[llvm] r257480 - RDF: Implement register liveness analysis

Krzysztof Parzyszek via llvm-commits llvm-commits at lists.llvm.org
Tue Jan 12 07:56:34 PST 2016


Author: kparzysz
Date: Tue Jan 12 09:56:33 2016
New Revision: 257480

URL: http://llvm.org/viewvc/llvm-project?rev=257480&view=rev
Log:
RDF: Implement register liveness analysis

Compute block live-ins and operand kill flags from the DFG.

Added:
    llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp
    llvm/trunk/lib/Target/Hexagon/RDFLiveness.h
Modified:
    llvm/trunk/lib/Target/Hexagon/CMakeLists.txt

Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/CMakeLists.txt?rev=257480&r1=257479&r2=257480&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
+++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Tue Jan 12 09:56:33 2016
@@ -50,6 +50,7 @@ add_llvm_target(HexagonCodeGen
   HexagonTargetTransformInfo.cpp
   HexagonVLIWPacketizer.cpp
   RDFGraph.cpp
+  RDFLiveness.cpp
 )
 
 add_subdirectory(AsmParser)

Added: llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp?rev=257480&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp (added)
+++ llvm/trunk/lib/Target/Hexagon/RDFLiveness.cpp Tue Jan 12 09:56:33 2016
@@ -0,0 +1,848 @@
+//===--- RDFLiveness.cpp --------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Computation of the liveness information from the data-flow graph.
+//
+// The main functionality of this code is to compute block live-in
+// information. With the live-in information in place, the placement
+// of kill flags can also be recalculated.
+//
+// The block live-in calculation is based on the ideas from the following
+// publication:
+//
+// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
+// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
+// ACM Transactions on Architecture and Code Optimization, Association for
+// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
+// and Embedded Architectures and Compilers", 8 (4),
+// <10.1145/2086696.2086706>. <hal-00647369>
+//
+#include "RDFGraph.h"
+#include "RDFLiveness.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+
+using namespace llvm;
+using namespace rdf;
+
+namespace rdf {
+  template<>
+  raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
+    OS << '{';
+    for (auto I : P.Obj) {
+      OS << ' ' << Print<RegisterRef>(I.first, P.G) << '{';
+      for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
+        OS << Print<NodeId>(*J, P.G);
+        if (++J != E)
+          OS << ',';
+      }
+      OS << '}';
+    }
+    OS << " }";
+    return OS;
+  }
+}
+
+// The order in the returned sequence is the order of reaching defs in the
+// upward traversal: the first def is the closest to the given reference RefA,
+// the next one is further up, and so on.
+// The list ends at a reaching phi def, or when the reference from RefA is
+// covered by the defs in the list (see FullChain).
+// This function provides two modes of operation:
+// (1) Returning the sequence of reaching defs for a particular reference
+// node. This sequence will terminate at the first phi node [1].
+// (2) Returning a partial sequence of reaching defs, where the final goal
+// is to traverse past phi nodes to the actual defs arising from the code
+// itself.
+// In mode (2), the register reference for which the search was started
+// may be different from the reference node RefA, for which this call was
+// made, hence the argument RefRR, which holds the original register.
+// Also, some definitions may have already been encountered in a previous
+// call that will influence register covering. The register references
+// already defined are passed in through DefRRs.
+// In mode (1), the "continuation" considerations do not apply, and the
+// RefRR is the same as the register in RefA, and the set DefRRs is empty.
+//
+// [1] It is possible for multiple phi nodes to be included in the returned
+// sequence:
+//   SubA = phi ...
+//   SubB = phi ...
+//   ...  = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
+// However, these phi nodes are independent from one another in terms of
+// the data-flow.
+
+NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
+      NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
+  SetVector<NodeId> DefQ;
+  SetVector<NodeId> Owners;
+
+  // The initial queue should not have reaching defs for shadows. The
+  // whole point of a shadow is that it will have a reaching def that
+  // is not aliased to the reaching defs of the related shadows.
+  NodeId Start = RefA.Id;
+  auto SNA = DFG.addr<RefNode*>(Start);
+  if (NodeId RD = SNA.Addr->getReachingDef())
+    DefQ.insert(RD);
+
+  // Collect all the reaching defs, going up until a phi node is encountered,
+  // or there are no more reaching defs. From this set, the actual set of
+  // reaching defs will be selected.
