[llvm] r253986 - [Hexagon] Bring HexagonInstrInfo up to date

Krzysztof Parzyszek via llvm-commits llvm-commits at lists.llvm.org
Tue Nov 24 06:55:27 PST 2015


Author: kparzysz
Date: Tue Nov 24 08:55:26 2015
New Revision: 253986

URL: http://llvm.org/viewvc/llvm-project?rev=253986&view=rev
Log:
[Hexagon] Bring HexagonInstrInfo up to date

Modified:
    llvm/trunk/lib/Target/Hexagon/Hexagon.td
    llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
    llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h
    llvm/trunk/lib/Target/Hexagon/HexagonNewValueJump.cpp
    llvm/trunk/lib/Target/Hexagon/HexagonScheduleV4.td
    llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.cpp
    llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.h
    llvm/trunk/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
    llvm/trunk/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h

Modified: llvm/trunk/lib/Target/Hexagon/Hexagon.td
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/Hexagon.td?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/Hexagon.td (original)
+++ llvm/trunk/lib/Target/Hexagon/Hexagon.td Tue Nov 24 08:55:26 2015
@@ -71,6 +71,7 @@ class NewValueRel: PredNewRel;
 // NewValueRel - Filter class used to relate load/store instructions having
 // different addressing modes with each other.
 class AddrModeRel: NewValueRel;
+class IntrinsicsRel;
 
 //===----------------------------------------------------------------------===//
 // Generate mapping table to relate non-predicate instructions with their
@@ -186,6 +187,37 @@ def getRegForm : InstrMapping {
   let ValueCols = [["reg"]];
 }
 
+def getRegShlForm : InstrMapping {
+  let FilterClass = "ImmRegShl";
+  let RowFields = ["CextOpcode", "PredSense", "PNewValue", "isNVStore"];
+  let ColFields = ["InputType"];
+  let KeyCol = ["imm"];
+  let ValueCols = [["reg"]];
+}
+
+def notTakenBranchPrediction : InstrMapping {
+  let FilterClass = "PredRel";
+  let RowFields = ["BaseOpcode", "PNewValue",  "PredSense", "isBranch", "isPredicated"];
+  let ColFields = ["isBrTaken"];
+  let KeyCol = ["true"];
+  let ValueCols = [["false"]];
+}
+
+def takenBranchPrediction : InstrMapping {
+  let FilterClass = "PredRel";
+  let RowFields = ["BaseOpcode", "PNewValue",  "PredSense", "isBranch", "isPredicated"];
+  let ColFields = ["isBrTaken"];
+  let KeyCol = ["false"];
+  let ValueCols = [["true"]];
+}
+
+def getRealHWInstr : InstrMapping {
+  let FilterClass = "IntrinsicsRel";
+  let RowFields = ["BaseOpcode"];
+  let ColFields = ["InstrType"];
+  let KeyCol = ["Pseudo"];
+  let ValueCols = [["Pseudo"], ["Real"]];
+}
 //===----------------------------------------------------------------------===//
 // Register File, Calling Conv, Instruction Descriptions
 //===----------------------------------------------------------------------===//
@@ -210,6 +242,10 @@ def : Proc<"hexagonv4",  HexagonModelV4,
            [ArchV4]>;
 def : Proc<"hexagonv5",  HexagonModelV4,
            [ArchV4, ArchV5]>;
+def : Proc<"hexagonv55", HexagonModelV55,
+           [ArchV4, ArchV5, ArchV55]>;
+def : Proc<"hexagonv60", HexagonModelV60,
+           [ArchV4, ArchV5, ArchV55, ArchV60, ExtensionHVX]>;
 
 //===----------------------------------------------------------------------===//
 // Declare the target which we are implementing

Modified: llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp Tue Nov 24 08:55:26 2015
@@ -23,6 +23,7 @@
 #include "llvm/CodeGen/MachineMemOperand.h"
 #include "llvm/CodeGen/MachineRegisterInfo.h"
 #include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCAsmInfo.h"
 #include "llvm/Support/Debug.h"
 #include "llvm/Support/MathExtras.h"
 #include "llvm/Support/raw_ostream.h"
@@ -36,9 +37,37 @@ using namespace llvm;
 #include "HexagonGenInstrInfo.inc"
 #include "HexagonGenDFAPacketizer.inc"
 
+using namespace llvm;
+
+static cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
+  cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
+                            "packetization boundary."));
+
+static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
+  cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
+
+static cl::opt<bool> EnableTimingClassLatency(
+  "enable-timing-class-latency", cl::Hidden, cl::init(false),
+  cl::desc("Enable timing class latency"));
+
+static cl::opt<bool> EnableALUForwarding(
+  "enable-alu-forwarding", cl::Hidden, cl::init(true),
+  cl::desc("Enable vec alu forwarding"));
+
+static cl::opt<bool> EnableACCForwarding(
+  "enable-acc-forwarding", cl::Hidden, cl::init(true),
+  cl::desc("Enable vec acc forwarding"));
+
+static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
+  cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
+
 ///
 /// Constants for Hexagon instructions.
 ///
+const int Hexagon_MEMV_OFFSET_MAX_128B = 2047;  // #s7
+const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
+const int Hexagon_MEMV_OFFSET_MAX = 1023;  // #s6
+const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
 const int Hexagon_MEMW_OFFSET_MAX = 4095;
 const int Hexagon_MEMW_OFFSET_MIN = -4096;
 const int Hexagon_MEMD_OFFSET_MAX = 8191;
@@ -57,71 +86,49 @@ const int Hexagon_MEMH_AUTOINC_MAX = 14;
 const int Hexagon_MEMH_AUTOINC_MIN = -16;
 const int Hexagon_MEMB_AUTOINC_MAX = 7;
 const int Hexagon_MEMB_AUTOINC_MIN = -8;
+const int Hexagon_MEMV_AUTOINC_MAX = 192;
+const int Hexagon_MEMV_AUTOINC_MIN = -256;
+const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
+const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
 
 // Pin the vtable to this file.
 void HexagonInstrInfo::anchor() {}
 
 HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
     : HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
-      RI(), Subtarget(ST) {}
+      RI() {}
 
-/// isLoadFromStackSlot - If the specified machine instruction is a direct
-/// load from a stack slot, return the virtual or physical register number of
-/// the destination along with the FrameIndex of the loaded stack slot.  If
-/// not, return 0.  This predicate must return 0 if the instruction has
-/// any side effects other than loading from the stack slot.
-unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
-                                             int &FrameIndex) const {
 
+static bool isIntRegForSubInst(unsigned Reg) {
+  return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
+         (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
+}
 
-  switch (MI->getOpcode()) {
-  default: break;
-  case Hexagon::L2_loadri_io:
-  case Hexagon::L2_loadrd_io:
-  case Hexagon::L2_loadrh_io:
-  case Hexagon::L2_loadrb_io:
-  case Hexagon::L2_loadrub_io:
-    if (MI->getOperand(2).isFI() &&
-        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
-      FrameIndex = MI->getOperand(2).getIndex();
-      return MI->getOperand(0).getReg();
-    }
-    break;
-  }
-  return 0;
+
+static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
+  return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
+         isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
 }
 
 
-/// isStoreToStackSlot - If the specified machine instruction is a direct
-/// store to a stack slot, return the virtual or physical register number of
-/// the source reg along with the FrameIndex of the loaded stack slot.  If
-/// not, return 0.  This predicate must return 0 if the instruction has
-/// any side effects other than storing to the stack slot.
-unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
-                                            int &FrameIndex) const {
-  switch (MI->getOpcode()) {
-  default: break;
-  case Hexagon::S2_storeri_io:
-  case Hexagon::S2_storerd_io:
-  case Hexagon::S2_storerh_io:
-  case Hexagon::S2_storerb_io:
-    if (MI->getOperand(2).isFI() &&
-        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
-      FrameIndex = MI->getOperand(0).getIndex();
-      return MI->getOperand(2).getReg();
-    }
-    break;
+/// Calculate number of instructions excluding the debug instructions.
+static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
+                              MachineBasicBlock::const_instr_iterator MIE) {
+  unsigned Count = 0;
+  for (; MIB != MIE; ++MIB) {
+    if (!MIB->isDebugValue())
+      ++Count;
   }
-  return 0;
+  return Count;
 }
 
-// Find the hardware loop instruction used to set-up the specified loop.
-// On Hexagon, we have two instructions used to set-up the hardware loop
-// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
-// to indicate the end of a loop.
-static MachineInstr *
-findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
-              SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
+
+/// Find the hardware loop instruction used to set-up the specified loop.
+/// On Hexagon, we have two instructions used to set-up the hardware loop
+/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
+/// to indicate the end of a loop.
+static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
+      SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
   int LOOPi;
   int LOOPr;
   if (EndLoopOp == Hexagon::ENDLOOP0) {
@@ -157,99 +164,108 @@ findLoopInstr(MachineBasicBlock *BB, int
   return 0;
 }
 
-unsigned HexagonInstrInfo::InsertBranch(
-    MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB,
-    ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
 
-  Opcode_t BOpc   = Hexagon::J2_jump;
-  Opcode_t BccOpc = Hexagon::J2_jumpt;
+/// Gather register def/uses from MI.
+/// This treats possible (predicated) defs as actually happening ones
+/// (conservatively).
+static inline void parseOperands(const MachineInstr *MI,
+      SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
+  Defs.clear();
+  Uses.clear();
 
-  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+  for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+    const MachineOperand &MO = MI->getOperand(i);
 
-  // Check if ReverseBranchCondition has asked to reverse this branch
-  // If we want to reverse the branch an odd number of times, we want
-  // J2_jumpf.
-  if (!Cond.empty() && Cond[0].isImm())
-    BccOpc = Cond[0].getImm();
+    if (!MO.isReg())
+      continue;
 
-  if (!FBB) {
-    if (Cond.empty()) {
-      // Due to a bug in TailMerging/CFG Optimization, we need to add a
-      // special case handling of a predicated jump followed by an
-      // unconditional jump. If not, Tail Merging and CFG Optimization go
-      // into an infinite loop.
-      MachineBasicBlock *NewTBB, *NewFBB;
-      SmallVector<MachineOperand, 4> Cond;
-      MachineInstr *Term = MBB.getFirstTerminator();
-      if (Term != MBB.end() && isPredicated(Term) &&
-          !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
-        MachineBasicBlock *NextBB = &*++MBB.getIterator();
-        if (NewTBB == NextBB) {
-          ReverseBranchCondition(Cond);
-          RemoveBranch(MBB);
-          return InsertBranch(MBB, TBB, nullptr, Cond, DL);
-        }
-      }
-      BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
-    } else if (isEndLoopN(Cond[0].getImm())) {
-      int EndLoopOp = Cond[0].getImm();
-      assert(Cond[1].isMBB());
-      // Since we're adding an ENDLOOP, there better be a LOOP instruction.
-      // Check for it, and change the BB target if needed.
-      SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
-      MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
-      assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
-      Loop->getOperand(0).setMBB(TBB);
-      // Add the ENDLOOP after the finding the LOOP0.
-      BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
-    } else if (isNewValueJump(Cond[0].getImm())) {
-      assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
-      // New value jump
-      // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
-      // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
-      unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
-      DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
-      if (Cond[2].isReg()) {
-        unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
-        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
-          addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
-      } else if(Cond[2].isImm()) {
-        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
-          addImm(Cond[2].getImm()).addMBB(TBB);
-      } else
-        llvm_unreachable("Invalid condition for branching");
-    } else {
-      assert((Cond.size() == 2) && "Malformed cond vector");
-      const MachineOperand &RO = Cond[1];
-      unsigned Flags = getUndefRegState(RO.isUndef());
-      BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
-    }
-    return 1;
+    unsigned Reg = MO.getReg();
+    if (!Reg)
+      continue;
+
+    if (MO.isUse())
+      Uses.push_back(MO.getReg());
+
+    if (MO.isDef())
+      Defs.push_back(MO.getReg());
   }
-  assert((!Cond.empty()) &&
-         "Cond. cannot be empty when multiple branchings are required");
-  assert((!isNewValueJump(Cond[0].getImm())) &&
-         "NV-jump cannot be inserted with another branch");
-  // Special case for hardware loops.  The condition is a basic block.
-  if (isEndLoopN(Cond[0].getImm())) {
-    int EndLoopOp = Cond[0].getImm();
-    assert(Cond[1].isMBB());
-    // Since we're adding an ENDLOOP, there better be a LOOP instruction.
-    // Check for it, and change the BB target if needed.
-    SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
-    MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
-    assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
-    Loop->getOperand(0).setMBB(TBB);
-    // Add the ENDLOOP after the finding the LOOP0.
-    BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
-  } else {
-    const MachineOperand &RO = Cond[1];
-    unsigned Flags = getUndefRegState(RO.isUndef());
-    BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+}
+
+
+// Position dependent, so check twice for swap.
+static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
+  switch (Ga) {
+  case HexagonII::HSIG_None:
+  default:
+    return false;
+  case HexagonII::HSIG_L1:
+    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
+  case HexagonII::HSIG_L2:
+    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+            Gb == HexagonII::HSIG_A);
+  case HexagonII::HSIG_S1:
+    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
+  case HexagonII::HSIG_S2:
+    return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+            Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
+            Gb == HexagonII::HSIG_A);
+  case HexagonII::HSIG_A:
+    return (Gb == HexagonII::HSIG_A);
+  case HexagonII::HSIG_Compound:
+    return (Gb == HexagonII::HSIG_Compound);
   }
-  BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+  return false;
+}
 
-  return 2;
+
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot.  If
+/// not, return 0.  This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+                                               int &FrameIndex) const {
+  switch (MI->getOpcode()) {
+  default: break;
+  case Hexagon::L2_loadri_io:
+  case Hexagon::L2_loadrd_io:
+  case Hexagon::L2_loadrh_io:
+  case Hexagon::L2_loadrb_io:
+  case Hexagon::L2_loadrub_io:
+    if (MI->getOperand(2).isFI() &&
+        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+      FrameIndex = MI->getOperand(2).getIndex();
+      return MI->getOperand(0).getReg();
+    }
+    break;
+  }
+  return 0;
+}
+
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot.  If
+/// not, return 0.  This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+                                              int &FrameIndex) const {
+  switch (MI->getOpcode()) {
+  default: break;
+  case Hexagon::S2_storeri_io:
+  case Hexagon::S2_storerd_io:
+  case Hexagon::S2_storerh_io:
+  case Hexagon::S2_storerb_io:
+    if (MI->getOperand(2).isFI() &&
+        MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+      FrameIndex = MI->getOperand(0).getIndex();
+      return MI->getOperand(2).getReg();
+    }
+    break;
+  }
+  return 0;
 }
 
 
@@ -268,9 +284,6 @@ unsigned HexagonInstrInfo::InsertBranch(
 /// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
 /// Cond[1] = R
 /// Cond[2] = Imm
-/// @note Related function is \fn findInstrPredicate which fills in
-/// Cond. vector when a predicated instruction is passed to it.
-/// We follow same protocol in that case too.
 ///
 bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
                                      MachineBasicBlock *&TBB,
@@ -313,7 +326,7 @@ bool HexagonInstrInfo::AnalyzeBranch(Mac
       return false;
     --I;
   }
-  
+
   bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
                      I->getOperand(0).isMBB();
   // Delete the J2_jump if it's equivalent to a fall-through.
@@ -437,6 +450,7 @@ bool HexagonInstrInfo::AnalyzeBranch(Mac
   return true;
 }
 
+
 unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
   DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
   MachineBasicBlock::iterator I = MBB.end();
@@ -457,100 +471,127 @@ unsigned HexagonInstrInfo::RemoveBranch(
   return Count;
 }
 
-/// \brief For a comparison instruction, return the source registers in
-/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
-/// compares against in CmpValue. Return true if the comparison instruction
-/// can be analyzed.
-bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
-                                      unsigned &SrcReg, unsigned &SrcReg2,
-                                      int &Mask, int &Value) const {
-  unsigned Opc = MI->getOpcode();
-
-  // Set mask and the first source register.
-  switch (Opc) {
-    case Hexagon::C2_cmpeq:
-    case Hexagon::C2_cmpeqp:
-    case Hexagon::C2_cmpgt:
-    case Hexagon::C2_cmpgtp:
-    case Hexagon::C2_cmpgtu:
-    case Hexagon::C2_cmpgtup:
-    case Hexagon::C4_cmpneq:
-    case Hexagon::C4_cmplte:
-    case Hexagon::C4_cmplteu:
-    case Hexagon::C2_cmpeqi:
-    case Hexagon::C2_cmpgti:
-    case Hexagon::C2_cmpgtui:
-    case Hexagon::C4_cmpneqi:
-    case Hexagon::C4_cmplteui:
-    case Hexagon::C4_cmpltei:
-      SrcReg = MI->getOperand(1).getReg();
-      Mask = ~0;
-      break;
-    case Hexagon::A4_cmpbeq:
-    case Hexagon::A4_cmpbgt:
-    case Hexagon::A4_cmpbgtu:
-    case Hexagon::A4_cmpbeqi:
-    case Hexagon::A4_cmpbgti:
-    case Hexagon::A4_cmpbgtui:
-      SrcReg = MI->getOperand(1).getReg();
-      Mask = 0xFF;
-      break;
-    case Hexagon::A4_cmpheq:
-    case Hexagon::A4_cmphgt:
-    case Hexagon::A4_cmphgtu:
-    case Hexagon::A4_cmpheqi:
-    case Hexagon::A4_cmphgti:
-    case Hexagon::A4_cmphgtui:
-      SrcReg = MI->getOperand(1).getReg();
-      Mask = 0xFFFF;
-      break;
-  }
 
-  // Set the value/second source register.
-  switch (Opc) {
-    case Hexagon::C2_cmpeq:
-    case Hexagon::C2_cmpeqp:
-    case Hexagon::C2_cmpgt:
-    case Hexagon::C2_cmpgtp:
-    case Hexagon::C2_cmpgtu:
-    case Hexagon::C2_cmpgtup:
-    case Hexagon::A4_cmpbeq:
-    case Hexagon::A4_cmpbgt:
-    case Hexagon::A4_cmpbgtu:
-    case Hexagon::A4_cmpheq:
-    case Hexagon::A4_cmphgt:
-    case Hexagon::A4_cmphgtu:
-    case Hexagon::C4_cmpneq:
-    case Hexagon::C4_cmplte:
-    case Hexagon::C4_cmplteu:
-      SrcReg2 = MI->getOperand(2).getReg();
-      return true;
+unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
+      MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+      ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
+  unsigned BOpc   = Hexagon::J2_jump;
+  unsigned BccOpc = Hexagon::J2_jumpt;
+  assert(validateBranchCond(Cond) && "Invalid branching condition");
+  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
 
-    case Hexagon::C2_cmpeqi:
-    case Hexagon::C2_cmpgtui:
-    case Hexagon::C2_cmpgti:
-    case Hexagon::C4_cmpneqi:
-    case Hexagon::C4_cmplteui:
-    case Hexagon::C4_cmpltei:
-    case Hexagon::A4_cmpbeqi:
-    case Hexagon::A4_cmpbgti:
-    case Hexagon::A4_cmpbgtui:
-    case Hexagon::A4_cmpheqi:
-    case Hexagon::A4_cmphgti:
-    case Hexagon::A4_cmphgtui:
-      SrcReg2 = 0;
-      Value = MI->getOperand(2).getImm();
-      return true;
+  // Check if ReverseBranchCondition has asked to reverse this branch
+  // If we want to reverse the branch an odd number of times, we want
+  // J2_jumpf.
+  if (!Cond.empty() && Cond[0].isImm())
+    BccOpc = Cond[0].getImm();
+
+  if (!FBB) {
+    if (Cond.empty()) {
+      // Due to a bug in TailMerging/CFG Optimization, we need to add a
+      // special case handling of a predicated jump followed by an
+      // unconditional jump. If not, Tail Merging and CFG Optimization go
+      // into an infinite loop.
+      MachineBasicBlock *NewTBB, *NewFBB;
+      SmallVector<MachineOperand, 4> Cond;
+      MachineInstr *Term = MBB.getFirstTerminator();
+      if (Term != MBB.end() && isPredicated(Term) &&
+          !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
+        MachineBasicBlock *NextBB = &*++MBB.getIterator();
+        if (NewTBB == NextBB) {
+          ReverseBranchCondition(Cond);
+          RemoveBranch(MBB);
+          return InsertBranch(MBB, TBB, nullptr, Cond, DL);
+        }
+      }
+      BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+    } else if (isEndLoopN(Cond[0].getImm())) {
+      int EndLoopOp = Cond[0].getImm();
+      assert(Cond[1].isMBB());
+      // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+      // Check for it, and change the BB target if needed.
+      SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+      MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+      assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+      Loop->getOperand(0).setMBB(TBB);
+      // Add the ENDLOOP after the finding the LOOP0.
+      BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+    } else if (isNewValueJump(Cond[0].getImm())) {
+      assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
+      // New value jump
+      // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
+      // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
+      unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
+      DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
+      if (Cond[2].isReg()) {
+        unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
+        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+          addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
+      } else if(Cond[2].isImm()) {
+        BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+          addImm(Cond[2].getImm()).addMBB(TBB);
+      } else
+        llvm_unreachable("Invalid condition for branching");
+    } else {
+      assert((Cond.size() == 2) && "Malformed cond vector");
+      const MachineOperand &RO = Cond[1];
+      unsigned Flags = getUndefRegState(RO.isUndef());
+      BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+    }
+    return 1;
+  }
+  assert((!Cond.empty()) &&
+         "Cond. cannot be empty when multiple branchings are required");
+  assert((!isNewValueJump(Cond[0].getImm())) &&
+         "NV-jump cannot be inserted with another branch");
+  // Special case for hardware loops.  The condition is a basic block.
+  if (isEndLoopN(Cond[0].getImm())) {
+    int EndLoopOp = Cond[0].getImm();
+    assert(Cond[1].isMBB());
+    // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+    // Check for it, and change the BB target if needed.
+    SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+    MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+    assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+    Loop->getOperand(0).setMBB(TBB);
+    // Add the ENDLOOP after the finding the LOOP0.
+    BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+  } else {
+    const MachineOperand &RO = Cond[1];
+    unsigned Flags = getUndefRegState(RO.isUndef());
+    BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
   }
+  BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
 
