[llvm] r282362 - [SCEV] Clang format most of the SCEV header; NFC

Sanjoy Das via llvm-commits llvm-commits at lists.llvm.org
Sun Sep 25 16:11:52 PDT 2016


Author: sanjoy
Date: Sun Sep 25 18:11:51 2016
New Revision: 282362

URL: http://llvm.org/viewvc/llvm-project?rev=282362&view=rev
Log:
[SCEV] Clang format most of the SCEV header; NFC

The indentation for the declared classes was not as per LLVM coding
style.

Modified:
    llvm/trunk/include/llvm/Analysis/ScalarEvolution.h

Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolution.h?rev=282362&r1=282361&r2=282362&view=diff
==============================================================================
--- llvm/trunk/include/llvm/Analysis/ScalarEvolution.h (original)
+++ llvm/trunk/include/llvm/Analysis/ScalarEvolution.h Sun Sep 25 18:11:51 2016
@@ -36,1799 +36,1778 @@
 #include "llvm/Support/DataTypes.h"
 
 namespace llvm {
-  class APInt;
-  class AssumptionCache;
-  class Constant;
-  class ConstantInt;
-  class DominatorTree;
-  class Type;
-  class ScalarEvolution;
-  class DataLayout;
-  class TargetLibraryInfo;
-  class LLVMContext;
-  class Operator;
-  class SCEV;
-  class SCEVAddRecExpr;
-  class SCEVConstant;
-  class SCEVExpander;
-  class SCEVPredicate;
-  class SCEVUnknown;
-  class Function;
-
-  template <> struct FoldingSetTrait<SCEV>;
-  template <> struct FoldingSetTrait<SCEVPredicate>;
-
-  /// This class represents an analyzed expression in the program.  These are
-  /// opaque objects that the client is not allowed to do much with directly.
-  ///
-  class SCEV : public FoldingSetNode {
-    friend struct FoldingSetTrait<SCEV>;
-
-    /// A reference to an Interned FoldingSetNodeID for this node.  The
-    /// ScalarEvolution's BumpPtrAllocator holds the data.
-    FoldingSetNodeIDRef FastID;
-
-    // The SCEV baseclass this node corresponds to
-    const unsigned short SCEVType;
-
-  protected:
-    /// This field is initialized to zero and may be used in subclasses to store
-    /// miscellaneous information.
-    unsigned short SubclassData;
-
-  private:
-    SCEV(const SCEV &) = delete;
-    void operator=(const SCEV &) = delete;
+class APInt;
+class AssumptionCache;
+class Constant;
+class ConstantInt;
+class DominatorTree;
+class Type;
+class ScalarEvolution;
+class DataLayout;
+class TargetLibraryInfo;
+class LLVMContext;
+class Operator;
+class SCEV;
+class SCEVAddRecExpr;
+class SCEVConstant;
+class SCEVExpander;
+class SCEVPredicate;
+class SCEVUnknown;
+class Function;
+
+template <> struct FoldingSetTrait<SCEV>;
+template <> struct FoldingSetTrait<SCEVPredicate>;
+
+/// This class represents an analyzed expression in the program.  These are
+/// opaque objects that the client is not allowed to do much with directly.
+///
+class SCEV : public FoldingSetNode {
+  friend struct FoldingSetTrait<SCEV>;
+
+  /// A reference to an Interned FoldingSetNodeID for this node.  The
+  /// ScalarEvolution's BumpPtrAllocator holds the data.
+  FoldingSetNodeIDRef FastID;
+
+  // The SCEV baseclass this node corresponds to
+  const unsigned short SCEVType;
+
+protected:
+  /// This field is initialized to zero and may be used in subclasses to store
+  /// miscellaneous information.
+  unsigned short SubclassData;
+
+private:
+  SCEV(const SCEV &) = delete;
+  void operator=(const SCEV &) = delete;
 
-  public:
-    /// NoWrapFlags are bitfield indices into SubclassData.
-    ///
-    /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
-    /// no-signed-wrap <NSW> properties, which are derived from the IR
-    /// operator. NSW is a misnomer that we use to mean no signed overflow or
-    /// underflow.
-    ///
-    /// AddRec expressions may have a no-self-wraparound <NW> property if, in
-    /// the integer domain, abs(step) * max-iteration(loop) <=
-    /// unsigned-max(bitwidth).  This means that the recurrence will never reach
-    /// its start value if the step is non-zero.  Computing the same value on
-    /// each iteration is not considered wrapping, and recurrences with step = 0
-    /// are trivially <NW>.  <NW> is independent of the sign of step and the
-    /// value the add recurrence starts with.
-    ///
-    /// Note that NUW and NSW are also valid properties of a recurrence, and
-    /// either implies NW. For convenience, NW will be set for a recurrence
-    /// whenever either NUW or NSW are set.
-    enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
-                       FlagNW      = (1 << 0),   // No self-wrap.
-                       FlagNUW     = (1 << 1),   // No unsigned wrap.
-                       FlagNSW     = (1 << 2),   // No signed wrap.
-                       NoWrapMask  = (1 << 3) -1 };
-
-    explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
-      FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
+public:
+  /// NoWrapFlags are bitfield indices into SubclassData.
+  ///
+  /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
+  /// no-signed-wrap <NSW> properties, which are derived from the IR
+  /// operator. NSW is a misnomer that we use to mean no signed overflow or
+  /// underflow.
+  ///
+  /// AddRec expressions may have a no-self-wraparound <NW> property if, in
+  /// the integer domain, abs(step) * max-iteration(loop) <=
+  /// unsigned-max(bitwidth).  This means that the recurrence will never reach
+  /// its start value if the step is non-zero.  Computing the same value on
+  /// each iteration is not considered wrapping, and recurrences with step = 0
+  /// are trivially <NW>.  <NW> is independent of the sign of step and the
+  /// value the add recurrence starts with.
+  ///
+  /// Note that NUW and NSW are also valid properties of a recurrence, and
+  /// either implies NW. For convenience, NW will be set for a recurrence
+  /// whenever either NUW or NSW are set.
+  enum NoWrapFlags {
+    FlagAnyWrap = 0,    // No guarantee.
+    FlagNW = (1 << 0),  // No self-wrap.
+    FlagNUW = (1 << 1), // No unsigned wrap.
+    FlagNSW = (1 << 2), // No signed wrap.
+    NoWrapMask = (1 << 3) - 1
+  };
 
-    unsigned getSCEVType() const { return SCEVType; }
+  explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy)
+      : FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
 
-    /// Return the LLVM type of this SCEV expression.
-    ///
-    Type *getType() const;
+  unsigned getSCEVType() const { return SCEVType; }
 
-    /// Return true if the expression is a constant zero.
-    ///
-    bool isZero() const;
+  /// Return the LLVM type of this SCEV expression.
+  ///
+  Type *getType() const;
 
-    /// Return true if the expression is a constant one.
-    ///
-    bool isOne() const;
+  /// Return true if the expression is a constant zero.
+  ///
+  bool isZero() const;
 
-    /// Return true if the expression is a constant all-ones value.
-    ///
-    bool isAllOnesValue() const;
+  /// Return true if the expression is a constant one.
+  ///
+  bool isOne() const;
 
-    /// Return true if the specified scev is negated, but not a constant.
-    bool isNonConstantNegative() const;
+  /// Return true if the expression is a constant all-ones value.
+  ///
+  bool isAllOnesValue() const;
 
-    /// Print out the internal representation of this scalar to the specified
-    /// stream.  This should really only be used for debugging purposes.
-    void print(raw_ostream &OS) const;
+  /// Return true if the specified scev is negated, but not a constant.
+  bool isNonConstantNegative() const;
 
-    /// This method is used for debugging.
-    ///
-    void dump() const;
-  };
+  /// Print out the internal representation of this scalar to the specified
+  /// stream.  This should really only be used for debugging purposes.
+  void print(raw_ostream &OS) const;
 
-  // Specialize FoldingSetTrait for SCEV to avoid needing to compute
-  // temporary FoldingSetNodeID values.
-  template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
-    static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
-      ID = X.FastID;
-    }
-    static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
-                       unsigned IDHash, FoldingSetNodeID &TempID) {
-      return ID == X.FastID;
-    }
-    static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
-      return X.FastID.ComputeHash();
-    }
-  };
+  /// This method is used for debugging.
+  ///
+  void dump() const;
+};
 
-  inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
-    S.print(OS);
-    return OS;
+// Specialize FoldingSetTrait for SCEV to avoid needing to compute
+// temporary FoldingSetNodeID values.
+template <> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
+  static void Profile(const SCEV &X, FoldingSetNodeID &ID) { ID = X.FastID; }
+  static bool Equals(const SCEV &X, const FoldingSetNodeID &ID, unsigned IDHash,
+                     FoldingSetNodeID &TempID) {
+    return ID == X.FastID;
   }
+  static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
+    return X.FastID.ComputeHash();
+  }
+};
 
-  /// An object of this class is returned by queries that could not be answered.
-  /// For example, if you ask for the number of iterations of a linked-list
-  /// traversal loop, you will get one of these.  None of the standard SCEV
-  /// operations are valid on this class, it is just a marker.
-  struct SCEVCouldNotCompute : public SCEV {
-    SCEVCouldNotCompute();
+inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
+  S.print(OS);
+  return OS;
+}
 
-    /// Methods for support type inquiry through isa, cast, and dyn_cast:
-    static bool classof(const SCEV *S);
-  };
+/// An object of this class is returned by queries that could not be answered.
+/// For example, if you ask for the number of iterations of a linked-list
+/// traversal loop, you will get one of these.  None of the standard SCEV
+/// operations are valid on this class, it is just a marker.
+struct SCEVCouldNotCompute : public SCEV {
+  SCEVCouldNotCompute();
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static bool classof(const SCEV *S);
+};
+
+/// This class represents an assumption made using SCEV expressions which can
+/// be checked at run-time.
+class SCEVPredicate : public FoldingSetNode {
+  friend struct FoldingSetTrait<SCEVPredicate>;
+
+  /// A reference to an Interned FoldingSetNodeID for this node.  The
+  /// ScalarEvolution's BumpPtrAllocator holds the data.
+  FoldingSetNodeIDRef FastID;
+
+public:
+  enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
+
+protected:
+  SCEVPredicateKind Kind;
+  ~SCEVPredicate() = default;
+  SCEVPredicate(const SCEVPredicate &) = default;
+  SCEVPredicate &operator=(const SCEVPredicate &) = default;
+
+public:
+  SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
+
+  SCEVPredicateKind getKind() const { return Kind; }
+
+  /// Returns the estimated complexity of this predicate.  This is roughly
+  /// measured in the number of run-time checks required.
+  virtual unsigned getComplexity() const { return 1; }
+
+  /// Returns true if the predicate is always true. This means that no
+  /// assumptions were made and nothing needs to be checked at run-time.
+  virtual bool isAlwaysTrue() const = 0;
+
+  /// Returns true if this predicate implies \p N.
+  virtual bool implies(const SCEVPredicate *N) const = 0;
+
+  /// Prints a textual representation of this predicate with an indentation of
+  /// \p Depth.
+  virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
+
+  /// Returns the SCEV to which this predicate applies, or nullptr if this is
+  /// a SCEVUnionPredicate.
+  virtual const SCEV *getExpr() const = 0;
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
+  P.print(OS);
+  return OS;
+}
 
-  /// This class represents an assumption made using SCEV expressions which can
-  /// be checked at run-time.
-  class SCEVPredicate : public FoldingSetNode {
-    friend struct FoldingSetTrait<SCEVPredicate>;
-
-    /// A reference to an Interned FoldingSetNodeID for this node.  The
-    /// ScalarEvolution's BumpPtrAllocator holds the data.
-    FoldingSetNodeIDRef FastID;
+// Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
+// temporary FoldingSetNodeID values.
+template <>
+struct FoldingSetTrait<SCEVPredicate> : DefaultFoldingSetTrait<SCEVPredicate> {
 
-  public:
-    enum SCEVPredicateKind { P_Union, P_Equal, P_Wrap };
+  static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
+    ID = X.FastID;
+  }
 
-  protected:
-    SCEVPredicateKind Kind;
-    ~SCEVPredicate() = default;
-    SCEVPredicate(const SCEVPredicate&) = default;
-    SCEVPredicate &operator=(const SCEVPredicate&) = default;
+  static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
+                     unsigned IDHash, FoldingSetNodeID &TempID) {
+    return ID == X.FastID;
+  }
+  static unsigned ComputeHash(const SCEVPredicate &X,
+                              FoldingSetNodeID &TempID) {
+    return X.FastID.ComputeHash();
+  }
+};
 
-  public:
-    SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
+/// This class represents an assumption that two SCEV expressions are equal,
+/// and this can be checked at run-time. We assume that the left hand side is
+/// a SCEVUnknown and the right hand side a constant.
+class SCEVEqualPredicate final : public SCEVPredicate {
+  /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
+  /// constant.
+  const SCEVUnknown *LHS;
+  const SCEVConstant *RHS;
+
+public:
+  SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
+                     const SCEVConstant *RHS);
+
+  /// Implementation of the SCEVPredicate interface
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth = 0) const override;
+  bool isAlwaysTrue() const override;
+  const SCEV *getExpr() const override;
+
+  /// Returns the left hand side of the equality.
+  const SCEVUnknown *getLHS() const { return LHS; }
+
+  /// Returns the right hand side of the equality.
+  const SCEVConstant *getRHS() const { return RHS; }
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static inline bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Equal;
+  }
+};
 
-    SCEVPredicateKind getKind() const { return Kind; }
+/// This class represents an assumption made on an AddRec expression. Given an
+/// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
+/// flags (defined below) in the first X iterations of the loop, where X is a
+/// SCEV expression returned by getPredicatedBackedgeTakenCount).
+///
+/// Note that this does not imply that X is equal to the backedge taken
+/// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
+/// predicated backedge taken count of X, we only guarantee that {0,+,1} has
+/// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
+/// have more than X iterations.
+class SCEVWrapPredicate final : public SCEVPredicate {
+public:
+  /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
+  /// for FlagNUSW. The increment is considered to be signed, and a + b
+  /// (where b is the increment) is considered to wrap if:
+  ///    zext(a + b) != zext(a) + sext(b)
+  ///
+  /// If Signed is a function that takes an n-bit tuple and maps to the
+  /// integer domain as the tuples value interpreted as twos complement,
+  /// and Unsigned a function that takes an n-bit tuple and maps to the
+  /// integer domain as as the base two value of input tuple, then a + b
+  /// has IncrementNUSW iff:
+  ///
+  /// 0 <= Unsigned(a) + Signed(b) < 2^n
+  ///
+  /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
+  ///
+  /// Note that the IncrementNUSW flag is not commutative: if base + inc
+  /// has IncrementNUSW, then inc + base doesn't neccessarily have this
+  /// property. The reason for this is that this is used for sign/zero
+  /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
+  /// assumed. A {base,+,inc} expression is already non-commutative with
+  /// regards to base and inc, since it is interpreted as:
+  ///     (((base + inc) + inc) + inc) ...
+  enum IncrementWrapFlags {
+    IncrementAnyWrap = 0,     // No guarantee.
+    IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
+    IncrementNSSW = (1 << 1), // No signed with signed increment wrap
+                              // (equivalent with SCEV::NSW)
+    IncrementNoWrapMask = (1 << 2) - 1
+  };
 
-    /// Returns the estimated complexity of this predicate.  This is roughly
-    /// measured in the number of run-time checks required.
-    virtual unsigned getComplexity() const { return 1; }
+  /// Convenient IncrementWrapFlags manipulation methods.
+  static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
+             SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
+           "Invalid flags value!");
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
+  }
 
-    /// Returns true if the predicate is always true. This means that no
-    /// assumptions were made and nothing needs to be checked at run-time.
-    virtual bool isAlwaysTrue() const = 0;
+  static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
 
