tree where
+  object files and compiled programs will be placed.  It can be the same as
+  SRC_ROOT).
+
+Unpacking the LLVM Archives
+---------------------------
+
+If you have the LLVM distribution, you will need to unpack it before you can
+begin to compile it.  LLVM is distributed as a set of two files: the LLVM suite
+and the LLVM GCC front end compiled for your platform.  There is an additional
+test suite that is optional.  Each file is a TAR archive that is compressed with
+the gzip program.
+
+The files are as follows, with *x.y* marking the version number:
+
+``llvm-x.y.tar.gz``
+
+  Source release for the LLVM libraries and tools.
+
+``llvm-test-x.y.tar.gz``
+
+  Source release for the LLVM test-suite.
+
+.. _checkout:
+
+Checkout LLVM from Subversion
+-----------------------------
+
+If you have access to our Subversion repository, you can get a fresh copy of the
+entire source code.  All you need to do is check it out from Subversion as
+follows:
+
+* ``cd where-you-want-llvm-to-live``
+* Read-Only: ``svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm``
+* Read-Write: ``svn co https://user@llvm.org/svn/llvm-project/llvm/trunk llvm``
+
+This will create an '``llvm``' directory in the current directory and fully
+populate it with the LLVM source code, Makefiles, test directories, and local
+copies of documentation files.
+
+If you want to get a specific release (as opposed to the most recent revision),
+you can checkout it from the '``tags``' directory (instead of '``trunk``'). The
+following releases are located in the following subdirectories of the '``tags``'
+directory:
+
+* Release 3.4: **RELEASE_34/final**
+* Release 3.3: **RELEASE_33/final**
+* Release 3.2: **RELEASE_32/final**
+* Release 3.1: **RELEASE_31/final**
+* Release 3.0: **RELEASE_30/final**
+* Release 2.9: **RELEASE_29/final**
+* Release 2.8: **RELEASE_28**
+* Release 2.7: **RELEASE_27**
+* Release 2.6: **RELEASE_26**
+* Release 2.5: **RELEASE_25**
+* Release 2.4: **RELEASE_24**
+* Release 2.3: **RELEASE_23**
+* Release 2.2: **RELEASE_22**
+* Release 2.1: **RELEASE_21**
+* Release 2.0: **RELEASE_20**
+* Release 1.9: **RELEASE_19**
+* Release 1.8: **RELEASE_18**
+* Release 1.7: **RELEASE_17**
+* Release 1.6: **RELEASE_16**
+* Release 1.5: **RELEASE_15**
+* Release 1.4: **RELEASE_14**
+* Release 1.3: **RELEASE_13**
+* Release 1.2: **RELEASE_12**
+* Release 1.1: **RELEASE_11**
+* Release 1.0: **RELEASE_1**
+
+If you would like to get the LLVM test suite (a separate package as of 1.4), you
+get it from the Subversion repository:
+
+.. code-block:: console
+
+  % cd llvm/projects
+  % svn co http://llvm.org/svn/llvm-project/test-suite/trunk test-suite
+
+By placing it in the ``llvm/projects``, it will be automatically configured by
+the LLVM cmake configuration.
+
+Git Mirror
+----------
+
+Git mirrors are available for a number of LLVM subprojects. These mirrors sync
+automatically with each Subversion commit and contain all necessary git-svn
+marks (so, you can recreate git-svn metadata locally). Note that right now
+mirrors reflect only ``trunk`` for each project. You can do the read-only Git
+clone of LLVM via:
+
+.. code-block:: console
+
+  % git clone http://llvm.org/git/llvm.git
+
+If you want to check out clang too, run:
+
+.. code-block:: console
+
+  % cd llvm/tools
+  % git clone http://llvm.org/git/clang.git
+
+If you want to check out compiler-rt (required to build the sanitizers), run:
+
+.. code-block:: console
+
+  % cd llvm/projects
+  % git clone http://llvm.org/git/compiler-rt.git
+
+If you want to check out libomp (required for OpenMP support), run:
+
+.. code-block:: console
+
+  % cd llvm/projects
+  % git clone http://llvm.org/git/openmp.git
+
+If you want to check out libcxx and libcxxabi (optional), run:
+
+.. code-block:: console
+
+  % cd llvm/projects
+  % git clone http://llvm.org/git/libcxx.git
+  % git clone http://llvm.org/git/libcxxabi.git
+
+If you want to check out the Test Suite Source Code (optional), run:
+
+.. code-block:: console
+
+  % cd llvm/projects
+  % git clone http://llvm.org/git/test-suite.git
+
+Since the upstream repository is in Subversion, you should use ``git
+pull --rebase`` instead of ``git pull`` to avoid generating a non-linear history
+in your clone.  To configure ``git pull`` to pass ``--rebase`` by default on the
+master branch, run the following command:
+
+.. code-block:: console
+
+  % git config branch.master.rebase true
+
+Sending patches with Git
+^^^^^^^^^^^^^^^^^^^^^^^^
+
+Please read `Developer Policy <DeveloperPolicy.html#one-off-patches>`_, too.
+
+Assume ``master`` points the upstream and ``mybranch`` points your working
+branch, and ``mybranch`` is rebased onto ``master``.  At first you may check
+sanity of whitespaces:
+
+.. code-block:: console
+
+  % git diff --check master..mybranch
+
+The easiest way to generate a patch is as below:
+
+.. code-block:: console
+
+  % git diff master..mybranch > /path/to/mybranch.diff
+
+It is a little different from svn-generated diff. git-diff-generated diff has
+prefixes like ``a/`` and ``b/``. Don't worry, most developers might know it
+could be accepted with ``patch -p1 -N``.
+
+But you may generate patchset with git-format-patch. It generates by-each-commit
+patchset. To generate patch files to attach to your article:
+
+.. code-block:: console
+
+  % git format-patch --no-attach master..mybranch -o /path/to/your/patchset
+
+If you would like to send patches directly, you may use git-send-email or
+git-imap-send. Here is an example to generate the patchset in Gmail's [Drafts].
+
+.. code-block:: console
+
+  % git format-patch --attach master..mybranch --stdout | git imap-send
+
+Then, your .git/config should have [imap] sections.
+
+.. code-block:: ini
+
+  [imap]
+        host = imaps://imap.gmail.com
+        user = your.gmail.account at gmail.com
+        pass = himitsu!
+        port = 993
+        sslverify = false
+  ; in English
+        folder = "[Gmail]/Drafts"
+  ; example for Japanese, "Modified UTF-7" encoded.
+        folder = "[Gmail]/&Tgtm+DBN-"
+  ; example for Traditional Chinese
+        folder = "[Gmail]/&g0l6Pw-"
+
+.. _developers-work-with-git-svn:
+
+For developers to work with git-svn
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+To set up clone from which you can submit code using ``git-svn``, run:
+
+.. code-block:: console
+
+  % git clone http://llvm.org/git/llvm.git
+  % cd llvm
+  % git svn init https://llvm.org/svn/llvm-project/llvm/trunk --username=<username>
+  % git config svn-remote.svn.fetch :refs/remotes/origin/master
+  % git svn rebase -l  # -l avoids fetching ahead of the git mirror.
+
+  # If you have clang too:
+  % cd tools
+  % git clone http://llvm.org/git/clang.git
+  % cd clang
+  % git svn init https://llvm.org/svn/llvm-project/cfe/trunk --username=<username>
+  % git config svn-remote.svn.fetch :refs/remotes/origin/master
+  % git svn rebase -l
+
+Likewise for compiler-rt, libomp and test-suite.
+
+To update this clone without generating git-svn tags that conflict with the
+upstream Git repo, run:
+
+.. code-block:: console
+
+  % git fetch && (cd tools/clang && git fetch)  # Get matching revisions of both trees.
+  % git checkout master
+  % git svn rebase -l
+  % (cd tools/clang &&
+     git checkout master &&
+     git svn rebase -l)
+
+Likewise for compiler-rt, libomp and test-suite.
+
+This leaves your working directories on their master branches, so you'll need to
+``checkout`` each working branch individually and ``rebase`` it on top of its
+parent branch.
+
+For those who wish to be able to update an llvm repo/revert patches easily using
+git-svn, please look in the directory for the scripts ``git-svnup`` and
+``git-svnrevert``.
+
+To perform the aforementioned update steps go into your source directory and
+just type ``git-svnup`` or ``git svnup`` and everything will just work.
+
+If one wishes to revert a commit with git-svn, but do not want the git hash to
+escape into the commit message, one can use the script ``git-svnrevert`` or
+``git svnrevert`` which will take in the git hash for the commit you want to
+revert, look up the appropriate svn revision, and output a message where all
+references to the git hash have been replaced with the svn revision.
+
+To commit back changes via git-svn, use ``git svn dcommit``:
+
+.. code-block:: console
+
+  % git svn dcommit
+
+Note that git-svn will create one SVN commit for each Git commit you have pending,
+so squash and edit each commit before executing ``dcommit`` to make sure they all
+conform to the coding standards and the developers' policy.
+
+On success, ``dcommit`` will rebase against the HEAD of SVN, so to avoid conflict,
+please make sure your current branch is up-to-date (via fetch/rebase) before
+proceeding.
+
+The git-svn metadata can get out of sync after you mess around with branches and
+``dcommit``. When that happens, ``git svn dcommit`` stops working, complaining
+about files with uncommitted changes. The fix is to rebuild the metadata:
+
+.. code-block:: console
+
+  % rm -rf .git/svn
+  % git svn rebase -l
+
+Please, refer to the Git-SVN manual (``man git-svn``) for more information.
+
+Local LLVM Configuration
+------------------------
+
+Once checked out from the Subversion repository, the LLVM suite source code must
+be configured before being built. This process uses CMake.
+Unlinke the normal ``configure`` script, CMake
+generates the build files in whatever format you request as well as various
+``*.inc`` files, and ``llvm/include/Config/config.h``.
+
+Variables are passed to ``cmake`` on the command line using the format
+``-D<variable name>=<value>``. The following variables are some common options
+used by people developing LLVM.
+
++-------------------------+----------------------------------------------------+
+| Variable                | Purpose                                            |
++=========================+====================================================+
+| CMAKE_C_COMPILER        | Tells ``cmake`` which C compiler to use. By        |
+|                         | default, this will be /usr/bin/cc.                 |
++-------------------------+----------------------------------------------------+
+| CMAKE_CXX_COMPILER      | Tells ``cmake`` which C++ compiler to use. By      |
+|                         | default, this will be /usr/bin/c++.                |
++-------------------------+----------------------------------------------------+
+| CMAKE_BUILD_TYPE        | Tells ``cmake`` what type of build you are trying  |
+|                         | to generate files for. Valid options are Debug,    |
+|                         | Release, RelWithDebInfo, and MinSizeRel. Default   |
+|                         | is Debug.                                          |
++-------------------------+----------------------------------------------------+
+| CMAKE_INSTALL_PREFIX    | Specifies the install directory to target when     |
+|                         | running the install action of the build files.     |
++-------------------------+----------------------------------------------------+
+| LLVM_TARGETS_TO_BUILD   | A semicolon delimited list controlling which       |
+|                         | targets will be built and linked into llc. This is |
+|                         | equivalent to the ``--enable-targets`` option in   |
+|                         | the configure script. The default list is defined  |
+|                         | as ``LLVM_ALL_TARGETS``, and can be set to include |
+|                         | out-of-tree targets. The default value includes:   |
+|                         | ``AArch64, AMDGPU, ARM, BPF, Hexagon, Mips,        |
+|                         | MSP430, NVPTX, PowerPC, Sparc, SystemZ, X86,       |
+|                         | XCore``.                                           |
++-------------------------+----------------------------------------------------+
+| LLVM_ENABLE_DOXYGEN     | Build doxygen-based documentation from the source  |
+|                         | code This is disabled by default because it is     |
+|                         | slow and generates a lot of output.                |
++-------------------------+----------------------------------------------------+
+| LLVM_ENABLE_SPHINX      | Build sphinx-based documentation from the source   |
+|                         | code. This is disabled by default because it is    |
+|                         | slow and generates a lot of output.                |
++-------------------------+----------------------------------------------------+
+| LLVM_BUILD_LLVM_DYLIB   | Generate libLLVM.so. This library contains a       |
+|                         | default set of LLVM components that can be         |
+|                         | overridden with ``LLVM_DYLIB_COMPONENTS``. The     |
+|                         | default contains most of LLVM and is defined in    |
+|                         | ``tools/llvm-shlib/CMakelists.txt``.               |
++-------------------------+----------------------------------------------------+
+| LLVM_OPTIMIZED_TABLEGEN | Builds a release tablegen that gets used during    |
+|                         | the LLVM build. This can dramatically speed up     |
+|                         | debug builds.                                      |
++-------------------------+----------------------------------------------------+
+
+To configure LLVM, follow these steps:
+
+#. Change directory into the object root directory:
+
+   .. code-block:: console
+
+     % cd OBJ_ROOT
+
+#. Run the ``cmake``:
+
+   .. code-block:: console
+
+     % cmake -G "Unix Makefiles" -DCMAKE_INSTALL_PREFIX=prefix=/install/path
+       [other options] SRC_ROOT
+
+Compiling the LLVM Suite Source Code
+------------------------------------
+
+Unlike with autotools, with CMake your build type is defined at configuration.
+If you want to change your build type, you can re-run cmake with the following
+invocation:
+
+   .. code-block:: console
+
+     % cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=type SRC_ROOT
+
+Between runs, CMake preserves the values set for all options. CMake has the
+following build types defined:
+
+Debug
+
+  These builds are the default. The build system will compile the tools and
+  libraries unoptimized, with debugging information, and asserts enabled.
+
+Release
+
+  For these builds, the build system will compile the tools and libraries
+  with optimizations enabled and not generate debug info. CMakes default
+  optimization level is -O3. This can be configured by setting the
+  ``CMAKE_CXX_FLAGS_RELEASE`` variable on the CMake command line.
+
+RelWithDebInfo
+
+  These builds are useful when debugging. They generate optimized binaries with
+  debug information. CMakes default optimization level is -O2. This can be
+  configured by setting the ``CMAKE_CXX_FLAGS_RELWITHDEBINFO`` variable on the
+  CMake command line.
+
+Once you have LLVM configured, you can build it by entering the *OBJ_ROOT*
+directory and issuing the following command:
+
+.. code-block:: console
+
+  % make
+
+If the build fails, please `check here`_ to see if you are using a version of
+GCC that is known not to compile LLVM.
+
+If you have multiple processors in your machine, you may wish to use some of the
+parallel build options provided by GNU Make.  For example, you could use the
+command:
+
+.. code-block:: console
+
+  % make -j2
+
+There are several special targets which are useful when working with the LLVM
+source code:
+
+``make clean``
+
+  Removes all files generated by the build.  This includes object files,
+  generated C/C++ files, libraries, and executables.
+
+``make install``
+
+  Installs LLVM header files, libraries, tools, and documentation in a hierarchy
+  under ``$PREFIX``, specified with ``CMAKE_INSTALL_PREFIX``, which
+  defaults to ``/usr/local``.
+
+``make docs-llvm-html``
+
+  If configured with ``-DLLVM_ENABLE_SPHINX=On``, this will generate a directory
+  at ``OBJ_ROOT/docs/html`` which contains the HTML formatted documentation.
+
+Cross-Compiling LLVM
+--------------------
+
+It is possible to cross-compile LLVM itself. That is, you can create LLVM
+executables and libraries to be hosted on a platform different from the platform
+where they are built (a Canadian Cross build). To generate build files for
+cross-compiling CMake provides a variable ``CMAKE_TOOLCHAIN_FILE`` which can
+define compiler flags and variables used during the CMake test operations.
