[compiler-rt] r224406 - [ASan] Re-structure the allocator code. NFC.

Alexey Samsonov vonosmas at gmail.com
Tue Dec 16 17:55:03 PST 2014


Author: samsonov
Date: Tue Dec 16 19:55:03 2014
New Revision: 224406

URL: http://llvm.org/viewvc/llvm-project?rev=224406&view=rev
Log:
[ASan] Re-structure the allocator code. NFC.

Introduce "Allocator" object, which contains all the bits and pieces
ASan allocation machinery actually use: allocator from sanitizer_common,
quarantine, fallback allocator and quarantine caches, fallback mutex.

This step is a preparation to adding more state to this object. We want
to reduce dependency of Allocator on commandline flags and be able to
"safely" modify its behavior (such as the size of the redzone) at
runtime.

Modified:
    compiler-rt/trunk/lib/asan/asan_allocator.cc
    compiler-rt/trunk/lib/asan/asan_allocator.h

Modified: compiler-rt/trunk/lib/asan/asan_allocator.cc
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/asan/asan_allocator.cc?rev=224406&r1=224405&r2=224406&view=diff
==============================================================================
--- compiler-rt/trunk/lib/asan/asan_allocator.cc (original)
+++ compiler-rt/trunk/lib/asan/asan_allocator.cc Tue Dec 16 19:55:03 2014
@@ -31,50 +31,6 @@
 
 namespace __asan {
 
-void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
-  PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
-  // Statistics.
-  AsanStats &thread_stats = GetCurrentThreadStats();
-  thread_stats.mmaps++;
-  thread_stats.mmaped += size;
-}
-void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
-  PoisonShadow(p, size, 0);
-  // We are about to unmap a chunk of user memory.
-  // Mark the corresponding shadow memory as not needed.
-  FlushUnneededASanShadowMemory(p, size);
-  // Statistics.
-  AsanStats &thread_stats = GetCurrentThreadStats();
-  thread_stats.munmaps++;
-  thread_stats.munmaped += size;
-}
-
-// We can not use THREADLOCAL because it is not supported on some of the
-// platforms we care about (OSX 10.6, Android).
-// static THREADLOCAL AllocatorCache cache;
-AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
-  CHECK(ms);
-  return &ms->allocator2_cache;
-}
-
-static Allocator allocator;
-
-static const uptr kMaxAllowedMallocSize =
-  FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
-
-static const uptr kMaxThreadLocalQuarantine =
-  FIRST_32_SECOND_64(1 << 18, 1 << 20);
-
-// Every chunk of memory allocated by this allocator can be in one of 3 states:
-// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
-// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
-// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
-enum {
-  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
-  CHUNK_ALLOCATED  = 2,
-  CHUNK_QUARANTINE = 3
-};
-
 // Valid redzone sizes are 16, 32, 64, ... 2048, so we encode them in 3 bits.
 // We use adaptive redzones: for larger allocation larger redzones are used.
 static u32 RZLog2Size(u32 rz_log) {
@@ -91,18 +47,7 @@ static u32 RZSize2Log(u32 rz_size) {
   return res;
 }
 
-static uptr ComputeRZLog(uptr user_requested_size) {
-  u32 rz_log =
-    user_requested_size <= 64        - 16   ? 0 :
-    user_requested_size <= 128       - 32   ? 1 :
-    user_requested_size <= 512       - 64   ? 2 :
-    user_requested_size <= 4096      - 128  ? 3 :
-    user_requested_size <= (1 << 14) - 256  ? 4 :
-    user_requested_size <= (1 << 15) - 512  ? 5 :
-    user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
-  return Min(Max(rz_log, RZSize2Log(flags()->redzone)),
-             RZSize2Log(flags()->max_redzone));
-}
+static AsanAllocator &get_allocator();
 
 // The memory chunk allocated from the underlying allocator looks like this:
 // L L L L L L H H U U U U U U R R
@@ -151,20 +96,30 @@ static const uptr kChunkHeader2Size = si
 COMPILER_CHECK(kChunkHeaderSize == 16);
 COMPILER_CHECK(kChunkHeader2Size <= 16);
 
+// Every chunk of memory allocated by this allocator can be in one of 3 states:
+// CHUNK_AVAILABLE: the chunk is in the free list and ready to be allocated.
+// CHUNK_ALLOCATED: the chunk is allocated and not yet freed.
+// CHUNK_QUARANTINE: the chunk was freed and put into quarantine zone.
+enum {
+  CHUNK_AVAILABLE  = 0,  // 0 is the default value even if we didn't set it.
+  CHUNK_ALLOCATED  = 2,
+  CHUNK_QUARANTINE = 3
+};
+
 struct AsanChunk: ChunkBase {
   uptr Beg() { return reinterpret_cast<uptr>(this) + kChunkHeaderSize; }
   uptr UsedSize(bool locked_version = false) {
     if (user_requested_size != SizeClassMap::kMaxSize)
       return user_requested_size;
     return *reinterpret_cast<uptr *>(
-                allocator.GetMetaData(AllocBeg(locked_version)));
+               get_allocator().GetMetaData(AllocBeg(locked_version)));
   }
   void *AllocBeg(bool locked_version = false) {
     if (from_memalign) {
       if (locked_version)
-        return allocator.GetBlockBeginFastLocked(
+        return get_allocator().GetBlockBeginFastLocked(
             reinterpret_cast<void *>(this));
-      return allocator.GetBlockBegin(reinterpret_cast<void *>(this));
+      return get_allocator().GetBlockBegin(reinterpret_cast<void *>(this));
     }
     return reinterpret_cast<void*>(Beg() - RZLog2Size(rz_log));
   }
@@ -173,44 +128,6 @@ struct AsanChunk: ChunkBase {
   }
 };
 