-    /// Returns true if this predicate implies \p N.
-    virtual bool implies(const SCEVPredicate *N) const = 0;
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
+  }
 
-    /// Prints a textual representation of this predicate with an indentation of
-    /// \p Depth.
-    virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
+  static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
+           SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
+    assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
+    assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
+           "Invalid flags value!");
 
-    /// Returns the SCEV to which this predicate applies, or nullptr if this is
-    /// a SCEVUnionPredicate.
-    virtual const SCEV *getExpr() const = 0;
-  };
+    return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
+  }
 
-  inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
-    P.print(OS);
-    return OS;
+  /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
+  /// SCEVAddRecExpr.
+  static SCEVWrapPredicate::IncrementWrapFlags
+  getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
+
+private:
+  const SCEVAddRecExpr *AR;
+  IncrementWrapFlags Flags;
+
+public:
+  explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
+                             const SCEVAddRecExpr *AR,
+                             IncrementWrapFlags Flags);
+
+  /// Returns the set assumed no overflow flags.
+  IncrementWrapFlags getFlags() const { return Flags; }
+  /// Implementation of the SCEVPredicate interface
+  const SCEV *getExpr() const override;
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth = 0) const override;
+  bool isAlwaysTrue() const override;
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static inline bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Wrap;
   }
+};
 
-  // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
-  // temporary FoldingSetNodeID values.
-  template <>
-  struct FoldingSetTrait<SCEVPredicate>
-      : DefaultFoldingSetTrait<SCEVPredicate> {
+/// This class represents a composition of other SCEV predicates, and is the
+/// class that most clients will interact with.  This is equivalent to a
+/// logical "AND" of all the predicates in the union.
+class SCEVUnionPredicate final : public SCEVPredicate {
+private:
+  typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
+      PredicateMap;
+
+  /// Vector with references to all predicates in this union.
+  SmallVector<const SCEVPredicate *, 16> Preds;
+  /// Maps SCEVs to predicates for quick look-ups.
+  PredicateMap SCEVToPreds;
 
-    static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
-      ID = X.FastID;
-    }
+public:
+  SCEVUnionPredicate();
 
-    static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
-                       unsigned IDHash, FoldingSetNodeID &TempID) {
-      return ID == X.FastID;
-    }
-    static unsigned ComputeHash(const SCEVPredicate &X,
-                                FoldingSetNodeID &TempID) {
-      return X.FastID.ComputeHash();
-    }
-  };
+  const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
+    return Preds;
+  }
 
-  /// This class represents an assumption that two SCEV expressions are equal,
-  /// and this can be checked at run-time. We assume that the left hand side is
-  /// a SCEVUnknown and the right hand side a constant.
-  class SCEVEqualPredicate final : public SCEVPredicate {
-    /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
-    /// constant.
-    const SCEVUnknown *LHS;
-    const SCEVConstant *RHS;
+  /// Adds a predicate to this union.
+  void add(const SCEVPredicate *N);
 
-  public:
-    SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
-                       const SCEVConstant *RHS);
+  /// Returns a reference to a vector containing all predicates which apply to
+  /// \p Expr.
+  ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
+
+  /// Implementation of the SCEVPredicate interface
+  bool isAlwaysTrue() const override;
+  bool implies(const SCEVPredicate *N) const override;
+  void print(raw_ostream &OS, unsigned Depth) const override;
+  const SCEV *getExpr() const override;
+
+  /// We estimate the complexity of a union predicate as the size number of
+  /// predicates in the union.
+  unsigned getComplexity() const override { return Preds.size(); }
+
+  /// Methods for support type inquiry through isa, cast, and dyn_cast:
+  static inline bool classof(const SCEVPredicate *P) {
+    return P->getKind() == P_Union;
+  }
+};
 
-    /// Implementation of the SCEVPredicate interface
-    bool implies(const SCEVPredicate *N) const override;
-    void print(raw_ostream &OS, unsigned Depth = 0) const override;
-    bool isAlwaysTrue() const override;
-    const SCEV *getExpr() const override;
-
-    /// Returns the left hand side of the equality.
-    const SCEVUnknown *getLHS() const { return LHS; }
-
-    /// Returns the right hand side of the equality.
-    const SCEVConstant *getRHS() const { return RHS; }
-
-    /// Methods for support type inquiry through isa, cast, and dyn_cast:
-    static inline bool classof(const SCEVPredicate *P) {
-      return P->getKind() == P_Equal;
-    }
+/// The main scalar evolution driver. Because client code (intentionally)
+/// can't do much with the SCEV objects directly, they must ask this class
+/// for services.
+class ScalarEvolution {
+public:
+  /// An enum describing the relationship between a SCEV and a loop.
+  enum LoopDisposition {
+    LoopVariant,   ///< The SCEV is loop-variant (unknown).
+    LoopInvariant, ///< The SCEV is loop-invariant.
+    LoopComputable ///< The SCEV varies predictably with the loop.
   };
 
-  /// This class represents an assumption made on an AddRec expression. Given an
-  /// affine AddRec expression {a,+,b}, we assume that it has the nssw or nusw
-  /// flags (defined below) in the first X iterations of the loop, where X is a
-  /// SCEV expression returned by getPredicatedBackedgeTakenCount).
-  ///
-  /// Note that this does not imply that X is equal to the backedge taken
-  /// count. This means that if we have a nusw predicate for i32 {0,+,1} with a
-  /// predicated backedge taken count of X, we only guarantee that {0,+,1} has
-  /// nusw in the first X iterations. {0,+,1} may still wrap in the loop if we
-  /// have more than X iterations.
-  class SCEVWrapPredicate final : public SCEVPredicate {
-  public:
-    /// Similar to SCEV::NoWrapFlags, but with slightly different semantics
-    /// for FlagNUSW. The increment is considered to be signed, and a + b
-    /// (where b is the increment) is considered to wrap if:
-    ///    zext(a + b) != zext(a) + sext(b)
-    ///
-    /// If Signed is a function that takes an n-bit tuple and maps to the
-    /// integer domain as the tuples value interpreted as twos complement,
-    /// and Unsigned a function that takes an n-bit tuple and maps to the
-    /// integer domain as as the base two value of input tuple, then a + b
-    /// has IncrementNUSW iff:
-    ///
-    /// 0 <= Unsigned(a) + Signed(b) < 2^n
-    ///
-    /// The IncrementNSSW flag has identical semantics with SCEV::FlagNSW.
-    ///
-    /// Note that the IncrementNUSW flag is not commutative: if base + inc
-    /// has IncrementNUSW, then inc + base doesn't neccessarily have this
-    /// property. The reason for this is that this is used for sign/zero
-    /// extending affine AddRec SCEV expressions when a SCEVWrapPredicate is
-    /// assumed. A {base,+,inc} expression is already non-commutative with
-    /// regards to base and inc, since it is interpreted as:
-    ///     (((base + inc) + inc) + inc) ...
-    enum IncrementWrapFlags {
-      IncrementAnyWrap = 0,     // No guarantee.
-      IncrementNUSW = (1 << 0), // No unsigned with signed increment wrap.
-      IncrementNSSW = (1 << 1), // No signed with signed increment wrap
-                                // (equivalent with SCEV::NSW)
-      IncrementNoWrapMask = (1 << 2) - 1
-    };
-
-    /// Convenient IncrementWrapFlags manipulation methods.
-    static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    clearFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
-               SCEVWrapPredicate::IncrementWrapFlags OffFlags) {
-      assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
-      assert((OffFlags & IncrementNoWrapMask) == OffFlags &&
-             "Invalid flags value!");
-      return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & ~OffFlags);
-    }
-
-    static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    maskFlags(SCEVWrapPredicate::IncrementWrapFlags Flags, int Mask) {
-      assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
-      assert((Mask & IncrementNoWrapMask) == Mask && "Invalid mask value!");
-
-      return (SCEVWrapPredicate::IncrementWrapFlags)(Flags & Mask);
-    }
-
-    static SCEVWrapPredicate::IncrementWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    setFlags(SCEVWrapPredicate::IncrementWrapFlags Flags,
-             SCEVWrapPredicate::IncrementWrapFlags OnFlags) {
-      assert((Flags & IncrementNoWrapMask) == Flags && "Invalid flags value!");
-      assert((OnFlags & IncrementNoWrapMask) == OnFlags &&
-             "Invalid flags value!");
+  /// An enum describing the relationship between a SCEV and a basic block.
+  enum BlockDisposition {
+    DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
+    DominatesBlock,        ///< The SCEV dominates the block.
+    ProperlyDominatesBlock ///< The SCEV properly dominates the block.
+  };
 
-      return (SCEVWrapPredicate::IncrementWrapFlags)(Flags | OnFlags);
-    }
+  /// Convenient NoWrapFlags manipulation that hides enum casts and is
+  /// visible in the ScalarEvolution name space.
+  static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
+    return (SCEV::NoWrapFlags)(Flags & Mask);
+  }
+  static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
+    return (SCEV::NoWrapFlags)(Flags | OnFlags);
+  }
+  static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
+  clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
+    return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
+  }
 
-    /// Returns the set of SCEVWrapPredicate no wrap flags implied by a
-    /// SCEVAddRecExpr.
-    static SCEVWrapPredicate::IncrementWrapFlags
-    getImpliedFlags(const SCEVAddRecExpr *AR, ScalarEvolution &SE);
-
-  private:
-    const SCEVAddRecExpr *AR;
-    IncrementWrapFlags Flags;
+private:
+  /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
+  /// Value is deleted.
+  class SCEVCallbackVH final : public CallbackVH {
+    ScalarEvolution *SE;
+    void deleted() override;
+    void allUsesReplacedWith(Value *New) override;
 
   public:
-    explicit SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
-                               const SCEVAddRecExpr *AR,
-                               IncrementWrapFlags Flags);
-
-    /// Returns the set assumed no overflow flags.
-    IncrementWrapFlags getFlags() const { return Flags; }
-    /// Implementation of the SCEVPredicate interface
-    const SCEV *getExpr() const override;
-    bool implies(const SCEVPredicate *N) const override;
-    void print(raw_ostream &OS, unsigned Depth = 0) const override;
-    bool isAlwaysTrue() const override;
-
-    /// Methods for support type inquiry through isa, cast, and dyn_cast:
-    static inline bool classof(const SCEVPredicate *P) {
-      return P->getKind() == P_Wrap;
-    }
+    SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
   };
 
-  /// This class represents a composition of other SCEV predicates, and is the
-  /// class that most clients will interact with.  This is equivalent to a
-  /// logical "AND" of all the predicates in the union.
-  class SCEVUnionPredicate final : public SCEVPredicate {
-  private:
-    typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
-        PredicateMap;
-
-    /// Vector with references to all predicates in this union.
-    SmallVector<const SCEVPredicate *, 16> Preds;
-    /// Maps SCEVs to predicates for quick look-ups.
-    PredicateMap SCEVToPreds;
+  friend class SCEVCallbackVH;
+  friend class SCEVExpander;
+  friend class SCEVUnknown;
 
-  public:
-    SCEVUnionPredicate();
+  /// The function we are analyzing.
+  ///
+  Function &F;
 
-    const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
-      return Preds;
-    }
+  /// Does the module have any calls to the llvm.experimental.guard intrinsic
+  /// at all?  If this is false, we avoid doing work that will only help if
+  /// thare are guards present in the IR.
+  ///
+  bool HasGuards;
 
-    /// Adds a predicate to this union.
-    void add(const SCEVPredicate *N);
+  /// The target library information for the target we are targeting.
+  ///
+  TargetLibraryInfo &TLI;
 
-    /// Returns a reference to a vector containing all predicates which apply to
-    /// \p Expr.
-    ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
-
-    /// Implementation of the SCEVPredicate interface
-    bool isAlwaysTrue() const override;
-    bool implies(const SCEVPredicate *N) const override;
-    void print(raw_ostream &OS, unsigned Depth) const override;
-    const SCEV *getExpr() const override;
-
-    /// We estimate the complexity of a union predicate as the size number of
-    /// predicates in the union.
-    unsigned getComplexity() const override { return Preds.size(); }
-
-    /// Methods for support type inquiry through isa, cast, and dyn_cast:
-    static inline bool classof(const SCEVPredicate *P) {
-      return P->getKind() == P_Union;
-    }
-  };
+  /// The tracker for @llvm.assume intrinsics in this function.
+  AssumptionCache &AC;
 
-  /// The main scalar evolution driver. Because client code (intentionally)
-  /// can't do much with the SCEV objects directly, they must ask this class
-  /// for services.
-  class ScalarEvolution {
-  public:
-    /// An enum describing the relationship between a SCEV and a loop.
-    enum LoopDisposition {
-      LoopVariant,    ///< The SCEV is loop-variant (unknown).
-      LoopInvariant,  ///< The SCEV is loop-invariant.
-      LoopComputable  ///< The SCEV varies predictably with the loop.
-    };
+  /// The dominator tree.
+  ///
+  DominatorTree &DT;
 
-    /// An enum describing the relationship between a SCEV and a basic block.
-    enum BlockDisposition {
-      DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
-      DominatesBlock,        ///< The SCEV dominates the block.
-      ProperlyDominatesBlock ///< The SCEV properly dominates the block.
-    };
+  /// The loop information for the function we are currently analyzing.
+  ///
+  LoopInfo &LI;
 
-    /// Convenient NoWrapFlags manipulation that hides enum casts and is
-    /// visible in the ScalarEvolution name space.
-    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
-      return (SCEV::NoWrapFlags)(Flags & Mask);
-    }
-    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
-      return (SCEV::NoWrapFlags)(Flags | OnFlags);
-    }
-    static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
-    clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
-      return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
-    }
+  /// This SCEV is used to represent unknown trip counts and things.
+  std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
 
-  private:
-    /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
-    /// Value is deleted.
-    class SCEVCallbackVH final : public CallbackVH {
-      ScalarEvolution *SE;
-      void deleted() override;
-      void allUsesReplacedWith(Value *New) override;
-    public:
-      SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
-    };
+  /// The typedef for HasRecMap.
+  ///
+  typedef DenseMap<const SCEV *, bool> HasRecMapType;
 
-    friend class SCEVCallbackVH;
-    friend class SCEVExpander;
-    friend class SCEVUnknown;
+  /// This is a cache to record whether a SCEV contains any scAddRecExpr.
+  HasRecMapType HasRecMap;
 
-    /// The function we are analyzing.
-    ///
-    Function &F;
+  /// The typedef for ExprValueMap.
+  ///
+  typedef std::pair<Value *, ConstantInt *> ValueOffsetPair;
+  typedef DenseMap<const SCEV *, SetVector<ValueOffsetPair>> ExprValueMapType;
 
-    /// Does the module have any calls to the llvm.experimental.guard intrinsic
-    /// at all?  If this is false, we avoid doing work that will only help if
-    /// thare are guards present in the IR.
-    ///
-    bool HasGuards;
+  /// ExprValueMap -- This map records the original values from which
+  /// the SCEV expr is generated from.
+  ///
+  /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
+  /// of SCEV -> Value:
+  /// Suppose we know S1 expands to V1, and
+  ///  S1 = S2 + C_a
+  ///  S3 = S2 + C_b
+  /// where C_a and C_b are different SCEVConstants. Then we'd like to
+  /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
+  /// It is helpful when S2 is a complex SCEV expr.
+  ///
+  /// In order to do that, we represent ExprValueMap as a mapping from
+  /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
+  /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
+  /// is expanded, it will first expand S2 to V1 - C_a because of
+  /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
+  ///
+  /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
+  /// to V - Offset.
+  ExprValueMapType ExprValueMap;
 
