[llvm] r233696 - Expand MUX instructions early on Hexagon

Krzysztof Parzyszek kparzysz at codeaurora.org
Tue Mar 31 06:35:12 PDT 2015


Author: kparzysz
Date: Tue Mar 31 08:35:12 2015
New Revision: 233696

URL: http://llvm.org/viewvc/llvm-project?rev=233696&view=rev
Log:
Expand MUX instructions early on Hexagon

This time with all files included.

Added:
    llvm/trunk/lib/Target/Hexagon/HexagonExpandCondsets.cpp
    llvm/trunk/test/CodeGen/Hexagon/expand-condsets-basic.ll
    llvm/trunk/test/CodeGen/Hexagon/expand-condsets-rm-segment.ll
    llvm/trunk/test/CodeGen/Hexagon/expand-condsets-undef.ll
Modified:
    llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
    llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
    llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h
    llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
    llvm/trunk/test/CodeGen/Hexagon/adde.ll
    llvm/trunk/test/CodeGen/Hexagon/sube.ll
    llvm/trunk/test/MC/Hexagon/inst_select.ll

Modified: llvm/trunk/lib/Target/Hexagon/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/CMakeLists.txt?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/CMakeLists.txt (original)
+++ llvm/trunk/lib/Target/Hexagon/CMakeLists.txt Tue Mar 31 08:35:12 2015
@@ -15,6 +15,7 @@ add_llvm_target(HexagonCodeGen
   HexagonAsmPrinter.cpp
   HexagonCFGOptimizer.cpp
   HexagonCopyToCombine.cpp
+  HexagonExpandCondsets.cpp
   HexagonExpandPredSpillCode.cpp
   HexagonFixupHwLoops.cpp
   HexagonFrameLowering.cpp