-  return false;
+  return 2;
+}
+
+
+bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
+      unsigned NumCycles, unsigned ExtraPredCycles,
+      BranchProbability Probability) const {
+  return nonDbgBBSize(&MBB) <= 3;
+}
+
+
+bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+      unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
+      unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
+      const {
+  return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
+}
+
+
+bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
+      unsigned NumInstrs, BranchProbability Probability) const {
+  return NumInstrs <= 4;
 }
 
 
 void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
-                                 MachineBasicBlock::iterator I, DebugLoc DL,
-                                 unsigned DestReg, unsigned SrcReg,
-                                 bool KillSrc) const {
+      MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
+      unsigned SrcReg, bool KillSrc) const {
+  auto &HRI = getRegisterInfo();
   if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
     BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
     return;
@@ -598,17 +639,66 @@ void HexagonInstrInfo::copyPhysReg(Machi
       addReg(SrcReg, getKillRegState(KillSrc));
     return;
   }
+  if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
+      Hexagon::IntRegsRegClass.contains(DestReg)) {
+    BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
+      addReg(SrcReg, getKillRegState(KillSrc));
+    return;
+  }
+  if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
+    BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
+      addReg(SrcReg, getKillRegState(KillSrc));
+    return;
+  }
+  if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
+    BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
+      addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
+             getKillRegState(KillSrc)).
+      addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
+             getKillRegState(KillSrc));
+    return;
+  }
+  if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
+    BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
+      addReg(SrcReg).
+      addReg(SrcReg, getKillRegState(KillSrc));
+    return;
+  }
+  if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
+    Hexagon::VectorRegsRegClass.contains(DestReg)) {
+    llvm_unreachable("Unimplemented pred to vec");
+    return;
+  }
+  if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
+      Hexagon::VectorRegsRegClass.contains(SrcReg)) {
+    llvm_unreachable("Unimplemented vec to pred");
+    return;
+  }
+  if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
+    BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
+      HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
+      addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
+             getKillRegState(KillSrc));
+    BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
+      HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
+      addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
+             getKillRegState(KillSrc));
+    return;
+  }
 
+#ifndef NDEBUG
+  // Show the invalid registers to ease debugging.
+  dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
+         << ": " << PrintReg(DestReg, &HRI)
+         << " = " << PrintReg(SrcReg, &HRI) << '\n';
+#endif
   llvm_unreachable("Unimplemented");
 }
 
 
-void HexagonInstrInfo::
-storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
-                    unsigned SrcReg, bool isKill, int FI,
-                    const TargetRegisterClass *RC,
-                    const TargetRegisterInfo *TRI) const {
-
+void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+      MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
+      const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
   DebugLoc DL = MBB.findDebugLoc(I);
   MachineFunction &MF = *MBB.getParent();
   MachineFrameInfo &MFI = *MF.getFrameInfo();
@@ -636,22 +726,9 @@ storeRegToStackSlot(MachineBasicBlock &M
 }
 
 
-void HexagonInstrInfo::storeRegToAddr(
-                                 MachineFunction &MF, unsigned SrcReg,
-                                 bool isKill,
-                                 SmallVectorImpl<MachineOperand> &Addr,
-                                 const TargetRegisterClass *RC,
-                                 SmallVectorImpl<MachineInstr*> &NewMIs) const
-{
-  llvm_unreachable("Unimplemented");
-}
-
-
-void HexagonInstrInfo::
-loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
-                     unsigned DestReg, int FI,
-                     const TargetRegisterClass *RC,
-                     const TargetRegisterInfo *TRI) const {
+void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+      MachineBasicBlock::iterator I, unsigned DestReg, int FI,
+      const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
   DebugLoc DL = MBB.findDebugLoc(I);
   MachineFunction &MF = *MBB.getParent();
   MachineFrameInfo &MFI = *MF.getFrameInfo();
@@ -675,14 +752,14 @@ loadRegFromStackSlot(MachineBasicBlock &
 }
 
 
-void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
-                                        SmallVectorImpl<MachineOperand> &Addr,
-                                        const TargetRegisterClass *RC,
-                                 SmallVectorImpl<MachineInstr*> &NewMIs) const {
-  llvm_unreachable("Unimplemented");
-}
-bool
-HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
+/// expandPostRAPseudo - This function is called for all pseudo instructions
+/// that remain after register allocation. Many pseudo instructions are
+/// created to help register allocation. This is the place to convert them
+/// into real instructions. The target can edit MI in place, or it can insert
+/// new instructions and erase MI. The function should return true if
+/// anything was changed.
+bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
+      const {
   const HexagonRegisterInfo &HRI = getRegisterInfo();
   MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
   MachineBasicBlock &MBB = *MI->getParent();
@@ -796,106 +873,143 @@ HexagonInstrInfo::expandPostRAPseudo(Mac
   return false;
 }
 
-MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(
-    MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
-    MachineBasicBlock::iterator InsertPt, int FI) const {
-  // Hexagon_TODO: Implement.
-  return nullptr;
-}
 
-unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
+// We indicate that we want to reverse the branch by
+// inserting the reversed branching opcode.
+bool HexagonInstrInfo::ReverseBranchCondition(
+      SmallVectorImpl<MachineOperand> &Cond) const {
+  if (Cond.empty())
+    return true;
+  assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
+  unsigned opcode = Cond[0].getImm();
+  //unsigned temp;
+  assert(get(opcode).isBranch() && "Should be a branching condition.");
+  if (isEndLoopN(opcode))
+    return true;
+  unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
+  Cond[0].setImm(NewOpcode);
+  return false;
+}
 
-  MachineRegisterInfo &RegInfo = MF->getRegInfo();
-  const TargetRegisterClass *TRC;
-  if (VT == MVT::i1) {
-    TRC = &Hexagon::PredRegsRegClass;
-  } else if (VT == MVT::i32 || VT == MVT::f32) {
-    TRC = &Hexagon::IntRegsRegClass;
-  } else if (VT == MVT::i64 || VT == MVT::f64) {
-    TRC = &Hexagon::DoubleRegsRegClass;
-  } else {
-    llvm_unreachable("Cannot handle this register class");
-  }
 
-  unsigned NewReg = RegInfo.createVirtualRegister(TRC);
-  return NewReg;
+void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
+      MachineBasicBlock::iterator MI) const {
+  DebugLoc DL;
+  BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
 }
 
-bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
-  const MCInstrDesc &MID = MI->getDesc();
-  const uint64_t F = MID.TSFlags;
-  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
-    return true;
 
-  // TODO: This is largely obsolete now. Will need to be removed
-  // in consecutive patches.
-  switch(MI->getOpcode()) {
-    // TFR_FI Remains a special case.
-    case Hexagon::TFR_FI:
-      return true;
-    default:
-      return false;
-  }
-  return  false;
+// Returns true if an instruction is predicated irrespective of the predicate
+// sense. For example, all of the following will return true.
+// if (p0) R1 = add(R2, R3)
+// if (!p0) R1 = add(R2, R3)
+// if (p0.new) R1 = add(R2, R3)
+// if (!p0.new) R1 = add(R2, R3)
+// Note: New-value stores are not included here as in the current
+// implementation, we don't need to check their predicate sense.
+bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
 }
 
-// This returns true in two cases:
-// - The OP code itself indicates that this is an extended instruction.
-// - One of MOs has been marked with HMOTF_ConstExtended flag.
-bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
-  // First check if this is permanently extended op code.
-  const uint64_t F = MI->getDesc().TSFlags;
-  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
-    return true;
-  // Use MO operand flags to determine if one of MI's operands
-  // has HMOTF_ConstExtended flag set.
-  for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
-       E = MI->operands_end(); I != E; ++I) {
-    if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
-      return true;
+
+bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
+      ArrayRef<MachineOperand> Cond) const {
+  if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
+      isEndLoopN(Cond[0].getImm())) {
+    DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
+    return false;
   }
-  return  false;
-}
+  int Opc = MI->getOpcode();
+  assert (isPredicable(MI) && "Expected predicable instruction");
+  bool invertJump = predOpcodeHasNot(Cond);
 
-bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
-  return MI->getDesc().isBranch();
-}
+  // We have to predicate MI "in place", i.e. after this function returns,
+  // MI will need to be transformed into a predicated form. To avoid com-
+  // plicated manipulations with the operands (handling tied operands,
+  // etc.), build a new temporary instruction, then overwrite MI with it.
 
-bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
-  if (isNewValueJump(MI))
-    return true;
+  MachineBasicBlock &B = *MI->getParent();
+  DebugLoc DL = MI->getDebugLoc();
+  unsigned PredOpc = getCondOpcode(Opc, invertJump);
+  MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
+  unsigned NOp = 0, NumOps = MI->getNumOperands();
+  while (NOp < NumOps) {
+    MachineOperand &Op = MI->getOperand(NOp);
+    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+      break;
+    T.addOperand(Op);
+    NOp++;
+  }
 
-  if (isNewValueStore(MI))
-    return true;
+  unsigned PredReg, PredRegPos, PredRegFlags;
+  bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
+  (void)GotPredReg;
+  assert(GotPredReg);
+  T.addReg(PredReg, PredRegFlags);
+  while (NOp < NumOps)
+    T.addOperand(MI->getOperand(NOp++));
 
-  return false;
-}
+  MI->setDesc(get(PredOpc));
+  while (unsigned n = MI->getNumOperands())
+    MI->RemoveOperand(n-1);
+  for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
+    MI->addOperand(T->getOperand(i));
 
-bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
-  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
-}
+  MachineBasicBlock::instr_iterator TI = T->getIterator();
+  B.erase(TI);
 
-bool HexagonInstrInfo::isNewValue(Opcode_t Opcode) const {
-  const uint64_t F = get(Opcode).TSFlags;
-  return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+  MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
+  MRI.clearKillFlags(PredReg);
+  return true;
 }
 
-bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
-  return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
+
+bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+      ArrayRef<MachineOperand> Pred2) const {
+  // TODO: Fix this
+  return false;
 }
 
-bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
-  bool isPred = MI->getDesc().isPredicable();
 
-  if (!isPred)
-    return false;
+bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
+                                   std::vector<MachineOperand> &Pred) const {
+  auto &HRI = getRegisterInfo();
+  for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
+    MachineOperand MO = MI->getOperand(oper);
+    if (MO.isReg() && MO.isDef()) {
+      const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
+      if (RC == &Hexagon::PredRegsRegClass) {
+        Pred.push_back(MO);
+        return true;
+      }
+    }
+  }
+  return false;
+}
+
+bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
+  bool isPred = MI->getDesc().isPredicable();
+
+  if (!isPred)
+    return false;
 
   const int Opc = MI->getOpcode();
+  int NumOperands = MI->getNumOperands();
+
+  // Keep a flag for upto 4 operands in the instructions, to indicate if
+  // that operand has been constant extended.
+  bool OpCExtended[4];
+  if (NumOperands > 4)
+    NumOperands = 4;
+
+  for (int i = 0; i < NumOperands; i++)
+    OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
 
   switch(Opc) {
   case Hexagon::A2_tfrsi:
-    return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm());
+    return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
+           isInt<12>(MI->getOperand(1).getImm());
 
   case Hexagon::S2_storerd_io:
     return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
@@ -943,8 +1057,8 @@ bool HexagonInstrInfo::isPredicable(Mach
   case Hexagon::S4_storeirb_io:
   case Hexagon::S4_storeirh_io:
   case Hexagon::S4_storeiri_io:
-    return (isUInt<6>(MI->getOperand(1).getImm()) &&
-            isInt<6>(MI->getOperand(2).getImm()));
+    return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
+           (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
 
   case Hexagon::A2_addi:
     return isInt<8>(MI->getOperand(2).getImm());
@@ -961,269 +1075,1105 @@ bool HexagonInstrInfo::isPredicable(Mach
   return true;
 }
 
-// This function performs the following inversiones:
-//
-//  cPt    ---> cNotPt
-//  cNotPt ---> cPt
-//
-unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
-  int InvPredOpcode;
-  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
-                                        : Hexagon::getTruePredOpcode(Opc);
-  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
-    return InvPredOpcode;
 
-  switch(Opc) {
-    default: llvm_unreachable("Unexpected predicated instruction");
-    case Hexagon::C2_ccombinewt:
-      return Hexagon::C2_ccombinewf;
-    case Hexagon::C2_ccombinewf:
-      return Hexagon::C2_ccombinewt;
+bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+      const MachineBasicBlock *MBB, const MachineFunction &MF) const {
+  // Debug info is never a scheduling boundary. It's necessary to be explicit
+  // due to the special treatment of IT instructions below, otherwise a
+  // dbg_value followed by an IT will result in the IT instruction being
+  // considered a scheduling hazard, which is wrong. It should be the actual
+  // instruction preceding the dbg_value instruction(s), just like it is
+  // when debug info is not present.
+  if (MI->isDebugValue())
+    return false;
 
-      // Dealloc_return.
-    case Hexagon::L4_return_t:
-      return Hexagon::L4_return_f;
-    case Hexagon::L4_return_f:
-      return Hexagon::L4_return_t;
+  // Throwing call is a boundary.
+  if (MI->isCall()) {
+    // If any of the block's successors is a landing pad, this could be a
+    // throwing call.
+    for (auto I : MBB->successors())
+      if (I->isEHPad())
+        return true;
   }
-}
 
-// New Value Store instructions.
-bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
+  // Don't mess around with no return calls.
+  if (MI->getOpcode() == Hexagon::CALLv3nr)
+    return true;
 
-  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
-}
+  // Terminators and labels can't be scheduled around.
+  if (MI->getDesc().isTerminator() || MI->isPosition())
+    return true;
 
-bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
-  const uint64_t F = get(Opcode).TSFlags;
+  if (MI->isInlineAsm() && !ScheduleInlineAsm)
+      return true;
 
-  return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+  return false;
 }
 
-int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
-  enum Hexagon::PredSense inPredSense;
-  inPredSense = invertPredicate ? Hexagon::PredSense_false :
-                                  Hexagon::PredSense_true;
-  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
-  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
-    return CondOpcode;
-
-  // This switch case will be removed once all the instructions have been
-  // modified to use relation maps.
-  switch(Opc) {
-  case Hexagon::TFRI_f:
-    return !invertPredicate ? Hexagon::TFRI_cPt_f :
-                              Hexagon::TFRI_cNotPt_f;
-  case Hexagon::A2_combinew:
-    return !invertPredicate ? Hexagon::C2_ccombinewt :
-                              Hexagon::C2_ccombinewf;
 
-  // DEALLOC_RETURN.
-  case Hexagon::L4_return:
-    return !invertPredicate ? Hexagon::L4_return_t:
-                              Hexagon::L4_return_f;
+/// Measure the specified inline asm to determine an approximation of its
+/// length.
+/// Comments (which run till the next SeparatorString or newline) do not
+/// count as an instruction.
+/// Any other non-whitespace text is considered an instruction, with
+/// multiple instructions separated by SeparatorString or newlines.
+/// Variable-length instructions are not handled here; this function
+/// may be overloaded in the target code to do that.
+/// Hexagon counts the number of ##'s and adjust for that many
+/// constant exenders.
+unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
+      const MCAsmInfo &MAI) const {
+  StringRef AStr(Str);
+  // Count the number of instructions in the asm.
+  bool atInsnStart = true;
+  unsigned Length = 0;
+  for (; *Str; ++Str) {
+    if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
+                                strlen(MAI.getSeparatorString())) == 0)
+      atInsnStart = true;
+    if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
+      Length += MAI.getMaxInstLength();
+      atInsnStart = false;
+    }
+    if (atInsnStart && strncmp(Str, MAI.getCommentString(),
+                               strlen(MAI.getCommentString())) == 0)
+      atInsnStart = false;
   }
-  llvm_unreachable("Unexpected predicable instruction");
+
+  // Add to size number of constant extenders seen * 4.
+  StringRef Occ("##");
+  Length += AStr.count(Occ)*4;
+  return Length;
 }
 
 
-bool HexagonInstrInfo::
-PredicateInstruction(MachineInstr *MI,
-                     ArrayRef<MachineOperand> Cond) const {
-  if (Cond.empty() || isEndLoopN(Cond[0].getImm())) {
-    DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
-    return false;
-  }
-  int Opc = MI->getOpcode();
-  assert (isPredicable(MI) && "Expected predicable instruction");
-  bool invertJump = predOpcodeHasNot(Cond);
+ScheduleHazardRecognizer*
+HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
+      const InstrItineraryData *II, const ScheduleDAG *DAG) const {
+  return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
+}
 
-  // We have to predicate MI "in place", i.e. after this function returns,
-  // MI will need to be transformed into a predicated form. To avoid com-
-  // plicated manipulations with the operands (handling tied operands,
-  // etc.), build a new temporary instruction, then overwrite MI with it.
 
-  MachineBasicBlock &B = *MI->getParent();
-  DebugLoc DL = MI->getDebugLoc();
-  unsigned PredOpc = getCondOpcode(Opc, invertJump);
-  MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
-  unsigned NOp = 0, NumOps = MI->getNumOperands();
-  while (NOp < NumOps) {
-    MachineOperand &Op = MI->getOperand(NOp);
-    if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+/// \brief For a comparison instruction, return the source registers in
+/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
+      unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
+  unsigned Opc = MI->getOpcode();
+
+  // Set mask and the first source register.
+  switch (Opc) {
+    case Hexagon::C2_cmpeq:
+    case Hexagon::C2_cmpeqp:
+    case Hexagon::C2_cmpgt:
+    case Hexagon::C2_cmpgtp:
+    case Hexagon::C2_cmpgtu:
+    case Hexagon::C2_cmpgtup:
+    case Hexagon::C4_cmpneq:
+    case Hexagon::C4_cmplte:
+    case Hexagon::C4_cmplteu:
+    case Hexagon::C2_cmpeqi:
+    case Hexagon::C2_cmpgti:
+    case Hexagon::C2_cmpgtui:
+    case Hexagon::C4_cmpneqi:
+    case Hexagon::C4_cmplteui:
+    case Hexagon::C4_cmpltei:
+      SrcReg = MI->getOperand(1).getReg();
+      Mask = ~0;
+      break;
+    case Hexagon::A4_cmpbeq:
+    case Hexagon::A4_cmpbgt:
+    case Hexagon::A4_cmpbgtu:
+    case Hexagon::A4_cmpbeqi:
+    case Hexagon::A4_cmpbgti:
+    case Hexagon::A4_cmpbgtui:
+      SrcReg = MI->getOperand(1).getReg();
+      Mask = 0xFF;
+      break;
+    case Hexagon::A4_cmpheq:
+    case Hexagon::A4_cmphgt:
+    case Hexagon::A4_cmphgtu:
+    case Hexagon::A4_cmpheqi:
+    case Hexagon::A4_cmphgti:
+    case Hexagon::A4_cmphgtui:
+      SrcReg = MI->getOperand(1).getReg();
+      Mask = 0xFFFF;
       break;
-    T.addOperand(Op);
-    NOp++;
   }
 
-  unsigned PredReg, PredRegPos, PredRegFlags;
-  bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
-  (void)GotPredReg;
-  assert(GotPredReg);
-  T.addReg(PredReg, PredRegFlags);
-  while (NOp < NumOps)
-    T.addOperand(MI->getOperand(NOp++));
+  // Set the value/second source register.
+  switch (Opc) {
+    case Hexagon::C2_cmpeq:
+    case Hexagon::C2_cmpeqp:
+    case Hexagon::C2_cmpgt:
+    case Hexagon::C2_cmpgtp:
+    case Hexagon::C2_cmpgtu:
+    case Hexagon::C2_cmpgtup:
+    case Hexagon::A4_cmpbeq:
+    case Hexagon::A4_cmpbgt:
+    case Hexagon::A4_cmpbgtu:
+    case Hexagon::A4_cmpheq:
+    case Hexagon::A4_cmphgt:
+    case Hexagon::A4_cmphgtu:
+    case Hexagon::C4_cmpneq:
+    case Hexagon::C4_cmplte:
+    case Hexagon::C4_cmplteu:
+      SrcReg2 = MI->getOperand(2).getReg();
+      return true;
 
-  MI->setDesc(get(PredOpc));
-  while (unsigned n = MI->getNumOperands())
-    MI->RemoveOperand(n-1);
-  for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
-    MI->addOperand(T->getOperand(i));
+    case Hexagon::C2_cmpeqi:
+    case Hexagon::C2_cmpgtui:
+    case Hexagon::C2_cmpgti:
+    case Hexagon::C4_cmpneqi:
+    case Hexagon::C4_cmplteui:
+    case Hexagon::C4_cmpltei:
+    case Hexagon::A4_cmpbeqi:
+    case Hexagon::A4_cmpbgti:
+    case Hexagon::A4_cmpbgtui:
+    case Hexagon::A4_cmpheqi:
+    case Hexagon::A4_cmphgti:
+    case Hexagon::A4_cmphgtui:
+      SrcReg2 = 0;
+      Value = MI->getOperand(2).getImm();
+      return true;
+  }
 
-  MachineBasicBlock::instr_iterator TI = T->getIterator();
-  B.erase(TI);
+  return false;
+}
 
-  MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
-  MRI.clearKillFlags(PredReg);
 
-  return true;
+unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+      const MachineInstr *MI, unsigned *PredCost) const {
+  return getInstrTimingClassLatency(ItinData, MI);
 }
 