-    /// The target library information for the target we are targeting.
-    ///
-    TargetLibraryInfo &TLI;
+  /// The typedef for ValueExprMap.
+  ///
+  typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *>>
+      ValueExprMapType;
 
-    /// The tracker for @llvm.assume intrinsics in this function.
-    AssumptionCache &AC;
+  /// This is a cache of the values we have analyzed so far.
+  ///
+  ValueExprMapType ValueExprMap;
 
-    /// The dominator tree.
-    ///
-    DominatorTree &DT;
+  /// Mark predicate values currently being processed by isImpliedCond.
+  DenseSet<Value *> PendingLoopPredicates;
 
-    /// The loop information for the function we are currently analyzing.
-    ///
-    LoopInfo &LI;
+  /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
+  /// conditions dominating the backedge of a loop.
+  bool WalkingBEDominatingConds;
 
-    /// This SCEV is used to represent unknown trip counts and things.
-    std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
+  /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
+  /// predicate by splitting it into a set of independent predicates.
+  bool ProvingSplitPredicate;
 
-    /// The typedef for HasRecMap.
-    ///
-    typedef DenseMap<const SCEV *, bool> HasRecMapType;
+  /// Information about the number of loop iterations for which a loop exit's
+  /// branch condition evaluates to the not-taken path.  This is a temporary
+  /// pair of exact and max expressions that are eventually summarized in
+  /// ExitNotTakenInfo and BackedgeTakenInfo.
+  struct ExitLimit {
+    const SCEV *Exact;
+    const SCEV *Max;
 
-    /// This is a cache to record whether a SCEV contains any scAddRecExpr.
-    HasRecMapType HasRecMap;
+    /// A predicate union guard for this ExitLimit. The result is only
+    /// valid if this predicate evaluates to 'true' at run-time.
+    SCEVUnionPredicate Pred;
 
-    /// The typedef for ExprValueMap.
-    ///
-    typedef std::pair<Value *, ConstantInt *> ValueOffsetPair;
-    typedef DenseMap<const SCEV *, SetVector<ValueOffsetPair>> ExprValueMapType;
+    /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
 
-    /// ExprValueMap -- This map records the original values from which
-    /// the SCEV expr is generated from.
-    ///
-    /// We want to represent the mapping as SCEV -> ValueOffsetPair instead
-    /// of SCEV -> Value:
-    /// Suppose we know S1 expands to V1, and
-    ///  S1 = S2 + C_a
-    ///  S3 = S2 + C_b
-    /// where C_a and C_b are different SCEVConstants. Then we'd like to
-    /// expand S3 as V1 - C_a + C_b instead of expanding S2 literally.
-    /// It is helpful when S2 is a complex SCEV expr.
-    ///
-    /// In order to do that, we represent ExprValueMap as a mapping from
-    /// SCEV to ValueOffsetPair. We will save both S1->{V1, 0} and
-    /// S2->{V1, C_a} into the map when we create SCEV for V1. When S3
-    /// is expanded, it will first expand S2 to V1 - C_a because of
-    /// S2->{V1, C_a} in the map, then expand S3 to V1 - C_a + C_b.
-    ///
-    /// Note: S->{V, Offset} in the ExprValueMap means S can be expanded
-    /// to V - Offset.
-    ExprValueMapType ExprValueMap;
+    ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
+        : Exact(E), Max(M), Pred(P) {
+      assert(
+          (isa<SCEVCouldNotCompute>(Exact) || !isa<SCEVCouldNotCompute>(Max)) &&
+          "Exact is not allowed to be less precise than Max");
+    }
 
-    /// The typedef for ValueExprMap.
-    ///
-    typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
-      ValueExprMapType;
+    /// Test whether this ExitLimit contains any computed information, or
+    /// whether it's all SCEVCouldNotCompute values.
+    bool hasAnyInfo() const {
+      return !isa<SCEVCouldNotCompute>(Exact) || !isa<SCEVCouldNotCompute>(Max);
+    }
 
-    /// This is a cache of the values we have analyzed so far.
-    ///
-    ValueExprMapType ValueExprMap;
+    /// Test whether this ExitLimit contains all information.
+    bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(Exact); }
+  };
 
-    /// Mark predicate values currently being processed by isImpliedCond.
-    DenseSet<Value*> PendingLoopPredicates;
+  /// Forward declaration of ExitNotTakenExtras
+  struct ExitNotTakenExtras;
 
-    /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
-    /// conditions dominating the backedge of a loop.
-    bool WalkingBEDominatingConds;
-
-    /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
-    /// predicate by splitting it into a set of independent predicates.
-    bool ProvingSplitPredicate;
-
-    /// Information about the number of loop iterations for which a loop exit's
-    /// branch condition evaluates to the not-taken path.  This is a temporary
-    /// pair of exact and max expressions that are eventually summarized in
-    /// ExitNotTakenInfo and BackedgeTakenInfo.
-    struct ExitLimit {
-      const SCEV *Exact;
-      const SCEV *Max;
-
-      /// A predicate union guard for this ExitLimit. The result is only
-      /// valid if this predicate evaluates to 'true' at run-time.
-      SCEVUnionPredicate Pred;
-
-      /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
-
-      ExitLimit(const SCEV *E, const SCEV *M, SCEVUnionPredicate &P)
-          : Exact(E), Max(M), Pred(P) {
-        assert((isa<SCEVCouldNotCompute>(Exact) ||
-                !isa<SCEVCouldNotCompute>(Max)) &&
-               "Exact is not allowed to be less precise than Max");
-      }
+  /// Information about the number of times a particular loop exit may be
+  /// reached before exiting the loop.
+  struct ExitNotTakenInfo {
+    AssertingVH<BasicBlock> ExitingBlock;
+    const SCEV *ExactNotTaken;
+
+    ExitNotTakenExtras *ExtraInfo;
+    bool Complete;
+
+    ExitNotTakenInfo()
+        : ExitingBlock(nullptr), ExactNotTaken(nullptr), ExtraInfo(nullptr),
+          Complete(true) {}
+
+    ExitNotTakenInfo(BasicBlock *ExitBlock, const SCEV *Expr,
+                     ExitNotTakenExtras *Ptr)
+        : ExitingBlock(ExitBlock), ExactNotTaken(Expr), ExtraInfo(Ptr),
+          Complete(true) {}
+
+    /// Return true if all loop exits are computable.
+    bool isCompleteList() const { return Complete; }
+
+    /// Sets the incomplete property, indicating that one of the loop exits
+    /// doesn't have a corresponding ExitNotTakenInfo entry.
+    void setIncomplete() { Complete = false; }
+
+    /// Returns a pointer to the predicate associated with this information,
+    /// or nullptr if this doesn't exist (meaning always true).
+    SCEVUnionPredicate *getPred() const {
+      if (ExtraInfo)
+        return &ExtraInfo->Pred;
+
+      return nullptr;
+    }
+
+    /// Return true if the SCEV predicate associated with this information
+    /// is always true.
+    bool hasAlwaysTruePred() const {
+      return !getPred() || getPred()->isAlwaysTrue();
+    }
+
+    /// Defines a simple forward iterator for ExitNotTakenInfo.
+    class ExitNotTakenInfoIterator
+        : public std::iterator<std::forward_iterator_tag, ExitNotTakenInfo> {
+      const ExitNotTakenInfo *Start;
+      unsigned Position;
 
-      /// Test whether this ExitLimit contains any computed information, or
-      /// whether it's all SCEVCouldNotCompute values.
-      bool hasAnyInfo() const {
-        return !isa<SCEVCouldNotCompute>(Exact) ||
-          !isa<SCEVCouldNotCompute>(Max);
-      }
+    public:
+      ExitNotTakenInfoIterator(const ExitNotTakenInfo *Start, unsigned Position)
+          : Start(Start), Position(Position) {}
 
-      /// Test whether this ExitLimit contains all information.
-      bool hasFullInfo() const { return !isa<SCEVCouldNotCompute>(Exact); }
-    };
+      const ExitNotTakenInfo &operator*() const {
+        if (Position == 0)
+          return *Start;
 
-    /// Forward declaration of ExitNotTakenExtras
-    struct ExitNotTakenExtras;
+        return Start->ExtraInfo->Exits[Position - 1];
+      }
 
-    /// Information about the number of times a particular loop exit may be
-    /// reached before exiting the loop.
-    struct ExitNotTakenInfo {
-      AssertingVH<BasicBlock> ExitingBlock;
-      const SCEV *ExactNotTaken;
-
-      ExitNotTakenExtras *ExtraInfo;
-      bool Complete;
-
-      ExitNotTakenInfo()
-          : ExitingBlock(nullptr), ExactNotTaken(nullptr), ExtraInfo(nullptr),
-            Complete(true) {}
-
-      ExitNotTakenInfo(BasicBlock *ExitBlock, const SCEV *Expr,
-                       ExitNotTakenExtras *Ptr)
-          : ExitingBlock(ExitBlock), ExactNotTaken(Expr), ExtraInfo(Ptr),
-            Complete(true) {}
-
-      /// Return true if all loop exits are computable.
-      bool isCompleteList() const { return Complete; }
-
-      /// Sets the incomplete property, indicating that one of the loop exits
-      /// doesn't have a corresponding ExitNotTakenInfo entry.
-      void setIncomplete() { Complete = false; }
-
-      /// Returns a pointer to the predicate associated with this information,
-      /// or nullptr if this doesn't exist (meaning always true).
-      SCEVUnionPredicate *getPred() const {
-        if (ExtraInfo)
-          return &ExtraInfo->Pred;
+      const ExitNotTakenInfo *operator->() const {
+        if (Position == 0)
+          return Start;
 
-        return nullptr;
+        return &Start->ExtraInfo->Exits[Position - 1];
       }
 
-      /// Return true if the SCEV predicate associated with this information
-      /// is always true.
-      bool hasAlwaysTruePred() const {
-        return !getPred() || getPred()->isAlwaysTrue();
+      bool operator==(const ExitNotTakenInfoIterator &RHS) const {
+        return Start == RHS.Start && Position == RHS.Position;
       }
 
-      /// Defines a simple forward iterator for ExitNotTakenInfo.
-      class ExitNotTakenInfoIterator
-          : public std::iterator<std::forward_iterator_tag, ExitNotTakenInfo> {
-        const ExitNotTakenInfo *Start;
-        unsigned Position;
-
-      public:
-        ExitNotTakenInfoIterator(const ExitNotTakenInfo *Start,
-                                 unsigned Position)
-            : Start(Start), Position(Position) {}
-
-        const ExitNotTakenInfo &operator*() const {
-          if (Position == 0)
-            return *Start;
-
-          return Start->ExtraInfo->Exits[Position - 1];
-        }
-
-        const ExitNotTakenInfo *operator->() const {
-          if (Position == 0)
-            return Start;
-
-          return &Start->ExtraInfo->Exits[Position - 1];
-        }
+      bool operator!=(const ExitNotTakenInfoIterator &RHS) const {
+        return Start != RHS.Start || Position != RHS.Position;
+      }
 
-        bool operator==(const ExitNotTakenInfoIterator &RHS) const {
-          return Start == RHS.Start && Position == RHS.Position;
-        }
+      ExitNotTakenInfoIterator &operator++() { // Preincrement
+        if (!Start)
+          return *this;
 
-        bool operator!=(const ExitNotTakenInfoIterator &RHS) const {
-          return Start != RHS.Start || Position != RHS.Position;
-        }
+        unsigned Elements =
+            Start->ExtraInfo ? Start->ExtraInfo->Exits.size() + 1 : 1;
 
-        ExitNotTakenInfoIterator &operator++() { // Preincrement
-          if (!Start)
-            return *this;
-
-          unsigned Elements =
-              Start->ExtraInfo ? Start->ExtraInfo->Exits.size() + 1 : 1;
-
-          ++Position;
-
-          // We've run out of elements.
-          if (Position == Elements) {
-            Start = nullptr;
-            Position = 0;
-          }
+        ++Position;
 
-          return *this;
-        }
-        ExitNotTakenInfoIterator operator++(int) { // Postincrement
-          ExitNotTakenInfoIterator Tmp = *this;
-          ++*this;
-          return Tmp;
+        // We've run out of elements.
+        if (Position == Elements) {
+          Start = nullptr;
+          Position = 0;
         }
-      };
 
-      /// Iterators
-      ExitNotTakenInfoIterator begin() const {
-        return ExitNotTakenInfoIterator(this, 0);
+        return *this;
       }
-      ExitNotTakenInfoIterator end() const {
-        return ExitNotTakenInfoIterator(nullptr, 0);
+      ExitNotTakenInfoIterator operator++(int) { // Postincrement
+        ExitNotTakenInfoIterator Tmp = *this;
+        ++*this;
+        return Tmp;
       }
     };
 