Added: llvm/trunk/lib/Target/Hexagon/HexagonExpandCondsets.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonExpandCondsets.cpp?rev=233696&view=auto
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonExpandCondsets.cpp (added)
+++ llvm/trunk/lib/Target/Hexagon/HexagonExpandCondsets.cpp Tue Mar 31 08:35:12 2015
@@ -0,0 +1,1347 @@
+// Replace mux instructions with the corresponding legal instructions.
+// It is meant to work post-SSA, but still on virtual registers. It was
+// originally placed between register coalescing and machine instruction
+// scheduler.
+// In this place in the optimization sequence, live interval analysis had
+// been performed, and the live intervals should be preserved. A large part
+// of the code deals with preserving the liveness information.
+//
+// Liveness tracking aside, the main functionality of this pass is divided
+// into two steps. The first step is to replace an instruction
+//   vreg0 = C2_mux vreg0, vreg1, vreg2
+// with a pair of conditional transfers
+//   vreg0 = A2_tfrt vreg0, vreg1
+//   vreg0 = A2_tfrf vreg0, vreg2
+// It is the intention that the execution of this pass could be terminated
+// after this step, and the code generated would be functionally correct.
+//
+// If the uses of the source values vreg1 and vreg2 are kills, and their
+// definitions are predicable, then in the second step, the conditional
+// transfers will then be rewritten as predicated instructions. E.g.
+//   vreg0 = A2_or vreg1, vreg2
+//   vreg3 = A2_tfrt vreg99, vreg0<kill>
+// will be rewritten as
+//   vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// This replacement has two variants: "up" and "down". Consider this case:
+//   vreg0 = A2_or vreg1, vreg2
+//   ... [intervening instructions] ...
+//   vreg3 = A2_tfrt vreg99, vreg0<kill>
+// variant "up":
+//   vreg3 = A2_port vreg99, vreg1, vreg2
+//   ... [intervening instructions, vreg0->vreg3] ...
+//   [deleted]
+// variant "down":
+//   [deleted]
+//   ... [intervening instructions] ...
+//   vreg3 = A2_port vreg99, vreg1, vreg2
+//
+// Both, one or none of these variants may be valid, and checks are made
+// to rule out inapplicable variants.
+//
+// As an additional optimization, before either of the two steps above is
+// executed, the pass attempts to coalesce the target register with one of
+// the source registers, e.g. given an instruction
+//   vreg3 = C2_mux vreg0, vreg1, vreg2
+// vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds,
+// the instruction would then be (for example)
+//   vreg3 = C2_mux vreg0, vreg3, vreg2
+// and, under certain circumstances, this could result in only one predicated
+// instruction:
+//   vreg3 = A2_tfrf vreg0, vreg2
+//
+
+#define DEBUG_TYPE "expand-condsets"
+#include "HexagonTargetMachine.h"
+
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervalAnalysis.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit",
+  cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions"));
+static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit",
+  cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings"));
+
+namespace llvm {
+  void initializeHexagonExpandCondsetsPass(PassRegistry&);
+  FunctionPass *createHexagonExpandCondsets();
+}
+
+namespace {
+  class HexagonExpandCondsets : public MachineFunctionPass {
+  public:
+    static char ID;
+    HexagonExpandCondsets() :
+        MachineFunctionPass(ID), HII(0), TRI(0), MRI(0),
+        LIS(0), CoaLimitActive(false),
+        TfrLimitActive(false), CoaCounter(0), TfrCounter(0) {
+      if (OptCoaLimit.getPosition())
+        CoaLimitActive = true, CoaLimit = OptCoaLimit;
+      if (OptTfrLimit.getPosition())
+        TfrLimitActive = true, TfrLimit = OptTfrLimit;
+      initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry());
+    }
+
+    virtual const char *getPassName() const {
+      return "Hexagon Expand Condsets";
+    }
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequired<LiveIntervals>();
+      AU.addPreserved<LiveIntervals>();
+      AU.addPreserved<SlotIndexes>();
+      MachineFunctionPass::getAnalysisUsage(AU);
+    }
+    virtual bool runOnMachineFunction(MachineFunction &MF);
+
+  private:
+    const HexagonInstrInfo *HII;
+    const TargetRegisterInfo *TRI;
+    MachineRegisterInfo *MRI;
+    LiveIntervals *LIS;
+
+    bool CoaLimitActive, TfrLimitActive;
+    unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter;
+
+    struct RegisterRef {
+      RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()),
+          Sub(Op.getSubReg()) {}
+      RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {}
+      bool operator== (RegisterRef RR) const {
+        return Reg == RR.Reg && Sub == RR.Sub;
+      }
+      bool operator!= (RegisterRef RR) const { return !operator==(RR); }
+      unsigned Reg, Sub;
+    };
+
+    typedef DenseMap<unsigned,unsigned> ReferenceMap;
+    enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) };
+    enum { Exec_Then = 0x10, Exec_Else = 0x20 };
+    unsigned getMaskForSub(unsigned Sub);
+    bool isCondset(const MachineInstr *MI);
+
+    void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec);
+    bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec);
+
+    LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S);
+    LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S);
+    void makeDefined(unsigned Reg, SlotIndex S, bool SetDef);
+    void makeUndead(unsigned Reg, SlotIndex S);
+    void shrinkToUses(unsigned Reg, LiveInterval &LI);
+    void updateKillFlags(unsigned Reg, LiveInterval &LI);
+    void terminateSegment(LiveInterval::iterator LT, SlotIndex S,
+        LiveInterval &LI);
+    void addInstrToLiveness(MachineInstr *MI);
+    void removeInstrFromLiveness(MachineInstr *MI);
+
+    unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond);
+    MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR,
+        unsigned DstSR, const MachineOperand &PredOp, bool Cond);
+    bool split(MachineInstr *MI);
+    bool splitInBlock(MachineBasicBlock &B);
+
+    bool isPredicable(MachineInstr *MI);
+    MachineInstr *getReachingDefForPred(RegisterRef RD,
+        MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond);
+    bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses);
+    bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown);
+    void predicateAt(RegisterRef RD, MachineInstr *MI,
+        MachineBasicBlock::iterator Where, unsigned PredR, bool Cond);
+    void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR,
+        bool Cond, MachineBasicBlock::iterator First,
+        MachineBasicBlock::iterator Last);
+    bool predicate(MachineInstr *TfrI, bool Cond);
+    bool predicateInBlock(MachineBasicBlock &B);
+
+    void postprocessUndefImplicitUses(MachineBasicBlock &B);
+    void removeImplicitUses(MachineInstr *MI);
+    void removeImplicitUses(MachineBasicBlock &B);
+
+    bool isIntReg(RegisterRef RR, unsigned &BW);
+    bool isIntraBlocks(LiveInterval &LI);
+    bool coalesceRegisters(RegisterRef R1, RegisterRef R2);
+    bool coalesceSegments(MachineFunction &MF);
+  };
+}
+
+char HexagonExpandCondsets::ID = 0;
+
+
+unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) {
+  switch (Sub) {
+    case Hexagon::subreg_loreg:
+      return Sub_Low;
+    case Hexagon::subreg_hireg:
+      return Sub_High;
+    case Hexagon::NoSubRegister:
+      return Sub_None;
+  }
+  llvm_unreachable("Invalid subregister");
+}
+
+
+bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) {
+  unsigned Opc = MI->getOpcode();
+  switch (Opc) {
+    case Hexagon::C2_mux:
+    case Hexagon::C2_muxii:
+    case Hexagon::C2_muxir:
+    case Hexagon::C2_muxri:
+    case Hexagon::MUX64_rr:
+        return true;
+      break;
+  }
+  return false;
+}
+
+
+void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map,
+      unsigned Exec) {
+  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+  ReferenceMap::iterator F = Map.find(RR.Reg);
+  if (F == Map.end())
+    Map.insert(std::make_pair(RR.Reg, Mask));
+  else
+    F->second |= Mask;
+}
+
+
+bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map,
+      unsigned Exec) {
+  ReferenceMap::iterator F = Map.find(RR.Reg);
+  if (F == Map.end())
+    return false;
+  unsigned Mask = getMaskForSub(RR.Sub) | Exec;
+  if (Mask & F->second)
+    return true;
+  return false;
+}
+
+
+LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI,
+      SlotIndex S) {
+  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+    if (I->start >= S)
+      return I;
+  }
+  return LI.end();
+}
+
+
+LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI,
+      SlotIndex S) {
+  LiveInterval::iterator P = LI.end();
+  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+    if (I->end > S)
+      return P;
+    P = I;
+  }
+  return P;
+}
+
+
+/// Find the implicit use of register Reg in slot index S, and make sure
+/// that the "defined" flag is set to SetDef. While the mux expansion is
+/// going on, predicated instructions will have implicit uses of the
+/// registers that are being defined. This is to keep any preceding
+/// definitions live. If there is no preceding definition, the implicit
+/// use will be marked as "undef", otherwise it will be "defined". This
+/// function is used to update the flag.
+void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S,
+      bool SetDef) {
+  if (!S.isRegister())
+    return;
+  MachineInstr *MI = LIS->getInstructionFromIndex(S);
+  assert(MI && "Expecting instruction");
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
+      continue;
+    bool IsDef = !Op.isUndef();
+    if (Op.isImplicit() && IsDef != SetDef)
+      Op.setIsUndef(!SetDef);
+  }
+}
+
+
+void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) {
+  // If S is a block boundary, then there can still be a dead def reaching
+  // this point. Instead of traversing the CFG, queue start points of all
+  // live segments that begin with a register, and end at a block boundary.
+  // This may "resurrect" some truly dead definitions, but doing so is
+  // harmless.
+  SmallVector<MachineInstr*,8> Defs;
+  if (S.isBlock()) {
+    LiveInterval &LI = LIS->getInterval(Reg);
+    for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+      if (!I->start.isRegister() || !I->end.isBlock())
+        continue;
+      MachineInstr *MI = LIS->getInstructionFromIndex(I->start);
+      Defs.push_back(MI);
+    }
+  } else if (S.isRegister()) {
+    MachineInstr *MI = LIS->getInstructionFromIndex(S);
+    Defs.push_back(MI);
+  }
+
+  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
+    MachineInstr *MI = Defs[i];
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
+        continue;
+      Op.setIsDead(false);
+    }
+  }
+}
+
+
+/// Shrink the segments in the live interval for a given register to the last
+/// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this
+/// function will not mark any definitions of Reg as dead. The reason for this
+/// is that this function is used while a MUX instruction is being expanded,
+/// or while a conditional copy is undergoing predication. During these
+/// processes, there may be defs present in the instruction sequence that have
+/// not yet been removed, or there may be missing uses that have not yet been
+/// added. We want to utilize LiveIntervals::shrinkToUses as much as possible,
+/// but since it does not extend any intervals that are too short, we need to
+/// pre-emptively extend them here in anticipation of further changes.
+void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) {
+  SmallVector<MachineInstr*,4> Deads;
+  LIS->shrinkToUses(&LI, &Deads);
+  // Need to undo the deadification made by "shrinkToUses". It's easier to
+  // do it here, since we have a list of all instructions that were just
+  // marked as dead.
+  for (unsigned i = 0, n = Deads.size(); i < n; ++i) {
+    MachineInstr *MI = Deads[i];
+    // Clear the "dead" flag.
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg)
+        continue;
+      Op.setIsDead(false);
+    }
+    // Extend the live segment to the beginning of the next one.
+    LiveInterval::iterator End = LI.end();
+    SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot();
+    LiveInterval::iterator T = LI.FindSegmentContaining(S);
+    assert(T != End);
+    LiveInterval::iterator N = std::next(T);
+    if (N != End)