 
-bool
-HexagonInstrInfo::
-isProfitableToIfCvt(MachineBasicBlock &MBB,
-                    unsigned NumCycles,
-                    unsigned ExtraPredCycles,
-                    BranchProbability Probability) const {
-  return true;
+DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
+    const TargetSubtargetInfo &STI) const {
+  const InstrItineraryData *II = STI.getInstrItineraryData();
+  return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
 }
 
 
-bool
-HexagonInstrInfo::
-isProfitableToIfCvt(MachineBasicBlock &TMBB,
-                    unsigned NumTCycles,
-                    unsigned ExtraTCycles,
-                    MachineBasicBlock &FMBB,
-                    unsigned NumFCycles,
-                    unsigned ExtraFCycles,
-                    BranchProbability Probability) const {
-  return true;
-}
+// Inspired by this pair:
+//  %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
+//  S2_storeri_io %R29, 132, %R1<kill>; flags:  mem:ST4[FixedStack1]
+// Currently AA considers the addresses in these instructions to be aliasing.
+bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
+      MachineInstr *MIb, AliasAnalysis *AA) const {
+  int OffsetA = 0, OffsetB = 0;
+  unsigned SizeA = 0, SizeB = 0;
 
-// Returns true if an instruction is predicated irrespective of the predicate
-// sense. For example, all of the following will return true.
-// if (p0) R1 = add(R2, R3)
-// if (!p0) R1 = add(R2, R3)
-// if (p0.new) R1 = add(R2, R3)
-// if (!p0.new) R1 = add(R2, R3)
-bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
+  if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
+      MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
+    return false;
 
-  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
-}
+  // Instructions that are pure loads, not loads and stores like memops are not
+  // dependent.
+  if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
+    return true;
 
-bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
-  const uint64_t F = get(Opcode).TSFlags;
+  // Get base, offset, and access size in MIa.
+  unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
+  if (!BaseRegA || !SizeA)
+    return false;
+
+  // Get base, offset, and access size in MIb.
+  unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
+  if (!BaseRegB || !SizeB)
+    return false;
+
+  if (BaseRegA != BaseRegB)
+    return false;
+
+  // This is a mem access with the same base register and known offsets from it.
+  // Reason about it.
+  if (OffsetA > OffsetB) {
+    uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
+    return (SizeB <= offDiff);
+  } else if (OffsetA < OffsetB) {
+    uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
+    return (SizeA <= offDiff);
+  }
 
-  return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+  return false;
 }
 
-bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
 
-  assert(isPredicated(MI));
-  return (!((F >> HexagonII::PredicatedFalsePos) &
-            HexagonII::PredicatedFalseMask));
+unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
+  MachineRegisterInfo &MRI = MF->getRegInfo();
+  const TargetRegisterClass *TRC;
+  if (VT == MVT::i1) {
+    TRC = &Hexagon::PredRegsRegClass;
+  } else if (VT == MVT::i32 || VT == MVT::f32) {
+    TRC = &Hexagon::IntRegsRegClass;
+  } else if (VT == MVT::i64 || VT == MVT::f64) {
+    TRC = &Hexagon::DoubleRegsRegClass;
+  } else {
+    llvm_unreachable("Cannot handle this register class");
+  }
+
+  unsigned NewReg = MRI.createVirtualRegister(TRC);
+  return NewReg;
 }
 
-bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
-  const uint64_t F = get(Opcode).TSFlags;
 
-  // Make sure that the instruction is predicated.
-  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
-  return (!((F >> HexagonII::PredicatedFalsePos) &
-            HexagonII::PredicatedFalseMask));
+bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
+  return (getAddrMode(MI) == HexagonII::AbsoluteSet);
 }
 
-bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
+
+bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
   const uint64_t F = MI->getDesc().TSFlags;
+  return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
+}
 
-  assert(isPredicated(MI));
-  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+
+bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
+  const MachineFunction *MF = MI->getParent()->getParent();
+  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+  const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+  if (!(isTC1(MI))
+      && !(QII->isTC2Early(MI))
+      && !(MI->getDesc().mayLoad())
+      && !(MI->getDesc().mayStore())
+      && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
+      && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
+      && !(QII->isMemOp(MI))
+      && !(MI->isBranch())
+      && !(MI->isReturn())
+      && !MI->isCall())
+    return true;
+
+  return false;
 }
 
-bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
-  const uint64_t F = get(Opcode).TSFlags;
 
-  assert(isPredicated(Opcode));
-  return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+// Return true if the the instruction is a compund branch instruction.
+bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
+  return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
 }
 
-// Returns true, if a ST insn can be promoted to a new-value store.
-bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
 
-  return ((F >> HexagonII::mayNVStorePos) &
-           HexagonII::mayNVStoreMask);
+bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
+  return (MI->isBranch() && isPredicated(MI)) ||
+         isConditionalTransfer(MI) ||
+         isConditionalALU32(MI)    ||
+         isConditionalLoad(MI)     ||
+         // Predicated stores which don't have a .new on any operands.
+         (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
+          !isPredicatedNew(MI));
 }
 
-bool
-HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
-                                   std::vector<MachineOperand> &Pred) const {
-  for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
-    MachineOperand MO = MI->getOperand(oper);
-    if (MO.isReg() && MO.isDef()) {
-      const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
-      if (RC == &Hexagon::PredRegsRegClass) {
-        Pred.push_back(MO);
+
+bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
+  switch (MI->getOpcode()) {
+    case Hexagon::A2_paddf:
+    case Hexagon::A2_paddfnew:
+    case Hexagon::A2_paddif:
+    case Hexagon::A2_paddifnew:
+    case Hexagon::A2_paddit:
+    case Hexagon::A2_padditnew:
+    case Hexagon::A2_paddt:
+    case Hexagon::A2_paddtnew:
+    case Hexagon::A2_pandf:
+    case Hexagon::A2_pandfnew:
+    case Hexagon::A2_pandt:
+    case Hexagon::A2_pandtnew:
+    case Hexagon::A2_porf:
+    case Hexagon::A2_porfnew:
+    case Hexagon::A2_port:
+    case Hexagon::A2_portnew:
+    case Hexagon::A2_psubf:
+    case Hexagon::A2_psubfnew:
+    case Hexagon::A2_psubt:
+    case Hexagon::A2_psubtnew:
+    case Hexagon::A2_pxorf:
+    case Hexagon::A2_pxorfnew:
+    case Hexagon::A2_pxort:
+    case Hexagon::A2_pxortnew:
+    case Hexagon::A4_paslhf:
+    case Hexagon::A4_paslhfnew:
+    case Hexagon::A4_paslht:
+    case Hexagon::A4_paslhtnew:
+    case Hexagon::A4_pasrhf:
+    case Hexagon::A4_pasrhfnew:
+    case Hexagon::A4_pasrht:
+    case Hexagon::A4_pasrhtnew:
+    case Hexagon::A4_psxtbf:
+    case Hexagon::A4_psxtbfnew:
+    case Hexagon::A4_psxtbt:
+    case Hexagon::A4_psxtbtnew:
+    case Hexagon::A4_psxthf:
+    case Hexagon::A4_psxthfnew:
+    case Hexagon::A4_psxtht:
+    case Hexagon::A4_psxthtnew:
+    case Hexagon::A4_pzxtbf:
+    case Hexagon::A4_pzxtbfnew:
+    case Hexagon::A4_pzxtbt:
+    case Hexagon::A4_pzxtbtnew:
+    case Hexagon::A4_pzxthf:
+    case Hexagon::A4_pzxthfnew:
+    case Hexagon::A4_pzxtht:
+    case Hexagon::A4_pzxthtnew:
+    case Hexagon::C2_ccombinewf:
+    case Hexagon::C2_ccombinewt:
+      return true;
+  }
+  return false;
+}
+
+
+// FIXME - Function name and it's functionality don't match.
+// It should be renamed to hasPredNewOpcode()
+bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
+  if (!MI->getDesc().mayLoad() || !isPredicated(MI))
+    return false;
+
+  int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
+  // Instruction with valid predicated-new opcode can be promoted to .new.
+  return PNewOpcode >= 0;
+}
+
+
+// Returns true if an instruction is a conditional store.
+//
+// Note: It doesn't include conditional new-value stores as they can't be
+// converted to .new predicate.
+bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
+  switch (MI->getOpcode()) {
+    default: return false;
+    case Hexagon::S4_storeirbt_io:
+    case Hexagon::S4_storeirbf_io:
+    case Hexagon::S4_pstorerbt_rr:
+    case Hexagon::S4_pstorerbf_rr:
+    case Hexagon::S2_pstorerbt_io:
+    case Hexagon::S2_pstorerbf_io:
+    case Hexagon::S2_pstorerbt_pi:
+    case Hexagon::S2_pstorerbf_pi:
+    case Hexagon::S2_pstorerdt_io:
+    case Hexagon::S2_pstorerdf_io:
+    case Hexagon::S4_pstorerdt_rr:
+    case Hexagon::S4_pstorerdf_rr:
+    case Hexagon::S2_pstorerdt_pi:
+    case Hexagon::S2_pstorerdf_pi:
+    case Hexagon::S2_pstorerht_io:
+    case Hexagon::S2_pstorerhf_io:
+    case Hexagon::S4_storeirht_io:
+    case Hexagon::S4_storeirhf_io:
+    case Hexagon::S4_pstorerht_rr:
+    case Hexagon::S4_pstorerhf_rr:
+    case Hexagon::S2_pstorerht_pi:
+    case Hexagon::S2_pstorerhf_pi:
+    case Hexagon::S2_pstorerit_io:
+    case Hexagon::S2_pstorerif_io:
+    case Hexagon::S4_storeirit_io:
+    case Hexagon::S4_storeirif_io:
+    case Hexagon::S4_pstorerit_rr:
+    case Hexagon::S4_pstorerif_rr:
+    case Hexagon::S2_pstorerit_pi:
+    case Hexagon::S2_pstorerif_pi:
+
+    // V4 global address store before promoting to dot new.
+    case Hexagon::S4_pstorerdt_abs:
+    case Hexagon::S4_pstorerdf_abs:
+    case Hexagon::S4_pstorerbt_abs:
+    case Hexagon::S4_pstorerbf_abs:
+    case Hexagon::S4_pstorerht_abs:
+    case Hexagon::S4_pstorerhf_abs:
+    case Hexagon::S4_pstorerit_abs:
+    case Hexagon::S4_pstorerif_abs:
+      return true;
+
+    // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+    // from the "Conditional Store" list. Because a predicated new value store
+    // would NOT be promoted to a double dot new store.
+    // This function returns yes for those stores that are predicated but not
+    // yet promoted to predicate dot new instructions.
+  }
+}
+
+
+bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+    case Hexagon::A2_tfrt:
+    case Hexagon::A2_tfrf:
+    case Hexagon::C2_cmoveit:
+    case Hexagon::C2_cmoveif:
+    case Hexagon::A2_tfrtnew:
+    case Hexagon::A2_tfrfnew:
+    case Hexagon::C2_cmovenewit:
+    case Hexagon::C2_cmovenewif:
+    case Hexagon::A2_tfrpt:
+    case Hexagon::A2_tfrpf:
+      return true;
+
+    default:
+      return false;
+  }
+  return false;
+}
+
+
+// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
+// isFPImm and later getFPImm as well.
+bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+  if (isExtended) // Instruction must be extended.
+    return true;
+
+  unsigned isExtendable =
+    (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
+  if (!isExtendable)
+    return false;
+
+  if (MI->isCall())
+    return false;
+
+  short ExtOpNum = getCExtOpNum(MI);
+  const MachineOperand &MO = MI->getOperand(ExtOpNum);
+  // Use MO operand flags to determine if MO
+  // has the HMOTF_ConstExtended flag set.
+  if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+    return true;
+  // If this is a Machine BB address we are talking about, and it is
+  // not marked as extended, say so.
+  if (MO.isMBB())
+    return false;
+
+  // We could be using an instruction with an extendable immediate and shoehorn
+  // a global address into it. If it is a global address it will be constant
+  // extended. We do this for COMBINE.
+  // We currently only handle isGlobal() because it is the only kind of
+  // object we are going to end up with here for now.
+  // In the future we probably should add isSymbol(), etc.
+  if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
+      MO.isJTI() || MO.isCPI())
+    return true;
+
+  // If the extendable operand is not 'Immediate' type, the instruction should
+  // have 'isExtended' flag set.
+  assert(MO.isImm() && "Extendable operand must be Immediate type");
+
+  int MinValue = getMinValue(MI);
+  int MaxValue = getMaxValue(MI);
+  int ImmValue = MO.getImm();
+
+  return (ImmValue < MinValue || ImmValue > MaxValue);
+}
+
+
+bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::L4_return :
+  case Hexagon::L4_return_t :
+  case Hexagon::L4_return_f :
+  case Hexagon::L4_return_tnew_pnt :
+  case Hexagon::L4_return_fnew_pnt :
+  case Hexagon::L4_return_tnew_pt :
+  case Hexagon::L4_return_fnew_pt :
+   return true;
+  }
+  return false;
+}
+
+
+// Return true when ConsMI uses a register defined by ProdMI.
+bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
+      const MachineInstr *ConsMI) const {
+  const MCInstrDesc &ProdMCID = ProdMI->getDesc();
+  if (!ProdMCID.getNumDefs())
+    return false;
+
+  auto &HRI = getRegisterInfo();
+
+  SmallVector<unsigned, 4> DefsA;
+  SmallVector<unsigned, 4> DefsB;
+  SmallVector<unsigned, 8> UsesA;
+  SmallVector<unsigned, 8> UsesB;
+
+  parseOperands(ProdMI, DefsA, UsesA);
+  parseOperands(ConsMI, DefsB, UsesB);
+
+  for (auto &RegA : DefsA)
+    for (auto &RegB : UsesB) {
+      // True data dependency.
+      if (RegA == RegB)
         return true;
-      }
+
+      if (Hexagon::DoubleRegsRegClass.contains(RegA))
+        for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
+          if (RegB == *SubRegs)
+            return true;
+
+      if (Hexagon::DoubleRegsRegClass.contains(RegB))
+        for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
+          if (RegA == *SubRegs)
+            return true;
     }
+
+  return false;
+}
+
+
+// Returns true if the instruction is alread a .cur.
+bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::V6_vL32b_cur_pi:
+  case Hexagon::V6_vL32b_cur_ai:
+  case Hexagon::V6_vL32b_cur_pi_128B:
+  case Hexagon::V6_vL32b_cur_ai_128B:
+    return true;
+  }
+  return false;
+}
+
+
+// Returns true, if any one of the operands is a dot new
+// insn, whether it is predicated dot new or register dot new.
+bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
+  if (isNewValueInst(MI) ||
+     (isPredicated(MI) && isPredicatedNew(MI)))
+    return true;
+
+  return false;
+}
+
+
+/// Symmetrical. See if these two instructions are fit for duplex pair.
+bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
+      const MachineInstr *MIb) const {
+  HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
+  HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
+  return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
+}
+
+
+bool HexagonInstrInfo::isEarlySourceInstr(MachineInstr *MI) const {
+  if (!MI)
+    return false;
+
+  if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
+    return true;
+
+  // Multiply
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+  if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
+    return true;
+  return false;
+}
+
+
+bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
+  return (Opcode == Hexagon::ENDLOOP0 ||
+          Opcode == Hexagon::ENDLOOP1);
+}
+
+
+bool HexagonInstrInfo::isExpr(unsigned OpType) const {
+  switch(OpType) {
+  case MachineOperand::MO_MachineBasicBlock:
+  case MachineOperand::MO_GlobalAddress:
+  case MachineOperand::MO_ExternalSymbol:
+  case MachineOperand::MO_JumpTableIndex:
+  case MachineOperand::MO_ConstantPoolIndex:
+  case MachineOperand::MO_BlockAddress:
+    return true;
+  default:
+    return false;
+  }
+}
+
+
+bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
+  const MCInstrDesc &MID = MI->getDesc();
+  const uint64_t F = MID.TSFlags;
+  if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
+    return true;
+
+  // TODO: This is largely obsolete now. Will need to be removed
+  // in consecutive patches.
+  switch(MI->getOpcode()) {
+    // TFR_FI Remains a special case.
+    case Hexagon::TFR_FI:
+      return true;
+    default:
+      return false;
+  }
+  return  false;
+}
+
+
+// This returns true in two cases:
+// - The OP code itself indicates that this is an extended instruction.
+// - One of MOs has been marked with HMOTF_ConstExtended flag.
+bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
+  // First check if this is permanently extended op code.
+  const uint64_t F = MI->getDesc().TSFlags;
+  if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
+    return true;
+  // Use MO operand flags to determine if one of MI's operands
+  // has HMOTF_ConstExtended flag set.
+  for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+       E = MI->operands_end(); I != E; ++I) {
+    if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+      return true;
+  }
+  return  false;
+}
+
+
+bool HexagonInstrInfo::isFloat(MachineInstr *MI) const {
+  unsigned Opcode = MI->getOpcode();
+  const uint64_t F = get(Opcode).TSFlags;
+  return (F >> HexagonII::FPPos) & HexagonII::FPMask;
+}
+
+
+bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::J2_callr :
+  case Hexagon::J2_callrf :
+  case Hexagon::J2_callrt :
+    return true;
+  }
+  return false;
+}
+
+
+bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::L4_return :
+  case Hexagon::L4_return_t :
+  case Hexagon::L4_return_f :
+  case Hexagon::L4_return_fnew_pnt :
+  case Hexagon::L4_return_fnew_pt :
+  case Hexagon::L4_return_tnew_pnt :
+  case Hexagon::L4_return_tnew_pt :
+    return true;
+  }
+  return false;
+}
+
+
+bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::J2_jumpr :
+  case Hexagon::J2_jumprt :
+  case Hexagon::J2_jumprf :
+  case Hexagon::J2_jumprtnewpt :
+  case Hexagon::J2_jumprfnewpt  :
+  case Hexagon::J2_jumprtnew :
+  case Hexagon::J2_jumprfnew :
+    return true;
+  }
+  return false;
+}
+
+
+// Return true if a given MI can accomodate given offset.
+// Use abs estimate as oppose to the exact number.
+// TODO: This will need to be changed to use MC level
+// definition of instruction extendable field size.
+bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
+      unsigned offset) const {
+  // This selection of jump instructions matches to that what
+  // AnalyzeBranch can parse, plus NVJ.
+  if (isNewValueJump(MI)) // r9:2
+    return isInt<11>(offset);
+
+  switch (MI->getOpcode()) {
+  // Still missing Jump to address condition on register value.
+  default:
+    return false;
+  case Hexagon::J2_jump: // bits<24> dst; // r22:2
+  case Hexagon::J2_call:
+  case Hexagon::CALLv3nr:
+    return isInt<24>(offset);
+  case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
+  case Hexagon::J2_jumpf:
+  case Hexagon::J2_jumptnew:
+  case Hexagon::J2_jumptnewpt:
+  case Hexagon::J2_jumpfnew:
+  case Hexagon::J2_jumpfnewpt:
+  case Hexagon::J2_callt:
+  case Hexagon::J2_callf:
+    return isInt<17>(offset);
+  case Hexagon::J2_loop0i:
+  case Hexagon::J2_loop0iext:
+  case Hexagon::J2_loop0r:
+  case Hexagon::J2_loop0rext:
+  case Hexagon::J2_loop1i:
+  case Hexagon::J2_loop1iext:
+  case Hexagon::J2_loop1r:
+  case Hexagon::J2_loop1rext:
+    return isInt<9>(offset);
+  // TODO: Add all the compound branches here. Can we do this in Relation model?
+  case Hexagon::J4_cmpeqi_tp0_jump_nt:
+  case Hexagon::J4_cmpeqi_tp1_jump_nt:
+    return isInt<11>(offset);
+  }
+}
+
+
+bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(MachineInstr *LRMI,
+      MachineInstr *ESMI) const {
+  if (!LRMI || !ESMI)
+    return false;
+
+  bool isLate = isLateResultInstr(LRMI);
+  bool isEarly = isEarlySourceInstr(ESMI);
+
+  DEBUG(dbgs() << "V60" <<  (isLate ? "-LR  " : " --  "));
+  DEBUG(LRMI->dump());
+  DEBUG(dbgs() << "V60" <<  (isEarly ? "-ES  " : " --  "));
+  DEBUG(ESMI->dump());
+
+  if (isLate && isEarly) {
+    DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
+    return true;
+  }
+
+  return false;
+}
+
+
+bool HexagonInstrInfo::isLateResultInstr(MachineInstr *MI) const {
+  if (!MI)
+    return false;
+
+  switch (MI->getOpcode()) {
+  case TargetOpcode::EXTRACT_SUBREG:
+  case TargetOpcode::INSERT_SUBREG:
+  case TargetOpcode::SUBREG_TO_REG:
+  case TargetOpcode::REG_SEQUENCE:
+  case TargetOpcode::IMPLICIT_DEF:
+  case TargetOpcode::COPY:
+  case TargetOpcode::INLINEASM:
+  case TargetOpcode::PHI:
+    return false;
+  default:
+    break;
+  }
+
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+
+  switch (SchedClass) {
+  case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU64_tc_1_SLOT23:
+  case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
+  case Hexagon::Sched::S_2op_tc_1_SLOT23:
+  case Hexagon::Sched::S_3op_tc_1_SLOT23:
+  case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
+  case Hexagon::Sched::V2LDST_tc_st_SLOT0:
+  case Hexagon::Sched::V2LDST_tc_st_SLOT01:
+  case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
+  case Hexagon::Sched::V4LDST_tc_st_SLOT0:
+  case Hexagon::Sched::V4LDST_tc_st_SLOT01:
+    return false;
+  }
+  return true;
+}
+
+
+bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
+  if (!MI)
+    return false;
+
+  // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
+  // resource, but all operands can be received late like an ALU instruction.
+  return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
+}
+
+
+bool HexagonInstrInfo::isLoopN(unsigned Opcode) const {
+  return (Opcode == Hexagon::J2_loop0i ||
+          Opcode == Hexagon::J2_loop0r ||
+          Opcode == Hexagon::J2_loop0iext ||
+          Opcode == Hexagon::J2_loop0rext ||
+          Opcode == Hexagon::J2_loop1i ||
+          Opcode == Hexagon::J2_loop1r ||
+          Opcode == Hexagon::J2_loop1iext ||
+          Opcode == Hexagon::J2_loop1rext);
+}
+
+
+bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+    default: return false;
+    case Hexagon::L4_iadd_memopw_io :
+    case Hexagon::L4_isub_memopw_io :
+    case Hexagon::L4_add_memopw_io :
+    case Hexagon::L4_sub_memopw_io :
+    case Hexagon::L4_and_memopw_io :
+    case Hexagon::L4_or_memopw_io :
+    case Hexagon::L4_iadd_memoph_io :
+    case Hexagon::L4_isub_memoph_io :
+    case Hexagon::L4_add_memoph_io :
+    case Hexagon::L4_sub_memoph_io :
+    case Hexagon::L4_and_memoph_io :
+    case Hexagon::L4_or_memoph_io :
+    case Hexagon::L4_iadd_memopb_io :
+    case Hexagon::L4_isub_memopb_io :
+    case Hexagon::L4_add_memopb_io :
+    case Hexagon::L4_sub_memopb_io :
+    case Hexagon::L4_and_memopb_io :
+    case Hexagon::L4_or_memopb_io :
+    case Hexagon::L4_ior_memopb_io:
+    case Hexagon::L4_ior_memoph_io:
+    case Hexagon::L4_ior_memopw_io:
+    case Hexagon::L4_iand_memopb_io:
+    case Hexagon::L4_iand_memoph_io:
+    case Hexagon::L4_iand_memopw_io:
+    return true;
+  }
+  return false;
+}
+
+
+bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
+}
+
+
+bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
+}
+
+
+bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
+  return isNewValueJump(MI) || isNewValueStore(MI);
+}
+
+
+bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
+  return isNewValue(MI) && MI->isBranch();
+}
+
+
+bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
+  return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
+}
+
+
+bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
+}
+
+
+bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
+}
+
+
+// Returns true if a particular operand is extendable for an instruction.
+bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
+    unsigned OperandNum) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
+          == OperandNum;
+}
+
+
+bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
+  return getAddrMode(MI) == HexagonII::PostInc;
+}
+
+
+bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  assert(isPredicated(MI));
+  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
+}
+
+
+bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  assert(isPredicated(Opcode));
+  return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
+}
+
+
+bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return !((F >> HexagonII::PredicatedFalsePos) &
+           HexagonII::PredicatedFalseMask);
+}
+
+
+bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  // Make sure that the instruction is predicated.
+  assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+  return !((F >> HexagonII::PredicatedFalsePos) &
+           HexagonII::PredicatedFalseMask);
+}
+
+
+bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
+}
+
+
+bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
+}
+
+
+bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  assert(get(Opcode).isBranch() &&
+         (isPredicatedNew(Opcode) || isNewValue(Opcode)));
+  return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
+}
+
+
+bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
+  return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
+         MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
+}
+
+
+bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
+}
+
+
+bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
+  switch (MI->getOpcode()) {
+  case Hexagon::STriw_pred :
+  case Hexagon::LDriw_pred :
+    return true;
+  default:
+    return false;
   }
-  return false;
 }
 