+  // The traversal upwards must go on until a covering def is encountered.
+  // It is possible that a collection of non-covering (individually) defs
+  // will be sufficient, but keep going until a covering one is found.
+  for (unsigned i = 0; i < DefQ.size(); ++i) {
+    auto TA = DFG.addr<DefNode*>(DefQ[i]);
+    if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
+      continue;
+    // Stop at the covering/overwriting def of the initial register reference.
+    RegisterRef RR = TA.Addr->getRegRef();
+    if (RAI.covers(RR, RefRR)) {
+      uint16_t Flags = TA.Addr->getFlags();
+      if (!(Flags & NodeAttrs::Preserving))
+        continue;
+    }
+    // Get the next level of reaching defs. This will include multiple
+    // reaching defs for shadows.
+    for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
+      if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+        DefQ.insert(RD);
+  }
+
+  // Remove all non-phi defs that are not aliased to RefRR, and collect
+  // the owners of the remaining defs.
+  SetVector<NodeId> Defs;
+  for (auto N : DefQ) {
+    auto TA = DFG.addr<DefNode*>(N);
+    bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
+    if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
+      continue;
+    Defs.insert(TA.Id);
+    Owners.insert(TA.Addr->getOwner(DFG).Id);
+  }
+
+  // Return the MachineBasicBlock containing a given instruction.
+  auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
+    if (IA.Addr->getKind() == NodeAttrs::Stmt)
+      return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
+    assert(IA.Addr->getKind() == NodeAttrs::Phi);
+    NodeAddr<PhiNode*> PA = IA;
+    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
+    return BA.Addr->getCode();
+  };
+  // Less(A,B) iff instruction A is further down in the dominator tree than B.
+  auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
+    if (A == B)
+      return false;
+    auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
+    MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
+    if (BA != BB)
+      return MDT.dominates(BB, BA);
+    // They are in the same block.
+    bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
+    bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
+    if (StmtA) {
+      if (!StmtB)   // OB is a phi and phis dominate statements.
+        return true;
+      auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
+      auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
+      // The order must be linear, so tie-break such equalities.
+      if (CA == CB)
+        return A < B;
+      return MDT.dominates(CB, CA);
+    } else {
+      // OA is a phi.
+      if (StmtB)
+        return false;
+      // Both are phis. There is no ordering between phis (in terms of
+      // the data-flow), so tie-break this via node id comparison.
+      return A < B;
+    }
+  };
+
+  std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
+  std::sort(Tmp.begin(), Tmp.end(), Less);
+
+  // The vector is a list of instructions, so that defs coming from
+  // the same instruction don't need to be artificially ordered.
+  // Then, when computing the initial segment, and iterating over an
+  // instruction, pick the defs that contribute to the covering (i.e. is
+  // not covered by previously added defs). Check the defs individually,
+  // i.e. first check each def if is covered or not (without adding them
+  // to the tracking set), and then add all the selected ones.
+
+  // The reason for this is this example:
+  // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
+  // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
+  //                     covered if we added A first, and A would be covered
+  //                     if we added B first.
+
+  NodeList RDefs;
+  RegisterSet RRs = DefRRs;
+
+  auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
+    return TA.Addr->getKind() == NodeAttrs::Def &&
+           Defs.count(TA.Id);
+  };
+  for (auto T : Tmp) {
+    if (!FullChain && RAI.covers(RRs, RefRR))
+      break;
+    auto TA = DFG.addr<InstrNode*>(T);
+    bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
+    NodeList Ds;
+    for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
+      auto QR = DA.Addr->getRegRef();
+      // Add phi defs even if they are covered by subsequent defs. This is
+      // for cases where the reached use is not covered by any of the defs
+      // encountered so far: the phi def is needed to expose the liveness
+      // of that use to the entry of the block.
+      // Example:
+      //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
+      //   d2<R3>(d1,,u3), ...
+      //   ..., u3<D1>(d2)        This use needs to be live on entry.
+      if (FullChain || IsPhi || !RAI.covers(RRs, QR))
+        Ds.push_back(DA);
+    }
+    RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
+    for (NodeAddr<DefNode*> DA : Ds) {
+      // When collecting a full chain of definitions, do not consider phi
+      // defs to actually define a register.