+      T->end = N->start;
+    else
+      T->end = LIS->getMBBEndIdx(MI->getParent());
+  }
+  updateKillFlags(Reg, LI);
+}
+
+
+/// Given an updated live interval LI for register Reg, update the kill flags
+/// in instructions using Reg to reflect the liveness changes.
+void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) {
+  MRI->clearKillFlags(Reg);
+  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+    SlotIndex EX = I->end;
+    if (!EX.isRegister())
+      continue;
+    MachineInstr *MI = LIS->getInstructionFromIndex(EX);
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg)
+        continue;
+      // Only set the kill flag on the first encountered use of Reg in this
+      // instruction.
+      Op.setIsKill(true);
+      break;
+    }
+  }
+}
+
+
+/// When adding a new instruction to liveness, the newly added definition
+/// will start a new live segment. This may happen at a position that falls
+/// within an existing live segment. In such case that live segment needs to
+/// be truncated to make room for the new segment. Ultimately, the truncation
+/// will occur at the last use, but for now the segment can be terminated
+/// right at the place where the new segment will start. The segments will be
+/// shrunk-to-uses later.
+void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT,
+      SlotIndex S, LiveInterval &LI) {
+  // Terminate the live segment pointed to by LT within a live interval LI.
+  if (LT == LI.end())
+    return;
+
+  VNInfo *OldVN = LT->valno;
+  SlotIndex EX = LT->end;
+  LT->end = S;
+  // If LT does not end at a block boundary, the termination is done.
+  if (!EX.isBlock())
+    return;
+
+  // If LT ended at a block boundary, it's possible that its value number
+  // is picked up at the beginning other blocks. Create a new value number
+  // and change such blocks to use it instead.
+  VNInfo *NewVN = 0;
+  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+    if (!I->start.isBlock() || I->valno != OldVN)
+      continue;
+    // Generate on-demand a new value number that is defined by the
+    // block beginning (i.e. -phi).
+    if (!NewVN)
+      NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator());
+    I->valno = NewVN;
+  }
+}
+
+
+/// Add the specified instruction to live intervals. This function is used
+/// to update the live intervals while the program code is being changed.
+/// Neither the expansion of a MUX, nor the predication are atomic, and this
+/// function is used to update the live intervals while these transformations
+/// are being done.
+void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) {
+  SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI)
+                                       : LIS->getInstructionIndex(MI);
+  DEBUG(dbgs() << "adding liveness info for instr\n  " << MX << "  " << *MI);
+
+  MX = MX.getRegSlot();
+  bool Predicated = HII->isPredicated(MI);
+  MachineBasicBlock *MB = MI->getParent();
+
+  // Strip all implicit uses from predicated instructions. They will be
+  // added again, according to the updated information.
+  if (Predicated)
+    removeImplicitUses(MI);
+
+  // For each def in MI we need to insert a new live segment starting at MX
+  // into the interval. If there already exists a live segment in the interval
+  // that contains MX, we need to terminate it at MX.
+  SmallVector<RegisterRef,2> Defs;
+  for (auto &Op : MI->operands())
+    if (Op.isReg() && Op.isDef())
+      Defs.push_back(RegisterRef(Op));
+
+  for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
+    unsigned DefR = Defs[i].Reg;
+    LiveInterval &LID = LIS->getInterval(DefR);
+    DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI)
+                 << " with interval\n  " << LID << "\n");
+    // If MX falls inside of an existing live segment, terminate it.
+    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
+    if (LT != LID.end())
+      terminateSegment(LT, MX, LID);
+    DEBUG(dbgs() << "after terminating segment\n  " << LID << "\n");
+
+    // Create a new segment starting from MX.
+    LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX);
+    SlotIndex EX;
+    VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator());
+    if (N == LID.end()) {
+      // There is no live segment after MX. End this segment at the end of
+      // the block.
+      EX = LIS->getMBBEndIdx(MB);
+    } else {
+      // If the next segment starts at the block boundary, end the new segment
+      // at the boundary of the preceding block (i.e. the previous index).
+      // Otherwise, end the segment at the beginning of the next segment. In
+      // either case it will be "shrunk-to-uses" later.
+      EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start;
+    }
+    if (Predicated) {
+      // Predicated instruction will have an implicit use of the defined
+      // register. This is necessary so that this definition will not make
+      // any previous definitions dead. If there are no previous live
+      // segments, still add the implicit use, but make it "undef".
+      // Because of the implicit use, the preceding definition is not
+      // dead. Mark is as such (if necessary).
+      MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true);
+      ImpUse.setSubReg(Defs[i].Sub);
+      bool Undef = false;
+      if (P == LID.end())
+        Undef = true;
+      else {
+        // If the previous segment extends to the end of the previous block,
+        // the end index may actually be the beginning of this block. If
+        // the previous segment ends at a block boundary, move it back by one,
+        // to get the proper block for it.
+        SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
+        MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
+        if (PB != MB && !LIS->isLiveInToMBB(LID, MB))
+          Undef = true;
+      }
+      if (!Undef) {
+        makeUndead(DefR, P->valno->def);
+        // We are adding a live use, so extend the previous segment to
+        // include it.
+        P->end = MX;
+      } else {
+        ImpUse.setIsUndef(true);
+      }
+
+      if (!MI->readsRegister(DefR))
+        MI->addOperand(ImpUse);
+      if (N != LID.end())
+        makeDefined(DefR, N->start, true);
+    }
+    LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN);
+    LID.addSegment(NR);
+    DEBUG(dbgs() << "added a new segment " << NR << "\n  " << LID << "\n");
+    shrinkToUses(DefR, LID);
+    DEBUG(dbgs() << "updated imp-uses: " << *MI);
+    LID.verify();
+  }
+
+  // For each use in MI:
+  // - If there is no live segment that contains MX for the used register,
+  //   extend the previous one. Ignore implicit uses.
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef())
+      continue;
+    unsigned UseR = Op.getReg();
+    LiveInterval &LIU = LIS->getInterval(UseR);
+    // Find the last segment P that starts before MX.
+    LiveInterval::iterator P = LIU.FindSegmentContaining(MX);
+    if (P == LIU.end())
+      P = prevSegment(LIU, MX);
+
+    assert(P != LIU.end() && "MI uses undefined register?");
+    SlotIndex EX = P->end;
+    // If P contains MX, there is not much to do.
+    if (EX > MX) {
+      Op.setIsKill(false);
+      continue;
+    }
+    // Otherwise, extend P to "next(MX)".
+    P->end = MX.getNextIndex();
+    Op.setIsKill(true);
+    // Get the old "kill" instruction, and remove the kill flag.
+    if (MachineInstr *KI = LIS->getInstructionFromIndex(MX))
+      KI->clearRegisterKills(UseR, nullptr);
+    shrinkToUses(UseR, LIU);
+    LIU.verify();
+  }
+}
+
+
+/// Update the live interval information to reflect the removal of the given
+/// instruction from the program. As with "addInstrToLiveness", this function
+/// is called while the program code is being changed.
+void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) {
+  SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot();
+  DEBUG(dbgs() << "removing instr\n  " << MX << "  " << *MI);
+
+  // For each def in MI:
+  // If MI starts a live segment, merge this segment with the previous segment.
+  //
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg() || !Op.isDef())
+      continue;
+    unsigned DefR = Op.getReg();
+    LiveInterval &LID = LIS->getInterval(DefR);
+    LiveInterval::iterator LT = LID.FindSegmentContaining(MX);
+    assert(LT != LID.end() && "Expecting live segments");
+    DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI)
+                 << " with interval\n  " << LID << "\n");
+    if (LT->start != MX)
+      continue;
+
+    VNInfo *MVN = LT->valno;
+    if (LT != LID.begin()) {
+      // If the current live segment is not the first, the task is easy. If
+      // the previous segment continues into the current block, extend it to
+      // the end of the current one, and merge the value numbers.
+      // Otherwise, remove the current segment, and make the end of it "undef".
+      LiveInterval::iterator P = std::prev(LT);
+      SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end;
+      MachineBasicBlock *MB = MI->getParent();
+      MachineBasicBlock *PB = LIS->getMBBFromIndex(PE);
+      if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) {
+        makeDefined(DefR, LT->end, false);
+        LID.removeSegment(*LT);
+      } else {
+        // Make the segments adjacent, so that merge-vn can also merge the
+        // segments.
+        P->end = LT->start;
+        makeUndead(DefR, P->valno->def);
+        LID.MergeValueNumberInto(MVN, P->valno);
+      }
+    } else {
+      LiveInterval::iterator N = std::next(LT);
+      LiveInterval::iterator RmB = LT, RmE = N;
+      while (N != LID.end()) {
+        // Iterate until the first register-based definition is found
+        // (i.e. skip all block-boundary entries).
+        LiveInterval::iterator Next = std::next(N);
+        if (N->start.isRegister()) {
+          makeDefined(DefR, N->start, false);
+          break;
+        }
+        if (N->end.isRegister()) {
+          makeDefined(DefR, N->end, false);
+          RmE = Next;
+          break;
+        }
+        RmE = Next;
+        N = Next;
+      }
+      // Erase the segments in one shot to avoid invalidating iterators.
+      LID.segments.erase(RmB, RmE);
+    }
+
+    bool VNUsed = false;
+    for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) {
+      if (I->valno != MVN)
+        continue;
+      VNUsed = true;
+      break;
+    }
+    if (!VNUsed)
+      MVN->markUnused();
+
+    DEBUG(dbgs() << "new interval: ");
+    if (!LID.empty()) {
+      DEBUG(dbgs() << LID << "\n");
+      LID.verify();
+    } else {
+      DEBUG(dbgs() << "<empty>\n");
+      LIS->removeInterval(DefR);
+    }
+  }
+
+  // For uses there is nothing to do. The intervals will be updated via
+  // shrinkToUses.
+  SmallVector<unsigned,4> Uses;
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg() || !Op.isUse())
+      continue;
+    unsigned R = Op.getReg();
+    if (!TargetRegisterInfo::isVirtualRegister(R))
+      continue;
+    Uses.push_back(R);
+  }
+  LIS->RemoveMachineInstrFromMaps(MI);
+  MI->eraseFromParent();
+  for (unsigned i = 0, n = Uses.size(); i < n; ++i) {
+    LiveInterval &LI = LIS->getInterval(Uses[i]);
+    shrinkToUses(Uses[i], LI);
+  }
+}
+
+
+/// Get the opcode for a conditional transfer of the value in SO (source
+/// operand). The condition (true/false) is given in Cond.
+unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO,
+      bool Cond) {
+  using namespace Hexagon;
+  if (SO.isReg()) {
+    unsigned PhysR;
+    RegisterRef RS = SO;
+    if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) {
+      const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg);
+      assert(VC->begin() != VC->end() && "Empty register class");
+      PhysR = *VC->begin();
+    } else {
+      assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg));
+      PhysR = RS.Reg;
+    }
+    unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub);
+    const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS);
+    switch (RC->getSize()) {
+      case 4:
+        return Cond ? A2_tfrt : A2_tfrf;
+      case 8:
+        return Cond ? A2_tfrpt : A2_tfrpf;
+    }
+    llvm_unreachable("Invalid register operand");
+  }
+  if (SO.isImm() || SO.isFPImm())
+    return Cond ? C2_cmoveit : C2_cmoveif;
+  llvm_unreachable("Unexpected source operand");
+}
+
+