 
-bool
-HexagonInstrInfo::
-SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
-                  ArrayRef<MachineOperand> Pred2) const {
-  // TODO: Fix this
-  return false;
+// Returns true when SU has a timing class TC1.
+bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+  switch (SchedClass) {
+  case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
+  case Hexagon::Sched::ALU64_tc_1_SLOT23:
+  case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
+  //case Hexagon::Sched::M_tc_1_SLOT23:
+  case Hexagon::Sched::S_2op_tc_1_SLOT23:
+  case Hexagon::Sched::S_3op_tc_1_SLOT23:
+    return true;
+
+  default:
+    return false;
+  }
 }
 
 
-//
-// We indicate that we want to reverse the branch by
-// inserting the reversed branching opcode.
-//
-bool HexagonInstrInfo::ReverseBranchCondition(
-    SmallVectorImpl<MachineOperand> &Cond) const {
-  if (Cond.empty())
+bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+  switch (SchedClass) {
+  case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
+  case Hexagon::Sched::ALU64_tc_2_SLOT23:
+  case Hexagon::Sched::CR_tc_2_SLOT3:
+  case Hexagon::Sched::M_tc_2_SLOT23:
+  case Hexagon::Sched::S_2op_tc_2_SLOT23:
+  case Hexagon::Sched::S_3op_tc_2_SLOT23:
     return true;
-  assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
-  Opcode_t opcode = Cond[0].getImm();
-  //unsigned temp;
-  assert(get(opcode).isBranch() && "Should be a branching condition.");
-  if (isEndLoopN(opcode))
+
+  default:
+    return false;
+  }
+}
+
+
+bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+  switch (SchedClass) {
+  case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
+  case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
+  case Hexagon::Sched::ALU64_tc_2early_SLOT23:
+  case Hexagon::Sched::CR_tc_2early_SLOT23:
+  case Hexagon::Sched::CR_tc_2early_SLOT3:
+  case Hexagon::Sched::J_tc_2early_SLOT0123:
+  case Hexagon::Sched::J_tc_2early_SLOT2:
+  case Hexagon::Sched::J_tc_2early_SLOT23:
+  case Hexagon::Sched::S_2op_tc_2early_SLOT23:
+  case Hexagon::Sched::S_3op_tc_2early_SLOT23:
     return true;
-  Opcode_t NewOpcode = getInvertedPredicatedOpcode(opcode);
-  Cond[0].setImm(NewOpcode);
-  return false;
+
+  default:
+    return false;
+  }
 }
 
 
-bool HexagonInstrInfo::
-isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
-                          BranchProbability Probability) const {
-  return (NumInstrs <= 4);
+bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
+  if (!MI)
+    return false;
+
+  unsigned SchedClass = MI->getDesc().getSchedClass();
+  return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
 }
 
-bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
-  switch (MI->getOpcode()) {
-  default: return false;
-  case Hexagon::L4_return:
-  case Hexagon::L4_return_t:
-  case Hexagon::L4_return_f:
-  case Hexagon::L4_return_tnew_pnt:
-  case Hexagon::L4_return_fnew_pnt:
-  case Hexagon::L4_return_tnew_pt:
-  case Hexagon::L4_return_fnew_pt:
-   return true;
+
+bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
+  if (!MI)
+    return false;
+
+  const uint64_t V = getType(MI);
+  return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
+}
+
+
+// Check if the Offset is a valid auto-inc imm by Load/Store Type.
+//
+bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
+  if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
+      VT == MVT::v32i16 || VT == MVT::v64i8) {
+      return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
+              Offset <= Hexagon_MEMV_AUTOINC_MAX &&
+              (Offset & 0x3f) == 0);
+  }
+  // 128B
+  if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
+      VT == MVT::v64i16 || VT == MVT::v128i8) {
+      return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
+              Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
+              (Offset & 0x7f) == 0);
+  }
+  if (VT == MVT::i64) {
+      return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
+              Offset <= Hexagon_MEMD_AUTOINC_MAX &&
+              (Offset & 0x7) == 0);
+  }
+  if (VT == MVT::i32) {
+      return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
+              Offset <= Hexagon_MEMW_AUTOINC_MAX &&
+              (Offset & 0x3) == 0);
+  }
+  if (VT == MVT::i16) {
+      return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
+              Offset <= Hexagon_MEMH_AUTOINC_MAX &&
+              (Offset & 0x1) == 0);
+  }
+  if (VT == MVT::i8) {
+      return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
+              Offset <= Hexagon_MEMB_AUTOINC_MAX);
   }
+  llvm_unreachable("Not an auto-inc opc!");
 }
 
 
@@ -1238,330 +2188,638 @@ bool HexagonInstrInfo::isValidOffset(uns
   // problem, and we need to allow for it. The front end warns of such
   // misaligns with respect to load size.
 
-  switch (Opcode) {
-  case Hexagon::J2_loop0i:
-  case Hexagon::J2_loop1i:
-    return isUInt<10>(Offset);
-  }
+  switch (Opcode) {
+  case Hexagon::STriq_pred_V6:
+  case Hexagon::STriq_pred_vec_V6:
+  case Hexagon::STriv_pseudo_V6:
+  case Hexagon::STrivv_pseudo_V6:
+  case Hexagon::LDriq_pred_V6:
+  case Hexagon::LDriq_pred_vec_V6:
+  case Hexagon::LDriv_pseudo_V6:
+  case Hexagon::LDrivv_pseudo_V6:
+  case Hexagon::LDrivv_indexed:
+  case Hexagon::STrivv_indexed:
+  case Hexagon::V6_vL32b_ai:
+  case Hexagon::V6_vS32b_ai:
+  case Hexagon::V6_vL32Ub_ai:
+  case Hexagon::V6_vS32Ub_ai:
+    return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
+      (Offset <= Hexagon_MEMV_OFFSET_MAX);
+
+  case Hexagon::STriq_pred_V6_128B:
+  case Hexagon::STriq_pred_vec_V6_128B:
+  case Hexagon::STriv_pseudo_V6_128B:
+  case Hexagon::STrivv_pseudo_V6_128B:
+  case Hexagon::LDriq_pred_V6_128B:
+  case Hexagon::LDriq_pred_vec_V6_128B:
+  case Hexagon::LDriv_pseudo_V6_128B:
+  case Hexagon::LDrivv_pseudo_V6_128B:
+  case Hexagon::LDrivv_indexed_128B:
+  case Hexagon::STrivv_indexed_128B:
+  case Hexagon::V6_vL32b_ai_128B:
+  case Hexagon::V6_vS32b_ai_128B:
+  case Hexagon::V6_vL32Ub_ai_128B:
+  case Hexagon::V6_vS32Ub_ai_128B:
+    return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
+      (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
+
+  case Hexagon::J2_loop0i:
+  case Hexagon::J2_loop1i:
+    return isUInt<10>(Offset);
+  }
+
+  if (Extend)
+    return true;
+
+  switch (Opcode) {
+  case Hexagon::L2_loadri_io:
+  case Hexagon::S2_storeri_io:
+    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
+      (Offset <= Hexagon_MEMW_OFFSET_MAX);
+
+  case Hexagon::L2_loadrd_io:
+  case Hexagon::S2_storerd_io:
+    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
+      (Offset <= Hexagon_MEMD_OFFSET_MAX);
+
+  case Hexagon::L2_loadrh_io:
+  case Hexagon::L2_loadruh_io:
+  case Hexagon::S2_storerh_io:
+    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
+      (Offset <= Hexagon_MEMH_OFFSET_MAX);
+
+  case Hexagon::L2_loadrb_io:
+  case Hexagon::L2_loadrub_io:
+  case Hexagon::S2_storerb_io:
+    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
+      (Offset <= Hexagon_MEMB_OFFSET_MAX);
+
+  case Hexagon::A2_addi:
+    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
+      (Offset <= Hexagon_ADDI_OFFSET_MAX);
+
+  case Hexagon::L4_iadd_memopw_io :
+  case Hexagon::L4_isub_memopw_io :
+  case Hexagon::L4_add_memopw_io :
+  case Hexagon::L4_sub_memopw_io :
+  case Hexagon::L4_and_memopw_io :
+  case Hexagon::L4_or_memopw_io :
+    return (0 <= Offset && Offset <= 255);
+
+  case Hexagon::L4_iadd_memoph_io :
+  case Hexagon::L4_isub_memoph_io :
+  case Hexagon::L4_add_memoph_io :
+  case Hexagon::L4_sub_memoph_io :
+  case Hexagon::L4_and_memoph_io :
+  case Hexagon::L4_or_memoph_io :
+    return (0 <= Offset && Offset <= 127);
+
+  case Hexagon::L4_iadd_memopb_io :
+  case Hexagon::L4_isub_memopb_io :
+  case Hexagon::L4_add_memopb_io :
+  case Hexagon::L4_sub_memopb_io :
+  case Hexagon::L4_and_memopb_io :
+  case Hexagon::L4_or_memopb_io :
+    return (0 <= Offset && Offset <= 63);
+
+  // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
+  // any size. Later pass knows how to handle it.
+  case Hexagon::STriw_pred:
+  case Hexagon::LDriw_pred:
+    return true;
+
+  case Hexagon::TFR_FI:
+  case Hexagon::TFR_FIA:
+  case Hexagon::INLINEASM:
+    return true;
+
+  case Hexagon::L2_ploadrbt_io:
+  case Hexagon::L2_ploadrbf_io:
+  case Hexagon::L2_ploadrubt_io:
+  case Hexagon::L2_ploadrubf_io:
+  case Hexagon::S2_pstorerbt_io:
+  case Hexagon::S2_pstorerbf_io:
+  case Hexagon::S4_storeirb_io:
+  case Hexagon::S4_storeirbt_io:
+  case Hexagon::S4_storeirbf_io:
+    return isUInt<6>(Offset);
+
+  case Hexagon::L2_ploadrht_io:
+  case Hexagon::L2_ploadrhf_io:
+  case Hexagon::L2_ploadruht_io:
+  case Hexagon::L2_ploadruhf_io:
+  case Hexagon::S2_pstorerht_io:
+  case Hexagon::S2_pstorerhf_io:
+  case Hexagon::S4_storeirh_io:
+  case Hexagon::S4_storeirht_io:
+  case Hexagon::S4_storeirhf_io:
+    return isShiftedUInt<6,1>(Offset);
+
+  case Hexagon::L2_ploadrit_io:
+  case Hexagon::L2_ploadrif_io:
+  case Hexagon::S2_pstorerit_io:
+  case Hexagon::S2_pstorerif_io:
+  case Hexagon::S4_storeiri_io:
+  case Hexagon::S4_storeirit_io:
+  case Hexagon::S4_storeirif_io:
+    return isShiftedUInt<6,2>(Offset);
+
+  case Hexagon::L2_ploadrdt_io:
+  case Hexagon::L2_ploadrdf_io:
+  case Hexagon::S2_pstorerdt_io:
+  case Hexagon::S2_pstorerdf_io:
+    return isShiftedUInt<6,3>(Offset);
+  } // switch
+
+  llvm_unreachable("No offset range is defined for this opcode. "
+                   "Please define it in the above switch statement!");
+}
+
+
+bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
+  return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
+}
+
+
+bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
+  if (!MI)
+    return false;
+  const uint64_t F = get(MI->getOpcode()).TSFlags;
+  const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
+  return
+    V == HexagonII::TypeCVI_VA         ||
+    V == HexagonII::TypeCVI_VA_DV;
+}
+
+
+bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
+      const MachineInstr *ConsMI) const {
+  if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
+    return true;
+
+  if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
+    return true;
+
+  if (mayBeNewStore(ConsMI))
+    return true;
+
+  return false;
+}
+
+
+bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
+  for (auto &I : *B)
+    if (I.isEHLabel())
+      return true;
+  return false;
+}
+
+
+// Returns true if an instruction can be converted into a non-extended
+// equivalent instruction.
+bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
+  short NonExtOpcode;
+  // Check if the instruction has a register form that uses register in place
+  // of the extended operand, if so return that as the non-extended form.
+  if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
+    return true;
+
+  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+    // Check addressing mode and retrieve non-ext equivalent instruction.
+
+    switch (getAddrMode(MI)) {
+    case HexagonII::Absolute :
+      // Load/store with absolute addressing mode can be converted into
+      // base+offset mode.
+      NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
+      break;
+    case HexagonII::BaseImmOffset :
+      // Load/store with base+offset addressing mode can be converted into
+      // base+register offset addressing mode. However left shift operand should
+      // be set to 0.
+      NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
+      break;
+    case HexagonII::BaseLongOffset:
+      NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
+      break;
+    default:
+      return false;
+    }
+    if (NonExtOpcode < 0)
+      return false;
+    return true;
+  }
+  return false;
+}
+
+
+bool HexagonInstrInfo::hasPseudoInstrPair(MachineInstr *MI) const {
+  return Hexagon::getRealHWInstr(MI->getOpcode(),
+                                 Hexagon::InstrType_Pseudo) >= 0;
+}
+
+
+bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
+      const {
+  MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
+  while (I != E) {
+    if (I->isBarrier())
+      return true;
+    ++I;
+  }
+  return false;
+}
+
+
+// Returns true, if a LD insn can be promoted to a cur load.
+bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
+  auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
+  const uint64_t F = MI->getDesc().TSFlags;
+  return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
+         HST.hasV60TOps();
+}
+
+
+// Returns true, if a ST insn can be promoted to a new-value store.
+bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
+}
+
+
+bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
+      const MachineInstr *ConsMI) const {
+  // There is no stall when ProdMI is not a V60 vector.
+  if (!isV60VectorInstruction(ProdMI))
+    return false;
+
+  // There is no stall when ProdMI and ConsMI are not dependent.
+  if (!isDependent(ProdMI, ConsMI))
+    return false;
+
+  // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
+  // are scheduled in consecutive packets.
+  if (isVecUsableNextPacket(ProdMI, ConsMI))
+    return false;
+
+  return true;
+}
+
+
+bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
+      MachineBasicBlock::const_instr_iterator BII) const {
+  // There is no stall when I is not a V60 vector.
+  if (!isV60VectorInstruction(MI))
+    return false;
+
+  MachineBasicBlock::const_instr_iterator MII = BII;
+  MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
 
-  if (Extend)
+  if (!(*MII).isBundle()) {
+    const MachineInstr *J = &*MII;
+    if (!isV60VectorInstruction(J))
+      return false;
+    else if (isVecUsableNextPacket(J, MI))
+      return false;
     return true;
+  }
 
-  switch (Opcode) {
-  case Hexagon::L2_loadri_io:
-  case Hexagon::S2_storeri_io:
-    return (Offset >= Hexagon_MEMW_OFFSET_MIN) &&
-      (Offset <= Hexagon_MEMW_OFFSET_MAX);
-
-  case Hexagon::L2_loadrd_io:
-  case Hexagon::S2_storerd_io:
-    return (Offset >= Hexagon_MEMD_OFFSET_MIN) &&
-      (Offset <= Hexagon_MEMD_OFFSET_MAX);
+  for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
+    const MachineInstr *J = &*MII;
+    if (producesStall(J, MI))
+      return true;
+  }
+  return false;
+}
 
-  case Hexagon::L2_loadrh_io:
-  case Hexagon::L2_loadruh_io:
-  case Hexagon::S2_storerh_io:
-    return (Offset >= Hexagon_MEMH_OFFSET_MIN) &&
-      (Offset <= Hexagon_MEMH_OFFSET_MAX);
 
-  case Hexagon::L2_loadrb_io:
-  case Hexagon::S2_storerb_io:
-  case Hexagon::L2_loadrub_io:
-    return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
-      (Offset <= Hexagon_MEMB_OFFSET_MAX);
+bool HexagonInstrInfo::predCanBeUsedAsDotNew(MachineInstr *MI,
+      unsigned PredReg) const {
+  for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
+    MachineOperand &MO = MI->getOperand(opNum);
+    if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
+      return false; // Predicate register must be explicitly defined.
+  }
+
+  // Hexagon Programmer's Reference says that decbin, memw_locked, and
+  // memd_locked cannot be used as .new as well,
+  // but we don't seem to have these instructions defined.
+  return MI->getOpcode() != Hexagon::A4_tlbmatch;
+}
 
-  case Hexagon::A2_addi:
-    return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
-      (Offset <= Hexagon_ADDI_OFFSET_MAX);
 
-  case Hexagon::L4_iadd_memopw_io:
-  case Hexagon::L4_isub_memopw_io:
-  case Hexagon::L4_add_memopw_io:
-  case Hexagon::L4_sub_memopw_io:
-  case Hexagon::L4_and_memopw_io:
-  case Hexagon::L4_or_memopw_io:
-    return (0 <= Offset && Offset <= 255);
+bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
+  return (Opcode == Hexagon::J2_jumpt)      ||
+         (Opcode == Hexagon::J2_jumpf)      ||
+         (Opcode == Hexagon::J2_jumptnew)   ||
+         (Opcode == Hexagon::J2_jumpfnew)   ||
+         (Opcode == Hexagon::J2_jumptnewpt) ||
+         (Opcode == Hexagon::J2_jumpfnewpt);
+}
 
-  case Hexagon::L4_iadd_memoph_io:
-  case Hexagon::L4_isub_memoph_io:
-  case Hexagon::L4_add_memoph_io:
-  case Hexagon::L4_sub_memoph_io:
-  case Hexagon::L4_and_memoph_io:
-  case Hexagon::L4_or_memoph_io:
-    return (0 <= Offset && Offset <= 127);
 
-  case Hexagon::L4_iadd_memopb_io:
-  case Hexagon::L4_isub_memopb_io:
-  case Hexagon::L4_add_memopb_io:
-  case Hexagon::L4_sub_memopb_io:
-  case Hexagon::L4_and_memopb_io:
-  case Hexagon::L4_or_memopb_io:
-    return (0 <= Offset && Offset <= 63);
+bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
+  if (Cond.empty() || !isPredicated(Cond[0].getImm()))
+    return false;
+  return !isPredicatedTrue(Cond[0].getImm());
+}
 
-  // LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
-  // any size. Later pass knows how to handle it.
-  case Hexagon::STriw_pred:
-  case Hexagon::LDriw_pred:
-    return true;
 
-  case Hexagon::TFR_FI:
-  case Hexagon::TFR_FIA:
-  case Hexagon::INLINEASM:
-    return true;
+unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
+}
 