+      uint16_t Flags = DA.Addr->getFlags();
+      if (!FullChain || !(Flags & NodeAttrs::PhiRef))
+        if (!(Flags & NodeAttrs::Preserving))
+          RRs.insert(DA.Addr->getRegRef());
+    }
+  }
+
+  return RDefs;
+}
+
+
+static const RegisterSet NoRegs;
+
+NodeList Liveness::getAllReachingDefs(NodeAddr<RefNode*> RefA) {
+  return getAllReachingDefs(RefA.Addr->getRegRef(), RefA, false, NoRegs);
+}
+
+
+void Liveness::computePhiInfo() {
+  NodeList Phis;
+  NodeAddr<FuncNode*> FA = DFG.getFunc();
+  auto Blocks = FA.Addr->members(DFG);
+  for (NodeAddr<BlockNode*> BA : Blocks) {
+    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
+  }
+
+  // phi use -> (map: reaching phi -> set of registers defined in between)
+  std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
+  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.
+
+  // Go over all phis.
+  for (NodeAddr<PhiNode*> PhiA : Phis) {
+    // Go over all defs and collect the reached uses that are non-phi uses
+    // (i.e. the "real uses").
+    auto &RealUses = RealUseMap[PhiA.Id];
+    auto PhiRefs = PhiA.Addr->members(DFG);
+
+    // Have a work queue of defs whose reached uses need to be found.
+    // For each def, add to the queue all reached (non-phi) defs.
+    SetVector<NodeId> DefQ;
+    NodeSet PhiDefs;
+    for (auto R : PhiRefs) {
+      if (!DFG.IsRef<NodeAttrs::Def>(R))
+        continue;
+      DefQ.insert(R.Id);
+      PhiDefs.insert(R.Id);
+    }
+    for (unsigned i = 0; i < DefQ.size(); ++i) {
+      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
+      NodeId UN = DA.Addr->getReachedUse();
+      while (UN != 0) {
+        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
+        if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
+          RealUses[getRestrictedRegRef(A)].insert(A.Id);
+        UN = A.Addr->getSibling();
+      }
+      NodeId DN = DA.Addr->getReachedDef();
+      while (DN != 0) {
+        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
+        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
+          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
+          // Must traverse the reached-def chain. Consider:
+          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
+          // The reachable use of D0 passes through a def of R0.
+          if (!(Flags & NodeAttrs::PhiRef))
+            DefQ.insert(T.Id);
+        }
+        DN = A.Addr->getSibling();
+      }
+    }
+    // Filter out these uses that appear to be reachable, but really
+    // are not. For example:
+    //
+    // R1:0 =          d1
+    //      = R1:0     u2     Reached by d1.
+    //   R0 =          d3
+    //      = R1:0     u4     Still reached by d1: indirectly through
+    //                        the def d3.
+    //   R1 =          d5
+    //      = R1:0     u6     Not reached by d1 (covered collectively
+    //                        by d3 and d5), but following reached
+    //                        defs and uses from d1 will lead here.
+    auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
+      return PhiDefs.count(DA.Id);
+    };
+    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
+      // For each reached register UI->first, there is a set UI->second, of
+      // uses of it. For each such use, check if it is reached by this phi,
+      // i.e. check if the set of its reaching uses intersects the set of
+      // this phi's defs.
+      auto &Uses = UI->second;
+      for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
+        auto UA = DFG.addr<UseNode*>(*I);
+        NodeList RDs = getAllReachingDefs(UI->first, UA);
+        if (std::any_of(RDs.begin(), RDs.end(), HasDef))
+          ++I;
+        else
+          I = Uses.erase(I);
+      }
+      if (Uses.empty())
+        UI = RealUses.erase(UI);
+      else
+        ++UI;
+    }
+
+    // If this phi reaches some "real" uses, add it to the queue for upward
+    // propagation.
+    if (!RealUses.empty())
+      PhiUQ.push_back(PhiA.Id);
+
+    // Go over all phi uses and check if the reaching def is another phi.
+    // Collect the phis that are among the reaching defs of these uses.
+    // While traversing the list of reaching defs for each phi use, collect
+    // the set of registers defined between this phi (Phi) and the owner phi
+    // of the reaching def.