-bool AsanChunkView::IsValid() {
-  return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
-}
-uptr AsanChunkView::Beg() { return chunk_->Beg(); }
-uptr AsanChunkView::End() { return Beg() + UsedSize(); }
-uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
-uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
-uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
-
-static StackTrace GetStackTraceFromId(u32 id) {
-  CHECK(id);
-  StackTrace res = StackDepotGet(id);
-  CHECK(res.trace);
-  return res;
-}
-
-StackTrace AsanChunkView::GetAllocStack() {
-  return GetStackTraceFromId(chunk_->alloc_context_id);
-}
-
-StackTrace AsanChunkView::GetFreeStack() {
-  return GetStackTraceFromId(chunk_->free_context_id);
-}
-
-struct QuarantineCallback;
-typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
-typedef AsanQuarantine::Cache QuarantineCache;
-static AsanQuarantine quarantine(LINKER_INITIALIZED);
-static QuarantineCache fallback_quarantine_cache(LINKER_INITIALIZED);
-static AllocatorCache fallback_allocator_cache;
-static SpinMutex fallback_mutex;
-
-QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
-  CHECK(ms);
-  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
-  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
-}
-
 struct QuarantineCallback {
   explicit QuarantineCallback(AllocatorCache *cache)
       : cache_(cache) {
@@ -239,387 +156,523 @@ struct QuarantineCallback {
     thread_stats.real_frees++;
     thread_stats.really_freed += m->UsedSize();
 
-    allocator.Deallocate(cache_, p);
+    get_allocator().Deallocate(cache_, p);
   }
 
   void *Allocate(uptr size) {
-    return allocator.Allocate(cache_, size, 1, false);
+    return get_allocator().Allocate(cache_, size, 1, false);
   }
 
   void Deallocate(void *p) {
-    allocator.Deallocate(cache_, p);
+    get_allocator().Deallocate(cache_, p);
   }
 
   AllocatorCache *cache_;
 };
 
-void InitializeAllocator(bool may_return_null, uptr quarantine_size) {
-  allocator.Init(may_return_null);
-  quarantine.Init(quarantine_size, kMaxThreadLocalQuarantine);
+typedef Quarantine<QuarantineCallback, AsanChunk> AsanQuarantine;
+typedef AsanQuarantine::Cache QuarantineCache;
+
+void AsanMapUnmapCallback::OnMap(uptr p, uptr size) const {
+  PoisonShadow(p, size, kAsanHeapLeftRedzoneMagic);
+  // Statistics.
+  AsanStats &thread_stats = GetCurrentThreadStats();
+  thread_stats.mmaps++;
+  thread_stats.mmaped += size;
+}
+void AsanMapUnmapCallback::OnUnmap(uptr p, uptr size) const {
+  PoisonShadow(p, size, 0);
+  // We are about to unmap a chunk of user memory.
+  // Mark the corresponding shadow memory as not needed.
+  FlushUnneededASanShadowMemory(p, size);
+  // Statistics.
+  AsanStats &thread_stats = GetCurrentThreadStats();
+  thread_stats.munmaps++;
+  thread_stats.munmaped += size;
 }
 
-void ReInitializeAllocator(bool may_return_null, uptr quarantine_size) {
-  allocator.SetMayReturnNull(may_return_null);
-  quarantine.Init(quarantine_size, kMaxThreadLocalQuarantine);
+// We can not use THREADLOCAL because it is not supported on some of the
+// platforms we care about (OSX 10.6, Android).
+// static THREADLOCAL AllocatorCache cache;
+AllocatorCache *GetAllocatorCache(AsanThreadLocalMallocStorage *ms) {
+  CHECK(ms);
+  return &ms->allocator_cache;
 }
 
-static void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
-                      AllocType alloc_type, bool can_fill) {
-  if (UNLIKELY(!asan_inited))
-    AsanInitFromRtl();
-  Flags &fl = *flags();
-  CHECK(stack);
-  const uptr min_alignment = SHADOW_GRANULARITY;
-  if (alignment < min_alignment)
-    alignment = min_alignment;
-  if (size == 0) {
-    // We'd be happy to avoid allocating memory for zero-size requests, but
-    // some programs/tests depend on this behavior and assume that malloc would
-    // not return NULL even for zero-size allocations. Moreover, it looks like
-    // operator new should never return NULL, and results of consecutive "new"
-    // calls must be different even if the allocated size is zero.
-    size = 1;
-  }
-  CHECK(IsPowerOfTwo(alignment));
-  uptr rz_log = ComputeRZLog(size);
-  uptr rz_size = RZLog2Size(rz_log);
-  uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
-  uptr needed_size = rounded_size + rz_size;
-  if (alignment > min_alignment)
-    needed_size += alignment;
-  bool using_primary_allocator = true;
-  // If we are allocating from the secondary allocator, there will be no
-  // automatic right redzone, so add the right redzone manually.
-  if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
-    needed_size += rz_size;
-    using_primary_allocator = false;
-  }
-  CHECK(IsAligned(needed_size, min_alignment));
-  if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
-    Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
-           (void*)size);
-    return allocator.ReturnNullOrDie();
-  }
-
-  AsanThread *t = GetCurrentThread();
-  void *allocated;
-  if (t) {
-    AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
-    allocated = allocator.Allocate(cache, needed_size, 8, false);
-  } else {
-    SpinMutexLock l(&fallback_mutex);
-    AllocatorCache *cache = &fallback_allocator_cache;
-    allocated = allocator.Allocate(cache, needed_size, 8, false);
-  }
-
-  if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
-    // Heap poisoning is enabled, but the allocator provides an unpoisoned
-    // chunk. This is possible if CanPoisonMemory() was false for some
-    // time, for example, due to flags()->start_disabled.
-    // Anyway, poison the block before using it for anything else.
-    uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
-    PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
-  }
-
-  uptr alloc_beg = reinterpret_cast<uptr>(allocated);
-  uptr alloc_end = alloc_beg + needed_size;
-  uptr beg_plus_redzone = alloc_beg + rz_size;
-  uptr user_beg = beg_plus_redzone;
-  if (!IsAligned(user_beg, alignment))
-    user_beg = RoundUpTo(user_beg, alignment);
-  uptr user_end = user_beg + size;
-  CHECK_LE(user_end, alloc_end);
-  uptr chunk_beg = user_beg - kChunkHeaderSize;
-  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
-  m->alloc_type = alloc_type;
-  m->rz_log = rz_log;
-  u32 alloc_tid = t ? t->tid() : 0;
-  m->alloc_tid = alloc_tid;
-  CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
-  m->free_tid = kInvalidTid;
-  m->from_memalign = user_beg != beg_plus_redzone;
-  if (alloc_beg != chunk_beg) {
-    CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
-    reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
-    reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
-  }
-  if (using_primary_allocator) {
-    CHECK(size);
-    m->user_requested_size = size;
-    CHECK(allocator.FromPrimary(allocated));
-  } else {
-    CHECK(!allocator.FromPrimary(allocated));
-    m->user_requested_size = SizeClassMap::kMaxSize;
-    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
-    meta[0] = size;
-    meta[1] = chunk_beg;
-  }
-
-  m->alloc_context_id = StackDepotPut(*stack);
-
-  uptr size_rounded_down_to_granularity = RoundDownTo(size, SHADOW_GRANULARITY);
-  // Unpoison the bulk of the memory region.
-  if (size_rounded_down_to_granularity)
-    PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
-  // Deal with the end of the region if size is not aligned to granularity.
-  if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
-    u8 *shadow = (u8*)MemToShadow(user_beg + size_rounded_down_to_granularity);
-    *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
-  }
+QuarantineCache *GetQuarantineCache(AsanThreadLocalMallocStorage *ms) {
+  CHECK(ms);
+  CHECK_LE(sizeof(QuarantineCache), sizeof(ms->quarantine_cache));
+  return reinterpret_cast<QuarantineCache *>(ms->quarantine_cache);
+}
 