-    /// Describes the extra information that a ExitNotTakenInfo can have.
-    struct ExitNotTakenExtras {
-      /// The predicate associated with the ExitNotTakenInfo struct.
-      SCEVUnionPredicate Pred;
-
-      /// The extra exits in the loop. Only the ExitNotTakenExtras structure
-      /// pointed to by the first ExitNotTakenInfo struct (associated with the
-      /// first loop exit) will populate this vector to prevent having
-      /// redundant information.
-      SmallVector<ExitNotTakenInfo, 4> Exits;
-    };
-
-    /// A struct containing the information attached to a backedge.
-    struct EdgeInfo {
-      EdgeInfo(BasicBlock *Block, const SCEV *Taken, SCEVUnionPredicate &P) :
-          ExitBlock(Block), Taken(Taken), Pred(std::move(P)) {}
-
-      /// The exit basic block.
-      BasicBlock *ExitBlock;
-
-      /// The (exact) number of time we take the edge back.
-      const SCEV *Taken;
-
-      /// The SCEV predicated associated with Taken. If Pred doesn't evaluate
-      /// to true, the information in Taken is not valid (or equivalent with
-      /// a CouldNotCompute.
-      SCEVUnionPredicate Pred;
-    };
-
-    /// Information about the backedge-taken count of a loop. This currently
-    /// includes an exact count and a maximum count.
-    ///
-    class BackedgeTakenInfo {
-      /// A list of computable exits and their not-taken counts.  Loops almost
-      /// never have more than one computable exit.
-      ExitNotTakenInfo ExitNotTaken;
-
-      /// An expression indicating the least maximum backedge-taken count of the
-      /// loop that is known, or a SCEVCouldNotCompute. This expression is only
-      /// valid if the predicates associated with all loop exits are true.
-      const SCEV *Max;
-
-    public:
-      BackedgeTakenInfo() : Max(nullptr) {}
-
-      /// Initialize BackedgeTakenInfo from a list of exact exit counts.
-      BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete,
-                        const SCEV *MaxCount);
-
-      /// Test whether this BackedgeTakenInfo contains any computed information,
-      /// or whether it's all SCEVCouldNotCompute values.
-      bool hasAnyInfo() const {
-        return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
-      }
-
-      /// Test whether this BackedgeTakenInfo contains complete information.
-      bool hasFullInfo() const { return ExitNotTaken.isCompleteList(); }
-
-      /// Return an expression indicating the exact backedge-taken count of the
-      /// loop if it is known or SCEVCouldNotCompute otherwise. This is the
-      /// number of times the loop header can be guaranteed to execute, minus
-      /// one.
-      ///
-      /// If the SCEV predicate associated with the answer can be different
-      /// from AlwaysTrue, we must add a (non null) Predicates argument.
-      /// The SCEV predicate associated with the answer will be added to
-      /// Predicates. A run-time check needs to be emitted for the SCEV
-      /// predicate in order for the answer to be valid.
-      ///
-      /// Note that we should always know if we need to pass a predicate
-      /// argument or not from the way the ExitCounts vector was computed.
-      /// If we allowed SCEV predicates to be generated when populating this
-      /// vector, this information can contain them and therefore a
-      /// SCEVPredicate argument should be added to getExact.
-      const SCEV *getExact(ScalarEvolution *SE,
-                           SCEVUnionPredicate *Predicates = nullptr) const;
-
-      /// Return the number of times this loop exit may fall through to the back
-      /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
-      /// this block before this number of iterations, but may exit via another
-      /// block.
-      const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
-
-      /// Get the max backedge taken count for the loop.
-      const SCEV *getMax(ScalarEvolution *SE) const;
-
-      /// Return true if any backedge taken count expressions refer to the given
-      /// subexpression.
-      bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
-
-      /// Invalidate this result and free associated memory.
-      void clear();
-    };
-
-    /// Cache the backedge-taken count of the loops for this function as they
-    /// are computed.
-    DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
-
-    /// Cache the predicated backedge-taken count of the loops for this
-    /// function as they are computed.
-    DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
-
-    /// This map contains entries for all of the PHI instructions that we
-    /// attempt to compute constant evolutions for.  This allows us to avoid
-    /// potentially expensive recomputation of these properties.  An instruction
-    /// maps to null if we are unable to compute its exit value.
-    DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
-
-    /// This map contains entries for all the expressions that we attempt to
-    /// compute getSCEVAtScope information for, which can be expensive in
-    /// extreme cases.
-    DenseMap<const SCEV *,
-             SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
-
-    /// Memoized computeLoopDisposition results.
-    DenseMap<const SCEV *,
-             SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
-        LoopDispositions;
-
-    /// Cache for \c loopHasNoAbnormalExits.
-    DenseMap<const Loop *, bool> LoopHasNoAbnormalExits;
-
-    /// Cache for \c loopHasNoSideEffects.
-    DenseMap<const Loop *, bool> LoopHasNoSideEffects;
-
-    /// Returns true if \p L contains no instruction that can have side effects
-    /// (i.e. via throwing an exception, volatile or atomic access).
-    bool loopHasNoSideEffects(const Loop *L);
-
-    /// Returns true if \p L contains no instruction that can abnormally exit
-    /// the loop (i.e. via throwing an exception, by terminating the thread
-    /// cleanly or by infinite looping in a called function).  Strictly
-    /// speaking, the last one is not leaving the loop, but is identical to
-    /// leaving the loop for reasoning about undefined behavior.
-    bool loopHasNoAbnormalExits(const Loop *L);
-
-    /// Compute a LoopDisposition value.
-    LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
-
-    /// Memoized computeBlockDisposition results.
-    DenseMap<
-        const SCEV *,
-        SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
-        BlockDispositions;
-
-    /// Compute a BlockDisposition value.
-    BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
-
-    /// Memoized results from getRange
-    DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
-
-    /// Memoized results from getRange
-    DenseMap<const SCEV *, ConstantRange> SignedRanges;
-
-    /// Used to parameterize getRange
-    enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
-
-    /// Set the memoized range for the given SCEV.
-    const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
-                                  const ConstantRange &CR) {
-      DenseMap<const SCEV *, ConstantRange> &Cache =
-          Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
-
-      auto Pair = Cache.insert({S, CR});
-      if (!Pair.second)
-        Pair.first->second = CR;
-      return Pair.first->second;
+    /// Iterators
+    ExitNotTakenInfoIterator begin() const {
+      return ExitNotTakenInfoIterator(this, 0);
     }
-
-    /// Determine the range for a particular SCEV.
-    ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
-
-    /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
-    /// Helper for \c getRange.
-    ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
-                                      const SCEV *MaxBECount,
-                                      unsigned BitWidth);
-
-    /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
-    /// Stop} by "factoring out" a ternary expression from the add recurrence.
-    /// Helper called by \c getRange.
-    ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
-                                       const SCEV *MaxBECount,
-                                       unsigned BitWidth);
-
-    /// We know that there is no SCEV for the specified value.  Analyze the
-    /// expression.
-    const SCEV *createSCEV(Value *V);
-
-    /// Provide the special handling we need to analyze PHI SCEVs.
-    const SCEV *createNodeForPHI(PHINode *PN);
-
-    /// Helper function called from createNodeForPHI.
-    const SCEV *createAddRecFromPHI(PHINode *PN);
-
-    /// Helper function called from createNodeForPHI.
-    const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
-
-    /// Provide special handling for a select-like instruction (currently this
-    /// is either a select instruction or a phi node).  \p I is the instruction
-    /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
-    /// FalseVal".
-    const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
-                                         Value *TrueVal, Value *FalseVal);
-
-    /// Provide the special handling we need to analyze GEP SCEVs.
-    const SCEV *createNodeForGEP(GEPOperator *GEP);
-
-    /// Implementation code for getSCEVAtScope; called at most once for each
-    /// SCEV+Loop pair.
-    ///
-    const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
-
-    /// This looks up computed SCEV values for all instructions that depend on
-    /// the given instruction and removes them from the ValueExprMap map if they
-    /// reference SymName. This is used during PHI resolution.
-    void forgetSymbolicName(Instruction *I, const SCEV *SymName);
-
-    /// Return the BackedgeTakenInfo for the given loop, lazily computing new
-    /// values if the loop hasn't been analyzed yet. The returned result is
-    /// guaranteed not to be predicated.
-    const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
-
-    /// Similar to getBackedgeTakenInfo, but will add predicates as required
-    /// with the purpose of returning complete information.
-    const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
-
-    /// Compute the number of times the specified loop will iterate.
-    /// If AllowPredicates is set, we will create new SCEV predicates as
-    /// necessary in order to return an exact answer.
-    BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
-                                                bool AllowPredicates = false);
-
-    /// Compute the number of times the backedge of the specified loop will
-    /// execute if it exits via the specified block. If AllowPredicates is set,
-    /// this call will try to use a minimal set of SCEV predicates in order to
-    /// return an exact answer.
-    ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
-                               bool AllowPredicates = false);
-
-    /// Compute the number of times the backedge of the specified loop will
-    /// execute if its exit condition were a conditional branch of ExitCond,
-    /// TBB, and FBB.
-    ///
-    /// \p ControlsExit is true if ExitCond directly controls the exit
-    /// branch. In this case, we can assume that the loop exits only if the
-    /// condition is true and can infer that failing to meet the condition prior
-    /// to integer wraparound results in undefined behavior.
-    ///
-    /// If \p AllowPredicates is set, this call will try to use a minimal set of
-    /// SCEV predicates in order to return an exact answer.
-    ExitLimit computeExitLimitFromCond(const Loop *L,
-                                       Value *ExitCond,
-                                       BasicBlock *TBB,
-                                       BasicBlock *FBB,
-                                       bool ControlsExit,
-                                       bool AllowPredicates = false);
-
-    /// Compute the number of times the backedge of the specified loop will
-    /// execute if its exit condition were a conditional branch of the ICmpInst
-    /// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
-    /// to use a minimal set of SCEV predicates in order to return an exact
-    /// answer.
-    ExitLimit computeExitLimitFromICmp(const Loop *L,
-                                       ICmpInst *ExitCond,
-                                       BasicBlock *TBB,
-                                       BasicBlock *FBB,
-                                       bool IsSubExpr,
-                                       bool AllowPredicates = false);
-
-    /// Compute the number of times the backedge of the specified loop will
-    /// execute if its exit condition were a switch with a single exiting case
-    /// to ExitingBB.
-    ExitLimit
-    computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
-                               BasicBlock *ExitingBB, bool IsSubExpr);
-
-    /// Given an exit condition of 'icmp op load X, cst', try to see if we can
-    /// compute the backedge-taken count.
-    ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
-                                                  Constant *RHS,
-                                                  const Loop *L,
-                                                  ICmpInst::Predicate p);
-
-    /// Compute the exit limit of a loop that is controlled by a
-    /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
-    /// count in these cases (since SCEV has no way of expressing them), but we
-    /// can still sometimes compute an upper bound.
-    ///
-    /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
-    /// RHS`.
-    ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
-                                           const Loop *L,
-                                           ICmpInst::Predicate Pred);
-
-    /// If the loop is known to execute a constant number of times (the
-    /// condition evolves only from constants), try to evaluate a few iterations
-    /// of the loop until we get the exit condition gets a value of ExitWhen
-    /// (true or false).  If we cannot evaluate the exit count of the loop,
-    /// return CouldNotCompute.
-    const SCEV *computeExitCountExhaustively(const Loop *L,
-                                             Value *Cond,
-                                             bool ExitWhen);
-
-    /// Return the number of times an exit condition comparing the specified
-    /// value to zero will execute.  If not computable, return CouldNotCompute.
-    /// If AllowPredicates is set, this call will try to use a minimal set of
-    /// SCEV predicates in order to return an exact answer.
-    ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
-                           bool AllowPredicates = false);
-
-    /// Return the number of times an exit condition checking the specified
-    /// value for nonzero will execute.  If not computable, return
-    /// CouldNotCompute.
-    ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
-
-    /// Return the number of times an exit condition containing the specified
-    /// less-than comparison will execute.  If not computable, return
-    /// CouldNotCompute.
-    ///
-    /// \p isSigned specifies whether the less-than is signed.
-    ///
-    /// \p ControlsExit is true when the LHS < RHS condition directly controls
-    /// the branch (loops exits only if condition is true). In this case, we can
-    /// use NoWrapFlags to skip overflow checks.
-    ///
-    /// If \p AllowPredicates is set, this call will try to use a minimal set of
-    /// SCEV predicates in order to return an exact answer.
-    ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
-                               bool isSigned, bool ControlsExit,
-                               bool AllowPredicates = false);
-
-    ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
-                                  const Loop *L, bool isSigned, bool IsSubExpr,
-                                  bool AllowPredicates = false);
-
-    /// Return a predecessor of BB (which may not be an immediate predecessor)
-    /// which has exactly one successor from which BB is reachable, or null if
-    /// no such block is found.
-    std::pair<BasicBlock *, BasicBlock *>
-    getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the given FoundCondValue value evaluates to true.
-    bool isImpliedCond(ICmpInst::Predicate Pred,
-                       const SCEV *LHS, const SCEV *RHS,
-                       Value *FoundCondValue,
-                       bool Inverse);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
-    /// true.
-    bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
-                       const SCEV *RHS, ICmpInst::Predicate FoundPred,
-                       const SCEV *FoundLHS, const SCEV *FoundRHS);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
-    /// true.
-    bool isImpliedCondOperands(ICmpInst::Predicate Pred,
-                               const SCEV *LHS, const SCEV *RHS,
-                               const SCEV *FoundLHS, const SCEV *FoundRHS);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
-    /// true.
-    bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
-                                     const SCEV *LHS, const SCEV *RHS,
-                                     const SCEV *FoundLHS,
-                                     const SCEV *FoundRHS);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
-    /// true.  Utility function used by isImpliedCondOperands.  Tries to get
-    /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
-    bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
-                                        const SCEV *LHS, const SCEV *RHS,
-                                        const SCEV *FoundLHS,
-                                        const SCEV *FoundRHS);
-
-    /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
-    /// by a call to \c @llvm.experimental.guard in \p BB.
-    bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
-                           const SCEV *LHS, const SCEV *RHS);
-
-    /// Test whether the condition described by Pred, LHS, and RHS is true
-    /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
-    /// true.
-    ///
-    /// This routine tries to rule out certain kinds of integer overflow, and
-    /// then tries to reason about arithmetic properties of the predicates.
-    bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
-                                            const SCEV *LHS, const SCEV *RHS,
-                                            const SCEV *FoundLHS,
-                                            const SCEV *FoundRHS);
-
-    /// If we know that the specified Phi is in the header of its containing
-    /// loop, we know the loop executes a constant number of times, and the PHI
-    /// node is just a recurrence involving constants, fold it.
-    Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
-                                                const Loop *L);
-
-    /// Test if the given expression is known to satisfy the condition described
-    /// by Pred and the known constant ranges of LHS and RHS.
-    ///
-    bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
-                                           const SCEV *LHS, const SCEV *RHS);
-
-    /// Try to prove the condition described by "LHS Pred RHS" by ruling out
-    /// integer overflow.
-    ///
-    /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
-    /// positive.
-    bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
-                                       const SCEV *LHS, const SCEV *RHS);
-
-    /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
-    /// prove them individually.
-    bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
-                                      const SCEV *RHS);
-
-    /// Try to match the Expr as "(L + R)<Flags>".
-    bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
-                        SCEV::NoWrapFlags &Flags);
-
-    /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
-    /// constant, and None if it isn't.
-    ///
-    /// This is intended to be a cheaper version of getMinusSCEV.  We can be
-    /// frugal here since we just bail out of actually constructing and
-    /// canonicalizing an expression in the cases where the result isn't going
-    /// to be a constant.
-    Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
-
-    /// Drop memoized information computed for S.
-    void forgetMemoizedResults(const SCEV *S);
-
-    /// Return an existing SCEV for V if there is one, otherwise return nullptr.
-    const SCEV *getExistingSCEV(Value *V);
-
-    /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
-    /// pointer.
-    bool checkValidity(const SCEV *S) const;
-
-    /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
-    /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
-    /// equivalent to proving no signed (resp. unsigned) wrap in
-    /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
-    /// (resp. `SCEVZeroExtendExpr`).
-    ///
-    template<typename ExtendOpTy>
-    bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
-                                   const Loop *L);
-
-    /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
-    SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
-
-    bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
-                                  ICmpInst::Predicate Pred, bool &Increasing);
-
-    /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
-    /// is monotonically increasing or decreasing.  In the former case set
-    /// `Increasing` to true and in the latter case set `Increasing` to false.
-    ///
-    /// A predicate is said to be monotonically increasing if may go from being
-    /// false to being true as the loop iterates, but never the other way
-    /// around.  A predicate is said to be monotonically decreasing if may go
-    /// from being true to being false as the loop iterates, but never the other
-    /// way around.
-    bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
-                              ICmpInst::Predicate Pred, bool &Increasing);
-
-    /// Return SCEV no-wrap flags that can be proven based on reasoning about
-    /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
-    /// would trigger undefined behavior on overflow.
-    SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
-
-    /// Return true if the SCEV corresponding to \p I is never poison.  Proving
-    /// this is more complex than proving that just \p I is never poison, since
-    /// SCEV commons expressions across control flow, and you can have cases
-    /// like:
-    ///
-    ///   idx0 = a + b;
-    ///   ptr[idx0] = 100;
-    ///   if (<condition>) {
-    ///     idx1 = a +nsw b;
-    ///     ptr[idx1] = 200;
-    ///   }
-    ///
-    /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
-    /// hence not sign-overflow) only if "<condition>" is true.  Since both
-    /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
-    /// it is not okay to annotate (+ a b) with <nsw> in the above example.
-    bool isSCEVExprNeverPoison(const Instruction *I);
-
-    /// This is like \c isSCEVExprNeverPoison but it specifically works for
-    /// instructions that will get mapped to SCEV add recurrences.  Return true
-    /// if \p I will never generate poison under the assumption that \p I is an
-    /// add recurrence on the loop \p L.
-    bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
-
-  public:
-    ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
-                    DominatorTree &DT, LoopInfo &LI);
-    ~ScalarEvolution();
-    ScalarEvolution(ScalarEvolution &&Arg);
-
-    LLVMContext &getContext() const { return F.getContext(); }
-
-    /// Test if values of the given type are analyzable within the SCEV
-    /// framework. This primarily includes integer types, and it can optionally
-    /// include pointer types if the ScalarEvolution class has access to
-    /// target-specific information.
-    bool isSCEVable(Type *Ty) const;
-
-    /// Return the size in bits of the specified type, for which isSCEVable must
-    /// return true.
-    uint64_t getTypeSizeInBits(Type *Ty) const;
-
-    /// Return a type with the same bitwidth as the given type and which
-    /// represents how SCEV will treat the given type, for which isSCEVable must
-    /// return true. For pointer types, this is the pointer-sized integer type.
-    Type *getEffectiveSCEVType(Type *Ty) const;
-
-    /// Return true if the SCEV is a scAddRecExpr or it contains
-    /// scAddRecExpr. The result will be cached in HasRecMap.
-    ///
-    bool containsAddRecurrence(const SCEV *S);
-
-    /// Return the Value set from which the SCEV expr is generated.
-    SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
-
-    /// Erase Value from ValueExprMap and ExprValueMap.
-    void eraseValueFromMap(Value *V);
-
-    /// Return a SCEV expression for the full generality of the specified
-    /// expression.
-    const SCEV *getSCEV(Value *V);
-
-    const SCEV *getConstant(ConstantInt *V);
-    const SCEV *getConstant(const APInt& Val);
-    const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
-    const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
-    const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
-    const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
-    const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
-    const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
-    const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
-      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
-      return getAddExpr(Ops, Flags);
-    }
-    const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
-      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
-      return getAddExpr(Ops, Flags);
-    }
-    const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
-    const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
-      SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
-      return getMulExpr(Ops, Flags);
-    }
-    const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
-                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
-      SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
-      return getMulExpr(Ops, Flags);
-    }
-    const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
-                              const Loop *L, SCEV::NoWrapFlags Flags);
-    const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
-                              const Loop *L, SCEV::NoWrapFlags Flags);
-    const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
-                              const Loop *L, SCEV::NoWrapFlags Flags) {
-      SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
-      return getAddRecExpr(NewOp, L, Flags);
+    ExitNotTakenInfoIterator end() const {
+      return ExitNotTakenInfoIterator(nullptr, 0);
     }
-    /// Returns an expression for a GEP
-    ///
-    /// \p PointeeType The type used as the basis for the pointer arithmetics
-    /// \p BaseExpr The expression for the pointer operand.
-    /// \p IndexExprs The expressions for the indices.
-    /// \p InBounds Whether the GEP is in bounds.
-    const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
-                           const SmallVectorImpl<const SCEV *> &IndexExprs,
-                           bool InBounds = false);
-    const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
-    const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
-    const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
-    const SCEV *getUnknown(Value *V);
-    const SCEV *getCouldNotCompute();
-
-    /// Return a SCEV for the constant 0 of a specific type.
-    const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
+  };
 