-  case Hexagon::L2_ploadrbt_io:
-  case Hexagon::L2_ploadrbf_io:
-  case Hexagon::L2_ploadrubt_io:
-  case Hexagon::L2_ploadrubf_io:
-  case Hexagon::S2_pstorerbt_io:
-  case Hexagon::S2_pstorerbf_io:
-  case Hexagon::S4_storeirb_io:
-  case Hexagon::S4_storeirbt_io:
-  case Hexagon::S4_storeirbf_io:
-    return isUInt<6>(Offset);
 
-  case Hexagon::L2_ploadrht_io:
-  case Hexagon::L2_ploadrhf_io:
-  case Hexagon::L2_ploadruht_io:
-  case Hexagon::L2_ploadruhf_io:
-  case Hexagon::S2_pstorerht_io:
-  case Hexagon::S2_pstorerhf_io:
-  case Hexagon::S4_storeirh_io:
-  case Hexagon::S4_storeirht_io:
-  case Hexagon::S4_storeirhf_io:
-    return isShiftedUInt<6,1>(Offset);
+// Returns the base register in a memory access (load/store). The offset is
+// returned in Offset and the access size is returned in AccessSize.
+unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
+      int &Offset, unsigned &AccessSize) const {
+  // Return if it is not a base+offset type instruction or a MemOp.
+  if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
+      getAddrMode(MI) != HexagonII::BaseLongOffset &&
+      !isMemOp(MI) && !isPostIncrement(MI))
+    return 0;
 
-  case Hexagon::L2_ploadrit_io:
-  case Hexagon::L2_ploadrif_io:
-  case Hexagon::S2_pstorerit_io:
-  case Hexagon::S2_pstorerif_io:
-  case Hexagon::S4_storeiri_io:
-  case Hexagon::S4_storeirit_io:
-  case Hexagon::S4_storeirif_io:
-    return isShiftedUInt<6,2>(Offset);
+  // Since it is a memory access instruction, getMemAccessSize() should never
+  // return 0.
+  assert (getMemAccessSize(MI) &&
+          "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
+
+  // Return Values of getMemAccessSize() are
+  // 0 - Checked in the assert above.
+  // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
+  // MemAccessSize is represented as 1+log2(N) where N is size in bits.
+  AccessSize = (1U << (getMemAccessSize(MI) - 1));
 
-  case Hexagon::L2_ploadrdt_io:
-  case Hexagon::L2_ploadrdf_io:
-  case Hexagon::S2_pstorerdt_io:
-  case Hexagon::S2_pstorerdf_io:
-    return isShiftedUInt<6,3>(Offset);
-  } // switch
+  unsigned basePos = 0, offsetPos = 0;
+  if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
+    return 0;
 
-  llvm_unreachable("No offset range is defined for this opcode. "
-                   "Please define it in the above switch statement!");
+  // Post increment updates its EA after the mem access,
+  // so we need to treat its offset as zero.
+  if (isPostIncrement(MI))
+    Offset = 0;
+  else {
+    Offset = MI->getOperand(offsetPos).getImm();
+  }
+
+  return MI->getOperand(basePos).getReg();
 }
 
 
-//
-// Check if the Offset is a valid auto-inc imm by Load/Store Type.
-//
-bool HexagonInstrInfo::
-isValidAutoIncImm(const EVT VT, const int Offset) const {
+/// Return the position of the base and offset operands for this instruction.
+bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
+      unsigned &BasePos, unsigned &OffsetPos) const {
+  // Deal with memops first.
+  if (isMemOp(MI)) {
+    assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
+            "Bad Memop.");
+    BasePos = 0;
+    OffsetPos = 1;
+  } else if (MI->mayStore()) {
+    BasePos = 0;
+    OffsetPos = 1;
+  } else if (MI->mayLoad()) {
+    BasePos = 1;
+    OffsetPos = 2;
+  } else
+    return false;
 
-  if (VT == MVT::i64) {
-      return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
-              Offset <= Hexagon_MEMD_AUTOINC_MAX &&
-              (Offset & 0x7) == 0);
-  }
-  if (VT == MVT::i32) {
-      return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
-              Offset <= Hexagon_MEMW_AUTOINC_MAX &&
-              (Offset & 0x3) == 0);
-  }
-  if (VT == MVT::i16) {
-      return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
-              Offset <= Hexagon_MEMH_AUTOINC_MAX &&
-              (Offset & 0x1) == 0);
+  if (isPredicated(MI)) {
+    BasePos++;
+    OffsetPos++;
   }
-  if (VT == MVT::i8) {
-      return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
-              Offset <= Hexagon_MEMB_AUTOINC_MAX);
+  if (isPostIncrement(MI)) {
+    BasePos++;
+    OffsetPos++;
   }
-  llvm_unreachable("Not an auto-inc opc!");
-}
 
+  if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
+    return false;
 
-bool HexagonInstrInfo::
-isMemOp(const MachineInstr *MI) const {
-//  return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
-
-  switch (MI->getOpcode())
-  {
-  default: return false;
-  case Hexagon::L4_iadd_memopw_io:
-  case Hexagon::L4_isub_memopw_io:
-  case Hexagon::L4_add_memopw_io:
-  case Hexagon::L4_sub_memopw_io:
-  case Hexagon::L4_and_memopw_io:
-  case Hexagon::L4_or_memopw_io:
-  case Hexagon::L4_iadd_memoph_io:
-  case Hexagon::L4_isub_memoph_io:
-  case Hexagon::L4_add_memoph_io:
-  case Hexagon::L4_sub_memoph_io:
-  case Hexagon::L4_and_memoph_io:
-  case Hexagon::L4_or_memoph_io:
-  case Hexagon::L4_iadd_memopb_io:
-  case Hexagon::L4_isub_memopb_io:
-  case Hexagon::L4_add_memopb_io:
-  case Hexagon::L4_sub_memopb_io:
-  case Hexagon::L4_and_memopb_io:
-  case Hexagon::L4_or_memopb_io:
-  case Hexagon::L4_ior_memopb_io:
-  case Hexagon::L4_ior_memoph_io:
-  case Hexagon::L4_ior_memopw_io:
-  case Hexagon::L4_iand_memopb_io:
-  case Hexagon::L4_iand_memoph_io:
-  case Hexagon::L4_iand_memopw_io:
-    return true;
-  }
-  return false;
+  return true;
 }
 
 
-bool HexagonInstrInfo::
-isSpillPredRegOp(const MachineInstr *MI) const {
-  switch (MI->getOpcode()) {
-    default: return false;
-    case Hexagon::STriw_pred :
-    case Hexagon::LDriw_pred :
-      return true;
+// Inserts branching instructions in reverse order of their occurence.
+// e.g. jump_t t1 (i1)
+// jump t2        (i2)
+// Jumpers = {i2, i1}
+SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
+      MachineBasicBlock& MBB) const {
+  SmallVector<MachineInstr*, 2> Jumpers;
+  // If the block has no terminators, it just falls into the block after it.
+  MachineBasicBlock::instr_iterator I = MBB.instr_end();
+  if (I == MBB.instr_begin())
+    return Jumpers;
+
+  // A basic block may looks like this:
+  //
+  //  [   insn
+  //     EH_LABEL
+  //      insn
+  //      insn
+  //      insn
+  //     EH_LABEL
+  //      insn     ]
+  //
+  // It has two succs but does not have a terminator
+  // Don't know how to handle it.
+  do {
+    --I;
+    if (I->isEHLabel())
+      return Jumpers;
+  } while (I != MBB.instr_begin());
+
+  I = MBB.instr_end();
+  --I;
+
+  while (I->isDebugValue()) {
+    if (I == MBB.instr_begin())
+      return Jumpers;
+    --I;
   }
+  if (!isUnpredicatedTerminator(&*I))
+    return Jumpers;
+
+  // Get the last instruction in the block.
+  MachineInstr *LastInst = &*I;
+  Jumpers.push_back(LastInst);
+  MachineInstr *SecondLastInst = nullptr;
+  // Find one more terminator if present.
+  do {
+    if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
+      if (!SecondLastInst) {
+        SecondLastInst = &*I;
+        Jumpers.push_back(SecondLastInst);
+      } else // This is a third branch.
+        return Jumpers;
+    }
+    if (I == MBB.instr_begin())
+      break;
+    --I;
+  } while (true);
+  return Jumpers;
 }
 
-bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
-  switch (MI->getOpcode()) {
-    default: return false;
-    case Hexagon::C2_cmpeq:
-    case Hexagon::C2_cmpeqi:
-    case Hexagon::C2_cmpgt:
-    case Hexagon::C2_cmpgti:
-    case Hexagon::C2_cmpgtu:
-    case Hexagon::C2_cmpgtui:
-      return true;
-  }
+
+// Returns Operand Index for the constant extended instruction.
+unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
 }
 
-bool HexagonInstrInfo::
-isConditionalTransfer (const MachineInstr *MI) const {
+// See if instruction could potentially be a duplex candidate.
+// If so, return its group. Zero otherwise.
+HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
+      const MachineInstr *MI) const {
+  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
+
   switch (MI->getOpcode()) {
-    default: return false;
-    case Hexagon::A2_tfrt:
-    case Hexagon::A2_tfrf:
-    case Hexagon::C2_cmoveit:
-    case Hexagon::C2_cmoveif:
-    case Hexagon::A2_tfrtnew:
-    case Hexagon::A2_tfrfnew:
-    case Hexagon::C2_cmovenewit:
-    case Hexagon::C2_cmovenewif:
-      return true;
+  default:
+    return HexagonII::HCG_None;
+  //
+  // Compound pairs.
+  // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
+  // "Rd16=#U6 ; jump #r9:2"
+  // "Rd16=Rs16 ; jump #r9:2"
+  //
+  case Hexagon::C2_cmpeq:
+  case Hexagon::C2_cmpgt:
+  case Hexagon::C2_cmpgtu:
+    DstReg = MI->getOperand(0).getReg();
+    Src1Reg = MI->getOperand(1).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+        isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
+      return HexagonII::HCG_A;
+    break;
+  case Hexagon::C2_cmpeqi:
+  case Hexagon::C2_cmpgti:
+  case Hexagon::C2_cmpgtui:
+    // P0 = cmp.eq(Rs,#u2)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+        isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
+        ((isUInt<5>(MI->getOperand(2).getImm())) ||
+         (MI->getOperand(2).getImm() == -1)))
+      return HexagonII::HCG_A;
+    break;
+  case Hexagon::A2_tfr:
+    // Rd = Rs
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+      return HexagonII::HCG_A;
+    break;
+  case Hexagon::A2_tfrsi:
+    // Rd = #u6
+    // Do not test for #u6 size since the const is getting extended
+    // regardless and compound could be formed.
+    DstReg = MI->getOperand(0).getReg();
+    if (isIntRegForSubInst(DstReg))
+      return HexagonII::HCG_A;
+    break;
+  case Hexagon::S2_tstbit_i:
+    DstReg = MI->getOperand(0).getReg();
+    Src1Reg = MI->getOperand(1).getReg();
+    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+        (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+        MI->getOperand(2).isImm() &&
+        isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
+      return HexagonII::HCG_A;
+    break;
+  // The fact that .new form is used pretty much guarantees
+  // that predicate register will match. Nevertheless,
+  // there could be some false positives without additional
+  // checking.
+  case Hexagon::J2_jumptnew:
+  case Hexagon::J2_jumpfnew:
+  case Hexagon::J2_jumptnewpt:
+  case Hexagon::J2_jumpfnewpt:
+    Src1Reg = MI->getOperand(0).getReg();
+    if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
+        (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
+      return HexagonII::HCG_B;
+    break;
+  // Transfer and jump:
+  // Rd=#U6 ; jump #r9:2
+  // Rd=Rs ; jump #r9:2
+  // Do not test for jump range here.
+  case Hexagon::J2_jump:
+  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
+    return HexagonII::HCG_C;
+    break;
   }
+
+  return HexagonII::HCG_None;
 }
 
-bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
-  switch (MI->getOpcode())
-  {
-    default: return false;
-    case Hexagon::A2_paddf:
-    case Hexagon::A2_paddfnew:
-    case Hexagon::A2_paddt:
-    case Hexagon::A2_paddtnew:
-    case Hexagon::A2_pandf:
-    case Hexagon::A2_pandfnew:
-    case Hexagon::A2_pandt:
-    case Hexagon::A2_pandtnew:
-    case Hexagon::A4_paslhf:
-    case Hexagon::A4_paslhfnew:
-    case Hexagon::A4_paslht:
-    case Hexagon::A4_paslhtnew:
-    case Hexagon::A4_pasrhf:
-    case Hexagon::A4_pasrhfnew:
-    case Hexagon::A4_pasrht:
-    case Hexagon::A4_pasrhtnew:
-    case Hexagon::A2_porf:
-    case Hexagon::A2_porfnew:
-    case Hexagon::A2_port:
-    case Hexagon::A2_portnew:
-    case Hexagon::A2_psubf:
-    case Hexagon::A2_psubfnew:
-    case Hexagon::A2_psubt:
-    case Hexagon::A2_psubtnew:
-    case Hexagon::A2_pxorf:
-    case Hexagon::A2_pxorfnew:
-    case Hexagon::A2_pxort:
-    case Hexagon::A2_pxortnew:
-    case Hexagon::A4_psxthf:
-    case Hexagon::A4_psxthfnew:
-    case Hexagon::A4_psxtht:
-    case Hexagon::A4_psxthtnew:
-    case Hexagon::A4_psxtbf:
-    case Hexagon::A4_psxtbfnew:
-    case Hexagon::A4_psxtbt:
-    case Hexagon::A4_psxtbtnew:
-    case Hexagon::A4_pzxtbf:
-    case Hexagon::A4_pzxtbfnew:
-    case Hexagon::A4_pzxtbt:
-    case Hexagon::A4_pzxtbtnew:
-    case Hexagon::A4_pzxthf:
-    case Hexagon::A4_pzxthfnew:
-    case Hexagon::A4_pzxtht:
-    case Hexagon::A4_pzxthtnew:
-    case Hexagon::A2_paddit:
-    case Hexagon::A2_paddif:
-    case Hexagon::C2_ccombinewt:
-    case Hexagon::C2_ccombinewf:
-      return true;
+
+// Returns -1 when there is no opcode found.
+unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
+      const MachineInstr *GB) const {
+  assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
+  assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
+  if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
+      (GB->getOpcode() != Hexagon::J2_jumptnew))
+    return -1;
+  unsigned DestReg = GA->getOperand(0).getReg();
+  if (!GB->readsRegister(DestReg))
+    return -1;
+  if (DestReg == Hexagon::P0)
+    return Hexagon::J4_cmpeqi_tp0_jump_nt;
+  if (DestReg == Hexagon::P1)
+    return Hexagon::J4_cmpeqi_tp1_jump_nt;
+  return -1;
+}
+
+
+int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
+  enum Hexagon::PredSense inPredSense;
+  inPredSense = invertPredicate ? Hexagon::PredSense_false :
+                                  Hexagon::PredSense_true;
+  int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
+  if (CondOpcode >= 0) // Valid Conditional opcode/instruction
+    return CondOpcode;
+
+  // This switch case will be removed once all the instructions have been
+  // modified to use relation maps.
+  switch(Opc) {
+  case Hexagon::TFRI_f:
+    return !invertPredicate ? Hexagon::TFRI_cPt_f :
+                              Hexagon::TFRI_cNotPt_f;
   }
+
+  llvm_unreachable("Unexpected predicable instruction");
 }
 
-bool HexagonInstrInfo::
-isConditionalLoad (const MachineInstr* MI) const {
-  switch (MI->getOpcode())
-  {
-    default: return false;
-    case Hexagon::L2_ploadrdt_io :
-    case Hexagon::L2_ploadrdf_io:
-    case Hexagon::L2_ploadrit_io:
-    case Hexagon::L2_ploadrif_io:
-    case Hexagon::L2_ploadrht_io:
-    case Hexagon::L2_ploadrhf_io:
-    case Hexagon::L2_ploadrbt_io:
-    case Hexagon::L2_ploadrbf_io:
-    case Hexagon::L2_ploadruht_io:
-    case Hexagon::L2_ploadruhf_io:
-    case Hexagon::L2_ploadrubt_io:
-    case Hexagon::L2_ploadrubf_io:
-    case Hexagon::L2_ploadrdt_pi:
-    case Hexagon::L2_ploadrdf_pi:
-    case Hexagon::L2_ploadrit_pi:
-    case Hexagon::L2_ploadrif_pi:
-    case Hexagon::L2_ploadrht_pi:
-    case Hexagon::L2_ploadrhf_pi:
-    case Hexagon::L2_ploadrbt_pi:
-    case Hexagon::L2_ploadrbf_pi:
-    case Hexagon::L2_ploadruht_pi:
-    case Hexagon::L2_ploadruhf_pi:
-    case Hexagon::L2_ploadrubt_pi:
-    case Hexagon::L2_ploadrubf_pi:
-    case Hexagon::L4_ploadrdt_rr:
-    case Hexagon::L4_ploadrdf_rr:
-    case Hexagon::L4_ploadrbt_rr:
-    case Hexagon::L4_ploadrbf_rr:
-    case Hexagon::L4_ploadrubt_rr:
-    case Hexagon::L4_ploadrubf_rr:
-    case Hexagon::L4_ploadrht_rr:
-    case Hexagon::L4_ploadrhf_rr:
-    case Hexagon::L4_ploadruht_rr:
-    case Hexagon::L4_ploadruhf_rr:
-    case Hexagon::L4_ploadrit_rr:
-    case Hexagon::L4_ploadrif_rr:
-      return true;
+
+// Return the cur value instruction for a given store.
+int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
+  switch (MI->getOpcode()) {
+  default: llvm_unreachable("Unknown .cur type");
+  case Hexagon::V6_vL32b_pi:
+    return Hexagon::V6_vL32b_cur_pi;
+  case Hexagon::V6_vL32b_ai:
+    return Hexagon::V6_vL32b_cur_ai;
+  //128B
+  case Hexagon::V6_vL32b_pi_128B:
+    return Hexagon::V6_vL32b_cur_pi_128B;
+  case Hexagon::V6_vL32b_ai_128B:
+    return Hexagon::V6_vL32b_cur_ai_128B;
   }
+  return 0;
 }
 
-// Returns true if an instruction is a conditional store.
-//
-// Note: It doesn't include conditional new-value stores as they can't be
-// converted to .new predicate.
+
+
+// The diagram below shows the steps involved in the conversion of a predicated
+// store instruction to its .new predicated new-value form.
 //
 //               p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
 //                ^           ^
@@ -1578,8 +2836,6 @@ isConditionalLoad (const MachineInstr* M
 //                 p.old store
 //             [if (p0)memw(R0+#0)=R2]
 //
-// The above diagram shows the steps involoved in the conversion of a predicated
-// store instruction to its .new predicated new-value form.
 //
 // The following set of instructions further explains the scenario where
 // conditional new-value store becomes invalid when promoted to .new predicate
@@ -1592,105 +2848,33 @@ isConditionalLoad (const MachineInstr* M
 // the first two instructions because in instr 1, r0 is conditional on old value
 // of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
 // is not valid for new-value stores.
-bool HexagonInstrInfo::
-isConditionalStore (const MachineInstr* MI) const {
-  switch (MI->getOpcode())
-  {
-    default: return false;
-    case Hexagon::S4_storeirbt_io:
-    case Hexagon::S4_storeirbf_io:
-    case Hexagon::S4_pstorerbt_rr:
-    case Hexagon::S4_pstorerbf_rr:
-    case Hexagon::S2_pstorerbt_io:
-    case Hexagon::S2_pstorerbf_io:
-    case Hexagon::S2_pstorerbt_pi:
-    case Hexagon::S2_pstorerbf_pi:
-    case Hexagon::S2_pstorerdt_io:
-    case Hexagon::S2_pstorerdf_io:
-    case Hexagon::S4_pstorerdt_rr:
-    case Hexagon::S4_pstorerdf_rr:
-    case Hexagon::S2_pstorerdt_pi:
-    case Hexagon::S2_pstorerdf_pi:
-    case Hexagon::S2_pstorerht_io:
-    case Hexagon::S2_pstorerhf_io:
-    case Hexagon::S4_storeirht_io:
-    case Hexagon::S4_storeirhf_io:
-    case Hexagon::S4_pstorerht_rr:
-    case Hexagon::S4_pstorerhf_rr:
-    case Hexagon::S2_pstorerht_pi:
-    case Hexagon::S2_pstorerhf_pi:
-    case Hexagon::S2_pstorerit_io:
-    case Hexagon::S2_pstorerif_io:
-    case Hexagon::S4_storeirit_io:
-    case Hexagon::S4_storeirif_io:
-    case Hexagon::S4_pstorerit_rr:
-    case Hexagon::S4_pstorerif_rr:
-    case Hexagon::S2_pstorerit_pi:
-    case Hexagon::S2_pstorerif_pi:
-
-    // V4 global address store before promoting to dot new.
-    case Hexagon::S4_pstorerdt_abs:
-    case Hexagon::S4_pstorerdf_abs:
-    case Hexagon::S4_pstorerbt_abs:
-    case Hexagon::S4_pstorerbf_abs:
-    case Hexagon::S4_pstorerht_abs:
-    case Hexagon::S4_pstorerhf_abs:
-    case Hexagon::S4_pstorerit_abs:
-    case Hexagon::S4_pstorerif_abs:
-      return true;
-
-    // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
-    // from the "Conditional Store" list. Because a predicated new value store
-    // would NOT be promoted to a double dot new store. See diagram below:
-    // This function returns yes for those stores that are predicated but not
-    // yet promoted to predicate dot new instructions.
-    //
-    //                          +---------------------+
-    //                    /-----| if (p0) memw(..)=r0 |---------\~
-    //                   ||     +---------------------+         ||
-    //          promote  ||       /\       /\                   ||  promote
-    //                   ||      /||\     /||\                  ||
-    //                  \||/    demote     ||                  \||/
-    //                   \/       ||       ||                   \/
-    //       +-------------------------+   ||   +-------------------------+
-    //       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
-    //       +-------------------------+   ||   +-------------------------+
-    //                        ||           ||         ||
-    //                        ||         demote      \||/
-    //                      promote        ||         \/ NOT possible
-    //                        ||           ||         /\~
-    //                       \||/          ||        /||\~
-    //                        \/           ||         ||
-    //                      +-----------------------------+
-    //                      | if (p0.new) memw(..)=r0.new |
-    //                      +-----------------------------+
-    //                           Double Dot New Store
-    //
-  }
-}
-
-
-bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
-  if (isNewValue(MI) && isBranch(MI))
-    return true;
-  return false;
-}
-
-bool HexagonInstrInfo::isNewValueJump(Opcode_t Opcode) const {
-  return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
-}
-
-bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
-  return (getAddrMode(MI) == HexagonII::PostInc);
-}
-
-// Returns true, if any one of the operands is a dot new
-// insn, whether it is predicated dot new or register dot new.
-bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
-  return (isNewValueInst(MI) ||
-     (isPredicated(MI) && isPredicatedNew(MI)));
-}
-
+// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+// from the "Conditional Store" list. Because a predicated new value store
+// would NOT be promoted to a double dot new store. See diagram below:
+// This function returns yes for those stores that are predicated but not
+// yet promoted to predicate dot new instructions.
+//
+//                          +---------------------+
+//                    /-----| if (p0) memw(..)=r0 |---------\~
+//                   ||     +---------------------+         ||
+//          promote  ||       /\       /\                   ||  promote
+//                   ||      /||\     /||\                  ||
+//                  \||/    demote     ||                  \||/
+//                   \/       ||       ||                   \/
+//       +-------------------------+   ||   +-------------------------+
+//       | if (p0.new) memw(..)=r0 |   ||   | if (p0) memw(..)=r0.new |
+//       +-------------------------+   ||   +-------------------------+
+//                        ||           ||         ||
+//                        ||         demote      \||/
+//                      promote        ||         \/ NOT possible
+//                        ||           ||         /\~
+//                       \||/          ||        /||\~
+//                        \/           ||         ||
+//                      +-----------------------------+
+//                      | if (p0.new) memw(..)=r0.new |
+//                      +-----------------------------+
+//                           Double Dot New Store
+//
 // Returns the most basic instruction for the .new predicated instructions and
 // new-value stores.
 // For example, all of the following instructions will be converted back to the
@@ -1699,24 +2883,23 @@ bool HexagonInstrInfo::isDotNewInst (con
 // 2) if (p0) memw(R0+#0)= R1.new      -------> if (p0) memw(R0+#0) = R1
 // 3) if (p0.new) memw(R0+#0) = R1      --->
 //
+// To understand the translation of instruction 1 to its original form, consider
+// a packet with 3 instructions.
+// { p0 = cmp.eq(R0,R1)
+//   if (p0.new) R2 = add(R3, R4)
+//   R5 = add (R3, R1)
+// }
+// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
+//
+// This instruction can be part of the previous packet only if both p0 and R2
+// are promoted to .new values. This promotion happens in steps, first
+// predicate register is promoted to .new and in the next iteration R2 is
+// promoted. Therefore, in case of dependence check failure (due to R5) during
+// next iteration, it should be converted back to its most basic form.
 