-  AsanStats &thread_stats = GetCurrentThreadStats();
-  thread_stats.mallocs++;
-  thread_stats.malloced += size;
-  thread_stats.malloced_redzones += needed_size - size;
-  uptr class_id = Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
-  thread_stats.malloced_by_size[class_id]++;
-  if (needed_size > SizeClassMap::kMaxSize)
-    thread_stats.malloc_large++;
-
-  void *res = reinterpret_cast<void *>(user_beg);
-  if (can_fill && fl.max_malloc_fill_size) {
-    uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
-    REAL(memset)(res, fl.malloc_fill_byte, fill_size);
+struct Allocator {
+  static const uptr kMaxAllowedMallocSize =
+      FIRST_32_SECOND_64(3UL << 30, 64UL << 30);
+  static const uptr kMaxThreadLocalQuarantine =
+      FIRST_32_SECOND_64(1 << 18, 1 << 20);
+
+  AsanAllocator allocator;
+  AsanQuarantine quarantine;
+  StaticSpinMutex fallback_mutex;
+  AllocatorCache fallback_allocator_cache;
+  QuarantineCache fallback_quarantine_cache;
+
+  explicit Allocator(LinkerInitialized)
+      : quarantine(LINKER_INITIALIZED),
+        fallback_quarantine_cache(LINKER_INITIALIZED) {}
+
+  // ------------------- Initialization ------------------------
+  void Initialize(bool may_return_null, uptr quarantine_size) {
+    allocator.Init(may_return_null);
+    quarantine.Init(quarantine_size, kMaxThreadLocalQuarantine);
+  }
+
+  void ReInitialize(bool may_return_null, uptr quarantine_size) {
+    allocator.SetMayReturnNull(may_return_null);
+    quarantine.Init(quarantine_size, kMaxThreadLocalQuarantine);
+  }
+
+  // -------------------- Helper methods. -------------------------
+  uptr ComputeRZLog(uptr user_requested_size) {
+    u32 rz_log =
+      user_requested_size <= 64        - 16   ? 0 :
+      user_requested_size <= 128       - 32   ? 1 :
+      user_requested_size <= 512       - 64   ? 2 :
+      user_requested_size <= 4096      - 128  ? 3 :
+      user_requested_size <= (1 << 14) - 256  ? 4 :
+      user_requested_size <= (1 << 15) - 512  ? 5 :
+      user_requested_size <= (1 << 16) - 1024 ? 6 : 7;
+    return Min(Max(rz_log, RZSize2Log(flags()->redzone)),
+               RZSize2Log(flags()->max_redzone));
+  }
+
+  // We have an address between two chunks, and we want to report just one.
+  AsanChunk *ChooseChunk(uptr addr, AsanChunk *left_chunk,
+                         AsanChunk *right_chunk) {
+    // Prefer an allocated chunk over freed chunk and freed chunk
+    // over available chunk.
+    if (left_chunk->chunk_state != right_chunk->chunk_state) {
+      if (left_chunk->chunk_state == CHUNK_ALLOCATED)
+        return left_chunk;
+      if (right_chunk->chunk_state == CHUNK_ALLOCATED)
+        return right_chunk;
+      if (left_chunk->chunk_state == CHUNK_QUARANTINE)
+        return left_chunk;
+      if (right_chunk->chunk_state == CHUNK_QUARANTINE)
+        return right_chunk;
+    }
+    // Same chunk_state: choose based on offset.
+    sptr l_offset = 0, r_offset = 0;
+    CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
+    CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
+    if (l_offset < r_offset)
+      return left_chunk;
+    return right_chunk;
   }
+
+  // -------------------- Allocation/Deallocation routines ---------------
+  void *Allocate(uptr size, uptr alignment, BufferedStackTrace *stack,
+                 AllocType alloc_type, bool can_fill) {
+    if (UNLIKELY(!asan_inited))
+      AsanInitFromRtl();
+    Flags &fl = *flags();
+    CHECK(stack);
+    const uptr min_alignment = SHADOW_GRANULARITY;
+    if (alignment < min_alignment)
+      alignment = min_alignment;
+    if (size == 0) {
+      // We'd be happy to avoid allocating memory for zero-size requests, but
+      // some programs/tests depend on this behavior and assume that malloc
+      // would not return NULL even for zero-size allocations. Moreover, it
+      // looks like operator new should never return NULL, and results of
+      // consecutive "new" calls must be different even if the allocated size
+      // is zero.
+      size = 1;
+    }
+    CHECK(IsPowerOfTwo(alignment));
+    uptr rz_log = ComputeRZLog(size);
+    uptr rz_size = RZLog2Size(rz_log);
+    uptr rounded_size = RoundUpTo(Max(size, kChunkHeader2Size), alignment);
+    uptr needed_size = rounded_size + rz_size;
+    if (alignment > min_alignment)
+      needed_size += alignment;
+    bool using_primary_allocator = true;
+    // If we are allocating from the secondary allocator, there will be no
+    // automatic right redzone, so add the right redzone manually.
+    if (!PrimaryAllocator::CanAllocate(needed_size, alignment)) {
+      needed_size += rz_size;
+      using_primary_allocator = false;
+    }
+    CHECK(IsAligned(needed_size, min_alignment));
+    if (size > kMaxAllowedMallocSize || needed_size > kMaxAllowedMallocSize) {
+      Report("WARNING: AddressSanitizer failed to allocate %p bytes\n",
+             (void*)size);
+      return allocator.ReturnNullOrDie();
+    }
+
+    AsanThread *t = GetCurrentThread();
+    void *allocated;
+    if (t) {
+      AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage());
+      allocated = allocator.Allocate(cache, needed_size, 8, false);
+    } else {
+      SpinMutexLock l(&fallback_mutex);
+      AllocatorCache *cache = &fallback_allocator_cache;
+      allocated = allocator.Allocate(cache, needed_size, 8, false);
+    }
+
+    if (*(u8 *)MEM_TO_SHADOW((uptr)allocated) == 0 && CanPoisonMemory()) {
+      // Heap poisoning is enabled, but the allocator provides an unpoisoned
+      // chunk. This is possible if CanPoisonMemory() was false for some
+      // time, for example, due to flags()->start_disabled.
+      // Anyway, poison the block before using it for anything else.
+      uptr allocated_size = allocator.GetActuallyAllocatedSize(allocated);
+      PoisonShadow((uptr)allocated, allocated_size, kAsanHeapLeftRedzoneMagic);
+    }
+
+    uptr alloc_beg = reinterpret_cast<uptr>(allocated);
+    uptr alloc_end = alloc_beg + needed_size;
+    uptr beg_plus_redzone = alloc_beg + rz_size;
+    uptr user_beg = beg_plus_redzone;
+    if (!IsAligned(user_beg, alignment))
+      user_beg = RoundUpTo(user_beg, alignment);
+    uptr user_end = user_beg + size;
+    CHECK_LE(user_end, alloc_end);
+    uptr chunk_beg = user_beg - kChunkHeaderSize;
+    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+    m->alloc_type = alloc_type;
+    m->rz_log = rz_log;
+    u32 alloc_tid = t ? t->tid() : 0;
+    m->alloc_tid = alloc_tid;
+    CHECK_EQ(alloc_tid, m->alloc_tid);  // Does alloc_tid fit into the bitfield?
+    m->free_tid = kInvalidTid;
+    m->from_memalign = user_beg != beg_plus_redzone;
+    if (alloc_beg != chunk_beg) {
+      CHECK_LE(alloc_beg+ 2 * sizeof(uptr), chunk_beg);
+      reinterpret_cast<uptr *>(alloc_beg)[0] = kAllocBegMagic;
+      reinterpret_cast<uptr *>(alloc_beg)[1] = chunk_beg;
+    }
+    if (using_primary_allocator) {
+      CHECK(size);
+      m->user_requested_size = size;
+      CHECK(allocator.FromPrimary(allocated));
+    } else {
+      CHECK(!allocator.FromPrimary(allocated));
+      m->user_requested_size = SizeClassMap::kMaxSize;
+      uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(allocated));
+      meta[0] = size;
+      meta[1] = chunk_beg;
+    }
+
+    m->alloc_context_id = StackDepotPut(*stack);
+
+    uptr size_rounded_down_to_granularity =
+        RoundDownTo(size, SHADOW_GRANULARITY);
+    // Unpoison the bulk of the memory region.
+    if (size_rounded_down_to_granularity)
+      PoisonShadow(user_beg, size_rounded_down_to_granularity, 0);
+    // Deal with the end of the region if size is not aligned to granularity.
+    if (size != size_rounded_down_to_granularity && CanPoisonMemory()) {
+      u8 *shadow =
+          (u8 *)MemToShadow(user_beg + size_rounded_down_to_granularity);
+      *shadow = fl.poison_partial ? (size & (SHADOW_GRANULARITY - 1)) : 0;
+    }
+
+    AsanStats &thread_stats = GetCurrentThreadStats();
+    thread_stats.mallocs++;
+    thread_stats.malloced += size;
+    thread_stats.malloced_redzones += needed_size - size;
+    uptr class_id =
+        Min(kNumberOfSizeClasses, SizeClassMap::ClassID(needed_size));
+    thread_stats.malloced_by_size[class_id]++;
+    if (needed_size > SizeClassMap::kMaxSize)
+      thread_stats.malloc_large++;
+
+    void *res = reinterpret_cast<void *>(user_beg);
+    if (can_fill && fl.max_malloc_fill_size) {
+      uptr fill_size = Min(size, (uptr)fl.max_malloc_fill_size);
+      REAL(memset)(res, fl.malloc_fill_byte, fill_size);
+    }
 #if CAN_SANITIZE_LEAKS
-  m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
-                                               : __lsan::kDirectlyLeaked;
+    m->lsan_tag = __lsan::DisabledInThisThread() ? __lsan::kIgnored
+                                                 : __lsan::kDirectlyLeaked;
 #endif
-  // Must be the last mutation of metadata in this function.
-  atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
-  ASAN_MALLOC_HOOK(res, size);
-  return res;
-}
+    // Must be the last mutation of metadata in this function.
+    atomic_store((atomic_uint8_t *)m, CHUNK_ALLOCATED, memory_order_release);
+    ASAN_MALLOC_HOOK(res, size);
+    return res;
+  }
+
+  void AtomicallySetQuarantineFlag(AsanChunk *m, void *ptr,
+                                   BufferedStackTrace *stack) {
+    u8 old_chunk_state = CHUNK_ALLOCATED;
+    // Flip the chunk_state atomically to avoid race on double-free.
+    if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
+                                        CHUNK_QUARANTINE, memory_order_acquire))
+      ReportInvalidFree(ptr, old_chunk_state, stack);
+    CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
+  }
+
+  // Expects the chunk to already be marked as quarantined by using
+  // AtomicallySetQuarantineFlag.
+  void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack,
+                       AllocType alloc_type) {
+    CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
+
+    if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
+      ReportAllocTypeMismatch((uptr)ptr, stack,
+                              (AllocType)m->alloc_type, (AllocType)alloc_type);
+
+    CHECK_GE(m->alloc_tid, 0);
+    if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
+      CHECK_EQ(m->free_tid, kInvalidTid);
+    AsanThread *t = GetCurrentThread();
+    m->free_tid = t ? t->tid() : 0;
+    m->free_context_id = StackDepotPut(*stack);
+    // Poison the region.
+    PoisonShadow(m->Beg(),
+                 RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
+                 kAsanHeapFreeMagic);
 