+
+The result of such a build is executables that are not runnable on on the build
+host but can be executed on the target. As an example the following CMake
+invocation can generate build files targeting iOS. This will work on Mac OS X
+with the latest Xcode:
+
+.. code-block:: console
+
+  % cmake -G "Ninja" -DCMAKE_OSX_ARCHITECTURES="armv7;armv7s;arm64"
+    -DCMAKE_TOOLCHAIN_FILE=<PATH_TO_LLVM>/cmake/platforms/iOS.cmake
+    -DCMAKE_BUILD_TYPE=Release -DLLVM_BUILD_RUNTIME=Off -DLLVM_INCLUDE_TESTS=Off
+    -DLLVM_INCLUDE_EXAMPLES=Off -DLLVM_ENABLE_BACKTRACES=Off [options]
+    <PATH_TO_LLVM>
+
+Note: There are some additional flags that need to be passed when building for
+iOS due to limitations in the iOS SDK.
+
+Check :doc:`HowToCrossCompileLLVM` and `Clang docs on how to cross-compile in general
+<http://clang.llvm.org/docs/CrossCompilation.html>`_ for more information
+about cross-compiling.
+
+The Location of LLVM Object Files
+---------------------------------
+
+The LLVM build system is capable of sharing a single LLVM source tree among
+several LLVM builds.  Hence, it is possible to build LLVM for several different
+platforms or configurations using the same source tree.
+
+* Change directory to where the LLVM object files should live:
+
+  .. code-block:: console
+
+    % cd OBJ_ROOT
+
+* Run ``cmake``:
+
+  .. code-block:: console
+
+    % cmake -G "Unix Makefiles" SRC_ROOT
+
+The LLVM build will create a structure underneath *OBJ_ROOT* that matches the
+LLVM source tree. At each level where source files are present in the source
+tree there will be a corresponding ``CMakeFiles`` directory in the *OBJ_ROOT*.
+Underneath that directory there is another directory with a name ending in
+``.dir`` under which you'll find object files for each source.
+
+For example:
+
+  .. code-block:: console
+
+    % cd llvm_build_dir
+    % find lib/Support/ -name APFloat*
+    lib/Support/CMakeFiles/LLVMSupport.dir/APFloat.cpp.o
+
+Optional Configuration Items
+----------------------------
+
+If you're running on a Linux system that supports the `binfmt_misc
+<http://en.wikipedia.org/wiki/binfmt_misc>`_
+module, and you have root access on the system, you can set your system up to
+execute LLVM bitcode files directly. To do this, use commands like this (the
+first command may not be required if you are already using the module):
+
+.. code-block:: console
+
+  % mount -t binfmt_misc none /proc/sys/fs/binfmt_misc
+  % echo ':llvm:M::BC::/path/to/lli:' > /proc/sys/fs/binfmt_misc/register
+  % chmod u+x hello.bc   (if needed)
+  % ./hello.bc
+
+This allows you to execute LLVM bitcode files directly.  On Debian, you can also
+use this command instead of the 'echo' command above:
+
+.. code-block:: console
+
+  % sudo update-binfmts --install llvm /path/to/lli --magic 'BC'
+
+.. _Program Layout:
+.. _general layout:
+
+Directory Layout
+================
+
+One useful source of information about the LLVM source base is the LLVM `doxygen
+<http://www.doxygen.org/>`_ documentation available at 
+`<http://llvm.org/doxygen/>`_.  The following is a brief introduction to code
+layout:
+
+``llvm/examples``
+-----------------
+
+Simple examples using the LLVM IR and JIT.
+
+``llvm/include``
+----------------
+
+Public header files exported from the LLVM library. The three main subdirectories:
+
+``llvm/include/llvm``
+
+  All LLVM-specific header files, and  subdirectories for different portions of 
+  LLVM: ``Analysis``, ``CodeGen``, ``Target``, ``Transforms``, etc...
+
+``llvm/include/llvm/Support``
+
+  Generic support libraries provided with LLVM but not necessarily specific to 
+  LLVM. For example, some C++ STL utilities and a Command Line option processing 
+  library store header files here.
+
+``llvm/include/llvm/Config``
+
+  Header files configured by the ``configure`` script.
+  They wrap "standard" UNIX and C header files.  Source code can include these
+  header files which automatically take care of the conditional #includes that
+  the ``configure`` script generates.
+
+``llvm/lib``
+------------
+
+Most source files are here. By putting code in libraries, LLVM makes it easy to 
+share code among the `tools`_.
+
+``llvm/lib/IR/``
+
+  Core LLVM source files that implement core classes like Instruction and 
+  BasicBlock.
+
+``llvm/lib/AsmParser/``
+
+  Source code for the LLVM assembly language parser library.
+
+``llvm/lib/Bitcode/``
+
+  Code for reading and writing bitcode.
+
+``llvm/lib/Analysis/``
+
+  A variety of program analyses, such as Call Graphs, Induction Variables, 
+  Natural Loop Identification, etc.
+
+``llvm/lib/Transforms/``
+
+  IR-to-IR program transformations, such as Aggressive Dead Code Elimination, 
+  Sparse Conditional Constant Propagation, Inlining, Loop Invariant Code Motion, 
+  Dead Global Elimination, and many others.
+
+``llvm/lib/Target/``
+
+  Files describing target architectures for code generation.  For example, 
+  ``llvm/lib/Target/X86`` holds the X86 machine description.
+
+``llvm/lib/CodeGen/``
+
+  The major parts of the code generator: Instruction Selector, Instruction 
+  Scheduling, and Register Allocation.
+
+``llvm/lib/MC/``
+
+  (FIXME: T.B.D.)  ....?
+
+``llvm/lib/ExecutionEngine/``
+
+  Libraries for directly executing bitcode at runtime in interpreted and 
+  JIT-compiled scenarios.
+
+``llvm/lib/Support/``
+
+  Source code that corresponding to the header files in ``llvm/include/ADT/``
+  and ``llvm/include/Support/``.
+
+``llvm/projects``
+-----------------
+
+Projects not strictly part of LLVM but shipped with LLVM. This is also the 
+directory for creating your own LLVM-based projects which leverage the LLVM
+build system.
+
+``llvm/test``
+-------------
+
+Feature and regression tests and other sanity checks on LLVM infrastructure. These
+are intended to run quickly and cover a lot of territory without being exhaustive.
+
+``test-suite``
+--------------
+
+A comprehensive correctness, performance, and benchmarking test suite for LLVM. 
+Comes in a separate Subversion module because not every LLVM user is interested 
+in such a comprehensive suite. For details see the :doc:`Testing Guide
+<TestingGuide>` document.
+
+.. _tools:
+
+``llvm/tools``
+--------------
+
+Executables built out of the libraries
+above, which form the main part of the user interface.  You can always get help
+for a tool by typing ``tool_name -help``.  The following is a brief introduction
+to the most important tools.  More detailed information is in
+the `Command Guide <CommandGuide/index.html>`_.
+
+``bugpoint``
+
+  ``bugpoint`` is used to debug optimization passes or code generation backends
+  by narrowing down the given test case to the minimum number of passes and/or
+  instructions that still cause a problem, whether it is a crash or
+  miscompilation. See `<HowToSubmitABug.html>`_ for more information on using
+  ``bugpoint``.
+
+``llvm-ar``
+
+  The archiver produces an archive containing the given LLVM bitcode files,
+  optionally with an index for faster lookup.
+
+``llvm-as``
+
+  The assembler transforms the human readable LLVM assembly to LLVM bitcode.
+
+``llvm-dis``
+
+  The disassembler transforms the LLVM bitcode to human readable LLVM assembly.
+
+``llvm-link``
+
+  ``llvm-link``, not surprisingly, links multiple LLVM modules into a single
+  program.
+
+``lli``
+
+  ``lli`` is the LLVM interpreter, which can directly execute LLVM bitcode
+  (although very slowly...). For architectures that support it (currently x86,
+  Sparc, and PowerPC), by default, ``lli`` will function as a Just-In-Time
+  compiler (if the functionality was compiled in), and will execute the code
+  *much* faster than the interpreter.
+
+``llc``
+
+  ``llc`` is the LLVM backend compiler, which translates LLVM bitcode to a
+  native code assembly file or to C code (with the ``-march=c`` option).
+
+``opt``
+
+  ``opt`` reads LLVM bitcode, applies a series of LLVM to LLVM transformations
+  (which are specified on the command line), and outputs the resultant
+  bitcode.   '``opt -help``'  is a good way to get a list of the
+  program transformations available in LLVM.
+
+  ``opt`` can also  run a specific analysis on an input LLVM bitcode
+  file and print  the results.  Primarily useful for debugging
+  analyses, or familiarizing yourself with what an analysis does.
+
+``llvm/utils``
+--------------
+
+Utilities for working with LLVM source code; some are part of the build process
+because they are code generators for parts of the infrastructure.
+
+
+``codegen-diff``
+
+  ``codegen-diff`` finds differences between code that LLC
+  generates and code that LLI generates. This is useful if you are
+  debugging one of them, assuming that the other generates correct output. For
+  the full user manual, run ```perldoc codegen-diff'``.
+
+``emacs/``
+
+   Emacs and XEmacs syntax highlighting  for LLVM   assembly files and TableGen 
+   description files.  See the ``README`` for information on using them.
+
+``getsrcs.sh``
+
+  Finds and outputs all non-generated source files,
+  useful if one wishes to do a lot of development across directories
+  and does not want to find each file. One way to use it is to run,
+  for example: ``xemacs `utils/getsources.sh``` from the top of the LLVM source
+  tree.
+
+``llvmgrep``
+
+  Performs an ``egrep -H -n`` on each source file in LLVM and
+  passes to it a regular expression provided on ``llvmgrep``'s command
+  line. This is an efficient way of searching the source base for a
+  particular regular expression.
+
+``makellvm``
+
+  Compiles all files in the current directory, then
+  compiles and links the tool that is the first argument. For example, assuming
+  you are in  ``llvm/lib/Target/Sparc``, if ``makellvm`` is in your
+  path,  running ``makellvm llc`` will make a build of the current
+  directory, switch to directory ``llvm/tools/llc`` and build it, causing a
+  re-linking of LLC.
+
+``TableGen/``
+
+  Contains the tool used to generate register
+  descriptions, instruction set descriptions, and even assemblers from common
+  TableGen description files.
+
+``vim/``
+
+  vim syntax-highlighting for LLVM assembly files
+  and TableGen description files. See the    ``README`` for how to use them.
+
+.. _simple example:
+
+An Example Using the LLVM Tool Chain
+====================================
+
+This section gives an example of using LLVM with the Clang front end.
+
+Example with clang
+------------------
+
+#. First, create a simple C file, name it 'hello.c':
+
+   .. code-block:: c
+
+     #include <stdio.h>
+
+     int main() {
+       printf("hello world\n");
+       return 0;
+     }
+
+#. Next, compile the C file into a native executable:
+
+   .. code-block:: console
+
+     % clang hello.c -o hello
+
+   .. note::
+
+     Clang works just like GCC by default.  The standard -S and -c arguments
+     work as usual (producing a native .s or .o file, respectively).
+
+#. Next, compile the C file into an LLVM bitcode file:
+
+   .. code-block:: console
+
+     % clang -O3 -emit-llvm hello.c -c -o hello.bc
+
+   The -emit-llvm option can be used with the -S or -c options to emit an LLVM
+   ``.ll`` or ``.bc`` file (respectively) for the code.  This allows you to use
+   the `standard LLVM tools <CommandGuide/index.html>`_ on the bitcode file.
+
+#. Run the program in both forms. To run the program, use:
+
+   .. code-block:: console
+
+      % ./hello
+
+   and
+
+   .. code-block:: console
+
+     % lli hello.bc
+
+   The second examples shows how to invoke the LLVM JIT, :doc:`lli
+   <CommandGuide/lli>`.
+
+#. Use the ``llvm-dis`` utility to take a look at the LLVM assembly code:
+
+   .. code-block:: console
+
+     % llvm-dis < hello.bc | less
+
+#. Compile the program to native assembly using the LLC code generator:
+
+   .. code-block:: console
+
+     % llc hello.bc -o hello.s
+
+#. Assemble the native assembly language file into a program:
+
+   .. code-block:: console
+
+     % /opt/SUNWspro/bin/cc -xarch=v9 hello.s -o hello.native   # On Solaris
+
+     % gcc hello.s -o hello.native                              # On others
+
+#. Execute the native code program:
+
+   .. code-block:: console
+
+     % ./hello.native
+
+   Note that using clang to compile directly to native code (i.e. when the
+   ``-emit-llvm`` option is not present) does steps 6/7/8 for you.
+
+Common Problems
+===============
+
+If you are having problems building or using LLVM, or if you have any other
+general questions about LLVM, please consult the `Frequently Asked
+Questions <FAQ.html>`_ page.
+
+.. _links:
+
+Links
+=====
+
+This document is just an **introduction** on how to use LLVM to do some simple
+things... there are many more interesting and complicated things that you can do
+that aren't documented here (but we'll gladly accept a patch if you want to
+write something up!).  For more information about LLVM, check out:
+
+* `LLVM Homepage <http://llvm.org/>`_
+* `LLVM Doxygen Tree <http://llvm.org/doxygen/>`_
+* `Starting a Project that Uses LLVM <http://llvm.org/docs/Projects.html>`_

Added: www-releases/trunk/3.9.1/docs/_sources/GettingStartedVS.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/GettingStartedVS.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/GettingStartedVS.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/GettingStartedVS.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,234 @@
+==================================================================
+Getting Started with the LLVM System using Microsoft Visual Studio
+==================================================================
+
+.. contents::
+   :local:
+
+
+Overview
+========
+Welcome to LLVM on Windows! This document only covers LLVM on Windows using
+Visual Studio, not mingw or cygwin. In order to get started, you first need to
+know some basic information.
+
+There are many different projects that compose LLVM. The first piece is the
+LLVM suite. This contains all of the tools, libraries, and header files needed
+to use LLVM. It contains an assembler, disassembler, bitcode analyzer and
+bitcode optimizer. It also contains basic regression tests that can be used to
+test the LLVM tools and the Clang front end.
+
+The second piece is the `Clang <http://clang.llvm.org/>`_ front end.  This
+component compiles C, C++, Objective C, and Objective C++ code into LLVM
+bitcode. Clang typically uses LLVM libraries to optimize the bitcode and emit
+machine code. LLVM fully supports the COFF object file format, which is
+compatible with all other existing Windows toolchains.
+
+The last major part of LLVM, the execution Test Suite, does not run on Windows,
+and this document does not discuss it.
+
+Additional information about the LLVM directory structure and tool chain
+can be found on the main :doc:`GettingStarted` page.
+
+
+Requirements
+============
+Before you begin to use the LLVM system, review the requirements given
+below.  This may save you some trouble by knowing ahead of time what hardware
+and software you will need.
+
+Hardware
+--------
+Any system that can adequately run Visual Studio 2013 is fine. The LLVM
+source tree and object files, libraries and executables will consume
+approximately 3GB.
+
+Software
+--------
+You will need Visual Studio 2013 or higher, with the latest Update installed. 
+
+You will also need the `CMake <http://www.cmake.org/>`_ build system since it
+generates the project files you will use to build with. CMake 2.8.12.2 is the
+minimum required version for building with Visual Studio, though the latest
+version of CMake is recommended.
+
+If you would like to run the LLVM tests you will need `Python
+<http://www.python.org/>`_. Version 2.7 and newer are known to work. You will
+need `GnuWin32 <http://gnuwin32.sourceforge.net/>`_ tools, too.