-    /// Return a SCEV for the constant 1 of a specific type.
-    const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
+  /// Describes the extra information that a ExitNotTakenInfo can have.
+  struct ExitNotTakenExtras {
+    /// The predicate associated with the ExitNotTakenInfo struct.
+    SCEVUnionPredicate Pred;
+
+    /// The extra exits in the loop. Only the ExitNotTakenExtras structure
+    /// pointed to by the first ExitNotTakenInfo struct (associated with the
+    /// first loop exit) will populate this vector to prevent having
+    /// redundant information.
+    SmallVector<ExitNotTakenInfo, 4> Exits;
+  };
 
-    /// Return an expression for sizeof AllocTy that is type IntTy
-    ///
-    const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
+  /// A struct containing the information attached to a backedge.
+  struct EdgeInfo {
+    EdgeInfo(BasicBlock *Block, const SCEV *Taken, SCEVUnionPredicate &P)
+        : ExitBlock(Block), Taken(Taken), Pred(std::move(P)) {}
+
+    /// The exit basic block.
+    BasicBlock *ExitBlock;
+
+    /// The (exact) number of time we take the edge back.
+    const SCEV *Taken;
+
+    /// The SCEV predicated associated with Taken. If Pred doesn't evaluate
+    /// to true, the information in Taken is not valid (or equivalent with
+    /// a CouldNotCompute.
+    SCEVUnionPredicate Pred;
+  };
 
-    /// Return an expression for offsetof on the given field with type IntTy
-    ///
-    const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
+  /// Information about the backedge-taken count of a loop. This currently
+  /// includes an exact count and a maximum count.
+  ///
+  class BackedgeTakenInfo {
+    /// A list of computable exits and their not-taken counts.  Loops almost
+    /// never have more than one computable exit.
+    ExitNotTakenInfo ExitNotTaken;
+
+    /// An expression indicating the least maximum backedge-taken count of the
+    /// loop that is known, or a SCEVCouldNotCompute. This expression is only
+    /// valid if the predicates associated with all loop exits are true.
+    const SCEV *Max;
 
-    /// Return the SCEV object corresponding to -V.
-    ///
-    const SCEV *getNegativeSCEV(const SCEV *V,
-                                SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
+  public:
+    BackedgeTakenInfo() : Max(nullptr) {}
 
-    /// Return the SCEV object corresponding to ~V.
-    ///
-    const SCEV *getNotSCEV(const SCEV *V);
+    /// Initialize BackedgeTakenInfo from a list of exact exit counts.
+    BackedgeTakenInfo(SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete,
+                      const SCEV *MaxCount);
+
+    /// Test whether this BackedgeTakenInfo contains any computed information,
+    /// or whether it's all SCEVCouldNotCompute values.
+    bool hasAnyInfo() const {
+      return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
+    }
+
+    /// Test whether this BackedgeTakenInfo contains complete information.
+    bool hasFullInfo() const { return ExitNotTaken.isCompleteList(); }
+
+    /// Return an expression indicating the exact backedge-taken count of the
+    /// loop if it is known or SCEVCouldNotCompute otherwise. This is the
+    /// number of times the loop header can be guaranteed to execute, minus
+    /// one.
+    ///
+    /// If the SCEV predicate associated with the answer can be different
+    /// from AlwaysTrue, we must add a (non null) Predicates argument.
+    /// The SCEV predicate associated with the answer will be added to
+    /// Predicates. A run-time check needs to be emitted for the SCEV
+    /// predicate in order for the answer to be valid.
+    ///
+    /// Note that we should always know if we need to pass a predicate
+    /// argument or not from the way the ExitCounts vector was computed.
+    /// If we allowed SCEV predicates to be generated when populating this
+    /// vector, this information can contain them and therefore a
+    /// SCEVPredicate argument should be added to getExact.
+    const SCEV *getExact(ScalarEvolution *SE,
+                         SCEVUnionPredicate *Predicates = nullptr) const;
+
+    /// Return the number of times this loop exit may fall through to the back
+    /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
+    /// this block before this number of iterations, but may exit via another
+    /// block.
+    const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
 
-    /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
-    const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
-                             SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type.  If the type must be extended, it is zero extended.
-    const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type.  If the type must be extended, it is sign extended.
-    const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type.  If the type must be extended, it is zero extended.  The
-    /// conversion must not be narrowing.
-    const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type.  If the type must be extended, it is sign extended.  The
-    /// conversion must not be narrowing.
-    const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type. If the type must be extended, it is extended with
-    /// unspecified bits. The conversion must not be narrowing.
-    const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
-
-    /// Return a SCEV corresponding to a conversion of the input value to the
-    /// specified type.  The conversion must not be widening.
-    const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
-
-    /// Promote the operands to the wider of the types using zero-extension, and
-    /// then perform a umax operation with them.
-    const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
-                                           const SCEV *RHS);
-
-    /// Promote the operands to the wider of the types using zero-extension, and
-    /// then perform a umin operation with them.
-    const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
-                                           const SCEV *RHS);
-
-    /// Transitively follow the chain of pointer-type operands until reaching a
-    /// SCEV that does not have a single pointer operand. This returns a
-    /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
-    /// cases do exist.
-    const SCEV *getPointerBase(const SCEV *V);
-
-    /// Return a SCEV expression for the specified value at the specified scope
-    /// in the program.  The L value specifies a loop nest to evaluate the
-    /// expression at, where null is the top-level or a specified loop is
-    /// immediately inside of the loop.
-    ///
-    /// This method can be used to compute the exit value for a variable defined
-    /// in a loop by querying what the value will hold in the parent loop.
-    ///
-    /// In the case that a relevant loop exit value cannot be computed, the
-    /// original value V is returned.
-    const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
-
-    /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
-    const SCEV *getSCEVAtScope(Value *V, const Loop *L);
-
-    /// Test whether entry to the loop is protected by a conditional between LHS
-    /// and RHS.  This is used to help avoid max expressions in loop trip
-    /// counts, and to eliminate casts.
-    bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
-                                  const SCEV *LHS, const SCEV *RHS);
-
-    /// Test whether the backedge of the loop is protected by a conditional
-    /// between LHS and RHS.  This is used to to eliminate casts.
-    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
-                                     const SCEV *LHS, const SCEV *RHS);
+    /// Get the max backedge taken count for the loop.
+    const SCEV *getMax(ScalarEvolution *SE) const;
 
-    /// Returns the maximum trip count of the loop if it is a single-exit
-    /// loop and we can compute a small maximum for that loop.
-    ///
-    /// Implemented in terms of the \c getSmallConstantTripCount overload with
-    /// the single exiting block passed to it. See that routine for details.
-    unsigned getSmallConstantTripCount(Loop *L);
-
-    /// Returns the maximum trip count of this loop as a normal unsigned
-    /// value. Returns 0 if the trip count is unknown or not constant. This
-    /// "trip count" assumes that control exits via ExitingBlock. More
-    /// precisely, it is the number of times that control may reach ExitingBlock
-    /// before taking the branch. For loops with multiple exits, it may not be
-    /// the number times that the loop header executes if the loop exits
-    /// prematurely via another branch.
-    unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
-
-    /// Returns the largest constant divisor of the trip count of the
-    /// loop if it is a single-exit loop and we can compute a small maximum for
-    /// that loop.
-    ///
-    /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
-    /// the single exiting block passed to it. See that routine for details.
-    unsigned getSmallConstantTripMultiple(Loop *L);
-
-    /// Returns the largest constant divisor of the trip count of this loop as a
-    /// normal unsigned value, if possible. This means that the actual trip
-    /// count is always a multiple of the returned value (don't forget the trip
-    /// count could very well be zero as well!). As explained in the comments
-    /// for getSmallConstantTripCount, this assumes that control exits the loop
-    /// via ExitingBlock.
-    unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
-
-    /// Get the expression for the number of loop iterations for which this loop
-    /// is guaranteed not to exit via ExitingBlock. Otherwise return
-    /// SCEVCouldNotCompute.
-    const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
-
-    /// If the specified loop has a predictable backedge-taken count, return it,
-    /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
-    /// is the number of times the loop header will be branched to from within
-    /// the loop. This is one less than the trip count of the loop, since it
-    /// doesn't count the first iteration, when the header is branched to from
-    /// outside the loop.
-    ///
-    /// Note that it is not valid to call this method on a loop without a
-    /// loop-invariant backedge-taken count (see
-    /// hasLoopInvariantBackedgeTakenCount).
-    ///
-    const SCEV *getBackedgeTakenCount(const Loop *L);
+    /// Return true if any backedge taken count expressions refer to the given
+    /// subexpression.
+    bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
 
-    /// Similar to getBackedgeTakenCount, except it will add a set of
-    /// SCEV predicates to Predicates that are required to be true in order for
-    /// the answer to be correct. Predicates can be checked with run-time
-    /// checks and can be used to perform loop versioning.
-    const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
-                                                SCEVUnionPredicate &Predicates);
-
-    /// Similar to getBackedgeTakenCount, except return the least SCEV value
-    /// that is known never to be less than the actual backedge taken count.
-    const SCEV *getMaxBackedgeTakenCount(const Loop *L);
-
-    /// Return true if the specified loop has an analyzable loop-invariant
-    /// backedge-taken count.
-    bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
-
-    /// This method should be called by the client when it has changed a loop in
-    /// a way that may effect ScalarEvolution's ability to compute a trip count,
-    /// or if the loop is deleted.  This call is potentially expensive for large
-    /// loop bodies.
-    void forgetLoop(const Loop *L);
-
-    /// This method should be called by the client when it has changed a value
-    /// in a way that may effect its value, or which may disconnect it from a
-    /// def-use chain linking it to a loop.
-    void forgetValue(Value *V);
+    /// Invalidate this result and free associated memory.
+    void clear();
+  };
 
-    /// Called when the client has changed the disposition of values in
-    /// this loop.
-    ///
-    /// We don't have a way to invalidate per-loop dispositions. Clear and
-    /// recompute is simpler.
-    void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
-
-    /// Determine the minimum number of zero bits that S is guaranteed to end in
-    /// (at every loop iteration).  It is, at the same time, the minimum number
-    /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
-    /// If S is guaranteed to be 0, it returns the bitwidth of S.
-    uint32_t GetMinTrailingZeros(const SCEV *S);
+  /// Cache the backedge-taken count of the loops for this function as they
+  /// are computed.
+  DenseMap<const Loop *, BackedgeTakenInfo> BackedgeTakenCounts;
+
+  /// Cache the predicated backedge-taken count of the loops for this
+  /// function as they are computed.
+  DenseMap<const Loop *, BackedgeTakenInfo> PredicatedBackedgeTakenCounts;
+
+  /// This map contains entries for all of the PHI instructions that we
+  /// attempt to compute constant evolutions for.  This allows us to avoid
+  /// potentially expensive recomputation of these properties.  An instruction
+  /// maps to null if we are unable to compute its exit value.
+  DenseMap<PHINode *, Constant *> ConstantEvolutionLoopExitValue;
+
+  /// This map contains entries for all the expressions that we attempt to
+  /// compute getSCEVAtScope information for, which can be expensive in
+  /// extreme cases.
+  DenseMap<const SCEV *, SmallVector<std::pair<const Loop *, const SCEV *>, 2>>
+      ValuesAtScopes;
+
+  /// Memoized computeLoopDisposition results.
+  DenseMap<const SCEV *,
+           SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
+      LoopDispositions;
+
+  /// Cache for \c loopHasNoAbnormalExits.
+  DenseMap<const Loop *, bool> LoopHasNoAbnormalExits;
+
+  /// Cache for \c loopHasNoSideEffects.
+  DenseMap<const Loop *, bool> LoopHasNoSideEffects;
+
+  /// Returns true if \p L contains no instruction that can have side effects
+  /// (i.e. via throwing an exception, volatile or atomic access).
+  bool loopHasNoSideEffects(const Loop *L);
+
+  /// Returns true if \p L contains no instruction that can abnormally exit
+  /// the loop (i.e. via throwing an exception, by terminating the thread
+  /// cleanly or by infinite looping in a called function).  Strictly
+  /// speaking, the last one is not leaving the loop, but is identical to
+  /// leaving the loop for reasoning about undefined behavior.
+  bool loopHasNoAbnormalExits(const Loop *L);
+
+  /// Compute a LoopDisposition value.
+  LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
+
+  /// Memoized computeBlockDisposition results.
+  DenseMap<
+      const SCEV *,
+      SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
+      BlockDispositions;
+
+  /// Compute a BlockDisposition value.
+  BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
+
+  /// Memoized results from getRange
+  DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
+
+  /// Memoized results from getRange
+  DenseMap<const SCEV *, ConstantRange> SignedRanges;
+
+  /// Used to parameterize getRange
+  enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
+
+  /// Set the memoized range for the given SCEV.
+  const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
+                                const ConstantRange &CR) {
+    DenseMap<const SCEV *, ConstantRange> &Cache =
+        Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
+
+    auto Pair = Cache.insert({S, CR});
+    if (!Pair.second)
+      Pair.first->second = CR;
+    return Pair.first->second;
+  }
 
-    /// Determine the unsigned range for a particular SCEV.
-    ///
-    ConstantRange getUnsignedRange(const SCEV *S) {
-      return getRange(S, HINT_RANGE_UNSIGNED);
-    }
+  /// Determine the range for a particular SCEV.
+  ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
 