-static void ReportInvalidFree(void *ptr, u8 chunk_state,
-                              BufferedStackTrace *stack) {
-  if (chunk_state == CHUNK_QUARANTINE)
-    ReportDoubleFree((uptr)ptr, stack);
-  else
-    ReportFreeNotMalloced((uptr)ptr, stack);
-}
-
-static void AtomicallySetQuarantineFlag(AsanChunk *m, void *ptr,
-                                        BufferedStackTrace *stack) {
-  u8 old_chunk_state = CHUNK_ALLOCATED;
-  // Flip the chunk_state atomically to avoid race on double-free.
-  if (!atomic_compare_exchange_strong((atomic_uint8_t*)m, &old_chunk_state,
-                                      CHUNK_QUARANTINE, memory_order_acquire))
-    ReportInvalidFree(ptr, old_chunk_state, stack);
-  CHECK_EQ(CHUNK_ALLOCATED, old_chunk_state);
-}
-
-// Expects the chunk to already be marked as quarantined by using
-// AtomicallySetQuarantineFlag.
-static void QuarantineChunk(AsanChunk *m, void *ptr, BufferedStackTrace *stack,
-                            AllocType alloc_type) {
-  CHECK_EQ(m->chunk_state, CHUNK_QUARANTINE);
-
-  if (m->alloc_type != alloc_type && flags()->alloc_dealloc_mismatch)
-    ReportAllocTypeMismatch((uptr)ptr, stack,
-                            (AllocType)m->alloc_type, (AllocType)alloc_type);
-
-  CHECK_GE(m->alloc_tid, 0);
-  if (SANITIZER_WORDSIZE == 64)  // On 32-bits this resides in user area.
-    CHECK_EQ(m->free_tid, kInvalidTid);
-  AsanThread *t = GetCurrentThread();
-  m->free_tid = t ? t->tid() : 0;
-  m->free_context_id = StackDepotPut(*stack);
-  // Poison the region.
-  PoisonShadow(m->Beg(),
-               RoundUpTo(m->UsedSize(), SHADOW_GRANULARITY),
-               kAsanHeapFreeMagic);
+    AsanStats &thread_stats = GetCurrentThreadStats();
+    thread_stats.frees++;
+    thread_stats.freed += m->UsedSize();
 