+
+Do not install the LLVM directory tree into a path containing spaces (e.g.
+``C:\Documents and Settings\...``) as the configure step will fail.
+
+
+Getting Started
+===============
+Here's the short story for getting up and running quickly with LLVM:
+
+1. Read the documentation.
+2. Seriously, read the documentation.
+3. Remember that you were warned twice about reading the documentation.
+4. Get the Source Code
+
+   * With the distributed files:
+
+      1. ``cd <where-you-want-llvm-to-live>``
+      2. ``gunzip --stdout llvm-VERSION.tar.gz | tar -xvf -``
+         (*or use WinZip*)
+      3. ``cd llvm``
+
+   * With anonymous Subversion access:
+
+      1. ``cd <where-you-want-llvm-to-live>``
+      2. ``svn co http://llvm.org/svn/llvm-project/llvm/trunk llvm``
+      3. ``cd llvm``
+
+5. Use `CMake <http://www.cmake.org/>`_ to generate up-to-date project files:
+
+   * Once CMake is installed then the simplest way is to just start the
+     CMake GUI, select the directory where you have LLVM extracted to, and
+     the default options should all be fine.  One option you may really
+     want to change, regardless of anything else, might be the
+     ``CMAKE_INSTALL_PREFIX`` setting to select a directory to INSTALL to
+     once compiling is complete, although installation is not mandatory for
+     using LLVM.  Another important option is ``LLVM_TARGETS_TO_BUILD``,
+     which controls the LLVM target architectures that are included on the
+     build.
+   * If CMake complains that it cannot find the compiler, make sure that
+     you have the Visual Studio C++ Tools installed, not just Visual Studio
+     itself (trying to create a C++ project in Visual Studio will generally
+     download the C++ tools if they haven't already been).
+   * See the :doc:`LLVM CMake guide <CMake>` for detailed information about
+     how to configure the LLVM build.
+   * CMake generates project files for all build types. To select a specific
+     build type, use the Configuration manager from the VS IDE or the 
+     ``/property:Configuration`` command line option when using MSBuild.
+
+6. Start Visual Studio
+
+   * In the directory you created the project files will have an ``llvm.sln``
+     file, just double-click on that to open Visual Studio.
+
+7. Build the LLVM Suite:
+
+   * The projects may still be built individually, but to build them all do
+     not just select all of them in batch build (as some are meant as
+     configuration projects), but rather select and build just the
+     ``ALL_BUILD`` project to build everything, or the ``INSTALL`` project,
+     which first builds the ``ALL_BUILD`` project, then installs the LLVM
+     headers, libs, and other useful things to the directory set by the
+     ``CMAKE_INSTALL_PREFIX`` setting when you first configured CMake.
+   * The Fibonacci project is a sample program that uses the JIT. Modify the
+     project's debugging properties to provide a numeric command line argument
+     or run it from the command line.  The program will print the
+     corresponding fibonacci value.
+
+8. Test LLVM in Visual Studio:
+
+   * If ``%PATH%`` does not contain GnuWin32, you may specify
+     ``LLVM_LIT_TOOLS_DIR`` on CMake for the path to GnuWin32.
+   * You can run LLVM tests by merely building the project "check". The test
+     results will be shown in the VS output window.
+
+9. Test LLVM on the command line:
+
+   * The LLVM tests can be run by changing directory to the llvm source
+     directory and running:
+
+     .. code-block:: bat
+
+        C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test
+
+     This example assumes that Python is in your PATH variable, you
+     have built a Win32 Debug version of llvm with a standard out of
+     line build. You should not see any unexpected failures, but will
+     see many unsupported tests and expected failures.
+
+     A specific test or test directory can be run with:
+
+     .. code-block:: bat
+
+        C:\..\llvm> python ..\build\bin\llvm-lit --param build_config=Win32 --param build_mode=Debug --param llvm_site_config=../build/test/lit.site.cfg test/path/to/test
+
+
+An Example Using the LLVM Tool Chain
+====================================
+
+1. First, create a simple C file, name it '``hello.c``':
+
+   .. code-block:: c
+
+      #include <stdio.h>
+      int main() {
+        printf("hello world\n");
+        return 0;
+      }
+
+2. Next, compile the C file into an LLVM bitcode file:
+
+   .. code-block:: bat
+
+      C:\..> clang -c hello.c -emit-llvm -o hello.bc
+
+   This will create the result file ``hello.bc`` which is the LLVM bitcode
+   that corresponds the compiled program and the library facilities that
+   it required.  You can execute this file directly using ``lli`` tool,
+   compile it to native assembly with the ``llc``, optimize or analyze it
+   further with the ``opt`` tool, etc.
+
+   Alternatively you can directly output an executable with clang with:
+
+   .. code-block:: bat
+
+      C:\..> clang hello.c -o hello.exe
+
+   The ``-o hello.exe`` is required because clang currently outputs ``a.out``
+   when neither ``-o`` nor ``-c`` are given.
+
+3. Run the program using the just-in-time compiler:
+
+   .. code-block:: bat
+
+      C:\..> lli hello.bc
+
+4. Use the ``llvm-dis`` utility to take a look at the LLVM assembly code:
+
+   .. code-block:: bat
+
+      C:\..> llvm-dis < hello.bc | more
+
+5. Compile the program to object code using the LLC code generator:
+
+   .. code-block:: bat
+
+      C:\..> llc -filetype=obj hello.bc
+
+6. Link to binary using Microsoft link:
+
+   .. code-block:: bat
+
+      C:\..> link hello.obj -defaultlib:libcmt
+
+7. Execute the native code program:
+
+   .. code-block:: bat
+
+      C:\..> hello.exe
+
+
+Common Problems
+===============
+If you are having problems building or using LLVM, or if you have any other
+general questions about LLVM, please consult the :doc:`Frequently Asked Questions
+<FAQ>` page.
+
+
+Links
+=====
+This document is just an **introduction** to how to use LLVM to do some simple
+things... there are many more interesting and complicated things that you can
+do that aren't documented here (but we'll gladly accept a patch if you want to
+write something up!).  For more information about LLVM, check out:
+
+* `LLVM homepage <http://llvm.org/>`_
+* `LLVM doxygen tree <http://llvm.org/doxygen/>`_
+

Added: www-releases/trunk/3.9.1/docs/_sources/GoldPlugin.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/GoldPlugin.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/GoldPlugin.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/GoldPlugin.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,172 @@
+====================
+The LLVM gold plugin
+====================
+
+Introduction
+============
+
+Building with link time optimization requires cooperation from
+the system linker. LTO support on Linux systems requires that you use the
+`gold linker`_ which supports LTO via plugins. This is the same mechanism
+used by the `GCC LTO`_ project.
+
+The LLVM gold plugin implements the gold plugin interface on top of
+:ref:`libLTO`.  The same plugin can also be used by other tools such as
+``ar`` and ``nm``.
+
+.. _`gold linker`: http://sourceware.org/binutils
+.. _`GCC LTO`: http://gcc.gnu.org/wiki/LinkTimeOptimization
+.. _`gold plugin interface`: http://gcc.gnu.org/wiki/whopr/driver
+
+.. _lto-how-to-build:
+
+How to build it
+===============
+
+You need to have gold with plugin support and build the LLVMgold plugin.
+Check whether you have gold running ``/usr/bin/ld -v``. It will report "GNU
+gold" or else "GNU ld" if not. If you have gold, check for plugin support
+by running ``/usr/bin/ld -plugin``. If it complains "missing argument" then
+you have plugin support. If not, such as an "unknown option" error then you
+will either need to build gold or install a version with plugin support.
+
+* Download, configure and build gold with plugin support:
+
+  .. code-block:: bash
+
+     $ git clone --depth 1 git://sourceware.org/git/binutils-gdb.git binutils
+     $ mkdir build
+     $ cd build
+     $ ../binutils/configure --enable-gold --enable-plugins --disable-werror
+     $ make all-gold
+
+  That should leave you with ``build/gold/ld-new`` which supports
+  the ``-plugin`` option. Running ``make`` will additionally build
+  ``build/binutils/ar`` and ``nm-new`` binaries supporting plugins.
+
+* Build the LLVMgold plugin. Run CMake with
+  ``-DLLVM_BINUTILS_INCDIR=/path/to/binutils/include``.  The correct include
+  path will contain the file ``plugin-api.h``.
+
+Usage
+=====
+
+The linker takes a ``-plugin`` option that points to the path of
+the plugin ``.so`` file. To find out what link command ``gcc``
+would run in a given situation, run ``gcc -v [...]`` and
+look for the line where it runs ``collect2``. Replace that with
+``ld-new -plugin /path/to/LLVMgold.so`` to test it out. Once you're
+ready to switch to using gold, backup your existing ``/usr/bin/ld``
+then replace it with ``ld-new``.
+
+You should produce bitcode files from ``clang`` with the option
+``-flto``. This flag will also cause ``clang`` to look for the gold plugin in
+the ``lib`` directory under its prefix and pass the ``-plugin`` option to
+``ld``. It will not look for an alternate linker, which is why you need
+gold to be the installed system linker in your path.
+
+``ar`` and ``nm`` also accept the ``-plugin`` option and it's possible to
+to install ``LLVMgold.so`` to ``/usr/lib/bfd-plugins`` for a seamless setup.
+If you built your own gold, be sure to install the ``ar`` and ``nm-new`` you
+built to ``/usr/bin``.
+
+
+Example of link time optimization
+---------------------------------
+
+The following example shows a worked example of the gold plugin mixing LLVM
+bitcode and native code.
+
+.. code-block:: c
+
+   --- a.c ---
+   #include <stdio.h>
+
+   extern void foo1(void);
+   extern void foo4(void);
+
+   void foo2(void) {
+     printf("Foo2\n");
+   }
+
+   void foo3(void) {
+     foo4();
+   }
+
+   int main(void) {
+     foo1();
+   }
+
+   --- b.c ---
+   #include <stdio.h>
+
+   extern void foo2(void);
+
+   void foo1(void) {
+     foo2();
+   }
+
+   void foo4(void) {
+     printf("Foo4");
+   }
+
+.. code-block:: bash
+
+   --- command lines ---
+   $ clang -flto a.c -c -o a.o      # <-- a.o is LLVM bitcode file
+   $ ar q a.a a.o                   # <-- a.a is an archive with LLVM bitcode
+   $ clang b.c -c -o b.o            # <-- b.o is native object file
+   $ clang -flto a.a b.o -o main    # <-- link with LLVMgold plugin
+
+Gold informs the plugin that foo3 is never referenced outside the IR,
+leading LLVM to delete that function. However, unlike in the :ref:`libLTO
+example <libLTO-example>` gold does not currently eliminate foo4.
+
+Quickstart for using LTO with autotooled projects
+=================================================
+
+Once your system ``ld``, ``ar``, and ``nm`` all support LLVM bitcode,
+everything is in place for an easy to use LTO build of autotooled projects:
+
+* Follow the instructions :ref:`on how to build LLVMgold.so
+  <lto-how-to-build>`.
+
+* Install the newly built binutils to ``$PREFIX``
+
+* Copy ``Release/lib/LLVMgold.so`` to ``$PREFIX/lib/bfd-plugins/``
+
+* Set environment variables (``$PREFIX`` is where you installed clang and
+  binutils):
+
+  .. code-block:: bash
+
+     export CC="$PREFIX/bin/clang -flto"
+     export CXX="$PREFIX/bin/clang++ -flto"
+     export AR="$PREFIX/bin/ar"
+     export NM="$PREFIX/bin/nm"
+     export RANLIB=/bin/true #ranlib is not needed, and doesn't support .bc files in .a
+
+* Or you can just set your path:
+
+  .. code-block:: bash
+
+     export PATH="$PREFIX/bin:$PATH"
+     export CC="clang -flto"
+     export CXX="clang++ -flto"
+     export RANLIB=/bin/true
+* Configure and build the project as usual:
+
+  .. code-block:: bash
+
+     % ./configure && make && make check
+
+The environment variable settings may work for non-autotooled projects too,
+but you may need to set the ``LD`` environment variable as well.
+
+Licensing
+=========
+
+Gold is licensed under the GPLv3. LLVMgold uses the interface file
+``plugin-api.h`` from gold which means that the resulting ``LLVMgold.so``
+binary is also GPLv3. This can still be used to link non-GPLv3 programs
+just as much as gold could without the plugin.

Added: www-releases/trunk/3.9.1/docs/_sources/HowToAddABuilder.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToAddABuilder.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToAddABuilder.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToAddABuilder.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,86 @@
+===================================================================
+How To Add Your Build Configuration To LLVM Buildbot Infrastructure
+===================================================================
+
+Introduction
+============
+
+This document contains information about adding a build configuration and
+buildslave to private slave builder to LLVM Buildbot Infrastructure
+`<http://lab.llvm.org:8011>`_.
+
+
+Steps To Add Builder To LLVM Buildbot
+=====================================
+Volunteers can provide their build machines to work as build slaves to
+public LLVM Buildbot.
+
+Here are the steps you can follow to do so:
+
+#. Check the existing build configurations to make sure the one you are
+   interested in is not covered yet or gets built on your computer much
+   faster than on the existing one. We prefer faster builds so developers
+   will get feedback sooner after changes get committed.
+
+#. The computer you will be registering with the LLVM buildbot
+   infrastructure should have all dependencies installed and you can
+   actually build your configuration successfully. Please check what degree
+   of parallelism (-j param) would give the fastest build.  You can build
+   multiple configurations on one computer.
+
+#. Install buildslave (currently we are using buildbot version 0.8.5).
+   Depending on the platform, buildslave could be available to download and
+   install with your packet manager, or you can download it directly from
+   `<http://trac.buildbot.net>`_ and install it manually.
+
+#. Create a designated user account, your buildslave will be running under,
+   and set appropriate permissions.
+
+#. Choose the buildslave root directory (all builds will be placed under
+   it), buildslave access name and password the build master will be using
+   to authenticate your buildslave.
+
+#. Create a buildslave in context of that buildslave account.  Point it to
+   the **lab.llvm.org** port **9990** (see `Buildbot documentation,
+   Creating a slave
+   <http://buildbot.net/buildbot/docs/current/full.html#creating-a-slave>`_
+   for more details) by running the following command:
+
+    .. code-block:: bash
+
+       $ buildslave create-slave <buildslave-root-directory> \
+                    lab.llvm.org:9990 \
+                    <buildslave-access-name> <buildslave-access-password>
+
+#. Fill the buildslave description and admin name/e-mail.  Here is an
+   example of the buildslave description::
+
+       Windows 7 x64
+       Core i7 (2.66GHz), 16GB of RAM
+
+       g++.exe (TDM-1 mingw32) 4.4.0
+       GNU Binutils 2.19.1
+       cmake version 2.8.4
+       Microsoft(R) 32-bit C/C++ Optimizing Compiler Version 16.00.40219.01 for 80x86
+
+#. Make sure you can actually start the buildslave successfully. Then set
+   up your buildslave to start automatically at the start up time.  See the
+   buildbot documentation for help.  You may want to restart your computer
+   to see if it works.
+
+#. Send a patch which adds your build slave and your builder to zorg.
+
+   * slaves are added to ``buildbot/osuosl/master/config/slaves.py``
+   * builders are added to ``buildbot/osuosl/master/config/builders.py``
+
+#. Send the buildslave access name and the access password directly to
+   `Galina Kistanova <mailto:gkistanova at gmail.com>`_, and wait till she
+   will let you know that your changes are applied and buildmaster is
+   reconfigured.