+/// Generate a conditional transfer, copying the value SrcOp to the
+/// destination register DstR:DstSR, and using the predicate register from
+/// PredOp. The Cond argument specifies whether the predicate is to be
+/// if(PredOp), or if(!PredOp).
+MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp,
+      unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) {
+  MachineInstr *MI = SrcOp.getParent();
+  MachineBasicBlock &B = *MI->getParent();
+  MachineBasicBlock::iterator At = MI;
+  DebugLoc DL = MI->getDebugLoc();
+
+  // Don't avoid identity copies here (i.e. if the source and the destination
+  // are the same registers). It is actually better to generate them here,
+  // since this would cause the copy to potentially be predicated in the next
+  // step. The predication will remove such a copy if it is unable to
+  /// predicate.
+
+  unsigned Opc = getCondTfrOpcode(SrcOp, Cond);
+  MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc))
+        .addReg(DstR, RegState::Define, DstSR)
+        .addOperand(PredOp)
+        .addOperand(SrcOp);
+  // We don't want any kills yet.
+  TfrI->clearKillInfo();
+  DEBUG(dbgs() << "created an initial copy: " << *TfrI);
+  return TfrI;
+}
+
+
+/// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function
+/// performs all necessary changes to complete the replacement.
+bool HexagonExpandCondsets::split(MachineInstr *MI) {
+  if (TfrLimitActive) {
+    if (TfrCounter >= TfrLimit)
+      return false;
+    TfrCounter++;
+  }
+  DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber()
+               << ": " << *MI);
+  MachineOperand &MD = MI->getOperand(0); // Definition
+  MachineOperand &MP = MI->getOperand(1); // Predicate register
+  assert(MD.isDef());
+  unsigned DR = MD.getReg(), DSR = MD.getSubReg();
+
+  // First, create the two invididual conditional transfers, and add each
+  // of them to the live intervals information. Do that first and then remove
+  // the old instruction from live intervals.
+  if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true))
+    addInstrToLiveness(TfrT);
+  if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false))
+    addInstrToLiveness(TfrF);
+  removeInstrFromLiveness(MI);
+
+  return true;
+}
+
+
+/// Split all MUX instructions in the given block into pairs of contitional
+/// transfers.
+bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) {
+  bool Changed = false;
+  MachineBasicBlock::iterator I, E, NextI;
+  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
+    NextI = std::next(I);
+    if (isCondset(I))
+      Changed |= split(I);
+  }
+  return Changed;
+}
+
+
+bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) {
+  if (HII->isPredicated(MI) || !HII->isPredicable(MI))
+    return false;
+  if (MI->hasUnmodeledSideEffects() || MI->mayStore())
+    return false;
+  // Reject instructions with multiple defs (e.g. post-increment loads).
+  bool HasDef = false;
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg() || !Op.isDef())
+      continue;
+    if (HasDef)
+      return false;
+    HasDef = true;
+  }
+  for (auto &Mo : MI->memoperands())
+    if (Mo->isVolatile())
+      return false;
+  return true;
+}
+
+
+/// Find the reaching definition for a predicated use of RD. The RD is used
+/// under the conditions given by PredR and Cond, and this function will ignore
+/// definitions that set RD under the opposite conditions.
+MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD,
+      MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) {
+  MachineBasicBlock &B = *UseIt->getParent();
+  MachineBasicBlock::iterator I = UseIt, S = B.begin();
+  if (I == S)
+    return 0;
+
+  bool PredValid = true;
+  do {
+    --I;
+    MachineInstr *MI = &*I;
+    // Check if this instruction can be ignored, i.e. if it is predicated
+    // on the complementary condition.
+    if (PredValid && HII->isPredicated(MI)) {
+      if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI)))
+        continue;
+    }
+
+    // Check the defs. If the PredR is defined, invalidate it. If RD is
+    // defined, return the instruction or 0, depending on the circumstances.
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef())
+        continue;
+      RegisterRef RR = Op;
+      if (RR.Reg == PredR) {
+        PredValid = false;
+        continue;
+      }
+      if (RR.Reg != RD.Reg)
+        continue;
+      // If the "Reg" part agrees, there is still the subregister to check.
+      // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but
+      // not vreg1 (w/o subregisters).
+      if (RR.Sub == RD.Sub)
+        return MI;
+      if (RR.Sub == 0 || RD.Sub == 0)
+        return 0;
+      // We have different subregisters, so we can continue looking.
+    }
+  } while (I != S);
+
+  return 0;
+}
+
+
+/// Check if the instruction MI can be safely moved over a set of instructions
+/// whose side-effects (in terms of register defs and uses) are expressed in
+/// the maps Defs and Uses. These maps reflect the conditional defs and uses
+/// that depend on the same predicate register to allow moving instructions
+/// over instructions predicated on the opposite condition.
+bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs,
+      ReferenceMap &Uses) {
+  // In order to be able to safely move MI over instructions that define
+  // "Defs" and use "Uses", no def operand from MI can be defined or used
+  // and no use operand can be defined.
+  for (auto &Op : MI->operands()) {
+    if (!Op.isReg())
+      continue;
+    RegisterRef RR = Op;
+    // For physical register we would need to check register aliases, etc.
+    // and we don't want to bother with that. It would be of little value
+    // before the actual register rewriting (from virtual to physical).
+    if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+      return false;
+    // No redefs for any operand.
+    if (isRefInMap(RR, Defs, Exec_Then))
+      return false;
+    // For defs, there cannot be uses.
+    if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then))
+      return false;
+  }
+  return true;
+}
+
+
+/// Check if the instruction accessing memory (TheI) can be moved to the
+/// location ToI.
+bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI,
+      bool IsDown) {
+  bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore();
+  if (!IsLoad && !IsStore)
+    return true;
+  if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI))
+    return true;
+  if (TheI->hasUnmodeledSideEffects())
+    return false;
+
+  MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI;
+  MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI;
+  bool Ordered = TheI->hasOrderedMemoryRef();
+
+  // Search for aliased memory reference in (StartI, EndI).
+  for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) {
+    MachineInstr *MI = &*I;
+    if (MI->hasUnmodeledSideEffects())
+      return false;
+    bool L = MI->mayLoad(), S = MI->mayStore();
+    if (!L && !S)
+      continue;
+    if (Ordered && MI->hasOrderedMemoryRef())
+      return false;
+
+    bool Conflict = (L && IsStore) || S;
+    if (Conflict)
+      return false;
+  }
+  return true;
+}
+
+
+/// Generate a predicated version of MI (where the condition is given via
+/// PredR and Cond) at the point indicated by Where.
+void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI,
+      MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) {
+  // The problem with updating live intervals is that we can move one def
+  // past another def. In particular, this can happen when moving an A2_tfrt
+  // over an A2_tfrf defining the same register. From the point of view of
+  // live intervals, these two instructions are two separate definitions,
+  // and each one starts another live segment. LiveIntervals's "handleMove"
+  // does not allow such moves, so we need to handle it ourselves. To avoid
+  // invalidating liveness data while we are using it, the move will be
+  // implemented in 4 steps: (1) add a clone of the instruction MI at the
+  // target location, (2) update liveness, (3) delete the old instruction,
+  // and (4) update liveness again.
+
+  MachineBasicBlock &B = *MI->getParent();
+  DebugLoc DL = Where->getDebugLoc();  // "Where" points to an instruction.
+  unsigned Opc = MI->getOpcode();
+  unsigned PredOpc = HII->getCondOpcode(Opc, !Cond);
+  MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc));
+  unsigned Ox = 0, NP = MI->getNumOperands();
+  // Skip all defs from MI first.
+  while (Ox < NP) {
+    MachineOperand &MO = MI->getOperand(Ox);
+    if (!MO.isReg() || !MO.isDef())
+      break;
+    Ox++;
+  }
+  // Add the new def, then the predicate register, then the rest of the
+  // operands.
+  MB.addReg(RD.Reg, RegState::Define, RD.Sub);
+  MB.addReg(PredR);
+  while (Ox < NP) {
+    MachineOperand &MO = MI->getOperand(Ox);
+    if (!MO.isReg() || !MO.isImplicit())
+      MB.addOperand(MO);
+    Ox++;
+  }
+
+  MachineFunction &MF = *B.getParent();
+  MachineInstr::mmo_iterator I = MI->memoperands_begin();
+  unsigned NR = std::distance(I, MI->memoperands_end());
+  MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR);
+  for (unsigned i = 0; i < NR; ++i)
+    MemRefs[i] = *I++;
+  MB.setMemRefs(MemRefs, MemRefs+NR);
+
+  MachineInstr *NewI = MB;
+  NewI->clearKillInfo();
+  addInstrToLiveness(NewI);
+}
+
+
+/// In the range [First, Last], rename all references to the "old" register RO
+/// to the "new" register RN, but only in instructions predicated on the given
+/// condition.
+void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN,
+      unsigned PredR, bool Cond, MachineBasicBlock::iterator First,
+      MachineBasicBlock::iterator Last) {
+  MachineBasicBlock::iterator End = std::next(Last);
+  for (MachineBasicBlock::iterator I = First; I != End; ++I) {
+    MachineInstr *MI = &*I;
+    // Do not touch instructions that are not predicated, or are predicated
+    // on the opposite condition.
+    if (!HII->isPredicated(MI))
+      continue;
+    if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI)))
+      continue;
+
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || RO != RegisterRef(Op))
+        continue;
+      Op.setReg(RN.Reg);
+      Op.setSubReg(RN.Sub);
+      // In practice, this isn't supposed to see any defs.
+      assert(!Op.isDef() && "Not expecting a def");
+    }
+  }
+}
+
+
+/// For a given conditional copy, predicate the definition of the source of
+/// the copy under the given condition (using the same predicate register as
+/// the copy).
+bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) {
+  // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi).
+  unsigned Opc = TfrI->getOpcode();
+  assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf);
+  DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false")
+               << ": " << *TfrI);
+
+  MachineOperand &MD = TfrI->getOperand(0);
+  MachineOperand &MP = TfrI->getOperand(1);
+  MachineOperand &MS = TfrI->getOperand(2);
+  // The source operand should be a <kill>. This is not strictly necessary,
+  // but it makes things a lot simpler. Otherwise, we would need to rename
+  // some registers, which would complicate the transformation considerably.
+  if (!MS.isKill())
+    return false;
+
+  RegisterRef RT(MS);
+  unsigned PredR = MP.getReg();
+  MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond);
+  if (!DefI || !isPredicable(DefI))
+    return false;
+
+  DEBUG(dbgs() << "Source def: " << *DefI);
+
+  // Collect the information about registers defined and used between the
+  // DefI and the TfrI.
+  // Map: reg -> bitmask of subregs
+  ReferenceMap Uses, Defs;
+  MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI;
+
+  // Check if the predicate register is valid between DefI and TfrI.
+  // If it is, we can then ignore instructions predicated on the negated
+  // conditions when collecting def and use information.
+  bool PredValid = true;
+  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+    if (!I->modifiesRegister(PredR, 0))
+      continue;
+    PredValid = false;
+    break;
+  }
+
+  for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) {
+    MachineInstr *MI = &*I;
+    // If this instruction is predicated on the same register, it could
+    // potentially be ignored.
+    // By default assume that the instruction executes on the same condition