-  AsanStats &thread_stats = GetCurrentThreadStats();
-  thread_stats.frees++;
-  thread_stats.freed += m->UsedSize();
+    // Push into quarantine.
+    if (t) {
+      AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
+      AllocatorCache *ac = GetAllocatorCache(ms);
+      quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac), m,
+                           m->UsedSize());
+    } else {
+      SpinMutexLock l(&fallback_mutex);
+      AllocatorCache *ac = &fallback_allocator_cache;
+      quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac), m,
+                           m->UsedSize());
+    }
+  }
 
-  // Push into quarantine.
-  if (t) {
-    AsanThreadLocalMallocStorage *ms = &t->malloc_storage();
+  void Deallocate(void *ptr, uptr delete_size, BufferedStackTrace *stack,
+                  AllocType alloc_type) {
+    uptr p = reinterpret_cast<uptr>(ptr);
+    if (p == 0) return;
+
+    uptr chunk_beg = p - kChunkHeaderSize;
+    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+    if (delete_size && flags()->new_delete_type_mismatch &&
+        delete_size != m->UsedSize()) {
+      ReportNewDeleteSizeMismatch(p, delete_size, stack);
+    }
+    ASAN_FREE_HOOK(ptr);
+    // Must mark the chunk as quarantined before any changes to its metadata.
+    AtomicallySetQuarantineFlag(m, ptr, stack);
+    QuarantineChunk(m, ptr, stack, alloc_type);
+  }
+
+  void *Reallocate(void *old_ptr, uptr new_size, BufferedStackTrace *stack) {
+    CHECK(old_ptr && new_size);
+    uptr p = reinterpret_cast<uptr>(old_ptr);
+    uptr chunk_beg = p - kChunkHeaderSize;
+    AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+
+    AsanStats &thread_stats = GetCurrentThreadStats();
+    thread_stats.reallocs++;
+    thread_stats.realloced += new_size;
+
+    void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
+    if (new_ptr) {
+      u8 chunk_state = m->chunk_state;
+      if (chunk_state != CHUNK_ALLOCATED)
+        ReportInvalidFree(old_ptr, chunk_state, stack);
+      CHECK_NE(REAL(memcpy), (void*)0);
+      uptr memcpy_size = Min(new_size, m->UsedSize());
+      // If realloc() races with free(), we may start copying freed memory.
+      // However, we will report racy double-free later anyway.
+      REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
+      Deallocate(old_ptr, 0, stack, FROM_MALLOC);
+    }
+    return new_ptr;
+  }
+
+  void *Calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
+    if (CallocShouldReturnNullDueToOverflow(size, nmemb))
+      return allocator.ReturnNullOrDie();
+    void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
+    // If the memory comes from the secondary allocator no need to clear it
+    // as it comes directly from mmap.
+    if (ptr && allocator.FromPrimary(ptr))
+      REAL(memset)(ptr, 0, nmemb * size);
+    return ptr;
+  }
+
+  void ReportInvalidFree(void *ptr, u8 chunk_state, BufferedStackTrace *stack) {
+    if (chunk_state == CHUNK_QUARANTINE)
+      ReportDoubleFree((uptr)ptr, stack);
+    else
+      ReportFreeNotMalloced((uptr)ptr, stack);
+  }
+
+  void CommitBack(AsanThreadLocalMallocStorage *ms) {
     AllocatorCache *ac = GetAllocatorCache(ms);
-    quarantine.Put(GetQuarantineCache(ms), QuarantineCallback(ac),
-                   m, m->UsedSize());
-  } else {
-    SpinMutexLock l(&fallback_mutex);
-    AllocatorCache *ac = &fallback_allocator_cache;
-    quarantine.Put(&fallback_quarantine_cache, QuarantineCallback(ac),
-                   m, m->UsedSize());
+    quarantine.Drain(GetQuarantineCache(ms), QuarantineCallback(ac));
+    allocator.SwallowCache(ac);
   }
-}
 