-    /// Determine the signed range for a particular SCEV.
-    ///
-    ConstantRange getSignedRange(const SCEV *S) {
-      return getRange(S, HINT_RANGE_SIGNED);
-    }
+  /// Determines the range for the affine SCEVAddRecExpr {\p Start,+,\p Stop}.
+  /// Helper for \c getRange.
+  ConstantRange getRangeForAffineAR(const SCEV *Start, const SCEV *Stop,
+                                    const SCEV *MaxBECount, unsigned BitWidth);
+
+  /// Try to compute a range for the affine SCEVAddRecExpr {\p Start,+,\p
+  /// Stop} by "factoring out" a ternary expression from the add recurrence.
+  /// Helper called by \c getRange.
+  ConstantRange getRangeViaFactoring(const SCEV *Start, const SCEV *Stop,
+                                     const SCEV *MaxBECount, unsigned BitWidth);
+
+  /// We know that there is no SCEV for the specified value.  Analyze the
+  /// expression.
+  const SCEV *createSCEV(Value *V);
+
+  /// Provide the special handling we need to analyze PHI SCEVs.
+  const SCEV *createNodeForPHI(PHINode *PN);
+
+  /// Helper function called from createNodeForPHI.
+  const SCEV *createAddRecFromPHI(PHINode *PN);
+
+  /// Helper function called from createNodeForPHI.
+  const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
+
+  /// Provide special handling for a select-like instruction (currently this
+  /// is either a select instruction or a phi node).  \p I is the instruction
+  /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
+  /// FalseVal".
+  const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
+                                       Value *TrueVal, Value *FalseVal);
 
-    /// Test if the given expression is known to be negative.
-    ///
-    bool isKnownNegative(const SCEV *S);
+  /// Provide the special handling we need to analyze GEP SCEVs.
+  const SCEV *createNodeForGEP(GEPOperator *GEP);
 
-    /// Test if the given expression is known to be positive.
-    ///
-    bool isKnownPositive(const SCEV *S);
+  /// Implementation code for getSCEVAtScope; called at most once for each
+  /// SCEV+Loop pair.
+  ///
+  const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
 
-    /// Test if the given expression is known to be non-negative.
-    ///
-    bool isKnownNonNegative(const SCEV *S);
+  /// This looks up computed SCEV values for all instructions that depend on
+  /// the given instruction and removes them from the ValueExprMap map if they
+  /// reference SymName. This is used during PHI resolution.
+  void forgetSymbolicName(Instruction *I, const SCEV *SymName);
+
+  /// Return the BackedgeTakenInfo for the given loop, lazily computing new
+  /// values if the loop hasn't been analyzed yet. The returned result is
+  /// guaranteed not to be predicated.
+  const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
+
+  /// Similar to getBackedgeTakenInfo, but will add predicates as required
+  /// with the purpose of returning complete information.
+  const BackedgeTakenInfo &getPredicatedBackedgeTakenInfo(const Loop *L);
+
+  /// Compute the number of times the specified loop will iterate.
+  /// If AllowPredicates is set, we will create new SCEV predicates as
+  /// necessary in order to return an exact answer.
+  BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L,
+                                              bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if it exits via the specified block. If AllowPredicates is set,
+  /// this call will try to use a minimal set of SCEV predicates in order to
+  /// return an exact answer.
+  ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
+                             bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a conditional branch of ExitCond,
+  /// TBB, and FBB.
+  ///
+  /// \p ControlsExit is true if ExitCond directly controls the exit
+  /// branch. In this case, we can assume that the loop exits only if the
+  /// condition is true and can infer that failing to meet the condition prior
+  /// to integer wraparound results in undefined behavior.
+  ///
+  /// If \p AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit computeExitLimitFromCond(const Loop *L, Value *ExitCond,
+                                     BasicBlock *TBB, BasicBlock *FBB,
+                                     bool ControlsExit,
+                                     bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a conditional branch of the ICmpInst
+  /// ExitCond, TBB, and FBB. If AllowPredicates is set, this call will try
+  /// to use a minimal set of SCEV predicates in order to return an exact
+  /// answer.
+  ExitLimit computeExitLimitFromICmp(const Loop *L, ICmpInst *ExitCond,
+                                     BasicBlock *TBB, BasicBlock *FBB,
+                                     bool IsSubExpr,
+                                     bool AllowPredicates = false);
+
+  /// Compute the number of times the backedge of the specified loop will
+  /// execute if its exit condition were a switch with a single exiting case
+  /// to ExitingBB.
+  ExitLimit computeExitLimitFromSingleExitSwitch(const Loop *L,
+                                                 SwitchInst *Switch,
+                                                 BasicBlock *ExitingBB,
+                                                 bool IsSubExpr);
+
+  /// Given an exit condition of 'icmp op load X, cst', try to see if we can
+  /// compute the backedge-taken count.
+  ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI, Constant *RHS,
+                                                const Loop *L,
+                                                ICmpInst::Predicate p);
+
+  /// Compute the exit limit of a loop that is controlled by a
+  /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
+  /// count in these cases (since SCEV has no way of expressing them), but we
+  /// can still sometimes compute an upper bound.
+  ///
+  /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
+  /// RHS`.
+  ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS, const Loop *L,
+                                         ICmpInst::Predicate Pred);
+
+  /// If the loop is known to execute a constant number of times (the
+  /// condition evolves only from constants), try to evaluate a few iterations
+  /// of the loop until we get the exit condition gets a value of ExitWhen
+  /// (true or false).  If we cannot evaluate the exit count of the loop,
+  /// return CouldNotCompute.
+  const SCEV *computeExitCountExhaustively(const Loop *L, Value *Cond,
+                                           bool ExitWhen);
+
+  /// Return the number of times an exit condition comparing the specified
+  /// value to zero will execute.  If not computable, return CouldNotCompute.
+  /// If AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit howFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr,
+                         bool AllowPredicates = false);
+
+  /// Return the number of times an exit condition checking the specified
+  /// value for nonzero will execute.  If not computable, return
+  /// CouldNotCompute.
+  ExitLimit howFarToNonZero(const SCEV *V, const Loop *L);
+
+  /// Return the number of times an exit condition containing the specified
+  /// less-than comparison will execute.  If not computable, return
+  /// CouldNotCompute.
+  ///
+  /// \p isSigned specifies whether the less-than is signed.
+  ///
+  /// \p ControlsExit is true when the LHS < RHS condition directly controls
+  /// the branch (loops exits only if condition is true). In this case, we can
+  /// use NoWrapFlags to skip overflow checks.
+  ///
+  /// If \p AllowPredicates is set, this call will try to use a minimal set of
+  /// SCEV predicates in order to return an exact answer.
+  ExitLimit howManyLessThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
+                             bool isSigned, bool ControlsExit,
+                             bool AllowPredicates = false);
+
+  ExitLimit howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, const Loop *L,
+                                bool isSigned, bool IsSubExpr,
+                                bool AllowPredicates = false);
+
+  /// Return a predecessor of BB (which may not be an immediate predecessor)
+  /// which has exactly one successor from which BB is reachable, or null if
+  /// no such block is found.
+  std::pair<BasicBlock *, BasicBlock *>
+  getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the given FoundCondValue value evaluates to true.
+  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
+                     Value *FoundCondValue, bool Inverse);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
+  /// true.
+  bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
+                     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS,
+                     const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  bool isImpliedCondOperands(ICmpInst::Predicate Pred, const SCEV *LHS,
+                             const SCEV *RHS, const SCEV *FoundLHS,
+                             const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                   const SCEV *RHS, const SCEV *FoundLHS,
+                                   const SCEV *FoundRHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.  Utility function used by isImpliedCondOperands.  Tries to get
+  /// cases like "X `sgt` 0 => X - 1 `sgt` -1".
+  bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                      const SCEV *RHS, const SCEV *FoundLHS,
+                                      const SCEV *FoundRHS);
+
+  /// Return true if the condition denoted by \p LHS \p Pred \p RHS is implied
+  /// by a call to \c @llvm.experimental.guard in \p BB.
+  bool isImpliedViaGuard(BasicBlock *BB, ICmpInst::Predicate Pred,
+                         const SCEV *LHS, const SCEV *RHS);
+
+  /// Test whether the condition described by Pred, LHS, and RHS is true
+  /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
+  /// true.
+  ///
+  /// This routine tries to rule out certain kinds of integer overflow, and
+  /// then tries to reason about arithmetic properties of the predicates.
+  bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
+                                          const SCEV *LHS, const SCEV *RHS,
+                                          const SCEV *FoundLHS,
+                                          const SCEV *FoundRHS);
+
+  /// If we know that the specified Phi is in the header of its containing
+  /// loop, we know the loop executes a constant number of times, and the PHI
+  /// node is just a recurrence involving constants, fold it.
+  Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt &BEs,
+                                              const Loop *L);
 
-    /// Test if the given expression is known to be non-positive.
-    ///
-    bool isKnownNonPositive(const SCEV *S);
+  /// Test if the given expression is known to satisfy the condition described
+  /// by Pred and the known constant ranges of LHS and RHS.
+  ///
+  bool isKnownPredicateViaConstantRanges(ICmpInst::Predicate Pred,
+                                         const SCEV *LHS, const SCEV *RHS);
 
-    /// Test if the given expression is known to be non-zero.
-    ///
-    bool isKnownNonZero(const SCEV *S);
+  /// Try to prove the condition described by "LHS Pred RHS" by ruling out
+  /// integer overflow.
+  ///
+  /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
+  /// positive.
+  bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                     const SCEV *RHS);
+
+  /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
+  /// prove them individually.
+  bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                    const SCEV *RHS);
+
+  /// Try to match the Expr as "(L + R)<Flags>".
+  bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
+                      SCEV::NoWrapFlags &Flags);
 
-    /// Test if the given expression is known to satisfy the condition described
-    /// by Pred, LHS, and RHS.
-    ///
-    bool isKnownPredicate(ICmpInst::Predicate Pred,
-                          const SCEV *LHS, const SCEV *RHS);
+  /// Compute \p LHS - \p RHS and returns the result as an APInt if it is a
+  /// constant, and None if it isn't.
+  ///
+  /// This is intended to be a cheaper version of getMinusSCEV.  We can be
+  /// frugal here since we just bail out of actually constructing and
+  /// canonicalizing an expression in the cases where the result isn't going
+  /// to be a constant.
+  Optional<APInt> computeConstantDifference(const SCEV *LHS, const SCEV *RHS);
+
+  /// Drop memoized information computed for S.
+  void forgetMemoizedResults(const SCEV *S);
+
+  /// Return an existing SCEV for V if there is one, otherwise return nullptr.
+  const SCEV *getExistingSCEV(Value *V);
+
+  /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
+  /// pointer.
+  bool checkValidity(const SCEV *S) const;
+
+  /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
+  /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
+  /// equivalent to proving no signed (resp. unsigned) wrap in
+  /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
+  /// (resp. `SCEVZeroExtendExpr`).
+  ///
+  template <typename ExtendOpTy>
+  bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
+                                 const Loop *L);
+
+  /// Try to prove NSW or NUW on \p AR relying on ConstantRange manipulation.
+  SCEV::NoWrapFlags proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR);
+
+  bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
+                                ICmpInst::Predicate Pred, bool &Increasing);
+
+  /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
+  /// is monotonically increasing or decreasing.  In the former case set
+  /// `Increasing` to true and in the latter case set `Increasing` to false.
+  ///
+  /// A predicate is said to be monotonically increasing if may go from being
+  /// false to being true as the loop iterates, but never the other way
+  /// around.  A predicate is said to be monotonically decreasing if may go
+  /// from being true to being false as the loop iterates, but never the other
+  /// way around.
+  bool isMonotonicPredicate(const SCEVAddRecExpr *LHS, ICmpInst::Predicate Pred,
+                            bool &Increasing);
+
+  /// Return SCEV no-wrap flags that can be proven based on reasoning about
+  /// how poison produced from no-wrap flags on this value (e.g. a nuw add)
+  /// would trigger undefined behavior on overflow.
+  SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
+
+  /// Return true if the SCEV corresponding to \p I is never poison.  Proving
+  /// this is more complex than proving that just \p I is never poison, since
+  /// SCEV commons expressions across control flow, and you can have cases
+  /// like:
+  ///
+  ///   idx0 = a + b;
+  ///   ptr[idx0] = 100;
+  ///   if (<condition>) {
+  ///     idx1 = a +nsw b;
+  ///     ptr[idx1] = 200;
+  ///   }
+  ///
+  /// where the SCEV expression (+ a b) is guaranteed to not be poison (and
+  /// hence not sign-overflow) only if "<condition>" is true.  Since both
+  /// `idx0` and `idx1` will be mapped to the same SCEV expression, (+ a b),
+  /// it is not okay to annotate (+ a b) with <nsw> in the above example.
+  bool isSCEVExprNeverPoison(const Instruction *I);
+
+  /// This is like \c isSCEVExprNeverPoison but it specifically works for
+  /// instructions that will get mapped to SCEV add recurrences.  Return true
+  /// if \p I will never generate poison under the assumption that \p I is an
+  /// add recurrence on the loop \p L.
+  bool isAddRecNeverPoison(const Instruction *I, const Loop *L);
+
+public:
+  ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
+                  DominatorTree &DT, LoopInfo &LI);
+  ~ScalarEvolution();
+  ScalarEvolution(ScalarEvolution &&Arg);
+
+  LLVMContext &getContext() const { return F.getContext(); }
+
+  /// Test if values of the given type are analyzable within the SCEV
+  /// framework. This primarily includes integer types, and it can optionally
+  /// include pointer types if the ScalarEvolution class has access to
+  /// target-specific information.
+  bool isSCEVable(Type *Ty) const;
+
+  /// Return the size in bits of the specified type, for which isSCEVable must
+  /// return true.
+  uint64_t getTypeSizeInBits(Type *Ty) const;
+
+  /// Return a type with the same bitwidth as the given type and which
+  /// represents how SCEV will treat the given type, for which isSCEVable must
+  /// return true. For pointer types, this is the pointer-sized integer type.
+  Type *getEffectiveSCEVType(Type *Ty) const;
 
-    /// Return true if the result of the predicate LHS `Pred` RHS is loop
-    /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
-    /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
-    /// loop invariant form of LHS `Pred` RHS.
-    bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
-                                  const SCEV *RHS, const Loop *L,
-                                  ICmpInst::Predicate &InvariantPred,
-                                  const SCEV *&InvariantLHS,
-                                  const SCEV *&InvariantRHS);
-
-    /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
-    /// iff any changes were made. If the operands are provably equal or
-    /// unequal, LHS and RHS are set to the same value and Pred is set to either
-    /// ICMP_EQ or ICMP_NE.
-    ///
-    bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
-                              const SCEV *&LHS,
-                              const SCEV *&RHS,
-                              unsigned Depth = 0);
-
-    /// Return the "disposition" of the given SCEV with respect to the given
-    /// loop.
-    LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
-
-    /// Return true if the value of the given SCEV is unchanging in the
-    /// specified loop.
-    bool isLoopInvariant(const SCEV *S, const Loop *L);
-
-    /// Return true if the given SCEV changes value in a known way in the
-    /// specified loop.  This property being true implies that the value is
-    /// variant in the loop AND that we can emit an expression to compute the
-    /// value of the expression at any particular loop iteration.
-    bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
+  /// Return true if the SCEV is a scAddRecExpr or it contains
+  /// scAddRecExpr. The result will be cached in HasRecMap.
+  ///
+  bool containsAddRecurrence(const SCEV *S);
 
-    /// Return the "disposition" of the given SCEV with respect to the given
-    /// block.
-    BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
+  /// Return the Value set from which the SCEV expr is generated.
+  SetVector<ValueOffsetPair> *getSCEVValues(const SCEV *S);
 
-    /// Return true if elements that makes up the given SCEV dominate the
-    /// specified basic block.
-    bool dominates(const SCEV *S, const BasicBlock *BB);
+  /// Erase Value from ValueExprMap and ExprValueMap.
+  void eraseValueFromMap(Value *V);
 