+    // as TfrI (Exec_Then), and also on the opposite one (Exec_Else).
+    unsigned Exec = Exec_Then | Exec_Else;
+    if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR))
+      Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else;
+
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg())
+        continue;
+      // We don't want to deal with physical registers. The reason is that
+      // they can be aliased with other physical registers. Aliased virtual
+      // registers must share the same register number, and can only differ
+      // in the subregisters, which we are keeping track of. Physical
+      // registers ters no longer have subregisters---their super- and
+      // subregisters are other physical registers, and we are not checking
+      // that.
+      RegisterRef RR = Op;
+      if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+        return false;
+
+      ReferenceMap &Map = Op.isDef() ? Defs : Uses;
+      addRefToMap(RR, Map, Exec);
+    }
+  }
+
+  // The situation:
+  //   RT = DefI
+  //   ...
+  //   RD = TfrI ..., RT
+
+  // If the register-in-the-middle (RT) is used or redefined between
+  // DefI and TfrI, we may not be able proceed with this transformation.
+  // We can ignore a def that will not execute together with TfrI, and a
+  // use that will. If there is such a use (that does execute together with
+  // TfrI), we will not be able to move DefI down. If there is a use that
+  // executed if TfrI's condition is false, then RT must be available
+  // unconditionally (cannot be predicated).
+  // Essentially, we need to be able to rename RT to RD in this segment.
+  if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else))
+    return false;
+  RegisterRef RD = MD;
+  // If the predicate register is defined between DefI and TfrI, the only
+  // potential thing to do would be to move the DefI down to TfrI, and then
+  // predicate. The reaching def (DefI) must be movable down to the location
+  // of the TfrI.
+  // If the target register of the TfrI (RD) is not used or defined between
+  // DefI and TfrI, consider moving TfrI up to DefI.
+  bool CanUp =   canMoveOver(TfrI, Defs, Uses);
+  bool CanDown = canMoveOver(DefI, Defs, Uses);
+  // The TfrI does not access memory, but DefI could. Check if it's safe
+  // to move DefI down to TfrI.
+  if (DefI->mayLoad() || DefI->mayStore())
+    if (!canMoveMemTo(DefI, TfrI, true))
+      CanDown = false;
+
+  DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no")
+               << ", can move down: " << (CanDown ? "yes\n" : "no\n"));
+  MachineBasicBlock::iterator PastDefIt = std::next(DefIt);
+  if (CanUp)
+    predicateAt(RD, DefI, PastDefIt, PredR, Cond);
+  else if (CanDown)
+    predicateAt(RD, DefI, TfrIt, PredR, Cond);
+  else
+    return false;
+
+  if (RT != RD)
+    renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt);
+
+  // Delete the user of RT first (it should work either way, but this order
+  // of deleting is more natural).
+  removeInstrFromLiveness(TfrI);
+  removeInstrFromLiveness(DefI);
+  return true;
+}
+
+
+/// Predicate all cases of conditional copies in the specified block.
+bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) {
+  bool Changed = false;
+  MachineBasicBlock::iterator I, E, NextI;
+  for (I = B.begin(), E = B.end(); I != E; I = NextI) {
+    NextI = std::next(I);
+    unsigned Opc = I->getOpcode();
+    if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) {
+      bool Done = predicate(I, (Opc == Hexagon::A2_tfrt));
+      if (!Done) {
+        // If we didn't predicate I, we may need to remove it in case it is
+        // an "identity" copy, e.g.  vreg1 = A2_tfrt vreg2, vreg1.
+        if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2)))
+          removeInstrFromLiveness(I);
+      }
+      Changed |= Done;
+    }
+  }
+  return Changed;
+}
+
+
+void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) {
+  for (unsigned i = MI->getNumOperands(); i > 0; --i) {
+    MachineOperand &MO = MI->getOperand(i-1);
+    if (MO.isReg() && MO.isUse() && MO.isImplicit())
+      MI->RemoveOperand(i-1);
+  }
+}
+
+
+void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) {
+  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+    MachineInstr *MI = &*I;
+    if (HII->isPredicated(MI))
+      removeImplicitUses(MI);
+  }
+}
+
+
+void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) {
+  // Implicit uses that are "undef" are only meaningful (outside of the
+  // internals of this pass) when the instruction defines a subregister,
+  // and the implicit-undef use applies to the defined register. In such
+  // cases, the proper way to record the information in the IR is to mark
+  // the definition as "undef", which will be interpreted as "read-undef".
+  typedef SmallSet<unsigned,2> RegisterSet;
+  for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) {
+    MachineInstr *MI = &*I;
+    RegisterSet Undefs;
+    for (unsigned i = MI->getNumOperands(); i > 0; --i) {
+      MachineOperand &MO = MI->getOperand(i-1);
+      if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) {
+        MI->RemoveOperand(i-1);
+        Undefs.insert(MO.getReg());
+      }
+    }
+    for (auto &Op : MI->operands()) {
+      if (!Op.isReg() || !Op.isDef() || !Op.getSubReg())
+        continue;
+      if (Undefs.count(Op.getReg()))
+        Op.setIsUndef(true);
+    }
+  }
+}
+
+
+bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) {
+  if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
+    return false;
+  const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg);
+  if (RC == &Hexagon::IntRegsRegClass) {
+    BW = 32;
+    return true;
+  }
+  if (RC == &Hexagon::DoubleRegsRegClass) {
+    BW = (RR.Sub != 0) ? 32 : 64;
+    return true;
+  }
+  return false;
+}
+
+
+bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) {
+  for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) {
+    LiveRange::Segment &LR = *I;
+    // Range must start at a register...
+    if (!LR.start.isRegister())
+      return false;
+    // ...and end in a register or in a dead slot.
+    if (!LR.end.isRegister() && !LR.end.isDead())
+      return false;
+  }
+  return true;
+}
+
+
+bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) {
+  if (CoaLimitActive) {
+    if (CoaCounter >= CoaLimit)
+      return false;
+    CoaCounter++;
+  }
+  unsigned BW1, BW2;
+  if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2)
+    return false;
+  if (MRI->isLiveIn(R1.Reg))
+    return false;
+  if (MRI->isLiveIn(R2.Reg))
+    return false;
+
+  LiveInterval &L1 = LIS->getInterval(R1.Reg);
+  LiveInterval &L2 = LIS->getInterval(R2.Reg);
+  bool Overlap = L1.overlaps(L2);
+
+  DEBUG(dbgs() << "compatible registers: ("
+               << (Overlap ? "overlap" : "disjoint") << ")\n  "
+               << PrintReg(R1.Reg, TRI, R1.Sub) << "  " << L1 << "\n  "
+               << PrintReg(R2.Reg, TRI, R2.Sub) << "  " << L2 << "\n");
+  if (R1.Sub || R2.Sub)
+    return false;
+  if (Overlap)
+    return false;
+
+  // Coalescing could have a negative impact on scheduling, so try to limit
+  // to some reasonable extent. Only consider coalescing segments, when one
+  // of them does not cross basic block boundaries.
+  if (!isIntraBlocks(L1) && !isIntraBlocks(L2))
+    return false;
+
+  MRI->replaceRegWith(R2.Reg, R1.Reg);
+
+  // Move all live segments from L2 to L1.
+  typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap;
+  ValueInfoMap VM;
+  for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) {
+    VNInfo *NewVN, *OldVN = I->valno;
+    ValueInfoMap::iterator F = VM.find(OldVN);
+    if (F == VM.end()) {
+      NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator());
+      VM.insert(std::make_pair(OldVN, NewVN));
+    } else {
+      NewVN = F->second;
+    }
+    L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN));
+  }
+  while (L2.begin() != L2.end())
+    L2.removeSegment(*L2.begin());
+
+  updateKillFlags(R1.Reg, L1);
+  DEBUG(dbgs() << "coalesced: " << L1 << "\n");
+  L1.verify();
+
+  return true;
+}
+
+
+/// Attempt to coalesce one of the source registers to a MUX intruction with
+/// the destination register. This could lead to having only one predicated
+/// instruction in the end instead of two.
+bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) {
+  SmallVector<MachineInstr*,16> Condsets;
+  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+    MachineBasicBlock &B = *I;
+    for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) {
+      MachineInstr *MI = &*J;
+      if (!isCondset(MI))
+        continue;
+      MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3);
+      if (!S1.isReg() && !S2.isReg())
+        continue;
+      Condsets.push_back(MI);
+    }
+  }
+
+  bool Changed = false;
+  for (unsigned i = 0, n = Condsets.size(); i < n; ++i) {
+    MachineInstr *CI = Condsets[i];
+    RegisterRef RD = CI->getOperand(0);
+    RegisterRef RP = CI->getOperand(1);
+    MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3);
+    bool Done = false;
+    // Consider this case:
+    //   vreg1 = instr1 ...
+    //   vreg2 = instr2 ...
+    //   vreg0 = C2_mux ..., vreg1, vreg2
+    // If vreg0 was coalesced with vreg1, we could end up with the following
+    // code:
+    //   vreg0 = instr1 ...
+    //   vreg2 = instr2 ...
+    //   vreg0 = A2_tfrf ..., vreg2
+    // which will later become:
+    //   vreg0 = instr1 ...
+    //   vreg0 = instr2_cNotPt ...
+    // i.e. there will be an unconditional definition (instr1) of vreg0
+    // followed by a conditional one. The output dependency was there before
+    // and it unavoidable, but if instr1 is predicable, we will no longer be
+    // able to predicate it here.
+    // To avoid this scenario, don't coalesce the destination register with
+    // a source register that is defined by a predicable instruction.
+    if (S1.isReg()) {
+      RegisterRef RS = S1;
+      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true);
+      if (!RDef || !HII->isPredicable(RDef))
+        Done = coalesceRegisters(RD, RegisterRef(S1));
+    }
+    if (!Done && S2.isReg()) {
+      RegisterRef RS = S2;
+      MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false);
+      if (!RDef || !HII->isPredicable(RDef))
+        Done = coalesceRegisters(RD, RegisterRef(S2));
+    }
+    Changed |= Done;
+  }
+  return Changed;
+}
+
+
+bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) {
+  HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo());
+  TRI = MF.getSubtarget().getRegisterInfo();
+  LIS = &getAnalysis<LiveIntervals>();
+  MRI = &MF.getRegInfo();
+
+  bool Changed = false;
+
+  // Try to coalesce the target of a mux with one of its sources.
+  // This could eliminate a register copy in some circumstances.
+  Changed |= coalesceSegments(MF);
+
+  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
+    // First, simply split all muxes into a pair of conditional transfers
+    // and update the live intervals to reflect the new arrangement.
+    // This is done mainly to make the live interval update simpler, than it
+    // would be while trying to predicate instructions at the same time.
+    Changed |= splitInBlock(*I);
+    // Traverse all blocks and collapse predicable instructions feeding
+    // conditional transfers into predicated instructions.
+    // Walk over all the instructions again, so we may catch pre-existing
+    // cases that were not created in the previous step.
+    Changed |= predicateInBlock(*I);
+  }
+
+  for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
+    postprocessUndefImplicitUses(*I);
+  return Changed;
+}
+
+
+//===----------------------------------------------------------------------===//
+//                         Public Constructor Functions
+//===----------------------------------------------------------------------===//
+
+static void initializePassOnce(PassRegistry &Registry) {
+  const char *Name = "Hexagon Expand Condsets";
+  PassInfo *PI = new PassInfo(Name, "expand-condsets",
+        &HexagonExpandCondsets::ID, 0, false, false);
+  Registry.registerPass(*PI, true);
+}
+
+void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) {
+  CALL_ONCE_INITIALIZATION(initializePassOnce)
+}
+
+
+FunctionPass *llvm::createHexagonExpandCondsets() {
+  return new HexagonExpandCondsets();
+}