-int HexagonInstrInfo::GetDotOldOp(const int opc) const {
-  int NewOp = opc;
-  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
-    NewOp = Hexagon::getPredOldOpcode(NewOp);
-    assert(NewOp >= 0 &&
-           "Couldn't change predicate new instruction to its old form.");
-  }
-
-  if (isNewValueStore(NewOp)) { // Convert into non-new-value format
-    NewOp = Hexagon::getNonNVStore(NewOp);
-    assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
-  }
-  return NewOp;
-}
 
 // Return the new value instruction for a given store.
-int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
+int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
   int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
   if (NVOpcode >= 0) // Valid new-value store instruction.
     return NVOpcode;
@@ -1726,12 +2909,6 @@ int HexagonInstrInfo::GetDotNewOp(const
   case Hexagon::S4_storerb_ur:
     return Hexagon::S4_storerbnew_ur;
 
-  case Hexagon::S4_storerh_ur:
-    return Hexagon::S4_storerhnew_ur;
-
-  case Hexagon::S4_storeri_ur:
-    return Hexagon::S4_storerinew_ur;
-
   case Hexagon::S2_storerb_pci:
     return Hexagon::S2_storerb_pci;
 
@@ -1746,203 +2923,496 @@ int HexagonInstrInfo::GetDotNewOp(const
 
   case Hexagon::S2_storerf_pci:
     return Hexagon::S2_storerf_pci;
+
+  case Hexagon::V6_vS32b_ai:
+    return Hexagon::V6_vS32b_new_ai;
+
+  case Hexagon::V6_vS32b_pi:
+    return Hexagon::V6_vS32b_new_pi;
+
+  // 128B
+  case Hexagon::V6_vS32b_ai_128B:
+    return Hexagon::V6_vS32b_new_ai_128B;
+
+  case Hexagon::V6_vS32b_pi_128B:
+    return Hexagon::V6_vS32b_new_pi_128B;
   }
   return 0;
 }
 
-// Return .new predicate version for an instruction.
-int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
-                                      const MachineBranchProbabilityInfo
-                                      *MBPI) const {
+// Returns the opcode to use when converting MI, which is a conditional jump,
+// into a conditional instruction which uses the .new value of the predicate.
+// We also use branch probabilities to add a hint to the jump.
+int HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
+      const MachineBranchProbabilityInfo *MBPI) const {
+  // We assume that block can have at most two successors.
+  bool taken = false;
+  MachineBasicBlock *Src = MI->getParent();
+  MachineOperand *BrTarget = &MI->getOperand(1);
+  MachineBasicBlock *Dst = BrTarget->getMBB();
+
+  const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
+  if (Prediction >= BranchProbability(1,2))
+    taken = true;
+
+  switch (MI->getOpcode()) {
+  case Hexagon::J2_jumpt:
+    return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
+  case Hexagon::J2_jumpf:
+    return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
+
+  default:
+    llvm_unreachable("Unexpected jump instruction.");
+  }
+}
 
+
+// Return .new predicate version for an instruction.
+int HexagonInstrInfo::getDotNewPredOp(MachineInstr *MI,
+      const MachineBranchProbabilityInfo *MBPI) const {
   int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
   if (NewOpcode >= 0) // Valid predicate new instruction
     return NewOpcode;
 
   switch (MI->getOpcode()) {
-  default: llvm_unreachable("Unknown .new type");
   // Condtional Jumps
   case Hexagon::J2_jumpt:
   case Hexagon::J2_jumpf:
     return getDotNewPredJumpOp(MI, MBPI);
 
-  case Hexagon::J2_jumprt:
-    return Hexagon::J2_jumptnewpt;
-
-  case Hexagon::J2_jumprf:
-    return Hexagon::J2_jumprfnewpt;
-
-  case Hexagon::JMPrett:
-    return Hexagon::J2_jumprtnewpt;
-
-  case Hexagon::JMPretf:
-    return Hexagon::J2_jumprfnewpt;
-
-
-  // Conditional combine
-  case Hexagon::C2_ccombinewt:
-    return Hexagon::C2_ccombinewnewt;
-  case Hexagon::C2_ccombinewf:
-    return Hexagon::C2_ccombinewnewf;
+  default:
+    assert(0 && "Unknown .new type");
   }
+  return 0;
 }
 
 
-unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
-
-  return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
-}
+int HexagonInstrInfo::getDotOldOp(const int opc) const {
+  int NewOp = opc;
+  if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
+    NewOp = Hexagon::getPredOldOpcode(NewOp);
+    assert(NewOp >= 0 &&
+           "Couldn't change predicate new instruction to its old form.");
+  }
 
-/// immediateExtend - Changes the instruction in place to one using an immediate
-/// extender.
-void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
-  assert((isExtendable(MI)||isConstExtended(MI)) &&
-                               "Instruction must be extendable");
-  // Find which operand is extendable.
-  short ExtOpNum = getCExtOpNum(MI);
-  MachineOperand &MO = MI->getOperand(ExtOpNum);
-  // This needs to be something we understand.
-  assert((MO.isMBB() || MO.isImm()) &&
-         "Branch with unknown extendable field type");
-  // Mark given operand as extended.
-  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
+  if (isNewValueStore(NewOp)) { // Convert into non-new-value format
+    NewOp = Hexagon::getNonNVStore(NewOp);
+    assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
+  }
+  return NewOp;
 }
 
-DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
-    const TargetSubtargetInfo &STI) const {
-  const InstrItineraryData *II = STI.getInstrItineraryData();
-  return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
-}
 
-bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
-                                            const MachineBasicBlock *MBB,
-                                            const MachineFunction &MF) const {
-  // Debug info is never a scheduling boundary. It's necessary to be explicit
-  // due to the special treatment of IT instructions below, otherwise a
-  // dbg_value followed by an IT will result in the IT instruction being
-  // considered a scheduling hazard, which is wrong. It should be the actual
-  // instruction preceding the dbg_value instruction(s), just like it is
-  // when debug info is not present.
-  if (MI->isDebugValue())
-    return false;
+// See if instruction could potentially be a duplex candidate.
+// If so, return its group. Zero otherwise.
+HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
+      const MachineInstr *MI) const {
+  unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
+  auto &HRI = getRegisterInfo();
 
-  // Terminators and labels can't be scheduled around.
-  if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
-    return true;
+  switch (MI->getOpcode()) {
+  default:
+    return HexagonII::HSIG_None;
+  //
+  // Group L1:
+  //
+  // Rd = memw(Rs+#u4:2)
+  // Rd = memub(Rs+#u4:0)
+  case Hexagon::L2_loadri_io:
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    // Special case this one from Group L2.
+    // Rd = memw(r29+#u5:2)
+    if (isIntRegForSubInst(DstReg)) {
+      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+          HRI.getStackRegister() == SrcReg &&
+          MI->getOperand(2).isImm() &&
+          isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
+        return HexagonII::HSIG_L2;
+      // Rd = memw(Rs+#u4:2)
+      if (isIntRegForSubInst(SrcReg) &&
+          (MI->getOperand(2).isImm() &&
+          isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
+        return HexagonII::HSIG_L1;
+    }
+    break;
+  case Hexagon::L2_loadrub_io:
+    // Rd = memub(Rs+#u4:0)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+        MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_L1;
+    break;
+  //
+  // Group L2:
+  //
+  // Rd = memh/memuh(Rs+#u3:1)
+  // Rd = memb(Rs+#u3:0)
+  // Rd = memw(r29+#u5:2) - Handled above.
+  // Rdd = memd(r29+#u5:3)
+  // deallocframe
+  // [if ([!]p0[.new])] dealloc_return
+  // [if ([!]p0[.new])] jumpr r31
+  case Hexagon::L2_loadrh_io:
+  case Hexagon::L2_loadruh_io:
+    // Rd = memh/memuh(Rs+#u3:1)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+        MI->getOperand(2).isImm() &&
+        isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_L2;
+    break;
+  case Hexagon::L2_loadrb_io:
+    // Rd = memb(Rs+#u3:0)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+        MI->getOperand(2).isImm() &&
+        isUInt<3>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_L2;
+    break;
+  case Hexagon::L2_loadrd_io:
+    // Rdd = memd(r29+#u5:3)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isDblRegForSubInst(DstReg, HRI) &&
+        Hexagon::IntRegsRegClass.contains(SrcReg) &&
+        HRI.getStackRegister() == SrcReg &&
+        MI->getOperand(2).isImm() &&
+        isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_L2;
+    break;
+  // dealloc_return is not documented in Hexagon Manual, but marked
+  // with A_SUBINSN attribute in iset_v4classic.py.
+  case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
+  case Hexagon::L4_return:
+  case Hexagon::L2_deallocframe:
+    return HexagonII::HSIG_L2;
+  case Hexagon::EH_RETURN_JMPR:
+  case Hexagon::JMPret :
+    // jumpr r31
+    // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
+    DstReg = MI->getOperand(0).getReg();
+    if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
+      return HexagonII::HSIG_L2;
+    break;
+  case Hexagon::JMPrett:
+  case Hexagon::JMPretf:
+  case Hexagon::JMPrettnewpt:
+  case Hexagon::JMPretfnewpt :
+  case Hexagon::JMPrettnew :
+  case Hexagon::JMPretfnew :
+    DstReg = MI->getOperand(1).getReg();
+    SrcReg = MI->getOperand(0).getReg();
+    // [if ([!]p0[.new])] jumpr r31
+    if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
+        (Hexagon::P0 == SrcReg)) &&
+        (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
+      return HexagonII::HSIG_L2;
+     break;
+  case Hexagon::L4_return_t :
+  case Hexagon::L4_return_f :
+  case Hexagon::L4_return_tnew_pnt :
+  case Hexagon::L4_return_fnew_pnt :
+  case Hexagon::L4_return_tnew_pt :
+  case Hexagon::L4_return_fnew_pt :
+    // [if ([!]p0[.new])] dealloc_return
+    SrcReg = MI->getOperand(0).getReg();
+    if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
+      return HexagonII::HSIG_L2;
+    break;
+  //
+  // Group S1:
+  //
+  // memw(Rs+#u4:2) = Rt
+  // memb(Rs+#u4:0) = Rt
+  case Hexagon::S2_storeri_io:
+    // Special case this one from Group S2.
+    // memw(r29+#u5:2) = Rt
+    Src1Reg = MI->getOperand(0).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
+        isIntRegForSubInst(Src2Reg) &&
+        HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
+        isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
+      return HexagonII::HSIG_S2;
+    // memw(Rs+#u4:2) = Rt
+    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+        MI->getOperand(1).isImm() &&
+        isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
+      return HexagonII::HSIG_S1;
+    break;
+  case Hexagon::S2_storerb_io:
+    // memb(Rs+#u4:0) = Rt
+    Src1Reg = MI->getOperand(0).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+        MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
+      return HexagonII::HSIG_S1;
+    break;
+  //
+  // Group S2:
+  //
+  // memh(Rs+#u3:1) = Rt
+  // memw(r29+#u5:2) = Rt
+  // memd(r29+#s6:3) = Rtt
+  // memw(Rs+#u4:2) = #U1
+  // memb(Rs+#u4) = #U1
+  // allocframe(#u5:3)
+  case Hexagon::S2_storerh_io:
+    // memh(Rs+#u3:1) = Rt
+    Src1Reg = MI->getOperand(0).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+        MI->getOperand(1).isImm() &&
+        isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
+      return HexagonII::HSIG_S1;
+    break;
+  case Hexagon::S2_storerd_io:
+    // memd(r29+#s6:3) = Rtt
+    Src1Reg = MI->getOperand(0).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (isDblRegForSubInst(Src2Reg, HRI) &&
+        Hexagon::IntRegsRegClass.contains(Src1Reg) &&
+        HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
+        isShiftedInt<6,3>(MI->getOperand(1).getImm()))
+      return HexagonII::HSIG_S2;
+    break;
+  case Hexagon::S4_storeiri_io:
+    // memw(Rs+#u4:2) = #U1
+    Src1Reg = MI->getOperand(0).getReg();
+    if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
+        isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
+        MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_S2;
+    break;
+  case Hexagon::S4_storeirb_io:
+    // memb(Rs+#u4) = #U1
+    Src1Reg = MI->getOperand(0).getReg();
+    if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
+        isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
+        MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_S2;
+    break;
+  case Hexagon::S2_allocframe:
+    if (MI->getOperand(0).isImm() &&
+        isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
+      return HexagonII::HSIG_S1;
+    break;
+  //
+  // Group A:
+  //
+  // Rx = add(Rx,#s7)
+  // Rd = Rs
+  // Rd = #u6
+  // Rd = #-1
+  // if ([!]P0[.new]) Rd = #0
+  // Rd = add(r29,#u6:2)
+  // Rx = add(Rx,Rs)
+  // P0 = cmp.eq(Rs,#u2)
+  // Rdd = combine(#0,Rs)
+  // Rdd = combine(Rs,#0)
+  // Rdd = combine(#u2,#U2)
+  // Rd = add(Rs,#1)
+  // Rd = add(Rs,#-1)
+  // Rd = sxth/sxtb/zxtb/zxth(Rs)
+  // Rd = and(Rs,#1)
+  case Hexagon::A2_addi:
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg)) {
+      // Rd = add(r29,#u6:2)
+      if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+        HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
+        isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
+        return HexagonII::HSIG_A;
+      // Rx = add(Rx,#s7)
+      if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
+          isInt<7>(MI->getOperand(2).getImm()))
+        return HexagonII::HSIG_A;
+      // Rd = add(Rs,#1)
+      // Rd = add(Rs,#-1)
+      if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
+          ((MI->getOperand(2).getImm() == 1) ||
+          (MI->getOperand(2).getImm() == -1)))
+        return HexagonII::HSIG_A;
+    }
+    break;
+  case Hexagon::A2_add:
+    // Rx = add(Rx,Rs)
+    DstReg = MI->getOperand(0).getReg();
+    Src1Reg = MI->getOperand(1).getReg();
+    Src2Reg = MI->getOperand(2).getReg();
+    if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
+        isIntRegForSubInst(Src2Reg))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A2_andir:
+    // Same as zxtb.
+    // Rd16=and(Rs16,#255)
+    // Rd16=and(Rs16,#1)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+        MI->getOperand(2).isImm() &&
+        ((MI->getOperand(2).getImm() == 1) ||
+        (MI->getOperand(2).getImm() == 255)))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A2_tfr:
+    // Rd = Rs
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A2_tfrsi:
+    // Rd = #u6
+    // Do not test for #u6 size since the const is getting extended
+    // regardless and compound could be formed.
+    // Rd = #-1
+    DstReg = MI->getOperand(0).getReg();
+    if (isIntRegForSubInst(DstReg))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::C2_cmoveit:
+  case Hexagon::C2_cmovenewit:
+  case Hexagon::C2_cmoveif:
+  case Hexagon::C2_cmovenewif:
+    // if ([!]P0[.new]) Rd = #0
+    // Actual form:
+    // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) &&
+        Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
+        MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::C2_cmpeqi:
+    // P0 = cmp.eq(Rs,#u2)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+        Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
+        MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A2_combineii:
+  case Hexagon::A4_combineii:
+    // Rdd = combine(#u2,#U2)
+    DstReg = MI->getOperand(0).getReg();
+    if (isDblRegForSubInst(DstReg, HRI) &&
+        ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
+        (MI->getOperand(1).isGlobal() &&
+        isUInt<2>(MI->getOperand(1).getOffset()))) &&
+        ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
+        (MI->getOperand(2).isGlobal() &&
+        isUInt<2>(MI->getOperand(2).getOffset()))))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A4_combineri:
+    // Rdd = combine(Rs,#0)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
+        ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
+        (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A4_combineir:
+    // Rdd = combine(#0,Rs)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(2).getReg();
+    if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
+        ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
+        (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
+      return HexagonII::HSIG_A;
+    break;
+  case Hexagon::A2_sxtb:
+  case Hexagon::A2_sxth:
+  case Hexagon::A2_zxtb:
+  case Hexagon::A2_zxth:
+    // Rd = sxth/sxtb/zxtb/zxth(Rs)
+    DstReg = MI->getOperand(0).getReg();
+    SrcReg = MI->getOperand(1).getReg();
+    if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+      return HexagonII::HSIG_A;
+    break;
+  }
 
-  return false;
+  return HexagonII::HSIG_None;
 }
 
-bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
-  unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
-  if (isExtended) // Instruction must be extended.
-    return true;
-
-  unsigned isExtendable =
-    (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
-  if (!isExtendable)
-    return false;
-
-  short ExtOpNum = getCExtOpNum(MI);
-  const MachineOperand &MO = MI->getOperand(ExtOpNum);
-  // Use MO operand flags to determine if MO
-  // has the HMOTF_ConstExtended flag set.
-  if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
-    return true;
-  // If this is a Machine BB address we are talking about, and it is
-  // not marked as extended, say so.
-  if (MO.isMBB())
-    return false;
-
-  // We could be using an instruction with an extendable immediate and shoehorn
-  // a global address into it. If it is a global address it will be constant
-  // extended. We do this for COMBINE.
-  // We currently only handle isGlobal() because it is the only kind of
-  // object we are going to end up with here for now.
-  // In the future we probably should add isSymbol(), etc.
-  if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
-      MO.isJTI() || MO.isCPI())
-    return true;
 
-  // If the extendable operand is not 'Immediate' type, the instruction should
-  // have 'isExtended' flag set.
-  assert(MO.isImm() && "Extendable operand must be Immediate type");
+short HexagonInstrInfo::getEquivalentHWInstr(MachineInstr *MI) const {
+  return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
+}
 
-  int MinValue = getMinValue(MI);
-  int MaxValue = getMaxValue(MI);
-  int ImmValue = MO.getImm();
 
-  return (ImmValue < MinValue || ImmValue > MaxValue);
+// Return first non-debug instruction in the basic block.
+MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
+      const {
+  for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
+    MachineInstr *MI = &*MII;
+    if (MI->isDebugValue())
+      continue;
+    return MI;
+  }
+  return nullptr;
 }
 
-// Return the number of bytes required to encode the instruction.
-// Hexagon instructions are fixed length, 4 bytes, unless they
-// use a constant extender, which requires another 4 bytes.
-// For debug instructions and prolog labels, return 0.
-unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
 