-    /// Return true if elements that makes up the given SCEV properly dominate
-    /// the specified basic block.
-    bool properlyDominates(const SCEV *S, const BasicBlock *BB);
+  /// Return a SCEV expression for the full generality of the specified
+  /// expression.
+  const SCEV *getSCEV(Value *V);
+
+  const SCEV *getConstant(ConstantInt *V);
+  const SCEV *getConstant(const APInt &Val);
+  const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
+  const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
+  const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
+  const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
+    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+    return getAddExpr(Ops, Flags);
+  }
+  const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
+    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
+    return getAddExpr(Ops, Flags);
+  }
+  const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
+  const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
+    SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
+    return getMulExpr(Ops, Flags);
+  }
+  const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
+                         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
+    SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
+    return getMulExpr(Ops, Flags);
+  }
+  const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step, const Loop *L,
+                            SCEV::NoWrapFlags Flags);
+  const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
+                            const Loop *L, SCEV::NoWrapFlags Flags);
+  const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
+                            const Loop *L, SCEV::NoWrapFlags Flags) {
+    SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
+    return getAddRecExpr(NewOp, L, Flags);
+  }
+  /// Returns an expression for a GEP
+  ///
+  /// \p PointeeType The type used as the basis for the pointer arithmetics
+  /// \p BaseExpr The expression for the pointer operand.
+  /// \p IndexExprs The expressions for the indices.
+  /// \p InBounds Whether the GEP is in bounds.
+  const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
+                         const SmallVectorImpl<const SCEV *> &IndexExprs,
+                         bool InBounds = false);
+  const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
+  const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
+  const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
+  const SCEV *getUnknown(Value *V);
+  const SCEV *getCouldNotCompute();
 
-    /// Test whether the given SCEV has Op as a direct or indirect operand.
-    bool hasOperand(const SCEV *S, const SCEV *Op) const;
+  /// Return a SCEV for the constant 0 of a specific type.
+  const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
 
-    /// Return the size of an element read or written by Inst.
-    const SCEV *getElementSize(Instruction *Inst);
+  /// Return a SCEV for the constant 1 of a specific type.
+  const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
 
-    /// Compute the array dimensions Sizes from the set of Terms extracted from
-    /// the memory access function of this SCEVAddRecExpr (second step of
-    /// delinearization).
-    void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
-                             SmallVectorImpl<const SCEV *> &Sizes,
-                             const SCEV *ElementSize) const;
+  /// Return an expression for sizeof AllocTy that is type IntTy
+  ///
+  const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
 
-    void print(raw_ostream &OS) const;
-    void verify() const;
+  /// Return an expression for offsetof on the given field with type IntTy
+  ///
+  const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
 
-    /// Collect parametric terms occurring in step expressions (first step of
-    /// delinearization).
-    void collectParametricTerms(const SCEV *Expr,
-                                SmallVectorImpl<const SCEV *> &Terms);
+  /// Return the SCEV object corresponding to -V.
+  ///
+  const SCEV *getNegativeSCEV(const SCEV *V,
+                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 
+  /// Return the SCEV object corresponding to ~V.
+  ///
+  const SCEV *getNotSCEV(const SCEV *V);
 
+  /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
+  const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
+                           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
 
-    /// Return in Subscripts the access functions for each dimension in Sizes
-    /// (third step of delinearization).
-    void computeAccessFunctions(const SCEV *Expr,
-                                SmallVectorImpl<const SCEV *> &Subscripts,
-                                SmallVectorImpl<const SCEV *> &Sizes);
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is zero extended.
+  const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is sign extended.
+  const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is zero extended.  The
+  /// conversion must not be narrowing.
+  const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  If the type must be extended, it is sign extended.  The
+  /// conversion must not be narrowing.
+  const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type. If the type must be extended, it is extended with
+  /// unspecified bits. The conversion must not be narrowing.
+  const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
+
+  /// Return a SCEV corresponding to a conversion of the input value to the
+  /// specified type.  The conversion must not be widening.
+  const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
+
+  /// Promote the operands to the wider of the types using zero-extension, and
+  /// then perform a umax operation with them.
+  const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
+
+  /// Promote the operands to the wider of the types using zero-extension, and
+  /// then perform a umin operation with them.
+  const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS, const SCEV *RHS);
+
+  /// Transitively follow the chain of pointer-type operands until reaching a
+  /// SCEV that does not have a single pointer operand. This returns a
+  /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
+  /// cases do exist.
+  const SCEV *getPointerBase(const SCEV *V);
+
+  /// Return a SCEV expression for the specified value at the specified scope
+  /// in the program.  The L value specifies a loop nest to evaluate the
+  /// expression at, where null is the top-level or a specified loop is
+  /// immediately inside of the loop.
+  ///
+  /// This method can be used to compute the exit value for a variable defined
+  /// in a loop by querying what the value will hold in the parent loop.
+  ///
+  /// In the case that a relevant loop exit value cannot be computed, the
+  /// original value V is returned.
+  const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
+
+  /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
+  const SCEV *getSCEVAtScope(Value *V, const Loop *L);
+
+  /// Test whether entry to the loop is protected by a conditional between LHS
+  /// and RHS.  This is used to help avoid max expressions in loop trip
+  /// counts, and to eliminate casts.
+  bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
+                                const SCEV *LHS, const SCEV *RHS);
+
+  /// Test whether the backedge of the loop is protected by a conditional
+  /// between LHS and RHS.  This is used to to eliminate casts.
+  bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
+                                   const SCEV *LHS, const SCEV *RHS);
 
-    /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
-    /// subscripts and sizes of an array access.
-    ///
-    /// The delinearization is a 3 step process: the first two steps compute the
-    /// sizes of each subscript and the third step computes the access functions
-    /// for the delinearized array:
-    ///
-    /// 1. Find the terms in the step functions
-    /// 2. Compute the array size
-    /// 3. Compute the access function: divide the SCEV by the array size
-    ///    starting with the innermost dimensions found in step 2. The Quotient
-    ///    is the SCEV to be divided in the next step of the recursion. The
-    ///    Remainder is the subscript of the innermost dimension. Loop over all
-    ///    array dimensions computed in step 2.
-    ///
-    /// To compute a uniform array size for several memory accesses to the same
-    /// object, one can collect in step 1 all the step terms for all the memory
-    /// accesses, and compute in step 2 a unique array shape. This guarantees
-    /// that the array shape will be the same across all memory accesses.
-    ///
-    /// FIXME: We could derive the result of steps 1 and 2 from a description of
-    /// the array shape given in metadata.
-    ///
-    /// Example:
-    ///
-    /// A[][n][m]
-    ///
-    /// for i
-    ///   for j
-    ///     for k
-    ///       A[j+k][2i][5i] =
-    ///
-    /// The initial SCEV:
-    ///
-    /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
-    ///
-    /// 1. Find the different terms in the step functions:
-    /// -> [2*m, 5, n*m, n*m]
-    ///
-    /// 2. Compute the array size: sort and unique them
-    /// -> [n*m, 2*m, 5]
-    /// find the GCD of all the terms = 1
-    /// divide by the GCD and erase constant terms
-    /// -> [n*m, 2*m]
-    /// GCD = m
-    /// divide by GCD -> [n, 2]
-    /// remove constant terms
-    /// -> [n]
-    /// size of the array is A[unknown][n][m]
-    ///
-    /// 3. Compute the access function
-    /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
-    /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
-    /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
-    /// The remainder is the subscript of the innermost array dimension: [5i].
-    ///
-    /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
-    /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
-    /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
-    /// The Remainder is the subscript of the next array dimension: [2i].
-    ///
-    /// The subscript of the outermost dimension is the Quotient: [j+k].
-    ///
-    /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
-    void delinearize(const SCEV *Expr,
-                     SmallVectorImpl<const SCEV *> &Subscripts,
-                     SmallVectorImpl<const SCEV *> &Sizes,
-                     const SCEV *ElementSize);
-
-    /// Return the DataLayout associated with the module this SCEV instance is
-    /// operating on.
-    const DataLayout &getDataLayout() const {
-      return F.getParent()->getDataLayout();
-    }
+  /// Returns the maximum trip count of the loop if it is a single-exit
+  /// loop and we can compute a small maximum for that loop.
+  ///
+  /// Implemented in terms of the \c getSmallConstantTripCount overload with
+  /// the single exiting block passed to it. See that routine for details.
+  unsigned getSmallConstantTripCount(Loop *L);
+
+  /// Returns the maximum trip count of this loop as a normal unsigned
+  /// value. Returns 0 if the trip count is unknown or not constant. This
+  /// "trip count" assumes that control exits via ExitingBlock. More
+  /// precisely, it is the number of times that control may reach ExitingBlock
+  /// before taking the branch. For loops with multiple exits, it may not be
+  /// the number times that the loop header executes if the loop exits
+  /// prematurely via another branch.
+  unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
+
+  /// Returns the largest constant divisor of the trip count of the
+  /// loop if it is a single-exit loop and we can compute a small maximum for
+  /// that loop.
+  ///
+  /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
+  /// the single exiting block passed to it. See that routine for details.
+  unsigned getSmallConstantTripMultiple(Loop *L);
+
+  /// Returns the largest constant divisor of the trip count of this loop as a
+  /// normal unsigned value, if possible. This means that the actual trip
+  /// count is always a multiple of the returned value (don't forget the trip
+  /// count could very well be zero as well!). As explained in the comments
+  /// for getSmallConstantTripCount, this assumes that control exits the loop
+  /// via ExitingBlock.
+  unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
+
+  /// Get the expression for the number of loop iterations for which this loop
+  /// is guaranteed not to exit via ExitingBlock. Otherwise return
+  /// SCEVCouldNotCompute.
+  const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
+
+  /// If the specified loop has a predictable backedge-taken count, return it,
+  /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
+  /// is the number of times the loop header will be branched to from within
+  /// the loop. This is one less than the trip count of the loop, since it
+  /// doesn't count the first iteration, when the header is branched to from
+  /// outside the loop.
+  ///
+  /// Note that it is not valid to call this method on a loop without a
+  /// loop-invariant backedge-taken count (see
+  /// hasLoopInvariantBackedgeTakenCount).
+  ///
+  const SCEV *getBackedgeTakenCount(const Loop *L);
 
-    const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
-                                           const SCEVConstant *RHS);
+  /// Similar to getBackedgeTakenCount, except it will add a set of
+  /// SCEV predicates to Predicates that are required to be true in order for
+  /// the answer to be correct. Predicates can be checked with run-time
+  /// checks and can be used to perform loop versioning.
+  const SCEV *getPredicatedBackedgeTakenCount(const Loop *L,
+                                              SCEVUnionPredicate &Predicates);
+
+  /// Similar to getBackedgeTakenCount, except return the least SCEV value
+  /// that is known never to be less than the actual backedge taken count.
+  const SCEV *getMaxBackedgeTakenCount(const Loop *L);
+
+  /// Return true if the specified loop has an analyzable loop-invariant
+  /// backedge-taken count.
+  bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
+
+  /// This method should be called by the client when it has changed a loop in
+  /// a way that may effect ScalarEvolution's ability to compute a trip count,
+  /// or if the loop is deleted.  This call is potentially expensive for large
+  /// loop bodies.
+  void forgetLoop(const Loop *L);
+
+  /// This method should be called by the client when it has changed a value
+  /// in a way that may effect its value, or which may disconnect it from a
+  /// def-use chain linking it to a loop.
+  void forgetValue(Value *V);
 
-    const SCEVPredicate *
-    getWrapPredicate(const SCEVAddRecExpr *AR,
-                     SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
-
-    /// Re-writes the SCEV according to the Predicates in \p A.
-    const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
-                                      SCEVUnionPredicate &A);
-    /// Tries to convert the \p S expression to an AddRec expression,
-    /// adding additional predicates to \p Preds as required.
-    const SCEVAddRecExpr *
-    convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
-                                      SCEVUnionPredicate &Preds);
-
-  private:
-    /// Compute the backedge taken count knowing the interval difference, the
-    /// stride and presence of the equality in the comparison.
-    const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
-                               bool Equality);
-
-    /// Verify if an linear IV with positive stride can overflow when in a
-    /// less-than comparison, knowing the invariant term of the comparison,
-    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
-    bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
-                            bool IsSigned, bool NoWrap);
-
-    /// Verify if an linear IV with negative stride can overflow when in a
-    /// greater-than comparison, knowing the invariant term of the comparison,
-    /// the stride and the knowledge of NSW/NUW flags on the recurrence.
-    bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
-                            bool IsSigned, bool NoWrap);
-
-  private:
-    FoldingSet<SCEV> UniqueSCEVs;
-    FoldingSet<SCEVPredicate> UniquePreds;
-    BumpPtrAllocator SCEVAllocator;
-
-    /// The head of a linked list of all SCEVUnknown values that have been
-    /// allocated. This is used by releaseMemory to locate them all and call
-    /// their destructors.
-    SCEVUnknown *FirstUnknown;
-  };
+  /// Called when the client has changed the disposition of values in
+  /// this loop.
+  ///
+  /// We don't have a way to invalidate per-loop dispositions. Clear and
+  /// recompute is simpler.
+  void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
+
+  /// Determine the minimum number of zero bits that S is guaranteed to end in
+  /// (at every loop iteration).  It is, at the same time, the minimum number
+  /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
+  /// If S is guaranteed to be 0, it returns the bitwidth of S.
+  uint32_t GetMinTrailingZeros(const SCEV *S);
 
-  /// Analysis pass that exposes the \c ScalarEvolution for a function.
-  class ScalarEvolutionAnalysis
-      : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
-    friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
-    static char PassID;
+  /// Determine the unsigned range for a particular SCEV.
+  ///
+  ConstantRange getUnsignedRange(const SCEV *S) {
+    return getRange(S, HINT_RANGE_UNSIGNED);
+  }
 
-  public:
-    typedef ScalarEvolution Result;
+  /// Determine the signed range for a particular SCEV.
+  ///
+  ConstantRange getSignedRange(const SCEV *S) {
+    return getRange(S, HINT_RANGE_SIGNED);
+  }
 
-    ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
-  };
+  /// Test if the given expression is known to be negative.
+  ///
+  bool isKnownNegative(const SCEV *S);
 
-  /// Printer pass for the \c ScalarEvolutionAnalysis results.
-  class ScalarEvolutionPrinterPass
-      : public PassInfoMixin<ScalarEvolutionPrinterPass> {
-    raw_ostream &OS;
+  /// Test if the given expression is known to be positive.
+  ///
+  bool isKnownPositive(const SCEV *S);
 
-  public:
-    explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
-    PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
-  };
+  /// Test if the given expression is known to be non-negative.
+  ///
+  bool isKnownNonNegative(const SCEV *S);
 
-  class ScalarEvolutionWrapperPass : public FunctionPass {
-    std::unique_ptr<ScalarEvolution> SE;
+  /// Test if the given expression is known to be non-positive.
+  ///
+  bool isKnownNonPositive(const SCEV *S);
 
-  public:
-    static char ID;
+  /// Test if the given expression is known to be non-zero.
+  ///
+  bool isKnownNonZero(const SCEV *S);
 
-    ScalarEvolutionWrapperPass();
+  /// Test if the given expression is known to satisfy the condition described
+  /// by Pred, LHS, and RHS.
+  ///
+  bool isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
+                        const SCEV *RHS);
 