-static void Deallocate(void *ptr, uptr delete_size, BufferedStackTrace *stack,
-                       AllocType alloc_type) {
-  uptr p = reinterpret_cast<uptr>(ptr);
-  if (p == 0) return;
+  // -------------------------- Chunk lookup ----------------------
+
+  // Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
+  AsanChunk *GetAsanChunk(void *alloc_beg) {
+    if (!alloc_beg) return 0;
+    if (!allocator.FromPrimary(alloc_beg)) {
+      uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
+      AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
+      return m;
+    }
+    uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
+    if (alloc_magic[0] == kAllocBegMagic)
+      return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
+    return reinterpret_cast<AsanChunk *>(alloc_beg);
+  }
+
+  AsanChunk *GetAsanChunkByAddr(uptr p) {
+    void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
+    return GetAsanChunk(alloc_beg);
+  }
+
+  // Allocator must be locked when this function is called.
+  AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
+    void *alloc_beg =
+        allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
+    return GetAsanChunk(alloc_beg);
+  }
+
+  uptr AllocationSize(uptr p) {
+    AsanChunk *m = GetAsanChunkByAddr(p);
+    if (!m) return 0;
+    if (m->chunk_state != CHUNK_ALLOCATED) return 0;
+    if (m->Beg() != p) return 0;
+    return m->UsedSize();
+  }
+
+  AsanChunkView FindHeapChunkByAddress(uptr addr) {
+    AsanChunk *m1 = GetAsanChunkByAddr(addr);
+    if (!m1) return AsanChunkView(m1);
+    sptr offset = 0;
+    if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
+      // The address is in the chunk's left redzone, so maybe it is actually
+      // a right buffer overflow from the other chunk to the left.
+      // Search a bit to the left to see if there is another chunk.
+      AsanChunk *m2 = 0;
+      for (uptr l = 1; l < GetPageSizeCached(); l++) {
+        m2 = GetAsanChunkByAddr(addr - l);
+        if (m2 == m1) continue;  // Still the same chunk.
+        break;
+      }
+      if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
+        m1 = ChooseChunk(addr, m2, m1);
+    }
+    return AsanChunkView(m1);
+  }
 
-  uptr chunk_beg = p - kChunkHeaderSize;
-  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
-  if (delete_size && flags()->new_delete_type_mismatch &&
-      delete_size != m->UsedSize()) {
-    ReportNewDeleteSizeMismatch(p, delete_size, stack);
-  }
-  ASAN_FREE_HOOK(ptr);
-  // Must mark the chunk as quarantined before any changes to its metadata.
-  AtomicallySetQuarantineFlag(m, ptr, stack);
-  QuarantineChunk(m, ptr, stack, alloc_type);
+  void PrintStats() {
+    allocator.PrintStats();
+  }
+
+  void ForceLock() {
+    allocator.ForceLock();
+    fallback_mutex.Lock();
+  }
+
+  void ForceUnlock() {
+    fallback_mutex.Unlock();
+    allocator.ForceUnlock();
+  }
+};
+
+static Allocator instance(LINKER_INITIALIZED);
+
+static AsanAllocator &get_allocator() {
+  return instance.allocator;
 }
 
-static void *Reallocate(void *old_ptr, uptr new_size,
-                        BufferedStackTrace *stack) {
-  CHECK(old_ptr && new_size);
-  uptr p = reinterpret_cast<uptr>(old_ptr);
-  uptr chunk_beg = p - kChunkHeaderSize;
-  AsanChunk *m = reinterpret_cast<AsanChunk *>(chunk_beg);
+bool AsanChunkView::IsValid() {
+  return chunk_ != 0 && chunk_->chunk_state != CHUNK_AVAILABLE;
+}
+uptr AsanChunkView::Beg() { return chunk_->Beg(); }
+uptr AsanChunkView::End() { return Beg() + UsedSize(); }
+uptr AsanChunkView::UsedSize() { return chunk_->UsedSize(); }
+uptr AsanChunkView::AllocTid() { return chunk_->alloc_tid; }
+uptr AsanChunkView::FreeTid() { return chunk_->free_tid; }
 
-  AsanStats &thread_stats = GetCurrentThreadStats();
-  thread_stats.reallocs++;
-  thread_stats.realloced += new_size;
+static StackTrace GetStackTraceFromId(u32 id) {
+  CHECK(id);
+  StackTrace res = StackDepotGet(id);
+  CHECK(res.trace);
+  return res;
+}
 
-  void *new_ptr = Allocate(new_size, 8, stack, FROM_MALLOC, true);
-  if (new_ptr) {
-    u8 chunk_state = m->chunk_state;
-    if (chunk_state != CHUNK_ALLOCATED)
-      ReportInvalidFree(old_ptr, chunk_state, stack);
-    CHECK_NE(REAL(memcpy), (void*)0);
-    uptr memcpy_size = Min(new_size, m->UsedSize());
-    // If realloc() races with free(), we may start copying freed memory.
-    // However, we will report racy double-free later anyway.
-    REAL(memcpy)(new_ptr, old_ptr, memcpy_size);
-    Deallocate(old_ptr, 0, stack, FROM_MALLOC);
-  }
-  return new_ptr;
-}
-
-// Assumes alloc_beg == allocator.GetBlockBegin(alloc_beg).
-static AsanChunk *GetAsanChunk(void *alloc_beg) {
-  if (!alloc_beg) return 0;
-  if (!allocator.FromPrimary(alloc_beg)) {
-    uptr *meta = reinterpret_cast<uptr *>(allocator.GetMetaData(alloc_beg));
-    AsanChunk *m = reinterpret_cast<AsanChunk *>(meta[1]);
-    return m;
-  }
-  uptr *alloc_magic = reinterpret_cast<uptr *>(alloc_beg);
-  if (alloc_magic[0] == kAllocBegMagic)
-    return reinterpret_cast<AsanChunk *>(alloc_magic[1]);
-  return reinterpret_cast<AsanChunk *>(alloc_beg);
-}
-
-static AsanChunk *GetAsanChunkByAddr(uptr p) {
-  void *alloc_beg = allocator.GetBlockBegin(reinterpret_cast<void *>(p));
-  return GetAsanChunk(alloc_beg);
-}
-
-// Allocator must be locked when this function is called.
-static AsanChunk *GetAsanChunkByAddrFastLocked(uptr p) {
-  void *alloc_beg =
-      allocator.GetBlockBeginFastLocked(reinterpret_cast<void *>(p));
-  return GetAsanChunk(alloc_beg);
+StackTrace AsanChunkView::GetAllocStack() {
+  return GetStackTraceFromId(chunk_->alloc_context_id);
 }
 