+
+#. Check the status of your buildslave on the `Waterfall Display
+   <http://lab.llvm.org:8011/waterfall>`_ to make sure it is connected, and
+   ``http://lab.llvm.org:8011/buildslaves/<your-buildslave-name>`` to see
+   if administrator contact and slave information are correct.
+
+#. Wait for the first build to succeed and enjoy.

Added: www-releases/trunk/3.9.1/docs/_sources/HowToBuildOnARM.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToBuildOnARM.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToBuildOnARM.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToBuildOnARM.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,85 @@
+===================================================================
+How To Build On ARM
+===================================================================
+
+Introduction
+============
+
+This document contains information about building/testing LLVM and
+Clang on an ARM machine.
+
+This document is *NOT* tailored to help you cross-compile LLVM/Clang
+to ARM on another architecture, for example an x86_64 machine. To find
+out more about cross-compiling, please check :doc:`HowToCrossCompileLLVM`.
+
+Notes On Building LLVM/Clang on ARM
+=====================================
+Here are some notes on building/testing LLVM/Clang on ARM. Note that
+ARM encompasses a wide variety of CPUs; this advice is primarily based
+on the ARMv6 and ARMv7 architectures and may be inapplicable to older chips.
+
+#. The most popular Linaro/Ubuntu OS's for ARM boards, e.g., the
+   Pandaboard, have become hard-float platforms. There are a number of
+   choices when using CMake. Autoconf usage is deprecated as of 3.8.
+
+   Building LLVM/Clang in ``Relese`` mode is preferred since it consumes
+   a lot less memory. Otherwise, the building process will very likely
+   fail due to insufficient memory. It's also a lot quicker to only build
+   the relevant back-ends (ARM and AArch64), since it's very unlikely that
+   you'll use an ARM board to cross-compile to other arches. If you're
+   running Compiler-RT tests, also include the x86 back-end, or some tests
+   will fail.
+
+   .. code-block:: bash
+
+     cmake $LLVM_SRC_DIR -DCMAKE_BUILD_TYPE=Release \
+                         -DLLVM_TARGETS_TO_BUILD="ARM;X86;AArch64"
+
+   Other options you can use are:
+
+   .. code-block:: bash
+
+     Use Ninja instead of Make: "-G Ninja"
+     Build with assertions on: "-DLLVM_ENABLE_ASSERTIONS=True"
+     Force Python2: "-DPYTHON_EXECUTABLE=/usr/bin/python2"
+     Local (non-sudo) install path: "-DCMAKE_INSTALL_PREFIX=$HOME/llvm/instal"
+     CPU flags: "DCMAKE_C_FLAGS=-mcpu=cortex-a15" (same for CXX_FLAGS)
+
+   After that, just typing ``make -jN`` or ``ninja`` will build everything.
+   ``make -jN check-all`` or ``ninja check-all`` will run all compiler tests. For
+   running the test suite, please refer to :doc:`TestingGuide`.
+
+#. If you are building LLVM/Clang on an ARM board with 1G of memory or less,
+   please use ``gold`` rather then GNU ``ld``. In any case it is probably a good
+   idea to set up a swap partition, too.
+
+   .. code-block:: bash
+
+     $ sudo ln -sf /usr/bin/ld /usr/bin/ld.gold
+
+#. ARM development boards can be unstable and you may experience that cores
+   are disappearing, caches being flushed on every big.LITTLE switch, and
+   other similar issues.  To help ease the effect of this, set the Linux
+   scheduler to "performance" on **all** cores using this little script:
+
+   .. code-block:: bash
+
+      # The code below requires the package 'cpufrequtils' to be installed.
+      for ((cpu=0; cpu<`grep -c proc /proc/cpuinfo`; cpu++)); do
+          sudo cpufreq-set -c $cpu -g performance
+      done
+
+   Remember to turn that off after the build, or you may risk burning your
+   CPU. Most modern kernels don't need that, so only use it if you have
+   problems.
+
+#. Running the build on SD cards is ok, but they are more prone to failures
+   than good quality USB sticks, and those are more prone to failures than
+   external hard-drives (those are also a lot faster). So, at least, you
+   should consider to buy a fast USB stick.  On systems with a fast eMMC,
+   that's a good option too.
+
+#. Make sure you have a decent power supply (dozens of dollars worth) that can
+   provide *at least* 4 amperes, this is especially important if you use USB
+   devices with your board. Externally powered USB/SATA harddrives are even
+   better than having a good power supply.

Added: www-releases/trunk/3.9.1/docs/_sources/HowToCrossCompileLLVM.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToCrossCompileLLVM.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToCrossCompileLLVM.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToCrossCompileLLVM.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,205 @@
+===================================================================
+How To Cross-Compile Clang/LLVM using Clang/LLVM
+===================================================================
+
+Introduction
+============
+
+This document contains information about building LLVM and
+Clang on host machine, targeting another platform.
+
+For more information on how to use Clang as a cross-compiler,
+please check http://clang.llvm.org/docs/CrossCompilation.html.
+
+TODO: Add MIPS and other platforms to this document.
+
+Cross-Compiling from x86_64 to ARM
+==================================
+
+In this use case, we'll be using CMake and Ninja, on a Debian-based Linux
+system, cross-compiling from an x86_64 host (most Intel and AMD chips
+nowadays) to a hard-float ARM target (most ARM targets nowadays).
+
+The packages you'll need are:
+
+ * ``cmake``
+ * ``ninja-build`` (from backports in Ubuntu)
+ * ``gcc-4.7-arm-linux-gnueabihf``
+ * ``gcc-4.7-multilib-arm-linux-gnueabihf``
+ * ``binutils-arm-linux-gnueabihf``
+ * ``libgcc1-armhf-cross``
+ * ``libsfgcc1-armhf-cross``
+ * ``libstdc++6-armhf-cross``
+ * ``libstdc++6-4.7-dev-armhf-cross``
+
+Configuring CMake
+-----------------
+
+For more information on how to configure CMake for LLVM/Clang,
+see :doc:`CMake`.
+
+The CMake options you need to add are:
+
+ * ``-DCMAKE_CROSSCOMPILING=True``
+ * ``-DCMAKE_INSTALL_PREFIX=<install-dir>``
+ * ``-DLLVM_TABLEGEN=<path-to-host-bin>/llvm-tblgen``
+ * ``-DCLANG_TABLEGEN=<path-to-host-bin>/clang-tblgen``
+ * ``-DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf``
+ * ``-DLLVM_TARGET_ARCH=ARM``
+ * ``-DLLVM_TARGETS_TO_BUILD=ARM``
+
+If you're compiling with GCC, you can use architecture options for your target,
+and the compiler driver will detect everything that it needs:
+
+ * ``-DCMAKE_CXX_FLAGS='-march=armv7-a -mcpu=cortex-a9 -mfloat-abi=hard'``
+
+However, if you're using Clang, the driver might not be up-to-date with your
+specific Linux distribution, version or GCC layout, so you'll need to fudge.
+
+In addition to the ones above, you'll also need:
+
+ * ``'-target arm-linux-gnueabihf'`` or whatever is the triple of your cross GCC.
+ * ``'--sysroot=/usr/arm-linux-gnueabihf'``, ``'--sysroot=/opt/gcc/arm-linux-gnueabihf'``
+   or whatever is the location of your GCC's sysroot (where /lib, /bin etc are).
+ * Appropriate use of ``-I`` and ``-L``, depending on how the cross GCC is installed,
+   and where are the libraries and headers.
+
+The TableGen options are required to compile it with the host compiler,
+so you'll need to compile LLVM (or at least ``llvm-tblgen``) to your host
+platform before you start. The CXX flags define the target, cpu (which in this case
+defaults to ``fpu=VFP3`` with NEON), and forcing the hard-float ABI. If you're
+using Clang as a cross-compiler, you will *also* have to set ``--sysroot``
+to make sure it picks the correct linker.
+
+When using Clang, it's important that you choose the triple to be *identical*
+to the GCC triple and the sysroot. This will make it easier for Clang to
+find the correct tools and include headers. But that won't mean all headers and
+libraries will be found. You'll still need to use ``-I`` and ``-L`` to locate
+those extra ones, depending on your distribution.
+
+Most of the time, what you want is to have a native compiler to the
+platform itself, but not others. So there's rarely a point in compiling
+all back-ends. For that reason, you should also set the
+``TARGETS_TO_BUILD`` to only build the back-end you're targeting to.
+
+You must set the ``CMAKE_INSTALL_PREFIX``, otherwise a ``ninja install``
+will copy ARM binaries to your root filesystem, which is not what you
+want.
+
+Hacks
+-----
+
+There are some bugs in current LLVM, which require some fiddling before
+running CMake:
+
+#. If you're using Clang as the cross-compiler, there is a problem in
+   the LLVM ARM back-end that is producing absolute relocations on
+   position-independent code (``R_ARM_THM_MOVW_ABS_NC``), so for now, you
+   should disable PIC:
+
+   .. code-block:: bash
+
+      -DLLVM_ENABLE_PIC=False
+
+   This is not a problem, since Clang/LLVM libraries are statically
+   linked anyway, it shouldn't affect much.
+
+#. The ARM libraries won't be installed in your system.
+   But the CMake prepare step, which checks for
+   dependencies, will check the *host* libraries, not the *target*
+   ones. Below there's a list of some dependencies, but your project could
+   have more, or this document could be outdated. You'll see the errors
+   while linking as an indication of that.
+
+   Debian based distros have a way to add ``multiarch``, which adds
+   a new architecture and allows you to install packages for those
+   systems. See https://wiki.debian.org/Multiarch/HOWTO for more info.
+
+   But not all distros will have that, and possibly not an easy way to
+   install them in any anyway, so you'll have to build/download
+   them separately.
+
+   A quick way of getting the libraries is to download them from
+   a distribution repository, like Debian (http://packages.debian.org/jessie/),
+   and download the missing libraries. Note that the ``libXXX``
+   will have the shared objects (``.so``) and the ``libXXX-dev`` will
+   give you the headers and the static (``.a``) library. Just in
+   case, download both.
+
+   The ones you need for ARM are: ``libtinfo``, ``zlib1g``,
+   ``libxml2`` and ``liblzma``. In the Debian repository you'll
+   find downloads for all architectures.
+
+   After you download and unpack all ``.deb`` packages, copy all
+   ``.so`` and ``.a`` to a directory, make the appropriate
+   symbolic links (if necessary), and add the relevant ``-L``
+   and ``-I`` paths to ``-DCMAKE_CXX_FLAGS`` above.
+
+
+Running CMake and Building
+--------------------------
+
+Finally, if you're using your platform compiler, run:
+
+   .. code-block:: bash
+
+     $ cmake -G Ninja <source-dir> <options above>
+
+If you're using Clang as the cross-compiler, run:
+
+   .. code-block:: bash
+
+     $ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options above>
+
+If you have ``clang``/``clang++`` on the path, it should just work, and special
+Ninja files will be created in the build directory. I strongly suggest
+you to run ``cmake`` on a separate build directory, *not* inside the
+source tree.
+
+To build, simply type:
+
+   .. code-block:: bash
+
+     $ ninja
+
+It should automatically find out how many cores you have, what are
+the rules that needs building and will build the whole thing.
+
+You can't run ``ninja check-all`` on this tree because the created
+binaries are targeted to ARM, not x86_64.
+
+Installing and Using
+--------------------
+
+After the LLVM/Clang has built successfully, you should install it
+via:
+
+   .. code-block:: bash
+
+     $ ninja install
+
+which will create a sysroot on the install-dir. You can then tar
+that directory into a binary with the full triple name (for easy
+identification), like:
+
+   .. code-block:: bash
+
+     $ ln -sf <install-dir> arm-linux-gnueabihf-clang
+     $ tar zchf arm-linux-gnueabihf-clang.tar.gz arm-linux-gnueabihf-clang
+
+If you copy that tarball to your target board, you'll be able to use
+it for running the test-suite, for example. Follow the guidelines at
+http://llvm.org/docs/lnt/quickstart.html, unpack the tarball in the
+test directory, and use options:
+
+   .. code-block:: bash
+
+     $ ./sandbox/bin/python sandbox/bin/lnt runtest nt \
+         --sandbox sandbox \
+         --test-suite `pwd`/test-suite \
+         --cc `pwd`/arm-linux-gnueabihf-clang/bin/clang \
+         --cxx `pwd`/arm-linux-gnueabihf-clang/bin/clang++
+
+Remember to add the ``-jN`` options to ``lnt`` to the number of CPUs
+on your board. Also, the path to your clang has to be absolute, so
+you'll need the `pwd` trick above.

Added: www-releases/trunk/3.9.1/docs/_sources/HowToReleaseLLVM.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToReleaseLLVM.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToReleaseLLVM.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToReleaseLLVM.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,421 @@
+=================================
+How To Release LLVM To The Public
+=================================
+
+.. contents::
+   :local:
+   :depth: 1
+
+Introduction
+============
+
+This document contains information about successfully releasing LLVM ---
+including subprojects: e.g., ``clang`` and ``dragonegg`` --- to the public.  It
+is the Release Manager's responsibility to ensure that a high quality build of
+LLVM is released.
+
+If you're looking for the document on how to test the release candidates and
+create the binary packages, please refer to the :doc:`ReleaseProcess` instead.
+
+.. _timeline:
+
+Release Timeline
+================
+
+LLVM is released on a time based schedule --- with major releases roughly
+every 6 months.  In between major releases there may be dot releases.
+The release manager will determine if and when to make a dot release based
+on feedback from the community.  Typically, dot releases should be made if
+there are large number of bug-fixes in the stable branch or a critical bug
+has been discovered that affects a large number of users.
+
+Unless otherwise stated, dot releases will follow the same procedure as
+major releases.
+
+The release process is roughly as follows:
+
+* Set code freeze and branch creation date for 6 months after last code freeze
+  date.  Announce release schedule to the LLVM community and update the website.
+
+* Create release branch and begin release process.
+
+* Send out release candidate sources for first round of testing.  Testing lasts
+  7-10 days.  During the first round of testing, any regressions found should be
+  fixed.  Patches are merged from mainline into the release branch.  Also, all
+  features need to be completed during this time.  Any features not completed at
+  the end of the first round of testing will be removed or disabled for the
+  release.
+
+* Generate and send out the second release candidate sources.  Only *critial*
+  bugs found during this testing phase will be fixed.  Any bugs introduced by
+  merged patches will be fixed.  If so a third round of testing is needed.
+
+* The release notes are updated.
+
+* Finally, release!
+
+The release process will be accelerated for dot releases.  If the first round
+of testing finds no critical bugs and no regressions since the last major release,
+then additional rounds of testing will not be required.
+
+Release Process
+===============
+
+.. contents::
+   :local:
+
+Release Administrative Tasks
+----------------------------
+
+This section describes a few administrative tasks that need to be done for the
+release process to begin.  Specifically, it involves:
+
+* Creating the release branch,
+
+* Setting version numbers, and
+
+* Tagging release candidates for the release team to begin testing.
+
+Create Release Branch
+^^^^^^^^^^^^^^^^^^^^^
+
+Branch the Subversion trunk using the following procedure:
+
+#. Remind developers that the release branching is imminent and to refrain from
+   committing patches that might break the build.  E.g., new features, large
+   patches for works in progress, an overhaul of the type system, an exciting
+   new TableGen feature, etc.
+
+#. Verify that the current Subversion trunk is in decent shape by
+   examining nightly tester and buildbot results.