Modified: llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.cpp Tue Mar 31 08:35:12 2015
@@ -845,8 +845,7 @@ bool HexagonInstrInfo::isNewValueStore(u
   return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
 }
 
-int HexagonInstrInfo::
-getMatchingCondBranchOpcode(int Opc, bool invertPredicate) const {
+int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
   enum Hexagon::PredSense inPredSense;
   inPredSense = invertPredicate ? Hexagon::PredSense_false :
                                   Hexagon::PredSense_true;
@@ -884,7 +883,7 @@ PredicateInstruction(MachineInstr *MI,
   // This will change MI's opcode to its predicate version.
   // However, its operand list is still the old one, i.e. the
   // non-predicate one.
-  MI->setDesc(get(getMatchingCondBranchOpcode(Opc, invertJump)));
+  MI->setDesc(get(getCondOpcode(Opc, invertJump)));
 
   int oper = -1;
   unsigned int GAIdx = 0;

Modified: llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonInstrInfo.h Tue Mar 31 08:35:12 2015
@@ -216,9 +216,7 @@ public:
   short getNonExtOpcode(const MachineInstr *MI) const;
   bool PredOpcodeHasJMP_c(Opcode_t Opcode) const;
   bool PredOpcodeHasNot(Opcode_t Opcode) const;
-
-private:
-  int getMatchingCondBranchOpcode(int Opc, bool sense) const;
+  int getCondOpcode(int Opc, bool sense) const;
 