-static uptr AllocationSize(uptr p) {
-  AsanChunk *m = GetAsanChunkByAddr(p);
-  if (!m) return 0;
-  if (m->chunk_state != CHUNK_ALLOCATED) return 0;
-  if (m->Beg() != p) return 0;
-  return m->UsedSize();
+StackTrace AsanChunkView::GetFreeStack() {
+  return GetStackTraceFromId(chunk_->free_context_id);
 }
 
-// We have an address between two chunks, and we want to report just one.
-AsanChunk *ChooseChunk(uptr addr,
-                       AsanChunk *left_chunk, AsanChunk *right_chunk) {
-  // Prefer an allocated chunk over freed chunk and freed chunk
-  // over available chunk.
-  if (left_chunk->chunk_state != right_chunk->chunk_state) {
-    if (left_chunk->chunk_state == CHUNK_ALLOCATED)
-      return left_chunk;
-    if (right_chunk->chunk_state == CHUNK_ALLOCATED)
-      return right_chunk;
-    if (left_chunk->chunk_state == CHUNK_QUARANTINE)
-      return left_chunk;
-    if (right_chunk->chunk_state == CHUNK_QUARANTINE)
-      return right_chunk;
-  }
-  // Same chunk_state: choose based on offset.
-  sptr l_offset = 0, r_offset = 0;
-  CHECK(AsanChunkView(left_chunk).AddrIsAtRight(addr, 1, &l_offset));
-  CHECK(AsanChunkView(right_chunk).AddrIsAtLeft(addr, 1, &r_offset));
-  if (l_offset < r_offset)
-    return left_chunk;
-  return right_chunk;
+void InitializeAllocator(bool may_return_null, uptr quarantine_size) {
+  instance.Initialize(may_return_null, quarantine_size);
+}
+
+void ReInitializeAllocator(bool may_return_null, uptr quarantine_size) {
+  instance.ReInitialize(may_return_null, quarantine_size);
 }
 
 AsanChunkView FindHeapChunkByAddress(uptr addr) {
-  AsanChunk *m1 = GetAsanChunkByAddr(addr);
-  if (!m1) return AsanChunkView(m1);
-  sptr offset = 0;
-  if (AsanChunkView(m1).AddrIsAtLeft(addr, 1, &offset)) {
-    // The address is in the chunk's left redzone, so maybe it is actually
-    // a right buffer overflow from the other chunk to the left.
-    // Search a bit to the left to see if there is another chunk.
-    AsanChunk *m2 = 0;
-    for (uptr l = 1; l < GetPageSizeCached(); l++) {
-      m2 = GetAsanChunkByAddr(addr - l);
-      if (m2 == m1) continue;  // Still the same chunk.
-      break;
-    }
-    if (m2 && AsanChunkView(m2).AddrIsAtRight(addr, 1, &offset))
-      m1 = ChooseChunk(addr, m2, m1);
-  }
-  return AsanChunkView(m1);
+  return instance.FindHeapChunkByAddress(addr);
 }
 
 void AsanThreadLocalMallocStorage::CommitBack() {
-  AllocatorCache *ac = GetAllocatorCache(this);
-  quarantine.Drain(GetQuarantineCache(this), QuarantineCallback(ac));
-  allocator.SwallowCache(GetAllocatorCache(this));
+  instance.CommitBack(this);
 }
 
 void PrintInternalAllocatorStats() {
-  allocator.PrintStats();
+  instance.PrintStats();
 }
 
 void *asan_memalign(uptr alignment, uptr size, BufferedStackTrace *stack,
                     AllocType alloc_type) {
-  return Allocate(size, alignment, stack, alloc_type, true);
+  return instance.Allocate(size, alignment, stack, alloc_type, true);
 }
 
 void asan_free(void *ptr, BufferedStackTrace *stack, AllocType alloc_type) {
-  Deallocate(ptr, 0, stack, alloc_type);
+  instance.Deallocate(ptr, 0, stack, alloc_type);
 }
 
 void asan_sized_free(void *ptr, uptr size, BufferedStackTrace *stack,
                      AllocType alloc_type) {
-  Deallocate(ptr, size, stack, alloc_type);
+  instance.Deallocate(ptr, size, stack, alloc_type);
 }
 
 void *asan_malloc(uptr size, BufferedStackTrace *stack) {
-  return Allocate(size, 8, stack, FROM_MALLOC, true);
+  return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
 }
 
 void *asan_calloc(uptr nmemb, uptr size, BufferedStackTrace *stack) {
-  if (CallocShouldReturnNullDueToOverflow(size, nmemb))
-    return allocator.ReturnNullOrDie();
-  void *ptr = Allocate(nmemb * size, 8, stack, FROM_MALLOC, false);
-  // If the memory comes from the secondary allocator no need to clear it
-  // as it comes directly from mmap.
-  if (ptr && allocator.FromPrimary(ptr))
-    REAL(memset)(ptr, 0, nmemb * size);
-  return ptr;
+  return instance.Calloc(nmemb, size, stack);
 }
 
 void *asan_realloc(void *p, uptr size, BufferedStackTrace *stack) {
   if (p == 0)
-    return Allocate(size, 8, stack, FROM_MALLOC, true);
+    return instance.Allocate(size, 8, stack, FROM_MALLOC, true);
   if (size == 0) {
-    Deallocate(p, 0, stack, FROM_MALLOC);
+    instance.Deallocate(p, 0, stack, FROM_MALLOC);
     return 0;
   }
-  return Reallocate(p, size, stack);
+  return instance.Reallocate(p, size, stack);
 }
 
 void *asan_valloc(uptr size, BufferedStackTrace *stack) {
-  return Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
+  return instance.Allocate(size, GetPageSizeCached(), stack, FROM_MALLOC, true);
 }
 