+
+#. Create the release branch for ``llvm``, ``clang``, the ``test-suite``, and
+   ``dragonegg`` from the last known good revision.  The branch's name is
+   ``release_XY``, where ``X`` is the major and ``Y`` the minor release
+   numbers.  The branches should be created using the following commands:
+
+   ::
+
+     $ svn copy https://llvm.org/svn/llvm-project/llvm/trunk \
+                https://llvm.org/svn/llvm-project/llvm/branches/release_XY
+
+     $ svn copy https://llvm.org/svn/llvm-project/cfe/trunk \
+                https://llvm.org/svn/llvm-project/cfe/branches/release_XY
+
+     $ svn copy https://llvm.org/svn/llvm-project/dragonegg/trunk \
+                https://llvm.org/svn/llvm-project/dragonegg/branches/release_XY
+
+     $ svn copy https://llvm.org/svn/llvm-project/test-suite/trunk \
+                https://llvm.org/svn/llvm-project/test-suite/branches/release_XY
+
+#. Advise developers that they may now check their patches into the Subversion
+   tree again.
+
+#. The Release Manager should switch to the release branch, because all changes
+   to the release will now be done in the branch.  The easiest way to do this is
+   to grab a working copy using the following commands:
+
+   ::
+
+     $ svn co https://llvm.org/svn/llvm-project/llvm/branches/release_XY llvm-X.Y
+
+     $ svn co https://llvm.org/svn/llvm-project/cfe/branches/release_XY clang-X.Y
+
+     $ svn co https://llvm.org/svn/llvm-project/dragonegg/branches/release_XY dragonegg-X.Y
+
+     $ svn co https://llvm.org/svn/llvm-project/test-suite/branches/release_XY test-suite-X.Y
+
+Update LLVM Version
+^^^^^^^^^^^^^^^^^^^
+
+After creating the LLVM release branch, update the release branches'
+``autoconf`` and ``configure.ac`` versions from '``X.Ysvn``' to '``X.Y``'.
+Update it on mainline as well to be the next version ('``X.Y+1svn``').
+Regenerate the configure scripts for both ``llvm`` and the ``test-suite``.
+
+In addition, the version numbers of all the Bugzilla components must be updated
+for the next release.
+
+Tagging the LLVM Release Candidates
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Tag release candidates using the tag.sh script in utils/release.
+
+::
+
+  $ ./tag.sh -release X.Y.Z -rc $RC
+
+The Release Manager may supply pre-packaged source tarballs for users.  This can
+be done with the export.sh script in utils/release.
+
+::
+
+  $ ./export.sh -release X.Y.Z -rc $RC
+
+This will generate source tarballs for each LLVM project being validated, which
+can be uploaded to the website for further testing.
+
+Building the Release
+--------------------
+
+The builds of ``llvm``, ``clang``, and ``dragonegg`` *must* be free of
+errors and warnings in Debug, Release+Asserts, and Release builds.  If all
+builds are clean, then the release passes Build Qualification.
+
+The ``make`` options for building the different modes:
+
++-----------------+---------------------------------------------+
+| Mode            | Options                                     |
++=================+=============================================+
+| Debug           | ``ENABLE_OPTIMIZED=0``                      |
++-----------------+---------------------------------------------+
+| Release+Asserts | ``ENABLE_OPTIMIZED=1``                      |
++-----------------+---------------------------------------------+
+| Release         | ``ENABLE_OPTIMIZED=1 DISABLE_ASSERTIONS=1`` |
++-----------------+---------------------------------------------+
+
+Build LLVM
+^^^^^^^^^^
+
+Build ``Debug``, ``Release+Asserts``, and ``Release`` versions
+of ``llvm`` on all supported platforms.  Directions to build ``llvm``
+are :doc:`here <GettingStarted>`.
+
+Build Clang Binary Distribution
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Creating the ``clang`` binary distribution (Debug/Release+Asserts/Release)
+requires performing the following steps for each supported platform:
+
+#. Build clang according to the directions `here
+   <http://clang.llvm.org/get_started.html>`__.
+
+#. Build both a Debug and Release version of clang.  The binary will be the
+   Release build.
+
+#. Package ``clang`` (details to follow).
+
+Target Specific Build Details
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+The table below specifies which compilers are used for each Arch/OS combination
+when qualifying the build of ``llvm``, ``clang``, and ``dragonegg``.
+
++--------------+---------------+----------------------+
+| Architecture | OS            | compiler             |
++==============+===============+======================+
+| x86-32       | Mac OS 10.5   | gcc 4.0.1            |
++--------------+---------------+----------------------+
+| x86-32       | Linux         | gcc 4.2.X, gcc 4.3.X |
++--------------+---------------+----------------------+
+| x86-32       | FreeBSD       | gcc 4.2.X            |
++--------------+---------------+----------------------+
+| x86-32       | mingw         | gcc 3.4.5            |
++--------------+---------------+----------------------+
+| x86-64       | Mac OS 10.5   | gcc 4.0.1            |
++--------------+---------------+----------------------+
+| x86-64       | Linux         | gcc 4.2.X, gcc 4.3.X |
++--------------+---------------+----------------------+
+| x86-64       | FreeBSD       | gcc 4.2.X            |
++--------------+---------------+----------------------+
+| ARMv7        | Linux         | gcc 4.6.X, gcc 4.7.X |
++--------------+---------------+----------------------+
+
+Release Qualification Criteria
+------------------------------
+
+A release is qualified when it has no regressions from the previous release (or
+baseline).  Regressions are related to correctness first and performance second.
+(We may tolerate some minor performance regressions if they are deemed
+necessary for the general quality of the compiler.)
+
+**Regressions are new failures in the set of tests that are used to qualify
+each product and only include things on the list.  Every release will have
+some bugs in it.  It is the reality of developing a complex piece of
+software.  We need a very concrete and definitive release criteria that
+ensures we have monotonically improving quality on some metric.  The metric we
+use is described below.  This doesn't mean that we don't care about other
+criteria, but these are the criteria which we found to be most important and
+which must be satisfied before a release can go out.**
+
+Qualify LLVM
+^^^^^^^^^^^^
+
+LLVM is qualified when it has a clean test run without a front-end.  And it has
+no regressions when using either ``clang`` or ``dragonegg`` with the
+``test-suite`` from the previous release.
+
+Qualify Clang
+^^^^^^^^^^^^^
+
+``Clang`` is qualified when front-end specific tests in the ``llvm`` regression
+test suite all pass, clang's own test suite passes cleanly, and there are no
+regressions in the ``test-suite``.
+
+Specific Target Qualification Details
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
++--------------+-------------+----------------+-----------------------------+
+| Architecture | OS          | clang baseline | tests                       |
++==============+=============+================+=============================+
+| x86-32       | Linux       | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite (including spec) |
++--------------+-------------+----------------+-----------------------------+
+| x86-32       | FreeBSD     | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite                  |
++--------------+-------------+----------------+-----------------------------+
+| x86-32       | mingw       | none           | QT                          |
++--------------+-------------+----------------+-----------------------------+
+| x86-64       | Mac OS 10.X | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite (including spec) |
++--------------+-------------+----------------+-----------------------------+
+| x86-64       | Linux       | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite (including spec) |
++--------------+-------------+----------------+-----------------------------+
+| x86-64       | FreeBSD     | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite                  |
++--------------+-------------+----------------+-----------------------------+
+| ARMv7A       | Linux       | last release   | llvm regression tests,      |
+|              |             |                | clang regression tests,     |
+|              |             |                | test-suite                  |
++--------------+-------------+----------------+-----------------------------+
+
+Community Testing
+-----------------
+
+Once all testing has been completed and appropriate bugs filed, the release
+candidate tarballs are put on the website and the LLVM community is notified.
+Ask that all LLVM developers test the release in 2 ways:
+
+#. Download ``llvm-X.Y``, ``llvm-test-X.Y``, and the appropriate ``clang``
+   binary.  Build LLVM.  Run ``make check`` and the full LLVM test suite (``make
+   TEST=nightly report``).
+
+#. Download ``llvm-X.Y``, ``llvm-test-X.Y``, and the ``clang`` sources.  Compile
+   everything.  Run ``make check`` and the full LLVM test suite (``make
+   TEST=nightly report``).
+
+Ask LLVM developers to submit the test suite report and ``make check`` results
+to the list.  Verify that there are no regressions from the previous release.
+The results are not used to qualify a release, but to spot other potential
+problems.  For unsupported targets, verify that ``make check`` is at least
+clean.
+
+During the first round of testing, all regressions must be fixed before the
+second release candidate is tagged.
+
+If this is the second round of testing, the testing is only to ensure that bug
+fixes previously merged in have not created new major problems. *This is not
+the time to solve additional and unrelated bugs!* If no patches are merged in,
+the release is determined to be ready and the release manager may move onto the
+next stage.
+
+Release Patch Rules
+-------------------
+
+Below are the rules regarding patching the release branch:
+
+#. Patches applied to the release branch may only be applied by the release
+   manager.
+
+#. During the first round of testing, patches that fix regressions or that are
+   small and relatively risk free (verified by the appropriate code owner) are
+   applied to the branch.  Code owners are asked to be very conservative in
+   approving patches for the branch.  We reserve the right to reject any patch
+   that does not fix a regression as previously defined.
+
+#. During the remaining rounds of testing, only patches that fix critical
+   regressions may be applied.
+
+#. For dot releases all patches must maintain both API and ABI compatibility with
+   the previous major release.  Only bugfixes will be accepted.
+
+Merging Patches
+^^^^^^^^^^^^^^^
+
+The ``utils/release/merge.sh`` script can be used to merge individual revisions
+into any one of the llvm projects. To merge revision ``$N`` into project
+``$PROJ``, do:
+
+#. ``svn co https://llvm.org/svn/llvm-project/$PROJ/branches/release_XX
+   $PROJ.src``
+
+#. ``$PROJ.src/utils/release/merge.sh --proj $PROJ --rev $N``
+
+#. Run regression tests.
+
+#. ``cd $PROJ.src``. Run the ``svn commit`` command printed out by ``merge.sh``
+   in step 2.
+
+Release Final Tasks
+-------------------
+
+The final stages of the release process involves tagging the "final" release
+branch, updating documentation that refers to the release, and updating the
+demo page.
+
+Update Documentation
+^^^^^^^^^^^^^^^^^^^^
+
+Review the documentation and ensure that it is up to date.  The "Release Notes"
+must be updated to reflect new features, bug fixes, new known issues, and
+changes in the list of supported platforms.  The "Getting Started Guide" should
+be updated to reflect the new release version number tag available from
+Subversion and changes in basic system requirements.  Merge both changes from
+mainline into the release branch.
+
+.. _tag:
+
+Tag the LLVM Final Release
+^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+Tag the final release sources using the tag.sh script in utils/release.
+
+::
+
+  $ ./tag.sh -release X.Y.Z -final
+
+Update the LLVM Demo Page
+-------------------------
+
+The LLVM demo page must be updated to use the new release.  This consists of
+using the new ``clang`` binary and building LLVM.
+
+Update the LLVM Website
+^^^^^^^^^^^^^^^^^^^^^^^
+
+The website must be updated before the release announcement is sent out.  Here
+is what to do:
+
+#. Check out the ``www`` module from Subversion.
+
+#. Create a new subdirectory ``X.Y`` in the releases directory.
+
+#. Commit the ``llvm``, ``test-suite``, ``clang`` source, ``clang binaries``,
+   ``dragonegg`` source, and ``dragonegg`` binaries in this new directory.
+
+#. Copy and commit the ``llvm/docs`` and ``LICENSE.txt`` files into this new
+   directory.  The docs should be built with ``BUILD_FOR_WEBSITE=1``.
+
+#. Commit the ``index.html`` to the ``release/X.Y`` directory to redirect (use
+   from previous release).
+
+#. Update the ``releases/download.html`` file with the new release.
+
+#. Update the ``releases/index.html`` with the new release and link to release
+   documentation.
+
+#. Finally, update the main page (``index.html`` and sidebar) to point to the
+   new release and release announcement.  Make sure this all gets committed back
+   into Subversion.
+
+Announce the Release
+^^^^^^^^^^^^^^^^^^^^
+
+Have Chris send out the release announcement when everything is finished.
+

Added: www-releases/trunk/3.9.1/docs/_sources/HowToSetUpLLVMStyleRTTI.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToSetUpLLVMStyleRTTI.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToSetUpLLVMStyleRTTI.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToSetUpLLVMStyleRTTI.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,414 @@
+======================================================
+How to set up LLVM-style RTTI for your class hierarchy
+======================================================
+
+.. contents::
+
+Background
+==========
+
+LLVM avoids using C++'s built in RTTI. Instead, it  pervasively uses its
+own hand-rolled form of RTTI which is much more efficient and flexible,
+although it requires a bit more work from you as a class author.
+
+A description of how to use LLVM-style RTTI from a client's perspective is
+given in the `Programmer's Manual <ProgrammersManual.html#isa>`_. This
+document, in contrast, discusses the steps you need to take as a class
+hierarchy author to make LLVM-style RTTI available to your clients.
+
+Before diving in, make sure that you are familiar with the Object Oriented
+Programming concept of "`is-a`_".
+
+.. _is-a: http://en.wikipedia.org/wiki/Is-a
+
+Basic Setup
+===========
+
+This section describes how to set up the most basic form of LLVM-style RTTI
+(which is sufficient for 99.9% of the cases). We will set up LLVM-style
+RTTI for this class hierarchy:
+
+.. code-block:: c++
+
+   class Shape {
+   public:
+     Shape() {}
+     virtual double computeArea() = 0;
+   };
+
+   class Square : public Shape {
+     double SideLength;
+   public:
+     Square(double S) : SideLength(S) {}
+     double computeArea() override;
+   };
+
+   class Circle : public Shape {
+     double Radius;
+   public:
+     Circle(double R) : Radius(R) {}
+     double computeArea() override;
+   };
+
+The most basic working setup for LLVM-style RTTI requires the following
+steps:
+
+#. In the header where you declare ``Shape``, you will want to ``#include
+   "llvm/Support/Casting.h"``, which declares LLVM's RTTI templates. That
+   way your clients don't even have to think about it.
+
+   .. code-block:: c++
+
+      #include "llvm/Support/Casting.h"
+
+#. In the base class, introduce an enum which discriminates all of the
+   different concrete classes in the hierarchy, and stash the enum value
+   somewhere in the base class.
+
+   Here is the code after introducing this change:
+
+   .. code-block:: c++
+
+       class Shape {
+       public:
+      +  /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+      +  enum ShapeKind {
+      +    SK_Square,
+      +    SK_Circle
+      +  };
+      +private:
+      +  const ShapeKind Kind;
+      +public:
+      +  ShapeKind getKind() const { return Kind; }
+      +
+         Shape() {}
+         virtual double computeArea() = 0;
+       };
+
+   You will usually want to keep the ``Kind`` member encapsulated and
+   private, but let the enum ``ShapeKind`` be public along with providing a
+   ``getKind()`` method. This is convenient for clients so that they can do
+   a ``switch`` over the enum.
+
+   A common naming convention is that these enums are "kind"s, to avoid
+   ambiguity with the words "type" or "class" which have overloaded meanings
+   in many contexts within LLVM. Sometimes there will be a natural name for
+   it, like "opcode". Don't bikeshed over this; when in doubt use ``Kind``.
+
+   You might wonder why the ``Kind`` enum doesn't have an entry for
+   ``Shape``. The reason for this is that since ``Shape`` is abstract
+   (``computeArea() = 0;``), you will never actually have non-derived
+   instances of exactly that class (only subclasses). See `Concrete Bases
+   and Deeper Hierarchies`_ for information on how to deal with
+   non-abstract bases. It's worth mentioning here that unlike
+   ``dynamic_cast<>``, LLVM-style RTTI can be used (and is often used) for
+   classes that don't have v-tables.