 };
 

Modified: llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp (original)
+++ llvm/trunk/lib/Target/Hexagon/HexagonTargetMachine.cpp Tue Mar 31 08:35:12 2015
@@ -27,11 +27,15 @@
 using namespace llvm;
 
 static cl:: opt<bool> DisableHardwareLoops("disable-hexagon-hwloops",
-      cl::Hidden, cl::desc("Disable Hardware Loops for Hexagon target"));
+  cl::Hidden, cl::desc("Disable Hardware Loops for Hexagon target"));
 
 static cl::opt<bool> DisableHexagonCFGOpt("disable-hexagon-cfgopt",
-      cl::Hidden, cl::ZeroOrMore, cl::init(false),
-      cl::desc("Disable Hexagon CFG Optimization"));
+  cl::Hidden, cl::ZeroOrMore, cl::init(false),
+  cl::desc("Disable Hexagon CFG Optimization"));
+
+static cl::opt<bool> EnableExpandCondsets("hexagon-expand-condsets",
+  cl::init(true), cl::Hidden, cl::ZeroOrMore,
+  cl::desc("Early expansion of MUX"));
 
 
 /// HexagonTargetMachineModule - Note that this is used on hosts that
@@ -55,6 +59,10 @@ static MachineSchedRegistry
 SchedCustomRegistry("hexagon", "Run Hexagon's custom scheduler",
                     createVLIWMachineSched);
 
+namespace llvm {
+  FunctionPass *createHexagonExpandCondsets();
+}
+
 /// HexagonTargetMachine ctor - Create an ILP32 architecture model.
 ///
 
@@ -79,7 +87,15 @@ namespace {
 class HexagonPassConfig : public TargetPassConfig {
 public:
   HexagonPassConfig(HexagonTargetMachine *TM, PassManagerBase &PM)
-      : TargetPassConfig(TM, PM) {}
+    : TargetPassConfig(TM, PM) {
+    bool NoOpt = (TM->getOptLevel() == CodeGenOpt::None);
+    if (!NoOpt) {
+      if (EnableExpandCondsets) {
+        Pass *Exp = createHexagonExpandCondsets();
+        insertPass(&RegisterCoalescerID, IdentifyingPassPtr(Exp));
+      }
+    }
+  }
 
   HexagonTargetMachine &getHexagonTargetMachine() const {
     return getTM<HexagonTargetMachine>();

Modified: llvm/trunk/test/CodeGen/Hexagon/adde.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/adde.ll?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/adde.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/adde.ll Tue Mar 31 08:35:12 2015
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon < %s | FileCheck %s
+; RUN: llc -march=hexagon -hexagon-expand-condsets=0 < %s | FileCheck %s
 
 ; CHECK: r{{[0-9]+:[0-9]+}} = #0
 ; CHECK: r{{[0-9]+:[0-9]+}} = #1

Added: llvm/trunk/test/CodeGen/Hexagon/expand-condsets-basic.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/expand-condsets-basic.ll?rev=233696&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/expand-condsets-basic.ll (added)
+++ llvm/trunk/test/CodeGen/Hexagon/expand-condsets-basic.ll Tue Mar 31 08:35:12 2015
@@ -0,0 +1,11 @@
+; RUN: llc -march=hexagon < %s | FileCheck %s
+; CHECK: if{{.*}}add
+; CHECK: if{{.*}}sub
+
+define i32 @foo (i1 %a, i32 %b, i32 %c, i32 %d) nounwind {
+  %1 = add i32 %b, %d
+  %2 = sub i32 %c, %d
+  %3 = select i1 %a, i32 %1, i32 %2
+  ret i32 %3
+}
+