+    for (auto I : PhiRefs) {
+      if (!DFG.IsRef<NodeAttrs::Use>(I))
+        continue;
+      NodeAddr<UseNode*> UA = I;
+      auto &UpMap = PhiUp[UA.Id];
+      RegisterSet DefRRs;
+      for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
+        if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
+          UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
+        else
+          DefRRs.insert(DA.Addr->getRegRef());
+      }
+    }
+  }
+
+  if (Trace) {
+    dbgs() << "Phi-up-to-phi map:\n";
+    for (auto I : PhiUp) {
+      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
+      for (auto R : I.second)
+        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
+               << Print<RegisterSet>(R.second, DFG);
+      dbgs() << " }\n";
+    }
+  }
+
+  // Propagate the reached registers up in the phi chain.
+  //
+  // The following type of situation needs careful handling:
+  //
+  //   phi d1<R1:0>  (1)
+  //        |
+  //   ... d2<R1>
+  //        |
+  //   phi u3<R1:0>  (2)
+  //        |
+  //   ... u4<R1>
+  //
+  // The phi node (2) defines a register pair R1:0, and reaches a "real"
+  // use u4 of just R1. The same phi node is also known to reach (upwards)
+  // the phi node (1). However, the use u4 is not reached by phi (1),
+  // because of the intervening definition d2 of R1. The data flow between
+  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
+  //
+  // When propagating uses up the phi chains, get the all reaching defs
+  // for a given phi use, and traverse the list until the propagated ref
+  // is covered, or until or until reaching the final phi. Only assume
+  // that the reference reaches the phi in the latter case.
+
+  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
+    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
+    auto &RealUses = RealUseMap[PA.Id];
+    for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+      NodeAddr<UseNode*> UA = U;
+      auto &UpPhis = PhiUp[UA.Id];
+      for (auto UP : UpPhis) {
+        bool Changed = false;
+        auto &MidDefs = UP.second;
+        // Collect the set UpReached of uses that are reached by the current
+        // phi PA, and are not covered by any intervening def between PA and
+        // the upward phi UP.
+        RegisterSet UpReached;
+        for (auto T : RealUses) {
+          if (!isRestricted(PA, UA, T.first))
+            continue;
+          if (!RAI.covers(MidDefs, T.first))
+            UpReached.insert(T.first);
+        }
+        if (UpReached.empty())
+          continue;
+        // Update the set PRUs of real uses reached by the upward phi UP with
+        // the actual set of uses (UpReached) that the UP phi reaches.
+        auto &PRUs = RealUseMap[UP.first];
+        for (auto R : UpReached) {
+          unsigned Z = PRUs[R].size();
+          PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
+          Changed |= (PRUs[R].size() != Z);
+        }
+        if (Changed)
+          PhiUQ.push_back(UP.first);
+      }
+    }
+  }
+
+  if (Trace) {
+    dbgs() << "Real use map:\n";
+    for (auto I : RealUseMap) {
+      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
+      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
+      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
+      if (!Ds.empty()) {
+        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
+        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
+      } else {
+        dbgs() << "<noreg>";
+      }
+      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
+    }
+  }
+}
+
+
+void Liveness::computeLiveIns() {
+  // Populate the node-to-block map. This speeds up the calculations
+  // significantly.
+  NBMap.clear();
+  for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
+    MachineBasicBlock *BB = BA.Addr->getCode();
+    for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
+      for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
+        NBMap.insert(std::make_pair(RA.Id, BB));
+      NBMap.insert(std::make_pair(IA.Id, BB));
+    }
+  }
+
+  MachineFunction &MF = DFG.getMF();
+
+  // Compute IDF first, then the inverse.
+  decltype(IIDF) IDF;
+  for (auto &B : MF) {
+    auto F1 = MDF.find(&B);
+    if (F1 == MDF.end())
+      continue;
+    SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
+    for (unsigned i = 0; i < IDFB.size(); ++i) {
+      auto F2 = MDF.find(IDFB[i]);
+      if (F2 != MDF.end())
+        IDFB.insert(F2->second.begin(), F2->second.end());
+    }
+    // Add B to the IDF(B). This will put B in the IIDF(B).
+    IDFB.insert(&B);
+    IDF[&B].insert(IDFB.begin(), IDFB.end());
+  }
+
+  for (auto I : IDF)
+    for (auto S : I.second)
+      IIDF[S].insert(I.first);
+
+  computePhiInfo();
+
+  NodeAddr<FuncNode*> FA = DFG.getFunc();
+  auto Blocks = FA.Addr->members(DFG);
+
+  // Build the phi live-on-entry map.