-  if (MI->isDebugValue() || MI->isPosition())
+unsigned HexagonInstrInfo::getInstrTimingClassLatency(
+      const InstrItineraryData *ItinData, const MachineInstr *MI) const {
+  // Default to one cycle for no itinerary. However, an "empty" itinerary may
+  // still have a MinLatency property, which getStageLatency checks.
+  if (!ItinData)
+    return getInstrLatency(ItinData, MI);
+
+  // Get the latency embedded in the itinerary. If we're not using timing class
+  // latencies or if we using BSB scheduling, then restrict the maximum latency
+  // to 1 (that is, either 0 or 1).
+  if (MI->isTransient())
     return 0;
-
-  unsigned Size = MI->getDesc().getSize();
-  if (!Size)
-    // Assume the default insn size in case it cannot be determined
-    // for whatever reason.
-    Size = HEXAGON_INSTR_SIZE;
-
-  if (isConstExtended(MI) || isExtended(MI))
-    Size += HEXAGON_INSTR_SIZE;
-
-  return Size;
+  unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
+  if (!EnableTimingClassLatency ||
+      MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
+      useBSBScheduling())
+    if (Latency > 1)
+      Latency = 1;
+  return Latency;
 }
 
-// Returns the opcode to use when converting MI, which is a conditional jump,
-// into a conditional instruction which uses the .new value of the predicate.
-// We also use branch probabilities to add a hint to the jump.
-int
-HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
-                                  const
-                                  MachineBranchProbabilityInfo *MBPI) const {
-
-  // We assume that block can have at most two successors.
-  bool taken = false;
-  MachineBasicBlock *Src = MI->getParent();
-  MachineOperand *BrTarget = &MI->getOperand(1);
-  MachineBasicBlock *Dst = BrTarget->getMBB();
 
-  const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
-  if (Prediction >= BranchProbability(1,2))
-    taken = true;
+// inverts the predication logic.
+// p -> NotP
+// NotP -> P
+bool HexagonInstrInfo::getInvertedPredSense(
+      SmallVectorImpl<MachineOperand> &Cond) const {
+  if (Cond.empty())
+    return false;
+  unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
+  Cond[0].setImm(Opc);
+  return true;
+}
 
-  switch (MI->getOpcode()) {
-  case Hexagon::J2_jumpt:
-    return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
-  case Hexagon::J2_jumpf:
-    return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
 
-  default:
-    llvm_unreachable("Unexpected jump instruction.");
-  }
-}
-// Returns true if a particular operand is extendable for an instruction.
-bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
-                                         unsigned short OperandNum) const {
-  const uint64_t F = MI->getDesc().TSFlags;
+unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
+  int InvPredOpcode;
+  InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
+                                        : Hexagon::getTruePredOpcode(Opc);
+  if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
+    return InvPredOpcode;
 
-  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
-          == OperandNum;
+  llvm_unreachable("Unexpected predicated instruction");
 }
 
-// Returns Operand Index for the constant extended instruction.
-unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
-  const uint64_t F = MI->getDesc().TSFlags;
-  return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
-}
 
-// Returns the min value that doesn't need to be extended.
-int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
+// Returns the max value that doesn't need to be extended.
+int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
   const uint64_t F = MI->getDesc().TSFlags;
   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
                     & HexagonII::ExtentSignedMask;
@@ -1950,13 +3420,20 @@ int HexagonInstrInfo::getMinValue(const
                     & HexagonII::ExtentBitsMask;
 
   if (isSigned) // if value is signed
-    return -1U << (bits - 1);
+    return ~(-1U << (bits - 1));
   else
-    return 0;
+    return ~(-1U << bits);
 }
 
-// Returns the max value that doesn't need to be extended.
-int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
+
+unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
+}
+
+
+// Returns the min value that doesn't need to be extended.
+int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
   const uint64_t F = MI->getDesc().TSFlags;
   unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
                     & HexagonII::ExtentSignedMask;
@@ -1964,49 +3441,14 @@ int HexagonInstrInfo::getMaxValue(const
                     & HexagonII::ExtentBitsMask;
 
   if (isSigned) // if value is signed
-    return ~(-1U << (bits - 1));
+    return -1U << (bits - 1);
   else
-    return ~(-1U << bits);
+    return 0;
 }
 
-// Returns true if an instruction can be converted into a non-extended
-// equivalent instruction.
-bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
-
-  short NonExtOpcode;
-  // Check if the instruction has a register form that uses register in place
-  // of the extended operand, if so return that as the non-extended form.
-  if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
-    return true;
-
-  if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
-    // Check addressing mode and retrieve non-ext equivalent instruction.
-
-    switch (getAddrMode(MI)) {
-    case HexagonII::Absolute :
-      // Load/store with absolute addressing mode can be converted into
-      // base+offset mode.
-      NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
-      break;
-    case HexagonII::BaseImmOffset :
-      // Load/store with base+offset addressing mode can be converted into
-      // base+register offset addressing mode. However left shift operand should
-      // be set to 0.
-      NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
-      break;
-    default:
-      return false;
-    }
-    if (NonExtOpcode < 0)
-      return false;
-    return true;
-  }
-  return false;
-}
 
 // Returns opcode of the non-extended equivalent instruction.
-short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
-
+short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
   // Check if the instruction has a register form that uses register in place
   // of the extended operand, if so return that as the non-extended form.
   short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
@@ -2020,6 +3462,9 @@ short HexagonInstrInfo::getNonExtOpcode
       return Hexagon::getBaseWithImmOffset(MI->getOpcode());
     case HexagonII::BaseImmOffset :
       return Hexagon::getBaseWithRegOffset(MI->getOpcode());
+    case HexagonII::BaseLongOffset:
+      return Hexagon::getRegShlForm(MI->getOpcode());
+
     default:
       return -1;
     }
@@ -2027,29 +3472,9 @@ short HexagonInstrInfo::getNonExtOpcode
   return -1;
 }
 
-bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
-  return (Opcode == Hexagon::J2_jumpt) ||
-         (Opcode == Hexagon::J2_jumpf) ||
-         (Opcode == Hexagon::J2_jumptnewpt) ||
-         (Opcode == Hexagon::J2_jumpfnewpt) ||
-         (Opcode == Hexagon::J2_jumpt) ||
-         (Opcode == Hexagon::J2_jumpf);
-}
-
-bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
-  if (Cond.empty() || !isPredicated(Cond[0].getImm()))
-    return false;
-  return !isPredicatedTrue(Cond[0].getImm());
-}
-
-bool HexagonInstrInfo::isEndLoopN(Opcode_t Opcode) const {
-  return (Opcode == Hexagon::ENDLOOP0 ||
-          Opcode == Hexagon::ENDLOOP1);
-}
 
 bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
-                                  unsigned &PredReg, unsigned &PredRegPos,
-                                  unsigned &PredRegFlags) const {
+      unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
   if (Cond.empty())
     return false;
   assert(Cond.size() == 2);
@@ -2068,3 +3493,174 @@ bool HexagonInstrInfo::getPredReg(ArrayR
   return true;
 }
 
+
+short HexagonInstrInfo::getPseudoInstrPair(MachineInstr *MI) const {
+  return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
+}
+
+
+short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
+  return Hexagon::getRegForm(MI->getOpcode());
+}
+
+
+// Return the number of bytes required to encode the instruction.
+// Hexagon instructions are fixed length, 4 bytes, unless they
+// use a constant extender, which requires another 4 bytes.
+// For debug instructions and prolog labels, return 0.
+unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
+  if (MI->isDebugValue() || MI->isPosition())
+    return 0;
+
+  unsigned Size = MI->getDesc().getSize();
+  if (!Size)
+    // Assume the default insn size in case it cannot be determined
+    // for whatever reason.
+    Size = HEXAGON_INSTR_SIZE;
+
+  if (isConstExtended(MI) || isExtended(MI))
+    Size += HEXAGON_INSTR_SIZE;
+
+  // Try and compute number of instructions in asm.
+  if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
+    const MachineBasicBlock &MBB = *MI->getParent();
+    const MachineFunction *MF = MBB.getParent();
+    const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+    // Count the number of register definitions to find the asm string.
+    unsigned NumDefs = 0;
+    for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
+         ++NumDefs)
+      assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
+
+    assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
+    // Disassemble the AsmStr and approximate number of instructions.
+    const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
+    Size = getInlineAsmLength(AsmStr, *MAI);
+  }
+
+  return Size;
+}
+
+
+uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
+  const uint64_t F = MI->getDesc().TSFlags;
+  return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
+}
+
+
+unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
+  const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
+  const InstrItineraryData &II = *ST.getInstrItineraryData();
+  const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
+
+  return IS.getUnits();
+}
+
+
+unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
+  const uint64_t F = get(Opcode).TSFlags;
+  return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
+}
+
+
+// Calculate size of the basic block without debug instructions.
+unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
+  return nonDbgMICount(BB->instr_begin(), BB->instr_end());
+}
+
+
+unsigned HexagonInstrInfo::nonDbgBundleSize(
+      MachineBasicBlock::const_iterator BundleHead) const {
+  assert(BundleHead->isBundle() && "Not a bundle header");
+  auto MII = BundleHead.getInstrIterator();
+  // Skip the bundle header.
+  return nonDbgMICount(++MII, getBundleEnd(BundleHead));
+}
+
+
+/// immediateExtend - Changes the instruction in place to one using an immediate
+/// extender.
+void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
+  assert((isExtendable(MI)||isConstExtended(MI)) &&
+                               "Instruction must be extendable");
+  // Find which operand is extendable.
+  short ExtOpNum = getCExtOpNum(MI);
+  MachineOperand &MO = MI->getOperand(ExtOpNum);
+  // This needs to be something we understand.
+  assert((MO.isMBB() || MO.isImm()) &&
+         "Branch with unknown extendable field type");
+  // Mark given operand as extended.
+  MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
+}
+
+
+bool HexagonInstrInfo::invertAndChangeJumpTarget(
+      MachineInstr* MI, MachineBasicBlock* NewTarget) const {
+  DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
+               << NewTarget->getNumber(); MI->dump(););
+  assert(MI->isBranch());
+  unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
+  int TargetPos = MI->getNumOperands() - 1;
+  // In general branch target is the last operand,
+  // but some implicit defs added at the end might change it.
+  while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
+    --TargetPos;
+  assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
+  MI->getOperand(TargetPos).setMBB(NewTarget);
+  if (EnableBranchPrediction && isPredicatedNew(MI)) {
+    NewOpcode = reversePrediction(NewOpcode);
+  }
+  MI->setDesc(get(NewOpcode));
+  return true;
+}
+
+
+void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
+  /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
+  MachineFunction::iterator A = MF.begin();
+  MachineBasicBlock &B = *A;
+  MachineBasicBlock::iterator I = B.begin();
+  MachineInstr *MI = &*I;
+  DebugLoc DL = MI->getDebugLoc();
+  MachineInstr *NewMI;
+
+  for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
+       insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
+    NewMI = BuildMI(B, MI, DL, get(insn));
+    DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
+          "  Class: " << NewMI->getDesc().getSchedClass());
+    NewMI->eraseFromParent();
+  }
+  /* --- The code above is used to generate complete set of Hexagon Insn --- */
+}
+
+
+// inverts the predication logic.
+// p -> NotP
+// NotP -> P
+bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
+  DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
+  MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
+  return true;
+}
+
+
+// Reverse the branch prediction.
+unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
+  int PredRevOpcode = -1;
+  if (isPredictedTaken(Opcode))
+    PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
+  else
+    PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
+  assert(PredRevOpcode > 0);
+  return PredRevOpcode;
+}
+
+
+// TODO: Add more rigorous validation.
+bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
+      const {
+  return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
+}
+

Modified: llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h Tue Nov 24 08:55:26 2015
@@ -1,4 +1,3 @@
-
 //===- HexagonInstrInfo.h - Hexagon Instruction Information -----*- C++ -*-===//
 //
 //                     The LLVM Compiler Infrastructure
@@ -28,23 +27,18 @@ namespace llvm {
 
 struct EVT;
 class HexagonSubtarget;
+
 class HexagonInstrInfo : public HexagonGenInstrInfo {
   virtual void anchor();
   const HexagonRegisterInfo RI;
-  const HexagonSubtarget &Subtarget;
 
 public:
-  typedef unsigned Opcode_t;
-
   explicit HexagonInstrInfo(HexagonSubtarget &ST);
 
-  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
-  /// such, whenever a client has an instance of instruction info, it should
-  /// always be able to get register info as well (through this method).
+  /// TargetInstrInfo overrides.
   ///
-  const HexagonRegisterInfo &getRegisterInfo() const { return RI; }
 
-  /// isLoadFromStackSlot - If the specified machine instruction is a direct
+  /// If the specified machine instruction is a direct
   /// load from a stack slot, return the virtual or physical register number of
   /// the destination along with the FrameIndex of the loaded stack slot.  If
   /// not, return 0.  This predicate must return 0 if the instruction has
@@ -52,7 +46,7 @@ public:
   unsigned isLoadFromStackSlot(const MachineInstr *MI,
                                int &FrameIndex) const override;
 
-  /// isStoreToStackSlot - If the specified machine instruction is a direct
+  /// If the specified machine instruction is a direct
   /// store to a stack slot, return the virtual or physical register number of
   /// the source reg along with the FrameIndex of the loaded stack slot.  If
   /// not, return 0.  This predicate must return 0 if the instruction has
@@ -60,50 +54,118 @@ public:
   unsigned isStoreToStackSlot(const MachineInstr *MI,
                               int &FrameIndex) const override;
 
-
+  /// Analyze the branching code at the end of MBB, returning
+  /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
+  /// implemented for a target).  Upon success, this returns false and returns
+  /// with the following information in various cases:
+  ///
+  /// 1. If this block ends with no branches (it just falls through to its succ)
+  ///    just return false, leaving TBB/FBB null.
+  /// 2. If this block ends with only an unconditional branch, it sets TBB to be
+  ///    the destination block.
+  /// 3. If this block ends with a conditional branch and it falls through to a
+  ///    successor block, it sets TBB to be the branch destination block and a
+  ///    list of operands that evaluate the condition. These operands can be
+  ///    passed to other TargetInstrInfo methods to create new branches.
+  /// 4. If this block ends with a conditional branch followed by an
+  ///    unconditional branch, it returns the 'true' destination in TBB, the
+  ///    'false' destination in FBB, and a list of operands that evaluate the
+  ///    condition.  These operands can be passed to other TargetInstrInfo
+  ///    methods to create new branches.
+  ///
+  /// Note that RemoveBranch and InsertBranch must be implemented to support
+  /// cases where this method returns success.
+  ///
+  /// If AllowModify is true, then this routine is allowed to modify the basic
+  /// block (e.g. delete instructions after the unconditional branch).
+  ///
   bool AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
                          MachineBasicBlock *&FBB,
                          SmallVectorImpl<MachineOperand> &Cond,
                          bool AllowModify) const override;
 
+  /// Remove the branching code at the end of the specific MBB.
+  /// This is only invoked in cases where AnalyzeBranch returns success. It
+  /// returns the number of instructions that were removed.
   unsigned RemoveBranch(MachineBasicBlock &MBB) const override;
 
+  /// Insert branch code into the end of the specified MachineBasicBlock.
+  /// The operands to this method are the same as those
+  /// returned by AnalyzeBranch.  This is only invoked in cases where
+  /// AnalyzeBranch returns success. It returns the number of instructions
+  /// inserted.
+  ///
+  /// It is also invoked by tail merging to add unconditional branches in
+  /// cases where AnalyzeBranch doesn't apply because there was no original
+  /// branch to analyze.  At least this much must be implemented, else tail
+  /// merging needs to be disabled.
   unsigned InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
                         MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
                         DebugLoc DL) const override;
 
-  bool analyzeCompare(const MachineInstr *MI,
-                      unsigned &SrcReg, unsigned &SrcReg2,
-                      int &Mask, int &Value) const override;
+  /// Return true if it's profitable to predicate
+  /// instructions with accumulated instruction latency of "NumCycles"
+  /// of the specified basic block, where the probability of the instructions
+  /// being executed is given by Probability, and Confidence is a measure
+  /// of our confidence that it will be properly predicted.
+  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+                           unsigned ExtraPredCycles,
+                           BranchProbability Probability) const override;
+
+  /// Second variant of isProfitableToIfCvt. This one
+  /// checks for the case where two basic blocks from true and false path
+  /// of a if-then-else (diamond) are predicated on mutally exclusive
+  /// predicates, where the probability of the true path being taken is given
+  /// by Probability, and Confidence is a measure of our confidence that it
+  /// will be properly predicted.
+  bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
+                           unsigned NumTCycles, unsigned ExtraTCycles,
+                           MachineBasicBlock &FMBB,
+                           unsigned NumFCycles, unsigned ExtraFCycles,
+                           BranchProbability Probability) const override;
 
+  /// Return true if it's profitable for if-converter to duplicate instructions
+  /// of specified accumulated instruction latencies in the specified MBB to
+  /// enable if-conversion.
+  /// The probability of the instructions being executed is given by
+  /// Probability, and Confidence is a measure of our confidence that it
+  /// will be properly predicted.
+  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
+                                 BranchProbability Probability) const override;
+
+  /// Emit instructions to copy a pair of physical registers.
+  ///
+  /// This function should support copies within any legal register class as
+  /// well as any cross-class copies created during instruction selection.
+  ///
+  /// The source and destination registers may overlap, which may require a
+  /// careful implementation when multiple copy instructions are required for
+  /// large registers. See for example the ARM target.
   void copyPhysReg(MachineBasicBlock &MBB,
                    MachineBasicBlock::iterator I, DebugLoc DL,
                    unsigned DestReg, unsigned SrcReg,
                    bool KillSrc) const override;
 
+  /// Store the specified register of the given register class to the specified
+  /// stack frame index. The store instruction is to be added to the given
+  /// machine basic block before the specified machine instruction. If isKill
+  /// is true, the register operand is the last use and must be marked kill.
   void storeRegToStackSlot(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator MBBI,
                            unsigned SrcReg, bool isKill, int FrameIndex,
                            const TargetRegisterClass *RC,
                            const TargetRegisterInfo *TRI) const override;
 
-  void storeRegToAddr(MachineFunction &MF, unsigned SrcReg, bool isKill,
-                      SmallVectorImpl<MachineOperand> &Addr,
-                      const TargetRegisterClass *RC,
-                      SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
+  /// Load the specified register of the given register class from the specified
+  /// stack frame index. The load instruction is to be added to the given
+  /// machine basic block before the specified machine instruction.
   void loadRegFromStackSlot(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator MBBI,
                             unsigned DestReg, int FrameIndex,
                             const TargetRegisterClass *RC,
                             const TargetRegisterInfo *TRI) const override;
 
-  void loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
-                       SmallVectorImpl<MachineOperand> &Addr,
-                       const TargetRegisterClass *RC,
-                       SmallVectorImpl<MachineInstr*> &NewMIs) const;
-
-  /// expandPostRAPseudo - This function is called for all pseudo instructions
+  /// This function is called for all pseudo instructions
   /// that remain after register allocation. Many pseudo instructions are
   /// created to help register allocation. This is the place to convert them
   /// into real instructions. The target can edit MI in place, or it can insert
@@ -111,122 +173,223 @@ public:
   /// anything was changed.
   bool expandPostRAPseudo(MachineBasicBlock::iterator MI) const override;
 
-  MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
-                                      ArrayRef<unsigned> Ops,
-                                      MachineBasicBlock::iterator InsertPt,
-                                      int FrameIndex) const override;
-
-  MachineInstr *foldMemoryOperandImpl(MachineFunction &MF, MachineInstr *MI,
-                                      ArrayRef<unsigned> Ops,
-                                      MachineBasicBlock::iterator InsertPt,
-                                      MachineInstr *LoadMI) const override {
-    return nullptr;
-  }
+  /// Reverses the branch condition of the specified condition list,
+  /// returning false on success and true if it cannot be reversed.
+  bool ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond)
+        const override;
+
+  /// Insert a noop into the instruction stream at the specified point.
+  void insertNoop(MachineBasicBlock &MBB,
+                  MachineBasicBlock::iterator MI) const override;
 
-  unsigned createVR(MachineFunction* MF, MVT VT) const;
+  /// Returns true if the instruction is already predicated.
+  bool isPredicated(const MachineInstr *MI) const override;
 
-  bool isBranch(const MachineInstr *MI) const;
-  bool isPredicable(MachineInstr *MI) const override;
+  /// Convert the instruction into a predicated instruction.
+  /// It returns true if the operation was successful.
   bool PredicateInstruction(MachineInstr *MI,
                             ArrayRef<MachineOperand> Cond) const override;
 
-  bool isProfitableToIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
-                           unsigned ExtraPredCycles,
-                           BranchProbability Probability) const override;
-
-  bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
-                           unsigned NumTCycles, unsigned ExtraTCycles,
-                           MachineBasicBlock &FMBB,
-                           unsigned NumFCycles, unsigned ExtraFCycles,
-                           BranchProbability Probability) const override;
+  /// Returns true if the first specified predicate
+  /// subsumes the second, e.g. GE subsumes GT.
+  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+                         ArrayRef<MachineOperand> Pred2) const override;
 
-  bool isPredicated(const MachineInstr *MI) const override;
-  bool isPredicated(unsigned Opcode) const;
-  bool isPredicatedTrue(const MachineInstr *MI) const;
-  bool isPredicatedTrue(unsigned Opcode) const;
-  bool isPredicatedNew(const MachineInstr *MI) const;
-  bool isPredicatedNew(unsigned Opcode) const;
+  /// If the specified instruction defines any predicate
+  /// or condition code register(s) used for predication, returns true as well
+  /// as the definition predicate(s) by reference.
   bool DefinesPredicate(MachineInstr *MI,
                         std::vector<MachineOperand> &Pred) const override;
-  bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
-                         ArrayRef<MachineOperand> Pred2) const override;
 