+
+#. Next, you need to make sure that the ``Kind`` gets initialized to the
+   value corresponding to the dynamic type of the class. Typically, you will
+   want to have it be an argument to the constructor of the base class, and
+   then pass in the respective ``XXXKind`` from subclass constructors.
+
+   Here is the code after that change:
+
+   .. code-block:: c++
+
+       class Shape {
+       public:
+         /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+         enum ShapeKind {
+           SK_Square,
+           SK_Circle
+         };
+       private:
+         const ShapeKind Kind;
+       public:
+         ShapeKind getKind() const { return Kind; }
+
+      -  Shape() {}
+      +  Shape(ShapeKind K) : Kind(K) {}
+         virtual double computeArea() = 0;
+       };
+
+       class Square : public Shape {
+         double SideLength;
+       public:
+      -  Square(double S) : SideLength(S) {}
+      +  Square(double S) : Shape(SK_Square), SideLength(S) {}
+         double computeArea() override;
+       };
+
+       class Circle : public Shape {
+         double Radius;
+       public:
+      -  Circle(double R) : Radius(R) {}
+      +  Circle(double R) : Shape(SK_Circle), Radius(R) {}
+         double computeArea() override;
+       };
+
+#. Finally, you need to inform LLVM's RTTI templates how to dynamically
+   determine the type of a class (i.e. whether the ``isa<>``/``dyn_cast<>``
+   should succeed). The default "99.9% of use cases" way to accomplish this
+   is through a small static member function ``classof``. In order to have
+   proper context for an explanation, we will display this code first, and
+   then below describe each part:
+
+   .. code-block:: c++
+
+       class Shape {
+       public:
+         /// Discriminator for LLVM-style RTTI (dyn_cast<> et al.)
+         enum ShapeKind {
+           SK_Square,
+           SK_Circle
+         };
+       private:
+         const ShapeKind Kind;
+       public:
+         ShapeKind getKind() const { return Kind; }
+
+         Shape(ShapeKind K) : Kind(K) {}
+         virtual double computeArea() = 0;
+       };
+
+       class Square : public Shape {
+         double SideLength;
+       public:
+         Square(double S) : Shape(SK_Square), SideLength(S) {}
+         double computeArea() override;
+      +
+      +  static bool classof(const Shape *S) {
+      +    return S->getKind() == SK_Square;
+      +  }
+       };
+
+       class Circle : public Shape {
+         double Radius;
+       public:
+         Circle(double R) : Shape(SK_Circle), Radius(R) {}
+         double computeArea() override;
+      +
+      +  static bool classof(const Shape *S) {
+      +    return S->getKind() == SK_Circle;
+      +  }
+       };
+
+   The job of ``classof`` is to dynamically determine whether an object of
+   a base class is in fact of a particular derived class.  In order to
+   downcast a type ``Base`` to a type ``Derived``, there needs to be a
+   ``classof`` in ``Derived`` which will accept an object of type ``Base``.
+
+   To be concrete, consider the following code:
+
+   .. code-block:: c++
+
+      Shape *S = ...;
+      if (isa<Circle>(S)) {
+        /* do something ... */
+      }
+
+   The code of the ``isa<>`` test in this code will eventually boil
+   down---after template instantiation and some other machinery---to a
+   check roughly like ``Circle::classof(S)``. For more information, see
+   :ref:`classof-contract`.
+
+   The argument to ``classof`` should always be an *ancestor* class because
+   the implementation has logic to allow and optimize away
+   upcasts/up-``isa<>``'s automatically. It is as though every class
+   ``Foo`` automatically has a ``classof`` like:
+
+   .. code-block:: c++
+
+      class Foo {
+        [...]
+        template <class T>
+        static bool classof(const T *,
+                            ::std::enable_if<
+                              ::std::is_base_of<Foo, T>::value
+                            >::type* = 0) { return true; }
+        [...]
+      };
+
+   Note that this is the reason that we did not need to introduce a
+   ``classof`` into ``Shape``: all relevant classes derive from ``Shape``,
+   and ``Shape`` itself is abstract (has no entry in the ``Kind`` enum),
+   so this notional inferred ``classof`` is all we need. See `Concrete
+   Bases and Deeper Hierarchies`_ for more information about how to extend
+   this example to more general hierarchies.
+
+Although for this small example setting up LLVM-style RTTI seems like a lot
+of "boilerplate", if your classes are doing anything interesting then this
+will end up being a tiny fraction of the code.
+
+Concrete Bases and Deeper Hierarchies
+=====================================
+
+For concrete bases (i.e. non-abstract interior nodes of the inheritance
+tree), the ``Kind`` check inside ``classof`` needs to be a bit more
+complicated. The situation differs from the example above in that
+
+* Since the class is concrete, it must itself have an entry in the ``Kind``
+  enum because it is possible to have objects with this class as a dynamic
+  type.
+
+* Since the class has children, the check inside ``classof`` must take them
+  into account.
+
+Say that ``SpecialSquare`` and ``OtherSpecialSquare`` derive
+from ``Square``, and so ``ShapeKind`` becomes:
+
+.. code-block:: c++
+
+    enum ShapeKind {
+      SK_Square,
+   +  SK_SpecialSquare,
+   +  SK_OtherSpecialSquare,
+      SK_Circle
+    }
+
+Then in ``Square``, we would need to modify the ``classof`` like so:
+
+.. code-block:: c++
+
+   -  static bool classof(const Shape *S) {
+   -    return S->getKind() == SK_Square;
+   -  }
+   +  static bool classof(const Shape *S) {
+   +    return S->getKind() >= SK_Square &&
+   +           S->getKind() <= SK_OtherSpecialSquare;
+   +  }
+
+The reason that we need to test a range like this instead of just equality
+is that both ``SpecialSquare`` and ``OtherSpecialSquare`` "is-a"
+``Square``, and so ``classof`` needs to return ``true`` for them.
+
+This approach can be made to scale to arbitrarily deep hierarchies. The
+trick is that you arrange the enum values so that they correspond to a
+preorder traversal of the class hierarchy tree. With that arrangement, all
+subclass tests can be done with two comparisons as shown above. If you just
+list the class hierarchy like a list of bullet points, you'll get the
+ordering right::
+
+   | Shape
+     | Square
+       | SpecialSquare
+       | OtherSpecialSquare
+     | Circle
+
+A Bug to be Aware Of
+--------------------
+
+The example just given opens the door to bugs where the ``classof``\s are
+not updated to match the ``Kind`` enum when adding (or removing) classes to
+(from) the hierarchy.
+
+Continuing the example above, suppose we add a ``SomewhatSpecialSquare`` as
+a subclass of ``Square``, and update the ``ShapeKind`` enum like so:
+
+.. code-block:: c++
+
+    enum ShapeKind {
+      SK_Square,
+      SK_SpecialSquare,
+      SK_OtherSpecialSquare,
+   +  SK_SomewhatSpecialSquare,
+      SK_Circle
+    }
+
+Now, suppose that we forget to update ``Square::classof()``, so it still
+looks like:
+
+.. code-block:: c++
+
+   static bool classof(const Shape *S) {
+     // BUG: Returns false when S->getKind() == SK_SomewhatSpecialSquare,
+     // even though SomewhatSpecialSquare "is a" Square.
+     return S->getKind() >= SK_Square &&
+            S->getKind() <= SK_OtherSpecialSquare;
+   }
+
+As the comment indicates, this code contains a bug. A straightforward and
+non-clever way to avoid this is to introduce an explicit ``SK_LastSquare``
+entry in the enum when adding the first subclass(es). For example, we could
+rewrite the example at the beginning of `Concrete Bases and Deeper
+Hierarchies`_ as:
+
+.. code-block:: c++
+
+    enum ShapeKind {
+      SK_Square,
+   +  SK_SpecialSquare,
+   +  SK_OtherSpecialSquare,
+   +  SK_LastSquare,
+      SK_Circle
+    }
+   ...
+   // Square::classof()
+   -  static bool classof(const Shape *S) {
+   -    return S->getKind() == SK_Square;
+   -  }
+   +  static bool classof(const Shape *S) {
+   +    return S->getKind() >= SK_Square &&
+   +           S->getKind() <= SK_LastSquare;
+   +  }
+
+Then, adding new subclasses is easy:
+
+.. code-block:: c++
+
+    enum ShapeKind {
+      SK_Square,
+      SK_SpecialSquare,
+      SK_OtherSpecialSquare,
+   +  SK_SomewhatSpecialSquare,
+      SK_LastSquare,
+      SK_Circle
+    }
+
+Notice that ``Square::classof`` does not need to be changed.
+
+.. _classof-contract:
+
+The Contract of ``classof``
+---------------------------
+
+To be more precise, let ``classof`` be inside a class ``C``.  Then the
+contract for ``classof`` is "return ``true`` if the dynamic type of the
+argument is-a ``C``".  As long as your implementation fulfills this
+contract, you can tweak and optimize it as much as you want.
+
+For example, LLVM-style RTTI can work fine in the presence of
+multiple-inheritance by defining an appropriate ``classof``.
+An example of this in practice is
+`Decl <http://clang.llvm.org/doxygen/classclang_1_1Decl.html>`_ vs.
+`DeclContext <http://clang.llvm.org/doxygen/classclang_1_1DeclContext.html>`_
+inside Clang.
+The ``Decl`` hierarchy is done very similarly to the example setup
+demonstrated in this tutorial.
+The key part is how to then incorporate ``DeclContext``: all that is needed
+is in ``bool DeclContext::classof(const Decl *)``, which asks the question
+"Given a ``Decl``, how can I determine if it is-a ``DeclContext``?".
+It answers this with a simple switch over the set of ``Decl`` "kinds", and
+returning true for ones that are known to be ``DeclContext``'s.
+
+.. TODO::
+
+   Touch on some of the more advanced features, like ``isa_impl`` and
+   ``simplify_type``. However, those two need reference documentation in
+   the form of doxygen comments as well. We need the doxygen so that we can
+   say "for full details, see http://llvm.org/doxygen/..."
+
+Rules of Thumb
+==============
+
+#. The ``Kind`` enum should have one entry per concrete class, ordered
+   according to a preorder traversal of the inheritance tree.
+#. The argument to ``classof`` should be a ``const Base *``, where ``Base``
+   is some ancestor in the inheritance hierarchy. The argument should
+   *never* be a derived class or the class itself: the template machinery
+   for ``isa<>`` already handles this case and optimizes it.
+#. For each class in the hierarchy that has no children, implement a
+   ``classof`` that checks only against its ``Kind``.
+#. For each class in the hierarchy that has children, implement a
+   ``classof`` that checks a range of the first child's ``Kind`` and the
+   last child's ``Kind``.

Added: www-releases/trunk/3.9.1/docs/_sources/HowToSubmitABug.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToSubmitABug.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToSubmitABug.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToSubmitABug.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,229 @@
+================================
+How to submit an LLVM bug report
+================================
+
+Introduction - Got bugs?
+========================
+
+
+If you're working with LLVM and run into a bug, we definitely want to know
+about it.  This document describes what you can do to increase the odds of
+getting it fixed quickly.
+
+Basically you have to do two things at a minimum.  First, decide whether
+the bug `crashes the compiler`_ (or an LLVM pass), or if the
+compiler is `miscompiling`_ the program (i.e., the
+compiler successfully produces an executable, but it doesn't run right).
+Based on what type of bug it is, follow the instructions in the linked
+section to narrow down the bug so that the person who fixes it will be able
+to find the problem more easily.
+
+Once you have a reduced test-case, go to `the LLVM Bug Tracking System
+<http://llvm.org/bugs/enter_bug.cgi>`_ and fill out the form with the
+necessary details (note that you don't need to pick a category, just use
+the "new-bugs" category if you're not sure).  The bug description should
+contain the following information:
+
+* All information necessary to reproduce the problem.
+* The reduced test-case that triggers the bug.
+* The location where you obtained LLVM (if not from our Subversion
+  repository).
+
+Thanks for helping us make LLVM better!
+
+.. _crashes the compiler:
+
+Crashing Bugs
+=============
+
+More often than not, bugs in the compiler cause it to crash---often due to
+an assertion failure of some sort. The most important piece of the puzzle
+is to figure out if it is crashing in the GCC front-end or if it is one of
+the LLVM libraries (e.g. the optimizer or code generator) that has
+problems.
+
+To figure out which component is crashing (the front-end, optimizer or code
+generator), run the ``clang`` command line as you were when the crash
+occurred, but with the following extra command line options:
+
+* ``-O0 -emit-llvm``: If ``clang`` still crashes when passed these
+  options (which disable the optimizer and code generator), then the crash
+  is in the front-end.  Jump ahead to the section on :ref:`front-end bugs
+  <front-end>`.
+
+* ``-emit-llvm``: If ``clang`` crashes with this option (which disables
+  the code generator), you found an optimizer bug.  Jump ahead to
+  `compile-time optimization bugs`_.
+
+* Otherwise, you have a code generator crash. Jump ahead to `code
+  generator bugs`_.
+
+.. _front-end bug:
+.. _front-end:
+
+Front-end bugs
+--------------
+
+If the problem is in the front-end, you should re-run the same ``clang``
+command that resulted in the crash, but add the ``-save-temps`` option.
+The compiler will crash again, but it will leave behind a ``foo.i`` file
+(containing preprocessed C source code) and possibly ``foo.s`` for each
+compiled ``foo.c`` file. Send us the ``foo.i`` file, along with the options
+you passed to ``clang``, and a brief description of the error it caused.
+
+The `delta <http://delta.tigris.org/>`_ tool helps to reduce the
+preprocessed file down to the smallest amount of code that still replicates
+the problem. You're encouraged to use delta to reduce the code to make the
+developers' lives easier. `This website
+<http://gcc.gnu.org/wiki/A_guide_to_testcase_reduction>`_ has instructions
+on the best way to use delta.
+
+.. _compile-time optimization bugs:
+
+Compile-time optimization bugs
+------------------------------
+
+If you find that a bug crashes in the optimizer, compile your test-case to a
+``.bc`` file by passing "``-emit-llvm -O0 -c -o foo.bc``".
+Then run:
+
+.. code-block:: bash
+
+   opt -O3 -debug-pass=Arguments foo.bc -disable-output
+
+This command should do two things: it should print out a list of passes, and
+then it should crash in the same way as clang.  If it doesn't crash, please
+follow the instructions for a `front-end bug`_.
+
+If this does crash, then you should be able to debug this with the following
+bugpoint command:
+
+.. code-block:: bash
+
+   bugpoint foo.bc <list of passes printed by opt>
+
+Please run this, then file a bug with the instructions and reduced .bc
+files that bugpoint emits.  If something goes wrong with bugpoint, please
+submit the "foo.bc" file and the list of passes printed by ``opt``.
+
+.. _code generator bugs:
+
+Code generator bugs
+-------------------
+
+If you find a bug that crashes clang in the code generator, compile your
+source file to a .bc file by passing "``-emit-llvm -c -o foo.bc``" to
+clang (in addition to the options you already pass).  Once your have
+foo.bc, one of the following commands should fail:
+
+#. ``llc foo.bc``
+#. ``llc foo.bc -relocation-model=pic``
+#. ``llc foo.bc -relocation-model=static``
+
+If none of these crash, please follow the instructions for a `front-end
+bug`_.  If one of these do crash, you should be able to reduce this with
+one of the following bugpoint command lines (use the one corresponding to
+the command above that failed):
+
+#. ``bugpoint -run-llc foo.bc``
+#. ``bugpoint -run-llc foo.bc --tool-args -relocation-model=pic``
+#. ``bugpoint -run-llc foo.bc --tool-args -relocation-model=static``
+
+Please run this, then file a bug with the instructions and reduced .bc file
+that bugpoint emits.  If something goes wrong with bugpoint, please submit
+the "foo.bc" file and the option that llc crashes with.