Added: llvm/trunk/test/CodeGen/Hexagon/expand-condsets-rm-segment.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/expand-condsets-rm-segment.ll?rev=233696&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/expand-condsets-rm-segment.ll (added)
+++ llvm/trunk/test/CodeGen/Hexagon/expand-condsets-rm-segment.ll Tue Mar 31 08:35:12 2015
@@ -0,0 +1,131 @@
+; RUN: llc -O2 < %s
+; REQUIRES: asserts
+
+target datalayout = "e-m:e-p:32:32-i1:32-i64:64-a:0-v32:32-n16:32"
+target triple = "hexagon-unknown--elf"
+
+%struct.cpumask = type { [1 x i32] }
+%struct.load_weight = type { i32, i32 }
+
+ at sysctl_sched_latency = global i32 6000000, align 4
+ at normalized_sysctl_sched_latency = global i32 6000000, align 4
+ at sysctl_sched_tunable_scaling = global i8 1, align 1
+ at sysctl_sched_min_granularity = global i32 750000, align 4
+ at normalized_sysctl_sched_min_granularity = global i32 750000, align 4
+ at sysctl_sched_wakeup_granularity = global i32 1000000, align 4
+ at normalized_sysctl_sched_wakeup_granularity = global i32 1000000, align 4
+ at sysctl_sched_migration_cost = constant i32 500000, align 4
+ at sysctl_sched_shares_window = global i32 10000000, align 4
+ at sysctl_sched_child_runs_first = common global i32 0, align 4
+ at cpu_online_mask = external constant %struct.cpumask*
+
+; Function Attrs: noinline nounwind
+define void @sched_init_granularity() #0 {
+entry:
+  tail call fastcc void @update_sysctl()
+  ret void
+}
+
+; Function Attrs: noinline nounwind
+define internal fastcc void @update_sysctl() #0 {
+entry:
+  %call = tail call i32 @get_update_sysctl_factor()
+  %0 = load i32, i32* @normalized_sysctl_sched_min_granularity, align 4, !tbaa !1
+  %mul = mul i32 %0, %call
+  store i32 %mul, i32* @sysctl_sched_min_granularity, align 4, !tbaa !1
+  %1 = load i32, i32* @normalized_sysctl_sched_latency, align 4, !tbaa !1
+  %mul1 = mul i32 %1, %call
+  store i32 %mul1, i32* @sysctl_sched_latency, align 4, !tbaa !1
+  %2 = load i32, i32* @normalized_sysctl_sched_wakeup_granularity, align 4, !tbaa !1
+  %mul2 = mul i32 %2, %call
+  store i32 %mul2, i32* @sysctl_sched_wakeup_granularity, align 4, !tbaa !1
+  ret void
+}
+
+; Function Attrs: noinline nounwind
+define i32 @calc_delta_mine(i32 %delta_exec, i32 %weight, %struct.load_weight* nocapture %lw) #0 {
+entry:
+  %cmp = icmp ugt i32 %weight, 1
+  %conv = zext i32 %delta_exec to i64
+  br i1 %cmp, label %if.then, label %if.end, !prof !5
+
+if.then:                                          ; preds = %entry
+  %conv2 = zext i32 %weight to i64
+  %mul = mul i64 %conv2, %conv
+  br label %if.end
+
+if.end:                                           ; preds = %entry, %if.then
+  %tmp.0 = phi i64 [ %mul, %if.then ], [ %conv, %entry ]
+  %inv_weight = getelementptr inbounds %struct.load_weight, %struct.load_weight* %lw, i32 0, i32 1
+  %0 = load i32, i32* %inv_weight, align 4, !tbaa !6
+  %tobool4 = icmp eq i32 %0, 0
+  br i1 %tobool4, label %if.then5, label %if.end22
+
+if.then5:                                         ; preds = %if.end
+  %weight7 = getelementptr inbounds %struct.load_weight, %struct.load_weight* %lw, i32 0, i32 0
+  %1 = load i32, i32* %weight7, align 4, !tbaa !9
+  %lnot9 = icmp eq i32 %1, 0
+  br i1 %lnot9, label %if.then17, label %if.else19, !prof !10
+
+if.then17:                                        ; preds = %if.then5
+  store i32 -1, i32* %inv_weight, align 4, !tbaa !6
+  br label %if.end22
+
+if.else19:                                        ; preds = %if.then5
+  %div = udiv i32 -1, %1
+  store i32 %div, i32* %inv_weight, align 4, !tbaa !6
+  br label %if.end22
+
+if.end22:                                         ; preds = %if.end, %if.then17, %if.else19
+  %2 = phi i32 [ %0, %if.end ], [ -1, %if.then17 ], [ %div, %if.else19 ]
+  %cmp23 = icmp ugt i64 %tmp.0, 4294967295
+  br i1 %cmp23, label %if.then31, label %if.else37, !prof !10
+
+if.then31:                                        ; preds = %if.end22
+  %add = add i64 %tmp.0, 32768
+  %shr = lshr i64 %add, 16
+  %conv33 = zext i32 %2 to i64
+  %mul34 = mul i64 %conv33, %shr
+  %add35 = add i64 %mul34, 32768
+  %shr36 = lshr i64 %add35, 16
+  br label %if.end43
+
+if.else37:                                        ; preds = %if.end22
+  %conv39 = zext i32 %2 to i64
+  %mul40 = mul i64 %conv39, %tmp.0
+  %add41 = add i64 %mul40, 2147483648
+  %shr42 = lshr i64 %add41, 32
+  br label %if.end43
+
+if.end43:                                         ; preds = %if.else37, %if.then31
+  %tmp.1 = phi i64 [ %shr36, %if.then31 ], [ %shr42, %if.else37 ]
+  %cmp49 = icmp ult i64 %tmp.1, 2147483647
+  %3 = trunc i64 %tmp.1 to i32
+  %conv51 = select i1 %cmp49, i32 %3, i32 2147483647
+  ret i32 %conv51
+}
+
+declare i32 @get_update_sysctl_factor() #0
+declare i32 @__bitmap_weight(i32*, i32) #1
+
+attributes #0 = { noinline nounwind "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+attributes #1 = { "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+attributes #2 = { nounwind }
+
+!llvm.ident = !{!0}
+
+!0 = !{!"Clang 3.1"}
+!1 = !{!2, !2, i64 0}
+!2 = !{!"int", !3, i64 0}
+!3 = !{!"omnipotent char", !4, i64 0}
+!4 = !{!"Simple C/C++ TBAA"}
+!5 = !{!"branch_weights", i32 64, i32 4}
+!6 = !{!7, !8, i64 4}
+!7 = !{!"load_weight", !8, i64 0, !8, i64 4}
+!8 = !{!"long", !3, i64 0}
+!9 = !{!7, !8, i64 0}
+!10 = !{!"branch_weights", i32 4, i32 64}
+!11 = !{!12, !12, i64 0}
+!12 = !{!"any pointer", !3, i64 0}
+!13 = !{!3, !3, i64 0}
+!14 = !{i32 45854, i32 45878}

Added: llvm/trunk/test/CodeGen/Hexagon/expand-condsets-undef.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/expand-condsets-undef.ll?rev=233696&view=auto
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/expand-condsets-undef.ll (added)
+++ llvm/trunk/test/CodeGen/Hexagon/expand-condsets-undef.ll Tue Mar 31 08:35:12 2015
@@ -0,0 +1,28 @@
+; RUN: llc -O2 < %s
+; REQUIRES: asserts
+
+target datalayout = "e-m:e-p:32:32-i64:64-a:0-v32:32-n16:32"
+target triple = "hexagon"
+
+; Function Attrs: nounwind optsize ssp
+define internal fastcc void @foo() nounwind {
+if.else473:
+  %0 = load i64, i64* undef, align 8
+  %sub = sub nsw i64 undef, %0
+  %conv476 = sitofp i64 %sub to double
+  %mul477 = fmul double %conv476, 0x3F50624DE0000000
+  br i1 undef, label %cond.true540, label %cond.end548
+
+cond.true540:
+  %1 = fptrunc double %mul477 to float
+  %2 = fptosi float %1 to i32
+  br label %cond.end548
+
+cond.end548:
+  %cond549 = phi i32 [ %2, %cond.true540 ], [ undef, %if.else473 ]
+  call void @bar(i32 %cond549) nounwind
+  unreachable
+}
+
+declare void @bar(i32) nounwind
+

Modified: llvm/trunk/test/CodeGen/Hexagon/sube.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/CodeGen/Hexagon/sube.ll?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/test/CodeGen/Hexagon/sube.ll (original)
+++ llvm/trunk/test/CodeGen/Hexagon/sube.ll Tue Mar 31 08:35:12 2015
@@ -1,4 +1,4 @@
-; RUN: llc -march=hexagon < %s | FileCheck %s
+; RUN: llc -march=hexagon -hexagon-expand-condsets=0 < %s | FileCheck %s
 
 ; CHECK: r{{[0-9]+:[0-9]+}} = #0
 ; CHECK: r{{[0-9]+:[0-9]+}} = #1

Modified: llvm/trunk/test/MC/Hexagon/inst_select.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/MC/Hexagon/inst_select.ll?rev=233696&r1=233695&r2=233696&view=diff
==============================================================================
--- llvm/trunk/test/MC/Hexagon/inst_select.ll (original)
+++ llvm/trunk/test/MC/Hexagon/inst_select.ll Tue Mar 31 08:35:12 2015
@@ -7,4 +7,4 @@ define i32 @foo (i1 %a, i32 %b, i32 %c)
   ret i32 %1
 }
 
-; CHECK:  0000 00400085 004201f4 00c09f52
+; CHECK:  0000 00400085 00600174 00608274 00c09f52





More information about the llvm-commits mailing list