-  bool
-  ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
+  /// Return true if the specified instruction can be predicated.
+  /// By default, this returns true for every instruction with a
+  /// PredicateOperand.
+  bool isPredicable(MachineInstr *MI) const override;
+
+  /// Test if the given instruction should be considered a scheduling boundary.
+  /// This primarily includes labels and terminators.
+  bool isSchedulingBoundary(const MachineInstr *MI,
+                            const MachineBasicBlock *MBB,
+                            const MachineFunction &MF) const override;
 
-  bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
-                                 BranchProbability Probability) const override;
+  /// Measure the specified inline asm to determine an approximation of its
+  /// length.
+  unsigned getInlineAsmLength(const char *Str,
+                              const MCAsmInfo &MAI) const override;
+
+  /// Allocate and return a hazard recognizer to use for this target when
+  /// scheduling the machine instructions after register allocation.
+  ScheduleHazardRecognizer*
+  CreateTargetPostRAHazardRecognizer(const InstrItineraryData*,
+                                     const ScheduleDAG *DAG) const override;
+
+  /// For a comparison instruction, return the source registers
+  /// in SrcReg and SrcReg2 if having two register operands, and the value it
+  /// compares against in CmpValue. Return true if the comparison instruction
+  /// can be analyzed.
+  bool analyzeCompare(const MachineInstr *MI,
+                      unsigned &SrcReg, unsigned &SrcReg2,
+                      int &Mask, int &Value) const override;
 
+  /// Compute the instruction latency of a given instruction.
+  /// If the instruction has higher cost when predicated, it's returned via
+  /// PredCost.
+  unsigned getInstrLatency(const InstrItineraryData *ItinData,
+                           const MachineInstr *MI,
+                           unsigned *PredCost = 0) const override;
+
+  /// Create machine specific model for scheduling.
   DFAPacketizer *
   CreateTargetScheduleState(const TargetSubtargetInfo &STI) const override;
 
-  bool isSchedulingBoundary(const MachineInstr *MI,
-                            const MachineBasicBlock *MBB,
-                            const MachineFunction &MF) const override;
-  bool isValidOffset(unsigned Opcode, int Offset, bool Extend = true) const;
-  bool isValidAutoIncImm(const EVT VT, const int Offset) const;
-  bool isMemOp(const MachineInstr *MI) const;
-  bool isSpillPredRegOp(const MachineInstr *MI) const;
-  bool isU6_3Immediate(const int value) const;
-  bool isU6_2Immediate(const int value) const;
-  bool isU6_1Immediate(const int value) const;
-  bool isU6_0Immediate(const int value) const;
-  bool isS4_3Immediate(const int value) const;
-  bool isS4_2Immediate(const int value) const;
-  bool isS4_1Immediate(const int value) const;
-  bool isS4_0Immediate(const int value) const;
-  bool isS12_Immediate(const int value) const;
-  bool isU6_Immediate(const int value) const;
-  bool isS8_Immediate(const int value) const;
-  bool isS6_Immediate(const int value) const;
+  // Sometimes, it is possible for the target
+  // to tell, even without aliasing information, that two MIs access different
+  // memory addresses. This function returns true if two MIs access different
+  // memory addresses and false otherwise.
+  bool areMemAccessesTriviallyDisjoint(MachineInstr *MIa, MachineInstr *MIb,
+                                       AliasAnalysis *AA = nullptr)
+                                       const override;
 
-  bool isSaveCalleeSavedRegsCall(const MachineInstr* MI) const;
-  bool isConditionalTransfer(const MachineInstr* MI) const;
+
+  /// HexagonInstrInfo specifics.
+  ///
+
+  const HexagonRegisterInfo &getRegisterInfo() const { return RI; }
+
+  unsigned createVR(MachineFunction* MF, MVT VT) const;
+
+  bool isAbsoluteSet(const MachineInstr* MI) const;
+  bool isAccumulator(const MachineInstr *MI) const;
+  bool isComplex(const MachineInstr *MI) const;
+  bool isCompoundBranchInstr(const MachineInstr *MI) const;
+  bool isCondInst(const MachineInstr *MI) const;
   bool isConditionalALU32 (const MachineInstr* MI) const;
-  bool isConditionalLoad (const MachineInstr* MI) const;
+  bool isConditionalLoad(const MachineInstr* MI) const;
   bool isConditionalStore(const MachineInstr* MI) const;
-  bool isNewValueInst(const MachineInstr* MI) const;
-  bool isNewValue(const MachineInstr* MI) const;
-  bool isNewValue(Opcode_t Opcode) const;
-  bool isDotNewInst(const MachineInstr* MI) const;
-  int GetDotOldOp(const int opc) const;
-  int GetDotNewOp(const MachineInstr* MI) const;
-  int GetDotNewPredOp(MachineInstr *MI,
-                      const MachineBranchProbabilityInfo
-                      *MBPI) const;
-  bool mayBeNewStore(const MachineInstr* MI) const;
+  bool isConditionalTransfer(const MachineInstr* MI) const;
+  bool isConstExtended(const MachineInstr *MI) const;
   bool isDeallocRet(const MachineInstr *MI) const;
-  unsigned getInvertedPredicatedOpcode(const int Opc) const;
+  bool isDependent(const MachineInstr *ProdMI,
+                   const MachineInstr *ConsMI) const;
+  bool isDotCurInst(const MachineInstr* MI) const;
+  bool isDotNewInst(const MachineInstr* MI) const;
+  bool isDuplexPair(const MachineInstr *MIa, const MachineInstr *MIb) const;
+  bool isEarlySourceInstr(MachineInstr *MI) const;
+  bool isEndLoopN(unsigned Opcode) const;
+  bool isExpr(unsigned OpType) const;
   bool isExtendable(const MachineInstr* MI) const;
   bool isExtended(const MachineInstr* MI) const;
-  bool isPostIncrement(const MachineInstr* MI) const;
+  bool isFloat(MachineInstr *MI) const;
+  bool isIndirectCall(const MachineInstr *MI) const;
+  bool isIndirectL4Return(const MachineInstr *MI) const;
+  bool isJumpR(const MachineInstr *MI) const;
+  bool isJumpWithinBranchRange(const MachineInstr *MI, unsigned offset) const;
+  bool isLateInstrFeedsEarlyInstr(MachineInstr *LRMI, MachineInstr *ESMI) const;
+  bool isLateResultInstr(MachineInstr *MI) const;
+  bool isLateSourceInstr(const MachineInstr *MI) const;
+  bool isLoopN(unsigned Opcode) const;
+  bool isMemOp(const MachineInstr *MI) const;
+  bool isNewValue(const MachineInstr* MI) const;
+  bool isNewValue(unsigned Opcode) const;
+  bool isNewValueInst(const MachineInstr* MI) const;
+  bool isNewValueJump(const MachineInstr* MI) const;
+  bool isNewValueJump(unsigned Opcode) const;
   bool isNewValueStore(const MachineInstr* MI) const;
   bool isNewValueStore(unsigned Opcode) const;
-  bool isNewValueJump(const MachineInstr* MI) const;
-  bool isNewValueJump(Opcode_t Opcode) const;
-  bool isNewValueJumpCandidate(const MachineInstr *MI) const;
+  bool isOperandExtended(const MachineInstr *MI, unsigned OperandNum) const;
+  bool isPostIncrement(const MachineInstr* MI) const;
+  bool isPredicatedNew(const MachineInstr *MI) const;
+  bool isPredicatedNew(unsigned Opcode) const;
+  bool isPredicatedTrue(const MachineInstr *MI) const;
+  bool isPredicatedTrue(unsigned Opcode) const;
+  bool isPredicated(unsigned Opcode) const;
+  bool isPredicateLate(unsigned Opcode) const;
+  bool isPredictedTaken(unsigned Opcode) const;
+  bool isSaveCalleeSavedRegsCall(const MachineInstr *MI) const;
+  bool isSolo(const MachineInstr* MI) const;
+  bool isSpillPredRegOp(const MachineInstr *MI) const;
+  bool isTC1(const MachineInstr *MI) const;
+  bool isTC2(const MachineInstr *MI) const;
+  bool isTC2Early(const MachineInstr *MI) const;
+  bool isTC4x(const MachineInstr *MI) const;
+  bool isV60VectorInstruction(const MachineInstr *MI) const;
+  bool isValidAutoIncImm(const EVT VT, const int Offset) const;
+  bool isValidOffset(unsigned Opcode, int Offset, bool Extend = true) const;
+  bool isVecAcc(const MachineInstr *MI) const;
+  bool isVecALU(const MachineInstr *MI) const;
+  bool isVecUsableNextPacket(const MachineInstr *ProdMI,
+                             const MachineInstr *ConsMI) const;
 
 
-  void immediateExtend(MachineInstr *MI) const;
-  bool isConstExtended(const MachineInstr *MI) const;
-  unsigned getSize(const MachineInstr *MI) const;  
+  bool hasEHLabel(const MachineBasicBlock *B) const;
+  bool hasNonExtEquivalent(const MachineInstr *MI) const;
+  bool hasPseudoInstrPair(MachineInstr *MI) const;
+  bool hasUncondBranch(const MachineBasicBlock *B) const;
+  bool mayBeCurLoad(const MachineInstr* MI) const;
+  bool mayBeNewStore(const MachineInstr* MI) const;
+  bool producesStall(const MachineInstr *ProdMI,
+                     const MachineInstr *ConsMI) const;
+  bool producesStall(const MachineInstr *MI,
+                     MachineBasicBlock::const_instr_iterator MII) const;
+  bool predCanBeUsedAsDotNew(MachineInstr *MI, unsigned PredReg) const;
+  bool PredOpcodeHasJMP_c(unsigned Opcode) const;
+  bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
+
+
+  unsigned getAddrMode(const MachineInstr* MI) const;
+  unsigned getBaseAndOffset(const MachineInstr *MI, int &Offset,
+                            unsigned &AccessSize) const;
+  bool getBaseAndOffsetPosition(const MachineInstr *MI, unsigned &BasePos,
+                                unsigned &OffsetPos) const;
+  SmallVector<MachineInstr*,2> getBranchingInstrs(MachineBasicBlock& MBB) const;
+  unsigned getCExtOpNum(const MachineInstr *MI) const;
+  HexagonII::CompoundGroup
+  getCompoundCandidateGroup(const MachineInstr *MI) const;
+  unsigned getCompoundOpcode(const MachineInstr *GA,
+                             const MachineInstr *GB) const;
+  int getCondOpcode(int Opc, bool sense) const;
+  int getDotCurOp(const MachineInstr* MI) const;
+  int getDotNewOp(const MachineInstr* MI) const;
   int getDotNewPredJumpOp(MachineInstr *MI,
+                          const MachineBranchProbabilityInfo *MBPI) const;
+  int getDotNewPredOp(MachineInstr *MI,
                       const MachineBranchProbabilityInfo *MBPI) const;
-  unsigned getAddrMode(const MachineInstr* MI) const;
-  bool isOperandExtended(const MachineInstr *MI,
-                         unsigned short OperandNum) const;
-  unsigned short getCExtOpNum(const MachineInstr *MI) const;
-  int getMinValue(const MachineInstr *MI) const;
+  int getDotOldOp(const int opc) const;
+  HexagonII::SubInstructionGroup getDuplexCandidateGroup(const MachineInstr *MI)
+                                                         const;
+  short getEquivalentHWInstr(MachineInstr *MI) const;
+  MachineInstr *getFirstNonDbgInst(MachineBasicBlock *BB) const;
+  unsigned getInstrTimingClassLatency(const InstrItineraryData *ItinData,
+                                      const MachineInstr *MI) const;
+  bool getInvertedPredSense(SmallVectorImpl<MachineOperand> &Cond) const;
+  unsigned getInvertedPredicatedOpcode(const int Opc) const;
   int getMaxValue(const MachineInstr *MI) const;
-  bool NonExtEquivalentExists (const MachineInstr *MI) const;
+  unsigned getMemAccessSize(const MachineInstr* MI) const;
+  int getMinValue(const MachineInstr *MI) const;
   short getNonExtOpcode(const MachineInstr *MI) const;
-  bool PredOpcodeHasJMP_c(Opcode_t Opcode) const;
-  bool predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const;
-  bool isEndLoopN(Opcode_t Opcode) const;
   bool getPredReg(ArrayRef<MachineOperand> Cond, unsigned &PredReg,
                   unsigned &PredRegPos, unsigned &PredRegFlags) const;
-  int getCondOpcode(int Opc, bool sense) const;
+  short getPseudoInstrPair(MachineInstr *MI) const;
+  short getRegForm(const MachineInstr *MI) const;
+  unsigned getSize(const MachineInstr *MI) const;
+  uint64_t getType(const MachineInstr* MI) const;
+  unsigned getUnits(const MachineInstr* MI) const;
+  unsigned getValidSubTargets(const unsigned Opcode) const;
+
 
+  /// getInstrTimingClassLatency - Compute the instruction latency of a given
+  /// instruction using Timing Class information, if available.
+  unsigned nonDbgBBSize(const MachineBasicBlock *BB) const;
+  unsigned nonDbgBundleSize(MachineBasicBlock::const_iterator BundleHead) const;
+
+
+  void immediateExtend(MachineInstr *MI) const;
+  bool invertAndChangeJumpTarget(MachineInstr* MI,
+                                 MachineBasicBlock* NewTarget) const;
+  void genAllInsnTimingClasses(MachineFunction &MF) const;
+  bool reversePredSense(MachineInstr* MI) const;
+  unsigned reversePrediction(unsigned Opcode) const;
+  bool validateBranchCond(const ArrayRef<MachineOperand> &Cond) const;
 };
 
 }

Modified: llvm/trunk/lib/Target/Hexagon/HexagonNewValueJump.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonNewValueJump.cpp?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonNewValueJump.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonNewValueJump.cpp Tue Nov 24 08:55:26 2015
@@ -92,6 +92,7 @@ namespace {
     /// \brief A handle to the branch probability pass.
     const MachineBranchProbabilityInfo *MBPI;
 
+    bool isNewValueJumpCandidate(const MachineInstr *MI) const;
   };
 
 } // end of anonymous namespace
@@ -280,9 +281,9 @@ static bool canCompareBeNewValueJump(con
   return true;
 }
 
-// Given a compare operator, return a matching New Value Jump
-// compare operator. Make sure that MI here is included in
-// HexagonInstrInfo.cpp::isNewValueJumpCandidate
+
+// Given a compare operator, return a matching New Value Jump compare operator.
+// Make sure that MI here is included in isNewValueJumpCandidate.
 static unsigned getNewValueJumpOpcode(MachineInstr *MI, int reg,
                                       bool secondRegNewified,
                                       MachineBasicBlock *jmpTarget,
@@ -348,6 +349,26 @@ static unsigned getNewValueJumpOpcode(Ma
   return 0;
 }
 
+bool HexagonNewValueJump::isNewValueJumpCandidate(const MachineInstr *MI)
+      const {
+  switch (MI->getOpcode()) {
+    case Hexagon::C2_cmpeq:
+    case Hexagon::C2_cmpeqi:
+    case Hexagon::C2_cmpgt:
+    case Hexagon::C2_cmpgti:
+    case Hexagon::C2_cmpgtu:
+    case Hexagon::C2_cmpgtui:
+    case Hexagon::C4_cmpneq:
+    case Hexagon::C4_cmplte:
+    case Hexagon::C4_cmplteu:
+      return true;
+
+    default:
+      return false;
+  }
+}
+
+
 bool HexagonNewValueJump::runOnMachineFunction(MachineFunction &MF) {
 
   DEBUG(dbgs() << "********** Hexagon New Value Jump **********\n"
@@ -468,7 +489,7 @@ bool HexagonNewValueJump::runOnMachineFu
           MI->getOperand(0).getReg() == predReg) {
 
         // Not all compares can be new value compare. Arch Spec: 7.6.1.1
-        if (QII->isNewValueJumpCandidate(MI)) {
+        if (isNewValueJumpCandidate(MI)) {
 
           assert((MI->getDesc().isCompare()) &&
               "Only compare instruction can be collapsed into New Value Jump");
@@ -591,8 +612,8 @@ bool HexagonNewValueJump::runOnMachineFu
           DebugLoc dl = MI->getDebugLoc();
           MachineInstr *NewMI;
 
-           assert((QII->isNewValueJumpCandidate(cmpInstr)) &&
-                      "This compare is not a New Value Jump candidate.");
+          assert((isNewValueJumpCandidate(cmpInstr)) &&
+                 "This compare is not a New Value Jump candidate.");
           unsigned opc = getNewValueJumpOpcode(cmpInstr, cmpOp2,
                                                isSecondOpNewified,
                                                jmpTarget, MBPI);

Modified: llvm/trunk/lib/Target/Hexagon/HexagonScheduleV4.td
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonScheduleV4.td?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonScheduleV4.td (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonScheduleV4.td Tue Nov 24 08:55:26 2015
@@ -35,7 +35,7 @@ def SLOT_ENDLOOP: FuncUnit;
 
 // Itinerary classes.
 def PSEUDO      : InstrItinClass;
-def PSEUDOM   : InstrItinClass;
+def PSEUDOM     : InstrItinClass;
 // ALU64/M/S Instruction classes of V2 are collectively knownn as XTYPE in V4.
 def DUPLEX      : InstrItinClass;
 def PREFIX      : InstrItinClass;

Modified: llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.cpp?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.cpp Tue Nov 24 08:55:26 2015
@@ -25,10 +25,6 @@ using namespace llvm;
 #include "HexagonGenSubtargetInfo.inc"
 
 static cl::opt<bool>
-EnableV3("enable-hexagon-v3", cl::Hidden,
-         cl::desc("Enable Hexagon V3 instructions."));
-
-static cl::opt<bool>
 EnableMemOps(
     "enable-hexagon-memops",
     cl::Hidden, cl::ZeroOrMore, cl::ValueDisallowed, cl::init(true),
@@ -48,6 +44,9 @@ EnableIEEERndNear(
     cl::Hidden, cl::ZeroOrMore, cl::init(false),
     cl::desc("Generate non-chopped conversion from fp to int."));
 
+static cl::opt<bool> EnableBSBSched("enable-bsb-sched",
+    cl::Hidden, cl::ZeroOrMore, cl::init(true));
+
 static cl::opt<bool> DisableHexagonMISched("disable-hexagon-misched",
       cl::Hidden, cl::ZeroOrMore, cl::init(false),
       cl::desc("Disable Hexagon MI Scheduling"));
@@ -91,6 +90,8 @@ HexagonSubtarget::HexagonSubtarget(const
     ModeIEEERndNear = true;
   else
     ModeIEEERndNear = false;
+
+  UseBSBScheduling = hasV60TOps() && EnableBSBSched;
 }
 
 // Pin the vtable to this file.

Modified: llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.h?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.h (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonSubtarget.h Tue Nov 24 08:55:26 2015
@@ -43,6 +43,10 @@ public:
   };
 
   HexagonArchEnum HexagonArchVersion;
+  /// True if the target should use Back-Skip-Back scheduling. This is the
+  /// default for V60.
+  bool UseBSBScheduling;
+
 private:
   std::string CPUString;
   HexagonInstrInfo InstrInfo;
@@ -89,6 +93,8 @@ public:
   bool modeIEEERndNear() const { return ModeIEEERndNear; }
   bool useHVXDblOps() const { return UseHVXDblOps; }
   bool useHVXSglOps() const { return UseHVXOps && !UseHVXDblOps; }
+
+  bool useBSBScheduling() const { return UseBSBScheduling; }
   bool enableMachineScheduler() const override;
   // Always use the TargetLowering default scheduler.
   // FIXME: This will use the vliw scheduler which is probably just hurting

Modified: llvm/trunk/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonVLIWPacketizer.cpp Tue Nov 24 08:55:26 2015
@@ -432,9 +432,9 @@ bool HexagonPacketizerList::PromoteToDot
 
   int NewOpcode;
   if (RC == &Hexagon::PredRegsRegClass)
-    NewOpcode = QII->GetDotNewPredOp(MI, MBPI);
+    NewOpcode = QII->getDotNewPredOp(MI, MBPI);
   else
-    NewOpcode = QII->GetDotNewOp(MI);
+    NewOpcode = QII->getDotNewOp(MI);
   MI->setDesc(QII->get(NewOpcode));
 
   return true;
@@ -442,7 +442,7 @@ bool HexagonPacketizerList::PromoteToDot
 
 bool HexagonPacketizerList::DemoteToDotOld(MachineInstr* MI) {
   const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
-  int NewOpcode = QII->GetDotOldOp(MI->getOpcode());
+  int NewOpcode = QII->getDotOldOp(MI->getOpcode());
   MI->setDesc(QII->get(NewOpcode));
   return true;
 }
@@ -757,7 +757,7 @@ bool HexagonPacketizerList::CanPromoteTo
   else {
     // Create a dot new machine instruction to see if resources can be
     // allocated. If not, bail out now.
-    int NewOpcode = QII->GetDotNewOp(MI);
+    int NewOpcode = QII->getDotNewOp(MI);
     const MCInstrDesc &desc = QII->get(NewOpcode);
     DebugLoc dl;
     MachineInstr *NewMI =

Modified: llvm/trunk/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h?rev=253986&r1=253985&r2=253986&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h (original)
+++ llvm/trunk/lib/Target/Hexagon/MCTargetDesc/HexagonBaseInfo.h Tue Nov 24 08:55:26 2015
@@ -191,7 +191,15 @@ namespace HexagonII {
 
     // Which operand consumes or produces a new value.
     NewValueOpPos2  = 51,
-    NewValueOpMask2 = 0x7
+    NewValueOpMask2 = 0x7,
+
+    // Accumulator instructions.
+    AccumulatorPos = 54,
+    AccumulatorMask = 0x1,
+
+    // Complex XU, prevent xu competition by prefering slot3
+    PrefersSlot3Pos = 55,
+    PrefersSlot3Mask = 0x1,
   };
 
   // *** The code above must match HexagonInstrFormat*.td *** //




More information about the llvm-commits mailing list