+
+.. _miscompiling:
+
+Miscompilations
+===============
+
+If clang successfully produces an executable, but that executable
+doesn't run right, this is either a bug in the code or a bug in the
+compiler.  The first thing to check is to make sure it is not using
+undefined behavior (e.g. reading a variable before it is defined). In
+particular, check to see if the program `valgrind
+<http://valgrind.org/>`_'s clean, passes purify, or some other memory
+checker tool. Many of the "LLVM bugs" that we have chased down ended up
+being bugs in the program being compiled, not LLVM.
+
+Once you determine that the program itself is not buggy, you should choose
+which code generator you wish to compile the program with (e.g. LLC or the JIT)
+and optionally a series of LLVM passes to run.  For example:
+
+.. code-block:: bash
+
+   bugpoint -run-llc [... optzn passes ...] file-to-test.bc --args -- [program arguments]
+
+bugpoint will try to narrow down your list of passes to the one pass that
+causes an error, and simplify the bitcode file as much as it can to assist
+you. It will print a message letting you know how to reproduce the
+resulting error.
+
+Incorrect code generation
+=========================
+
+Similarly to debugging incorrect compilation by mis-behaving passes, you
+can debug incorrect code generation by either LLC or the JIT, using
+``bugpoint``. The process ``bugpoint`` follows in this case is to try to
+narrow the code down to a function that is miscompiled by one or the other
+method, but since for correctness, the entire program must be run,
+``bugpoint`` will compile the code it deems to not be affected with the C
+Backend, and then link in the shared object it generates.
+
+To debug the JIT:
+
+.. code-block:: bash
+
+   bugpoint -run-jit -output=[correct output file] [bitcode file]  \
+            --tool-args -- [arguments to pass to lli]              \
+            --args -- [program arguments]
+
+Similarly, to debug the LLC, one would run:
+
+.. code-block:: bash
+
+   bugpoint -run-llc -output=[correct output file] [bitcode file]  \
+            --tool-args -- [arguments to pass to llc]              \
+            --args -- [program arguments]
+
+**Special note:** if you are debugging MultiSource or SPEC tests that
+already exist in the ``llvm/test`` hierarchy, there is an easier way to
+debug the JIT, LLC, and CBE, using the pre-written Makefile targets, which
+will pass the program options specified in the Makefiles:
+
+.. code-block:: bash
+
+   cd llvm/test/../../program
+   make bugpoint-jit
+
+At the end of a successful ``bugpoint`` run, you will be presented
+with two bitcode files: a *safe* file which can be compiled with the C
+backend and the *test* file which either LLC or the JIT
+mis-codegenerates, and thus causes the error.
+
+To reproduce the error that ``bugpoint`` found, it is sufficient to do
+the following:
+
+#. Regenerate the shared object from the safe bitcode file:
+
+   .. code-block:: bash
+
+      llc -march=c safe.bc -o safe.c
+      gcc -shared safe.c -o safe.so
+
+#. If debugging LLC, compile test bitcode native and link with the shared
+   object:
+
+   .. code-block:: bash
+
+      llc test.bc -o test.s
+      gcc test.s safe.so -o test.llc
+      ./test.llc [program options]
+
+#. If debugging the JIT, load the shared object and supply the test
+   bitcode:
+
+   .. code-block:: bash
+
+      lli -load=safe.so test.bc [program options]

Added: www-releases/trunk/3.9.1/docs/_sources/HowToUseAttributes.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToUseAttributes.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToUseAttributes.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToUseAttributes.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,81 @@
+=====================
+How To Use Attributes
+=====================
+
+.. contents::
+  :local:
+
+Introduction
+============
+
+Attributes in LLVM have changed in some fundamental ways.  It was necessary to
+do this to support expanding the attributes to encompass more than a handful of
+attributes --- e.g. command line options.  The old way of handling attributes
+consisted of representing them as a bit mask of values.  This bit mask was
+stored in a "list" structure that was reference counted.  The advantage of this
+was that attributes could be manipulated with 'or's and 'and's.  The
+disadvantage of this was that there was limited room for expansion, and
+virtually no support for attribute-value pairs other than alignment.
+
+In the new scheme, an ``Attribute`` object represents a single attribute that's
+uniqued.  You use the ``Attribute::get`` methods to create a new ``Attribute``
+object.  An attribute can be a single "enum" value (the enum being the
+``Attribute::AttrKind`` enum), a string representing a target-dependent
+attribute, or an attribute-value pair.  Some examples:
+
+* Target-independent: ``noinline``, ``zext``
+* Target-dependent: ``"no-sse"``, ``"thumb2"``
+* Attribute-value pair: ``"cpu" = "cortex-a8"``, ``align = 4``
+
+Note: for an attribute value pair, we expect a target-dependent attribute to
+have a string for the value.
+
+``Attribute``
+=============
+An ``Attribute`` object is designed to be passed around by value.
+
+Because attributes are no longer represented as a bit mask, you will need to
+convert any code which does treat them as a bit mask to use the new query
+methods on the Attribute class.
+
+``AttributeSet``
+================
+
+The ``AttributeSet`` class replaces the old ``AttributeList`` class.  The
+``AttributeSet`` stores a collection of Attribute objects for each kind of
+object that may have an attribute associated with it: the function as a
+whole, the return type, or the function's parameters.  A function's attributes
+are at index ``AttributeSet::FunctionIndex``; the return type's attributes are
+at index ``AttributeSet::ReturnIndex``; and the function's parameters'
+attributes are at indices 1, ..., n (where 'n' is the number of parameters).
+Most methods on the ``AttributeSet`` class take an index parameter.
+
+An ``AttributeSet`` is also a uniqued and immutable object.  You create an
+``AttributeSet`` through the ``AttributeSet::get`` methods.  You can add and
+remove attributes, which result in the creation of a new ``AttributeSet``.
+
+An ``AttributeSet`` object is designed to be passed around by value.
+
+Note: It is advised that you do *not* use the ``AttributeSet`` "introspection"
+methods (e.g. ``Raw``, ``getRawPointer``, etc.).  These methods break
+encapsulation, and may be removed in a future release (i.e. LLVM 4.0).
+
+``AttrBuilder``
+===============
+
+Lastly, we have a "builder" class to help create the ``AttributeSet`` object
+without having to create several different intermediate uniqued
+``AttributeSet`` objects.  The ``AttrBuilder`` class allows you to add and
+remove attributes at will.  The attributes won't be uniqued until you call the
+appropriate ``AttributeSet::get`` method.
+
+An ``AttrBuilder`` object is *not* designed to be passed around by value.  It
+should be passed by reference.
+
+Note: It is advised that you do *not* use the ``AttrBuilder::addRawValue()``
+method or the ``AttrBuilder(uint64_t Val)`` constructor.  These are for
+backwards compatibility and may be removed in a future release (i.e. LLVM 4.0).
+
+And that's basically it! A lot of functionality is hidden behind these classes,
+but the interfaces are pretty straight forward.
+

Added: www-releases/trunk/3.9.1/docs/_sources/HowToUseInstrMappings.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/HowToUseInstrMappings.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/HowToUseInstrMappings.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/HowToUseInstrMappings.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,175 @@
+===============================
+How To Use Instruction Mappings
+===============================
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document contains information about adding instruction mapping support
+for a target. The motivation behind this feature comes from the need to switch
+between different instruction formats during various optimizations. One approach
+could be to use switch cases which list all the instructions along with formats
+they can transition to. However, it has large maintenance overhead
+because of the hardcoded instruction names. Also, whenever a new instruction is
+added in the .td files, all the relevant switch cases should be modified
+accordingly. Instead, the same functionality could be achieved with TableGen and
+some support from the .td files for a fraction of maintenance cost.
+
+``InstrMapping`` Class Overview
+===============================
+
+TableGen uses relationship models to map instructions with each other. These
+models are described using ``InstrMapping`` class as a base. Each model sets
+various fields of the ``InstrMapping`` class such that they can uniquely
+describe all the instructions using that model. TableGen parses all the relation
+models and uses the information to construct relation tables which relate
+instructions with each other. These tables are emitted in the
+``XXXInstrInfo.inc`` file along with the functions to query them. Following
+is the definition of ``InstrMapping`` class definied in Target.td file:
+
+.. code-block:: text
+
+  class InstrMapping {
+    // Used to reduce search space only to the instructions using this
+    // relation model.
+    string FilterClass;
+
+    // List of fields/attributes that should be same for all the instructions in
+    // a row of the relation table. Think of this as a set of properties shared
+    // by all the instructions related by this relationship.
+    list<string> RowFields = [];
+
+    // List of fields/attributes that are same for all the instructions
+    // in a column of the relation table.
+    list<string> ColFields = [];
+
+    // Values for the fields/attributes listed in 'ColFields' corresponding to
+    // the key instruction. This is the instruction that will be transformed
+    // using this relation model.
+    list<string> KeyCol = [];
+
+    // List of values for the fields/attributes listed in 'ColFields', one for
+    // each column in the relation table. These are the instructions a key
+    // instruction will be transformed into.
+    list<list<string> > ValueCols = [];
+  }
+
+Sample Example
+--------------
+
+Let's say that we want to have a function
+``int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)`` which
+takes a non-predicated instruction and returns its predicated true or false form
+depending on some input flag, ``inPredSense``. The first step in the process is
+to define a relationship model that relates predicated instructions to their
+non-predicated form by assigning appropriate values to the ``InstrMapping``
+fields. For this relationship, non-predicated instructions are treated as key
+instruction since they are the one used to query the interface function.
+
+.. code-block:: text
+
+  def getPredOpcode : InstrMapping {
+    // Choose a FilterClass that is used as a base class for all the
+    // instructions modeling this relationship. This is done to reduce the
+    // search space only to these set of instructions.
+    let FilterClass = "PredRel";
+
+    // Instructions with same values for all the fields in RowFields form a
+    // row in the resulting relation table.
+    // For example, if we want to relate 'ADD' (non-predicated) with 'Add_pt'
+    // (predicated true) and 'Add_pf' (predicated false), then all 3
+    // instructions need to have same value for BaseOpcode field. It can be any
+    // unique value (Ex: XYZ) and should not be shared with any other
+    // instruction not related to 'add'.
+    let RowFields = ["BaseOpcode"];
+
+    // List of attributes that can be used to define key and column instructions
+    // for a relation. Key instruction is passed as an argument
+    // to the function used for querying relation tables. Column instructions
+    // are the instructions they (key) can transform into.
+    //
+    // Here, we choose 'PredSense' as ColFields since this is the unique
+    // attribute of the key (non-predicated) and column (true/false)
+    // instructions involved in this relationship model.
+    let ColFields = ["PredSense"];
+
+    // The key column contains non-predicated instructions.
+    let KeyCol = ["none"];
+
+    // Two value columns - first column contains instructions with
+    // PredSense=true while second column has instructions with PredSense=false.
+    let ValueCols = [["true"], ["false"]];
+  }
+
+TableGen uses the above relationship model to emit relation table that maps
+non-predicated instructions with their predicated forms. It also outputs the
+interface function
+``int getPredOpcode(uint16_t Opcode, enum PredSense inPredSense)`` to query
+the table. Here, Function ``getPredOpcode`` takes two arguments, opcode of the
+current instruction and PredSense of the desired instruction, and returns
+predicated form of the instruction, if found in the relation table.
+In order for an instruction to be added into the relation table, it needs
+to include relevant information in its definition. For example, consider
+following to be the current definitions of ADD, ADD_pt (true) and ADD_pf (false)
+instructions:
+
+.. code-block:: text
+
+  def ADD : ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
+              "$dst = add($a, $b)",
+              [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),
+                                             (i32 IntRegs:$b)))]>;
+
+  def ADD_Pt : ALU32_rr<(outs IntRegs:$dst),
+                         (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
+              "if ($p) $dst = add($a, $b)",
+              []>;
+
+  def ADD_Pf : ALU32_rr<(outs IntRegs:$dst),
+                         (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
+              "if (!$p) $dst = add($a, $b)",
+              []>;
+
+In this step, we modify these instructions to include the information
+required by the relationship model, <tt>getPredOpcode</tt>, so that they can
+be related.
+
+.. code-block:: text
+
+  def ADD : PredRel, ALU32_rr<(outs IntRegs:$dst), (ins IntRegs:$a, IntRegs:$b),
+              "$dst = add($a, $b)",
+              [(set (i32 IntRegs:$dst), (add (i32 IntRegs:$a),
+                                             (i32 IntRegs:$b)))]> {
+    let BaseOpcode = "ADD";
+    let PredSense = "none";
+  }
+
+  def ADD_Pt : PredRel, ALU32_rr<(outs IntRegs:$dst),
+                         (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
+              "if ($p) $dst = add($a, $b)",
+              []> {
+    let BaseOpcode = "ADD";
+    let PredSense = "true";
+  }
+
+  def ADD_Pf : PredRel, ALU32_rr<(outs IntRegs:$dst),
+                         (ins PredRegs:$p, IntRegs:$a, IntRegs:$b),
+              "if (!$p) $dst = add($a, $b)",
+              []> {
+    let BaseOpcode = "ADD";
+    let PredSense = "false";
+  }
+
+Please note that all the above instructions use ``PredRel`` as a base class.
+This is extremely important since TableGen uses it as a filter for selecting
+instructions for ``getPredOpcode`` model. Any instruction not derived from
+``PredRel`` is excluded from the analysis. ``BaseOpcode`` is another important
+field. Since it's selected as a ``RowFields`` of the model, it is required
+to have the same value for all 3 instructions in order to be related. Next,
+``PredSense`` is used to determine their column positions by comparing its value
+with ``KeyCol`` and ``ValueCols``. If an instruction sets its ``PredSense``
+value to something not used in the relation model, it will not be assigned
+a column in the relation table.

Added: www-releases/trunk/3.9.1/docs/_sources/InAlloca.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/InAlloca.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/InAlloca.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/InAlloca.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,160 @@
+==========================================
+Design and Usage of the InAlloca Attribute
+==========================================
+
+Introduction
+============
+
+The :ref:`inalloca <attr_inalloca>` attribute is designed to allow
+taking the address of an aggregate argument that is being passed by
+value through memory.  Primarily, this feature is required for
+compatibility with the Microsoft C++ ABI.  Under that ABI, class
+instances that are passed by value are constructed directly into
+argument stack memory.  Prior to the addition of inalloca, calls in LLVM
+were indivisible instructions.  There was no way to perform intermediate
+work, such as object construction, between the first stack adjustment
+and the final control transfer.  With inalloca, all arguments passed in
+memory are modelled as a single alloca, which can be stored to prior to
+the call.  Unfortunately, this complicated feature comes with a large
+set of restrictions designed to bound the lifetime of the argument
+memory around the call.
+
+For now, it is recommended that frontends and optimizers avoid producing
+this construct, primarily because it forces the use of a base pointer.
+This feature may grow in the future to allow general mid-level
+optimization, but for now, it should be regarded as less efficient than
+passing by value with a copy.
+
+Intended Usage
+==============
+
+The example below is the intended LLVM IR lowering for some C++ code
+that passes two default-constructed ``Foo`` objects to ``g`` in the
+32-bit Microsoft C++ ABI.
+
+.. code-block:: c++
+
+    // Foo is non-trivial.