 void *asan_pvalloc(uptr size, BufferedStackTrace *stack) {
@@ -629,12 +682,12 @@ void *asan_pvalloc(uptr size, BufferedSt
     // pvalloc(0) should allocate one page.
     size = PageSize;
   }
-  return Allocate(size, PageSize, stack, FROM_MALLOC, true);
+  return instance.Allocate(size, PageSize, stack, FROM_MALLOC, true);
 }
 
 int asan_posix_memalign(void **memptr, uptr alignment, uptr size,
                         BufferedStackTrace *stack) {
-  void *ptr = Allocate(size, alignment, stack, FROM_MALLOC, true);
+  void *ptr = instance.Allocate(size, alignment, stack, FROM_MALLOC, true);
   CHECK(IsAligned((uptr)ptr, alignment));
   *memptr = ptr;
   return 0;
@@ -642,7 +695,7 @@ int asan_posix_memalign(void **memptr, u
 
 uptr asan_malloc_usable_size(void *ptr, uptr pc, uptr bp) {
   if (ptr == 0) return 0;
-  uptr usable_size = AllocationSize(reinterpret_cast<uptr>(ptr));
+  uptr usable_size = instance.AllocationSize(reinterpret_cast<uptr>(ptr));
   if (flags()->check_malloc_usable_size && (usable_size == 0)) {
     GET_STACK_TRACE_FATAL(pc, bp);
     ReportMallocUsableSizeNotOwned((uptr)ptr, &stack);
@@ -651,17 +704,15 @@ uptr asan_malloc_usable_size(void *ptr,
 }
 
 uptr asan_mz_size(const void *ptr) {
-  return AllocationSize(reinterpret_cast<uptr>(ptr));
+  return instance.AllocationSize(reinterpret_cast<uptr>(ptr));
 }
 
 void asan_mz_force_lock() {
-  allocator.ForceLock();
-  fallback_mutex.Lock();
+  instance.ForceLock();
 }
 
 void asan_mz_force_unlock() {
-  fallback_mutex.Unlock();
-  allocator.ForceUnlock();
+  instance.ForceUnlock();
 }
 
 }  // namespace __asan
@@ -669,21 +720,21 @@ void asan_mz_force_unlock() {
 // --- Implementation of LSan-specific functions --- {{{1
 namespace __lsan {
 void LockAllocator() {
-  __asan::allocator.ForceLock();
+  __asan::get_allocator().ForceLock();
 }
 
 void UnlockAllocator() {
-  __asan::allocator.ForceUnlock();
+  __asan::get_allocator().ForceUnlock();
 }
 
 void GetAllocatorGlobalRange(uptr *begin, uptr *end) {
-  *begin = (uptr)&__asan::allocator;
-  *end = *begin + sizeof(__asan::allocator);
+  *begin = (uptr)&__asan::get_allocator();
+  *end = *begin + sizeof(__asan::get_allocator());
 }
 
 uptr PointsIntoChunk(void* p) {
   uptr addr = reinterpret_cast<uptr>(p);
-  __asan::AsanChunk *m = __asan::GetAsanChunkByAddrFastLocked(addr);
+  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(addr);
   if (!m) return 0;
   uptr chunk = m->Beg();
   if (m->chunk_state != __asan::CHUNK_ALLOCATED)
@@ -697,8 +748,7 @@ uptr PointsIntoChunk(void* p) {
 }
 
 uptr GetUserBegin(uptr chunk) {
-  __asan::AsanChunk *m =
-      __asan::GetAsanChunkByAddrFastLocked(chunk);
+  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddrFastLocked(chunk);
   CHECK(m);
   return m->Beg();
 }
@@ -733,12 +783,12 @@ u32 LsanMetadata::stack_trace_id() const
 }
 
 void ForEachChunk(ForEachChunkCallback callback, void *arg) {
-  __asan::allocator.ForEachChunk(callback, arg);
+  __asan::get_allocator().ForEachChunk(callback, arg);
 }
 
 IgnoreObjectResult IgnoreObjectLocked(const void *p) {
   uptr addr = reinterpret_cast<uptr>(p);
-  __asan::AsanChunk *m = __asan::GetAsanChunkByAddr(addr);
+  __asan::AsanChunk *m = __asan::instance.GetAsanChunkByAddr(addr);
   if (!m) return kIgnoreObjectInvalid;
   if ((m->chunk_state == __asan::CHUNK_ALLOCATED) && m->AddrIsInside(addr)) {
     if (m->lsan_tag == kIgnored)
@@ -762,13 +812,13 @@ uptr __sanitizer_get_estimated_allocated
 
 int __sanitizer_get_ownership(const void *p) {
   uptr ptr = reinterpret_cast<uptr>(p);
-  return (AllocationSize(ptr) > 0);
+  return instance.AllocationSize(ptr) > 0;
 }
 
 uptr __sanitizer_get_allocated_size(const void *p) {
   if (p == 0) return 0;
   uptr ptr = reinterpret_cast<uptr>(p);
-  uptr allocated_size = AllocationSize(ptr);
+  uptr allocated_size = instance.AllocationSize(ptr);
   // Die if p is not malloced or if it is already freed.
   if (allocated_size == 0) {
     GET_STACK_TRACE_FATAL_HERE;

Modified: compiler-rt/trunk/lib/asan/asan_allocator.h
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/asan/asan_allocator.h?rev=224406&r1=224405&r2=224406&view=diff
==============================================================================
--- compiler-rt/trunk/lib/asan/asan_allocator.h (original)
+++ compiler-rt/trunk/lib/asan/asan_allocator.h Tue Dec 16 19:55:03 2014
@@ -127,12 +127,12 @@ typedef SizeClassAllocator32<0, SANITIZE
 typedef SizeClassAllocatorLocalCache<PrimaryAllocator> AllocatorCache;
 typedef LargeMmapAllocator<AsanMapUnmapCallback> SecondaryAllocator;
 typedef CombinedAllocator<PrimaryAllocator, AllocatorCache,
-    SecondaryAllocator> Allocator;
+    SecondaryAllocator> AsanAllocator;
 
 
 struct AsanThreadLocalMallocStorage {
   uptr quarantine_cache[16];
-  AllocatorCache allocator2_cache;
+  AllocatorCache allocator_cache;
   void CommitBack();
  private:
   // These objects are allocated via mmap() and are zero-initialized.





More information about the llvm-commits mailing list