-    ScalarEvolution &getSE() { return *SE; }
-    const ScalarEvolution &getSE() const { return *SE; }
+  /// Return true if the result of the predicate LHS `Pred` RHS is loop
+  /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
+  /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
+  /// loop invariant form of LHS `Pred` RHS.
+  bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
+                                const SCEV *RHS, const Loop *L,
+                                ICmpInst::Predicate &InvariantPred,
+                                const SCEV *&InvariantLHS,
+                                const SCEV *&InvariantRHS);
+
+  /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
+  /// iff any changes were made. If the operands are provably equal or
+  /// unequal, LHS and RHS are set to the same value and Pred is set to either
+  /// ICMP_EQ or ICMP_NE.
+  ///
+  bool SimplifyICmpOperands(ICmpInst::Predicate &Pred, const SCEV *&LHS,
+                            const SCEV *&RHS, unsigned Depth = 0);
 
-    bool runOnFunction(Function &F) override;
-    void releaseMemory() override;
-    void getAnalysisUsage(AnalysisUsage &AU) const override;
-    void print(raw_ostream &OS, const Module * = nullptr) const override;
-    void verifyAnalysis() const override;
-  };
+  /// Return the "disposition" of the given SCEV with respect to the given
+  /// loop.
+  LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
+
+  /// Return true if the value of the given SCEV is unchanging in the
+  /// specified loop.
+  bool isLoopInvariant(const SCEV *S, const Loop *L);
+
+  /// Return true if the given SCEV changes value in a known way in the
+  /// specified loop.  This property being true implies that the value is
+  /// variant in the loop AND that we can emit an expression to compute the
+  /// value of the expression at any particular loop iteration.
+  bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
+
+  /// Return the "disposition" of the given SCEV with respect to the given
+  /// block.
+  BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
+
+  /// Return true if elements that makes up the given SCEV dominate the
+  /// specified basic block.
+  bool dominates(const SCEV *S, const BasicBlock *BB);
+
+  /// Return true if elements that makes up the given SCEV properly dominate
+  /// the specified basic block.
+  bool properlyDominates(const SCEV *S, const BasicBlock *BB);
+
+  /// Test whether the given SCEV has Op as a direct or indirect operand.
+  bool hasOperand(const SCEV *S, const SCEV *Op) const;
+
+  /// Return the size of an element read or written by Inst.
+  const SCEV *getElementSize(Instruction *Inst);
+
+  /// Compute the array dimensions Sizes from the set of Terms extracted from
+  /// the memory access function of this SCEVAddRecExpr (second step of
+  /// delinearization).
+  void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
+                           SmallVectorImpl<const SCEV *> &Sizes,
+                           const SCEV *ElementSize) const;
+
+  void print(raw_ostream &OS) const;
+  void verify() const;
+
+  /// Collect parametric terms occurring in step expressions (first step of
+  /// delinearization).
+  void collectParametricTerms(const SCEV *Expr,
+                              SmallVectorImpl<const SCEV *> &Terms);
+
+  /// Return in Subscripts the access functions for each dimension in Sizes
+  /// (third step of delinearization).
+  void computeAccessFunctions(const SCEV *Expr,
+                              SmallVectorImpl<const SCEV *> &Subscripts,
+                              SmallVectorImpl<const SCEV *> &Sizes);
 
-  /// An interface layer with SCEV used to manage how we see SCEV expressions
-  /// for values in the context of existing predicates. We can add new
-  /// predicates, but we cannot remove them.
-  ///
-  /// This layer has multiple purposes:
-  ///   - provides a simple interface for SCEV versioning.
-  ///   - guarantees that the order of transformations applied on a SCEV
-  ///     expression for a single Value is consistent across two different
-  ///     getSCEV calls. This means that, for example, once we've obtained
-  ///     an AddRec expression for a certain value through expression
-  ///     rewriting, we will continue to get an AddRec expression for that
-  ///     Value.
-  ///   - lowers the number of expression rewrites.
-  class PredicatedScalarEvolution {
-  public:
-    PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
-    const SCEVUnionPredicate &getUnionPredicate() const;
+  /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
+  /// subscripts and sizes of an array access.
+  ///
+  /// The delinearization is a 3 step process: the first two steps compute the
+  /// sizes of each subscript and the third step computes the access functions
+  /// for the delinearized array:
+  ///
+  /// 1. Find the terms in the step functions
+  /// 2. Compute the array size
+  /// 3. Compute the access function: divide the SCEV by the array size
+  ///    starting with the innermost dimensions found in step 2. The Quotient
+  ///    is the SCEV to be divided in the next step of the recursion. The
+  ///    Remainder is the subscript of the innermost dimension. Loop over all
+  ///    array dimensions computed in step 2.
+  ///
+  /// To compute a uniform array size for several memory accesses to the same
+  /// object, one can collect in step 1 all the step terms for all the memory
+  /// accesses, and compute in step 2 a unique array shape. This guarantees
+  /// that the array shape will be the same across all memory accesses.
+  ///
+  /// FIXME: We could derive the result of steps 1 and 2 from a description of
+  /// the array shape given in metadata.
+  ///
+  /// Example:
+  ///
+  /// A[][n][m]
+  ///
+  /// for i
+  ///   for j
+  ///     for k
+  ///       A[j+k][2i][5i] =
+  ///
+  /// The initial SCEV:
+  ///
+  /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
+  ///
+  /// 1. Find the different terms in the step functions:
+  /// -> [2*m, 5, n*m, n*m]
+  ///
+  /// 2. Compute the array size: sort and unique them
+  /// -> [n*m, 2*m, 5]
+  /// find the GCD of all the terms = 1
+  /// divide by the GCD and erase constant terms
+  /// -> [n*m, 2*m]
+  /// GCD = m
+  /// divide by GCD -> [n, 2]
+  /// remove constant terms
+  /// -> [n]
+  /// size of the array is A[unknown][n][m]
+  ///
+  /// 3. Compute the access function
+  /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
+  /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
+  /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
+  /// The remainder is the subscript of the innermost array dimension: [5i].
+  ///
+  /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
+  /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
+  /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
+  /// The Remainder is the subscript of the next array dimension: [2i].
+  ///
+  /// The subscript of the outermost dimension is the Quotient: [j+k].
+  ///
+  /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
+  void delinearize(const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
+                   SmallVectorImpl<const SCEV *> &Sizes,
+                   const SCEV *ElementSize);
+
+  /// Return the DataLayout associated with the module this SCEV instance is
+  /// operating on.
+  const DataLayout &getDataLayout() const {
+    return F.getParent()->getDataLayout();
+  }
 
-    /// Returns the SCEV expression of V, in the context of the current SCEV
-    /// predicate.  The order of transformations applied on the expression of V
-    /// returned by ScalarEvolution is guaranteed to be preserved, even when
-    /// adding new predicates.
-    const SCEV *getSCEV(Value *V);
-
-    /// Get the (predicated) backedge count for the analyzed loop.
-    const SCEV *getBackedgeTakenCount();
-
-    /// Adds a new predicate.
-    void addPredicate(const SCEVPredicate &Pred);
-
-    /// Attempts to produce an AddRecExpr for V by adding additional SCEV
-    /// predicates. If we can't transform the expression into an AddRecExpr we
-    /// return nullptr and not add additional SCEV predicates to the current
-    /// context.
-    const SCEVAddRecExpr *getAsAddRec(Value *V);
-
-    /// Proves that V doesn't overflow by adding SCEV predicate.
-    void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
-
-    /// Returns true if we've proved that V doesn't wrap by means of a SCEV
-    /// predicate.
-    bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
-
-    /// Returns the ScalarEvolution analysis used.
-    ScalarEvolution *getSE() const { return &SE; }
-
-    /// We need to explicitly define the copy constructor because of FlagsMap.
-    PredicatedScalarEvolution(const PredicatedScalarEvolution&);
-
-    /// Print the SCEV mappings done by the Predicated Scalar Evolution.
-    /// The printed text is indented by \p Depth.
-    void print(raw_ostream &OS, unsigned Depth) const;
-
-  private:
-    /// Increments the version number of the predicate.  This needs to be called
-    /// every time the SCEV predicate changes.
-    void updateGeneration();
-
-    /// Holds a SCEV and the version number of the SCEV predicate used to
-    /// perform the rewrite of the expression.
-    typedef std::pair<unsigned, const SCEV *> RewriteEntry;
-
-    /// Maps a SCEV to the rewrite result of that SCEV at a certain version
-    /// number. If this number doesn't match the current Generation, we will
-    /// need to do a rewrite. To preserve the transformation order of previous
-    /// rewrites, we will rewrite the previous result instead of the original
-    /// SCEV.
-    DenseMap<const SCEV *, RewriteEntry> RewriteMap;
-
-    /// Records what NoWrap flags we've added to a Value *.
-    ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
-
-    /// The ScalarEvolution analysis.
-    ScalarEvolution &SE;
-
-    /// The analyzed Loop.
-    const Loop &L;
-
-    /// The SCEVPredicate that forms our context. We will rewrite all
-    /// expressions assuming that this predicate true.
-    SCEVUnionPredicate Preds;
-
-    /// Marks the version of the SCEV predicate used. When rewriting a SCEV
-    /// expression we mark it with the version of the predicate. We use this to
-    /// figure out if the predicate has changed from the last rewrite of the
-    /// SCEV. If so, we need to perform a new rewrite.
-    unsigned Generation;
+  const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
+                                         const SCEVConstant *RHS);
 
-    /// The backedge taken count.
-    const SCEV *BackedgeCount;
-  };
+  const SCEVPredicate *
+  getWrapPredicate(const SCEVAddRecExpr *AR,
+                   SCEVWrapPredicate::IncrementWrapFlags AddedFlags);
+
+  /// Re-writes the SCEV according to the Predicates in \p A.
+  const SCEV *rewriteUsingPredicate(const SCEV *S, const Loop *L,
+                                    SCEVUnionPredicate &A);
+  /// Tries to convert the \p S expression to an AddRec expression,
+  /// adding additional predicates to \p Preds as required.
+  const SCEVAddRecExpr *
+  convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
+                                    SCEVUnionPredicate &Preds);
+
+private:
+  /// Compute the backedge taken count knowing the interval difference, the
+  /// stride and presence of the equality in the comparison.
+  const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
+                             bool Equality);
+
+  /// Verify if an linear IV with positive stride can overflow when in a
+  /// less-than comparison, knowing the invariant term of the comparison,
+  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
+  bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
+                          bool NoWrap);
+
+  /// Verify if an linear IV with negative stride can overflow when in a
+  /// greater-than comparison, knowing the invariant term of the comparison,
+  /// the stride and the knowledge of NSW/NUW flags on the recurrence.
+  bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, bool IsSigned,
+                          bool NoWrap);
+
+private:
+  FoldingSet<SCEV> UniqueSCEVs;
+  FoldingSet<SCEVPredicate> UniquePreds;
+  BumpPtrAllocator SCEVAllocator;
+
+  /// The head of a linked list of all SCEVUnknown values that have been
+  /// allocated. This is used by releaseMemory to locate them all and call
+  /// their destructors.
+  SCEVUnknown *FirstUnknown;
+};
+
+/// Analysis pass that exposes the \c ScalarEvolution for a function.
+class ScalarEvolutionAnalysis
+    : public AnalysisInfoMixin<ScalarEvolutionAnalysis> {
+  friend AnalysisInfoMixin<ScalarEvolutionAnalysis>;
+  static char PassID;
+
+public:
+  typedef ScalarEvolution Result;
+
+  ScalarEvolution run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// Printer pass for the \c ScalarEvolutionAnalysis results.
+class ScalarEvolutionPrinterPass
+    : public PassInfoMixin<ScalarEvolutionPrinterPass> {
+  raw_ostream &OS;
+
+public:
+  explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
+  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+class ScalarEvolutionWrapperPass : public FunctionPass {
+  std::unique_ptr<ScalarEvolution> SE;
+
+public:
+  static char ID;
+
+  ScalarEvolutionWrapperPass();
+
+  ScalarEvolution &getSE() { return *SE; }
+  const ScalarEvolution &getSE() const { return *SE; }
+
+  bool runOnFunction(Function &F) override;
+  void releaseMemory() override;
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+  void print(raw_ostream &OS, const Module * = nullptr) const override;
+  void verifyAnalysis() const override;
+};
+
+/// An interface layer with SCEV used to manage how we see SCEV expressions
+/// for values in the context of existing predicates. We can add new
+/// predicates, but we cannot remove them.
+///
+/// This layer has multiple purposes:
+///   - provides a simple interface for SCEV versioning.
+///   - guarantees that the order of transformations applied on a SCEV
+///     expression for a single Value is consistent across two different
+///     getSCEV calls. This means that, for example, once we've obtained
+///     an AddRec expression for a certain value through expression
+///     rewriting, we will continue to get an AddRec expression for that
+///     Value.
+///   - lowers the number of expression rewrites.
+class PredicatedScalarEvolution {
+public:
+  PredicatedScalarEvolution(ScalarEvolution &SE, Loop &L);
+  const SCEVUnionPredicate &getUnionPredicate() const;
+
+  /// Returns the SCEV expression of V, in the context of the current SCEV
+  /// predicate.  The order of transformations applied on the expression of V
+  /// returned by ScalarEvolution is guaranteed to be preserved, even when
+  /// adding new predicates.
+  const SCEV *getSCEV(Value *V);
+
+  /// Get the (predicated) backedge count for the analyzed loop.
+  const SCEV *getBackedgeTakenCount();
+
+  /// Adds a new predicate.
+  void addPredicate(const SCEVPredicate &Pred);
+
+  /// Attempts to produce an AddRecExpr for V by adding additional SCEV
+  /// predicates. If we can't transform the expression into an AddRecExpr we
+  /// return nullptr and not add additional SCEV predicates to the current
+  /// context.
+  const SCEVAddRecExpr *getAsAddRec(Value *V);
+
+  /// Proves that V doesn't overflow by adding SCEV predicate.
+  void setNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
+
+  /// Returns true if we've proved that V doesn't wrap by means of a SCEV
+  /// predicate.
+  bool hasNoOverflow(Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags);
+
+  /// Returns the ScalarEvolution analysis used.
+  ScalarEvolution *getSE() const { return &SE; }
+
+  /// We need to explicitly define the copy constructor because of FlagsMap.
+  PredicatedScalarEvolution(const PredicatedScalarEvolution &);
+
+  /// Print the SCEV mappings done by the Predicated Scalar Evolution.
+  /// The printed text is indented by \p Depth.
+  void print(raw_ostream &OS, unsigned Depth) const;
+
+private:
+  /// Increments the version number of the predicate.  This needs to be called
+  /// every time the SCEV predicate changes.
+  void updateGeneration();
+
+  /// Holds a SCEV and the version number of the SCEV predicate used to
+  /// perform the rewrite of the expression.
+  typedef std::pair<unsigned, const SCEV *> RewriteEntry;
+
+  /// Maps a SCEV to the rewrite result of that SCEV at a certain version
+  /// number. If this number doesn't match the current Generation, we will
+  /// need to do a rewrite. To preserve the transformation order of previous
+  /// rewrites, we will rewrite the previous result instead of the original
+  /// SCEV.
+  DenseMap<const SCEV *, RewriteEntry> RewriteMap;
+
+  /// Records what NoWrap flags we've added to a Value *.
+  ValueMap<Value *, SCEVWrapPredicate::IncrementWrapFlags> FlagsMap;
+
+  /// The ScalarEvolution analysis.
+  ScalarEvolution &SE;
+
+  /// The analyzed Loop.
+  const Loop &L;
+
+  /// The SCEVPredicate that forms our context. We will rewrite all
+  /// expressions assuming that this predicate true.
+  SCEVUnionPredicate Preds;
+
+  /// Marks the version of the SCEV predicate used. When rewriting a SCEV
+  /// expression we mark it with the version of the predicate. We use this to
+  /// figure out if the predicate has changed from the last rewrite of the
+  /// SCEV. If so, we need to perform a new rewrite.
+  unsigned Generation;
+
+  /// The backedge taken count.
+  const SCEV *BackedgeCount;
+};
 }
 
 #endif




More information about the llvm-commits mailing list