+  for (NodeAddr<BlockNode*> BA : Blocks) {
+    MachineBasicBlock *MB = BA.Addr->getCode();
+    auto &LON = PhiLON[MB];
+    for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
+      for (auto S : RealUseMap[P.Id])
+        LON[S.first].insert(S.second.begin(), S.second.end());
+  }
+
+  if (Trace) {
+    dbgs() << "Phi live-on-entry map:\n";
+    for (auto I : PhiLON)
+      dbgs() << "block #" << I.first->getNumber() << " -> "
+             << Print<RefMap>(I.second, DFG) << '\n';
+  }
+
+  // Build the phi live-on-exit map. Each phi node has some set of reached
+  // "real" uses. Propagate this set backwards into the block predecessors
+  // through the reaching defs of the corresponding phi uses.
+  for (NodeAddr<BlockNode*> BA : Blocks) {
+    auto Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+    for (NodeAddr<PhiNode*> PA : Phis) {
+      auto &RUs = RealUseMap[PA.Id];
+      if (RUs.empty())
+        continue;
+
+      for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+        NodeAddr<PhiUseNode*> UA = U;
+        if (UA.Addr->getReachingDef() == 0)
+          continue;
+
+        // Mark all reached "real" uses of P as live on exit in the
+        // predecessor.
+        // Remap all the RUs so that they have a correct reaching def.
+        auto PrA = DFG.addr<BlockNode*>(UA.Addr->getPredecessor());
+        auto &LOX = PhiLOX[PrA.Addr->getCode()];
+        for (auto R : RUs) {
+          RegisterRef RR = R.first;
+          if (!isRestricted(PA, UA, RR))
+            RR = getRestrictedRegRef(UA);
+          // The restricted ref may be different from the ref that was
+          // accessed in the "real use". This means that this phi use
+          // is not the one that carries this reference, so skip it.
+          if (!RAI.alias(R.first, RR))
+            continue;
+          for (auto D : getAllReachingDefs(RR, UA))
+            LOX[RR].insert(D.Id);
+        }
+      }  // for U : phi uses
+    }  // for P : Phis
+  }  // for B : Blocks
+
+  if (Trace) {
+    dbgs() << "Phi live-on-exit map:\n";
+    for (auto I : PhiLOX)
+      dbgs() << "block #" << I.first->getNumber() << " -> "
+             << Print<RefMap>(I.second, DFG) << '\n';
+  }
+
+  RefMap LiveIn;
+  traverse(&MF.front(), LiveIn);
+
+  // Add function live-ins to the live-in set of the function entry block.
+  auto &EntryIn = LiveMap[&MF.front()];
+  for (auto I = MRI.livein_begin(), E = MRI.livein_end(); I != E; ++I)
+    EntryIn.insert({I->first,0});
+
+  if (Trace) {
+    // Dump the liveness map
+    for (auto &B : MF) {
+      BitVector LV(TRI.getNumRegs());
+      for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+        LV.set(I->PhysReg);
+      dbgs() << "BB#" << B.getNumber() << "\t rec = {";
+      for (int x = LV.find_first(); x >= 0; x = LV.find_next(x))
+        dbgs() << ' ' << Print<RegisterRef>({unsigned(x),0}, DFG);
+      dbgs() << " }\n";
+      dbgs() << "\tcomp = " << Print<RegisterSet>(LiveMap[&B], DFG) << '\n';
+    }
+  }
+}
+
+
+void Liveness::resetLiveIns() {
+  for (auto &B : DFG.getMF()) {
+    // Remove all live-ins.
+    std::vector<unsigned> T;
+    for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+      T.push_back(I->PhysReg);
+    for (auto I : T)
+      B.removeLiveIn(I);
+    // Add the newly computed live-ins.