+    struct Foo { int a, b; Foo(); ~Foo(); Foo(const Foo &); };
+    void g(Foo a, Foo b);
+    void f() {
+      g(Foo(), Foo());
+    }
+
+.. code-block:: text
+
+    %struct.Foo = type { i32, i32 }
+    declare void @Foo_ctor(%struct.Foo* %this)
+    declare void @Foo_dtor(%struct.Foo* %this)
+    declare void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)
+
+    define void @f() {
+    entry:
+      %base = call i8* @llvm.stacksave()
+      %memargs = alloca <{ %struct.Foo, %struct.Foo }>
+      %b = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 1
+      call void @Foo_ctor(%struct.Foo* %b)
+
+      ; If a's ctor throws, we must destruct b.
+      %a = getelementptr <{ %struct.Foo, %struct.Foo }>* %memargs, i32 0
+      invoke void @Foo_ctor(%struct.Foo* %a)
+          to label %invoke.cont unwind %invoke.unwind
+
+    invoke.cont:
+      call void @g(<{ %struct.Foo, %struct.Foo }>* inalloca %memargs)
+      call void @llvm.stackrestore(i8* %base)
+      ...
+
+    invoke.unwind:
+      call void @Foo_dtor(%struct.Foo* %b)
+      call void @llvm.stackrestore(i8* %base)
+      ...
+    }
+
+To avoid stack leaks, the frontend saves the current stack pointer with
+a call to :ref:`llvm.stacksave <int_stacksave>`.  Then, it allocates the
+argument stack space with alloca and calls the default constructor.  The
+default constructor could throw an exception, so the frontend has to
+create a landing pad.  The frontend has to destroy the already
+constructed argument ``b`` before restoring the stack pointer.  If the
+constructor does not unwind, ``g`` is called.  In the Microsoft C++ ABI,
+``g`` will destroy its arguments, and then the stack is restored in
+``f``.
+
+Design Considerations
+=====================
+
+Lifetime
+--------
+
+The biggest design consideration for this feature is object lifetime.
+We cannot model the arguments as static allocas in the entry block,
+because all calls need to use the memory at the top of the stack to pass
+arguments.  We cannot vend pointers to that memory at function entry
+because after code generation they will alias.
+
+The rule against allocas between argument allocations and the call site
+avoids this problem, but it creates a cleanup problem.  Cleanup and
+lifetime is handled explicitly with stack save and restore calls.  In
+the future, we may want to introduce a new construct such as ``freea``
+or ``afree`` to make it clear that this stack adjusting cleanup is less
+powerful than a full stack save and restore.
+
+Nested Calls and Copy Elision
+-----------------------------
+
+We also want to be able to support copy elision into these argument
+slots.  This means we have to support multiple live argument
+allocations.
+
+Consider the evaluation of:
+
+.. code-block:: c++
+
+    // Foo is non-trivial.
+    struct Foo { int a; Foo(); Foo(const &Foo); ~Foo(); };
+    Foo bar(Foo b);
+    int main() {
+      bar(bar(Foo()));
+    }
+
+In this case, we want to be able to elide copies into ``bar``'s argument
+slots.  That means we need to have more than one set of argument frames
+active at the same time.  First, we need to allocate the frame for the
+outer call so we can pass it in as the hidden struct return pointer to
+the middle call.  Then we do the same for the middle call, allocating a
+frame and passing its address to ``Foo``'s default constructor.  By
+wrapping the evaluation of the inner ``bar`` with stack save and
+restore, we can have multiple overlapping active call frames.
+
+Callee-cleanup Calling Conventions
+----------------------------------
+
+Another wrinkle is the existence of callee-cleanup conventions.  On
+Windows, all methods and many other functions adjust the stack to clear
+the memory used to pass their arguments.  In some sense, this means that
+the allocas are automatically cleared by the call.  However, LLVM
+instead models this as a write of undef to all of the inalloca values
+passed to the call instead of a stack adjustment.  Frontends should
+still restore the stack pointer to avoid a stack leak.
+
+Exceptions
+----------
+
+There is also the possibility of an exception.  If argument evaluation
+or copy construction throws an exception, the landing pad must do
+cleanup, which includes adjusting the stack pointer to avoid a stack
+leak.  This means the cleanup of the stack memory cannot be tied to the
+call itself.  There needs to be a separate IR-level instruction that can
+perform independent cleanup of arguments.
+
+Efficiency
+----------
+
+Eventually, it should be possible to generate efficient code for this
+construct.  In particular, using inalloca should not require a base
+pointer.  If the backend can prove that all points in the CFG only have
+one possible stack level, then it can address the stack directly from
+the stack pointer.  While this is not yet implemented, the plan is that
+the inalloca attribute should not change much, but the frontend IR
+generation recommendations may change.

Added: www-releases/trunk/3.9.1/docs/_sources/LLVMBuild.txt
URL: http://llvm.org/viewvc/llvm-project/www-releases/trunk/3.9.1/docs/_sources/LLVMBuild.txt?rev=290368&view=auto
==============================================================================
--- www-releases/trunk/3.9.1/docs/_sources/LLVMBuild.txt (added)
+++ www-releases/trunk/3.9.1/docs/_sources/LLVMBuild.txt Thu Dec 22 14:04:03 2016
@@ -0,0 +1,324 @@
+===============
+LLVMBuild Guide
+===============
+
+.. contents::
+   :local:
+
+Introduction
+============
+
+This document describes the ``LLVMBuild`` organization and files which
+we use to describe parts of the LLVM ecosystem. For description of
+specific LLVMBuild related tools, please see the command guide.
+
+LLVM is designed to be a modular set of libraries which can be flexibly
+mixed together in order to build a variety of tools, like compilers,
+JITs, custom code generators, optimization passes, interpreters, and so
+on. Related projects in the LLVM system like Clang and LLDB also tend to
+follow this philosophy.
+
+In order to support this usage style, LLVM has a fairly strict structure
+as to how the source code and various components are organized. The
+``LLVMBuild.txt`` files are the explicit specification of that
+structure, and are used by the build systems and other tools in order to
+develop the LLVM project.
+
+Project Organization
+====================
+
+The source code for LLVM projects using the LLVMBuild system (LLVM,
+Clang, and LLDB) is organized into *components*, which define the
+separate pieces of functionality that make up the project. These
+projects may consist of many libraries, associated tools, build tools,
+or other utility tools (for example, testing tools).
+
+For the most part, the project contents are organized around defining
+one main component per each subdirectory. Each such directory contains
+an ``LLVMBuild.txt`` which contains the component definitions.
+
+The component descriptions for the project as a whole are automatically
+gathered by the LLVMBuild tools. The tools automatically traverse the
+source directory structure to find all of the component description
+files. NOTE: For performance/sanity reasons, we only traverse into
+subdirectories when the parent itself contains an ``LLVMBuild.txt``
+description file.
+
+Build Integration
+=================
+
+The LLVMBuild files themselves are just a declarative way to describe
+the project structure. The actual building of the LLVM project is
+handled by another build system (See: :doc:`CMake <CMake>`).
+
+The build system implementation will load the relevant contents of the
+LLVMBuild files and use that to drive the actual project build.
+Typically, the build system will only need to load this information at
+"configure" time, and use it to generative native information. Build
+systems will also handle automatically reconfiguring their information
+when the contents of the ``LLVMBuild.txt`` files change.
+
+Developers generally are not expected to need to be aware of the details
+of how the LLVMBuild system is integrated into their build. Ideally,
+LLVM developers who are not working on the build system would only ever
+need to modify the contents of the ``LLVMBuild.txt`` description files
+(although we have not reached this goal yet).
+
+For more information on the utility tool we provide to help interfacing
+with the build system, please see the :doc:`llvm-build
+<CommandGuide/llvm-build>` documentation.
+
+Component Overview
+==================
+
+As mentioned earlier, LLVM projects are organized into logical
+*components*. Every component is typically grouped into its own
+subdirectory. Generally, a component is organized around a coherent
+group of sources which have some kind of clear API separation from other
+parts of the code.
+
+LLVM primarily uses the following types of components:
+
+- *Libraries* - Library components define a distinct API which can be
+  independently linked into LLVM client applications. Libraries typically
+  have private and public header files, and may specify a link of required
+  libraries that they build on top of.
+- *Build Tools* - Build tools are applications which are designed to be run
+  as part of the build process (typically to generate other source files).
+  Currently, LLVM uses one main build tool called :doc:`TableGen/index`
+  to generate a variety of source files.
+- *Tools* - Command line applications which are built using the LLVM
+  component libraries. Most LLVM tools are small and are primarily
+  frontends to the library interfaces.
+
+Components are described using ``LLVMBuild.txt`` files in the directories
+that define the component. See the `LLVMBuild Format Reference`_ section
+for information on the exact format of these files.
+
+LLVMBuild Format Reference
+==========================
+
+LLVMBuild files are written in a simple variant of the INI or configuration
+file format (`Wikipedia entry`_). The format defines a list of sections
+each of which may contain some number of properties. A simple example of
+the file format is below:
+
+.. _Wikipedia entry: http://en.wikipedia.org/wiki/INI_file
+
+.. code-block:: ini
+
+   ; Comments start with a semi-colon.
+
+   ; Sections are declared using square brackets.
+   [component_0]
+
+   ; Properties are declared using '=' and are contained in the previous section.
+   ;
+   ; We support simple string and boolean scalar values and list values, where
+   ; items are separated by spaces. There is no support for quoting, and so
+   ; property values may not contain spaces.
+   property_name = property_value
+   list_property_name = value_1 value_2 ... value_n
+   boolean_property_name = 1 (or 0)
+
+LLVMBuild files are expected to define a strict set of sections and
+properties. A typical component description file for a library
+component would look like the following example:
+
+.. code-block:: ini
+
+   [component_0]
+   type = Library
+   name = Linker
+   parent = Libraries
+   required_libraries = Archive BitReader Core Support TransformUtils
+
+A full description of the exact sections and properties which are
+allowed follows.
+
+Each file may define exactly one common component, named ``common``. The
+common component may define the following properties:
+
+-  ``subdirectories`` **[optional]**
+
+   If given, a list of the names of the subdirectories from the current
+   subpath to search for additional LLVMBuild files.
+
+Each file may define multiple components. Each component is described by a
+section who name starts with ``component``. The remainder of the section
+name is ignored, but each section name must be unique. Typically components
+are just number in order for files with multiple components
+(``component_0``, ``component_1``, and so on).
+
+.. warning::
+
+   Section names not matching this format (or the ``common`` section) are
+   currently unused and are disallowed.
+
+Every component is defined by the properties in the section. The exact
+list of properties that are allowed depends on the component type.
+Components **may not** define any properties other than those expected
+by the component type.
+
+Every component must define the following properties:
+
+-  ``type`` **[required]**
+
+   The type of the component. Supported component types are detailed
+   below. Most components will define additional properties which may be
+   required or optional.
+
+-  ``name`` **[required]**
+
+   The name of the component. Names are required to be unique across the
+   entire project.
+
+-  ``parent`` **[required]**
+
+   The name of the logical parent of the component. Components are
+   organized into a logical tree to make it easier to navigate and
+   organize groups of components. The parents have no semantics as far
+   as the project build is concerned, however. Typically, the parent
+   will be the main component of the parent directory.
+
+   Components may reference the root pseudo component using ``$ROOT`` to
+   indicate they should logically be grouped at the top-level.
+
+Components may define the following properties:
+
+-  ``dependencies`` **[optional]**
+
+   If specified, a list of names of components which *must* be built
+   prior to this one. This should only be exactly those components which
+   produce some tool or source code required for building the component.
+
+   .. note::
+
+      ``Group`` and ``LibraryGroup`` components have no semantics for the
+      actual build, and are not allowed to specify dependencies.
+
+The following section lists the available component types, as well as
+the properties which are associated with that component.
+
+-  ``type = Group``
+
+   Group components exist purely to allow additional arbitrary structuring
+   of the logical components tree. For example, one might define a
+   ``Libraries`` group to hold all of the root library components.
+
+   ``Group`` components have no additionally properties.
+
+-  ``type = Library``
+
+   Library components define an individual library which should be built
+   from the source code in the component directory.
+
+   Components with this type use the following properties:
+
+   -  ``library_name`` **[optional]**
+
+      If given, the name to use for the actual library file on disk. If
+      not given, the name is derived from the component name itself.
+
+   -  ``required_libraries`` **[optional]**
+
+      If given, a list of the names of ``Library`` or ``LibraryGroup``
+      components which must also be linked in whenever this library is
+      used. That is, the link time dependencies for this component. When
+      tools are built, the build system will include the transitive closure
+      of all ``required_libraries`` for the components the tool needs.
+
+   -  ``add_to_library_groups`` **[optional]**
+
+      If given, a list of the names of ``LibraryGroup`` components which
+      this component is also part of. This allows nesting groups of
+      components.  For example, the ``X86`` target might define a library
+      group for all of the ``X86`` components. That library group might
+      then be included in the ``all-targets`` library group.
+
+   -  ``installed`` **[optional]** **[boolean]**
+
+      Whether this library is installed. Libraries that are not installed
+      are only reported by ``llvm-config`` when it is run as part of a
+      development directory.
+
+-  ``type = LibraryGroup``
+
+   ``LibraryGroup`` components are a mechanism to allow easy definition of
+   useful sets of related components. In particular, we use them to easily
+   specify things like "all targets", or "all assembly printers".
+
+   Components with this type use the following properties:
+
+   -  ``required_libraries`` **[optional]**
+
+      See the ``Library`` type for a description of this property.
+
+   -  ``add_to_library_groups`` **[optional]**
+
+      See the ``Library`` type for a description of this property.
+
+-  ``type = TargetGroup``
+
+   ``TargetGroup`` components are an extension of ``LibraryGroup``\s,
+   specifically for defining LLVM targets (which are handled specially in a
+   few places).
+
+   The name of the component should always be the name of the target.
+
+   Components with this type use the ``LibraryGroup`` properties in
+   addition to:
+
+   -  ``has_asmparser`` **[optional]** **[boolean]**
+
+      Whether this target defines an assembly parser.
+
+   -  ``has_asmprinter`` **[optional]** **[boolean]**
+
+      Whether this target defines an assembly printer.
+
+   -  ``has_disassembler`` **[optional]** **[boolean]**
+
+      Whether this target defines a disassembler.
+
+   -  ``has_jit`` **[optional]** **[boolean]**
+
+      Whether this target supports JIT compilation.
+
+-  ``type = Tool``
+
+   ``Tool`` components define standalone command line tools which should be
+   built from the source code in the component directory and linked.
+
+   Components with this type use the following properties:
+
+   -  ``required_libraries`` **[optional]**
+
+      If given, a list of the names of ``Library`` or ``LibraryGroup``
+      components which this tool is required to be linked with.
+
+      .. note::
+
+         The values should be the component names, which may not always
+         match up with the actual library names on disk.
+
+      Build systems are expected to properly include all of the libraries
+      required by the linked components (i.e., the transitive closure of
+      ``required_libraries``).
+
+      Build systems are also expected to understand that those library
+      components must be built prior to linking -- they do not also need
+      to be listed under ``dependencies``.
+
+-  ``type = BuildTool``
+
+   ``BuildTool`` components are like ``Tool`` components, except that the
+   tool is supposed to be built for the platform where the build is running
+   (instead of that platform being targeted). Build systems are expected
+   to handle the fact that required libraries may need to be built for
+   multiple platforms in order to be able to link this tool.
+
+   ``BuildTool`` components currently use the exact same properties as
+   ``Tool`` components, the type distinction is only used to differentiate
+   what the tool is built for.
+




More information about the llvm-commits mailing list