+    auto &LiveIns = LiveMap[&B];
+    for (auto I : LiveIns) {
+      assert(I.Sub == 0);
+      B.addLiveIn(I.Reg);
+    }
+  }
+}
+
+
+void Liveness::resetKills() {
+  for (auto &B : DFG.getMF())
+    resetKills(&B);
+}
+
+
+void Liveness::resetKills(MachineBasicBlock *B) {
+  auto CopyLiveIns = [] (MachineBasicBlock *B, BitVector &LV) -> void {
+    for (auto I = B->livein_begin(), E = B->livein_end(); I != E; ++I)
+      LV.set(I->PhysReg);
+  };
+
+  BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
+  CopyLiveIns(B, LiveIn);
+  for (auto SI : B->successors())
+    CopyLiveIns(SI, Live);
+
+  for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
+    MachineInstr *MI = &*I;
+    if (MI->isDebugValue())
+      continue;
+
+    MI->clearKillInfo();
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef())
+        continue;
+      unsigned R = Op.getReg();
+      if (!TargetRegisterInfo::isPhysicalRegister(R))
+        continue;
+      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+        Live.reset(*SR);
+    }
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isUse())
+        continue;
+      unsigned R = Op.getReg();
+      if (!TargetRegisterInfo::isPhysicalRegister(R))
+        continue;
+      bool IsLive = false;
+      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR) {
+        if (!Live[*SR])
+          continue;
+        IsLive = true;
+        break;
+      }
+      if (IsLive)
+        continue;
+      Op.setIsKill(true);
+      for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+        Live.set(*SR);
+    }
+  }
+}
+
+
+// For shadows, determine if RR is aliased to a reaching def of any other
+// shadow associated with RA. If it is not, then RR is "restricted" to RA,
+// and so it can be considered a value specific to RA. This is important
+// for accurately determining values associated with phi uses.
+// For non-shadows, this function returns "true".
+bool Liveness::isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+      RegisterRef RR) const {
+  NodeId Start = RA.Id;
+  for (NodeAddr<RefNode*> TA = DFG.getNextShadow(IA, RA);
+       TA.Id != 0 && TA.Id != Start; TA = DFG.getNextShadow(IA, TA)) {
+    NodeId RD = TA.Addr->getReachingDef();
+    if (RD == 0)
+      continue;
+    if (RAI.alias(RR, DFG.addr<DefNode*>(RD).Addr->getRegRef()))
+      return false;
+  }
+  return true;
+}
+
+
+RegisterRef Liveness::getRestrictedRegRef(NodeAddr<RefNode*> RA) const {
+  assert(DFG.IsRef<NodeAttrs::Use>(RA));
+  if (RA.Addr->getFlags() & NodeAttrs::Shadow) {
+    NodeId RD = RA.Addr->getReachingDef();
+    assert(RD);
+    RA = DFG.addr<DefNode*>(RD);
+  }
+  return RA.Addr->getRegRef();
+}
+
+
+unsigned Liveness::getPhysReg(RegisterRef RR) const {
+  if (!TargetRegisterInfo::isPhysicalRegister(RR.Reg))
+    return 0;
+  return RR.Sub ? TRI.getSubReg(RR.Reg, RR.Sub) : RR.Reg;
+}
+
+
+// Helper function to obtain the basic block containing the reaching def
+// of the given use.
+MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
+  auto F = NBMap.find(RN);
+  if (F != NBMap.end())
+    return F->second;
+  llvm_unreachable("Node id not in map");
+}
+
+
+void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
+  // The LiveIn map, for each (physical) register, contains the set of live
+  // reaching defs of that register that are live on entry to the associated
+  // block.
+
+  // The summary of the traversal algorithm:
+  //
+  // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
+  // and (U \in IDF(B) or B dom U).
+  //
+  // for (C : children) {
+  //   LU = {}
+  //   traverse(C, LU)
+  //   LiveUses += LU
+  // }
+  //
+  // LiveUses -= Defs(B);
+  // LiveUses += UpwardExposedUses(B);
+  // for (C : IIDF[B])
+  //   for (U : LiveUses)
+  //     if (Rdef(U) dom C)
+  //       C.addLiveIn(U)
+  //
+
+  // Go up the dominator tree (depth-first).
+  MachineDomTreeNode *N = MDT.getNode(B);
+  for (auto I : *N) {
+    RefMap L;
+    MachineBasicBlock *SB = I->getBlock();
+    traverse(SB, L);
+
+    for (auto S : L)
+      LiveIn[S.first].insert(S.second.begin(), S.second.end());
+  }
+
+  if (Trace) {
+    dbgs() << LLVM_FUNCTION_NAME << " in BB#" << B->getNumber()
+           << " after recursion into";
+    for (auto I : *N)
+      dbgs() << ' ' << I->getBlock()->getNumber();
+    dbgs() << "\n  LiveIn: " << Print<RefMap>(LiveIn, DFG);
+    dbgs() << "\n  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+  }
+
+  // Add phi uses that are live on exit from this block.
+  RefMap &PUs = PhiLOX[B];
+  for (auto S : PUs)
+    LiveIn[S.first].insert(S.second.begin(), S.second.end());
+
+  if (Trace) {
+    dbgs() << "after LOX\n";
+    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+    dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+  }
+
+  // Stop tracking all uses defined in this block: erase those records
+  // where the reaching def is located in B and which cover all reached
+  // uses.
+  auto Copy = LiveIn;
+  LiveIn.clear();
+
+  for (auto I : Copy) {
+    auto &Defs = LiveIn[I.first];
+    NodeSet Rest;
+    for (auto R : I.second) {
+      auto DA = DFG.addr<DefNode*>(R);
+      RegisterRef DDR = DA.Addr->getRegRef();
+      NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
+      NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+      // Defs from a different block need to be preserved. Defs from this
+      // block will need to be processed further, except for phi defs, the
+      // liveness of which is handled through the PhiLON/PhiLOX maps.
+      if (B != BA.Addr->getCode())
+        Defs.insert(R);
+      else {
+        bool IsPreserving = DA.Addr->getFlags() & NodeAttrs::Preserving;
+        if (IA.Addr->getKind() != NodeAttrs::Phi && !IsPreserving) {
+          bool Covering = RAI.covers(DDR, I.first);
+          NodeId U = DA.Addr->getReachedUse();
+          while (U && Covering) {
+            auto DUA = DFG.addr<UseNode*>(U);
+            RegisterRef Q = DUA.Addr->getRegRef();
+            Covering = RAI.covers(DA.Addr->getRegRef(), Q);
+            U = DUA.Addr->getSibling();
+          }
+          if (!Covering)
+            Rest.insert(R);
+        }
+      }
+    }
+
+    // Non-covering defs from B.
+    for (auto R : Rest) {
+      auto DA = DFG.addr<DefNode*>(R);
+      RegisterRef DRR = DA.Addr->getRegRef();
+      RegisterSet RRs;
+      for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
+        NodeAddr<InstrNode*> IA = TA.Addr->getOwner(DFG);
+        NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+        // Preserving defs do not count towards covering.
+        if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
+          RRs.insert(TA.Addr->getRegRef());
+        if (BA.Addr->getCode() == B)
+          continue;
+        if (RAI.covers(RRs, DRR))
+          break;
+        Defs.insert(TA.Id);
+      }
+    }
+  }
+
+  emptify(LiveIn);
+
+  if (Trace) {
+    dbgs() << "after defs in block\n";
+    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+    dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+  }
+
+  // Scan the block for upward-exposed uses and add them to the tracking set.
+  for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
+    NodeAddr<InstrNode*> IA = I;
+    if (IA.Addr->getKind() != NodeAttrs::Stmt)
+      continue;
+    for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
+      RegisterRef RR = UA.Addr->getRegRef();
+      for (auto D : getAllReachingDefs(UA))
+        if (getBlockWithRef(D.Id) != B)
+          LiveIn[RR].insert(D.Id);
+    }
+  }
+
+  if (Trace) {
+    dbgs() << "after uses in block\n";
+    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+    dbgs() << "  Local:  " << Print<RegisterSet>(LiveMap[B], DFG) << '\n';
+  }
+
+  // Phi uses should not be propagated up the dominator tree, since they
+  // are not dominated by their corresponding reaching defs.
+  auto &Local = LiveMap[B];
+  auto &LON = PhiLON[B];
+  for (auto R : LON)
+    Local.insert(R.first);
+
+  if (Trace) {
+    dbgs() << "after phi uses in block\n";
+    dbgs() << "  LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+    dbgs() << "  Local:  " << Print<RegisterSet>(Local, DFG) << '\n';
+  }
+
+  for (auto C : IIDF[B]) {
+    auto &LiveC = LiveMap[C];
+    for (auto S : LiveIn)
+      for (auto R : S.second)
+        if (MDT.properlyDominates(getBlockWithRef(R), C))
+          LiveC.insert(S.first);
+  }
+}
+
+
+void Liveness::emptify(RefMap &M) {
+  for (auto I = M.begin(), E = M.end(); I != E; )
+    I = I->second.empty() ? M.erase(I) : std::next(I);
+}
+

Added: llvm/trunk/lib/Target/Hexagon/RDFLiveness.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/RDFLiveness.h?rev=257480&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/RDFLiveness.h (added)
+++ llvm/trunk/lib/Target/Hexagon/RDFLiveness.h Tue Jan 12 09:56:33 2016
@@ -0,0 +1,106 @@
+//===--- RDFLiveness.h ----------------------------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// Recalculate the liveness information given a data flow graph.
+// This includes block live-ins and kill flags.
+
+#ifndef RDF_LIVENESS_H
+#define RDF_LIVENESS_H
+
+#include "RDFGraph.h"
+#include "llvm/ADT/DenseMap.h"
+#include <map>
+
+using namespace llvm;
+
+namespace llvm {
+  class MachineBasicBlock;
+  class MachineFunction;
+  class MachineRegisterInfo;
+  class TargetRegisterInfo;
+  class MachineDominatorTree;
+  class MachineDominanceFrontier;
+}
+
+namespace rdf {
+  struct Liveness {
+  public:
+    typedef std::map<MachineBasicBlock*,RegisterSet> LiveMapType;
+    typedef std::map<RegisterRef,NodeSet> RefMap;
+
+    Liveness(MachineRegisterInfo &mri, const DataFlowGraph &g)
+      : DFG(g), TRI(g.getTRI()), MDT(g.getDT()), MDF(g.getDF()),
+        RAI(g.getRAI()), MRI(mri), Empty(), Trace(false) {}
+
+    NodeList getAllReachingDefs(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+        bool FullChain = false, const RegisterSet &DefRRs = RegisterSet());
+    NodeList getAllReachingDefs(NodeAddr<RefNode*> RefA);
+
+    LiveMapType &getLiveMap() { return LiveMap; }
+    const LiveMapType &getLiveMap() const { return LiveMap; }
+    const RefMap &getRealUses(NodeId P) const {
+      auto F = RealUseMap.find(P);
+      return F == RealUseMap.end() ? Empty : F->second;
+    }
+
+    void computePhiInfo();
+    void computeLiveIns();
+    void resetLiveIns();
+    void resetKills();
+    void resetKills(MachineBasicBlock *B);
+
+    void trace(bool T) { Trace = T; }
+
+  private:
+    const DataFlowGraph &DFG;
+    const TargetRegisterInfo &TRI;
+    const MachineDominatorTree &MDT;
+    const MachineDominanceFrontier &MDF;
+    const RegisterAliasInfo &RAI;
+    MachineRegisterInfo &MRI;
+    LiveMapType LiveMap;
+    const RefMap Empty;
+    bool Trace;
+
+    // Cache of mapping from node ids (for RefNodes) to the containing
+    // basic blocks. Not computing it each time for each node reduces
+    // the liveness calculation time by a large fraction.
+    typedef DenseMap<NodeId,MachineBasicBlock*> NodeBlockMap;
+    NodeBlockMap NBMap;
+
+    // Phi information:
+    //
+    // map: NodeId -> (map: RegisterRef -> NodeSet)
+    //      phi id -> (map: register -> set of reached non-phi uses)
+    std::map<NodeId, RefMap> RealUseMap;
+
+    // Inverse iterated dominance frontier.
+    std::map<MachineBasicBlock*,std::set<MachineBasicBlock*>> IIDF;
+
+    // Live on entry.
+    std::map<MachineBasicBlock*,RefMap> PhiLON;
+
+    // Phi uses are considered to be located at the end of the block that
+    // they are associated with. The reaching def of a phi use dominates the
+    // block that the use corresponds to, but not the block that contains
+    // the phi itself. To include these uses in the liveness propagation (up
+    // the dominator tree), create a map: block -> set of uses live on exit.
+    std::map<MachineBasicBlock*,RefMap> PhiLOX;
+
+    bool isRestricted(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
+        RegisterRef RR) const;
+    RegisterRef getRestrictedRegRef(NodeAddr<RefNode*> RA) const;
+    unsigned getPhysReg(RegisterRef RR) const;
+    MachineBasicBlock *getBlockWithRef(NodeId RN) const;
+    void traverse(MachineBasicBlock *B, RefMap &LiveIn);
+    void emptify(RefMap &M);
+  };
+}
+
+#endif // RDF_LIVENESS_H




More information about the llvm-commits mailing list