[PATCH][X86] Improve the lowering of packed shifts by constant build_vector on non avx2 machines.

Andrea Di Biagio andrea.dibiagio at gmail.com
Tue Apr 15 08:03:52 PDT 2014


ping x2.

Thanks,
Andrea Di Biagio

On Tue, Apr 8, 2014 at 3:38 PM, Andrea Di Biagio
<andrea.dibiagio at gmail.com> wrote:
> ping.
>
>
> On Tue, Apr 1, 2014 at 2:49 AM, Andrea Di Biagio
> <andrea.dibiagio at gmail.com> wrote:
>> Hi,
>>
>> This patch teaches the backend how to efficiently lower
>> logical/arithmetic packed shift nodes by constant build_vector on
>> non-avx2 machines.
>>
>> The x86 backend already knows how to efficiently lower a packed shift
>> left by a constant build_vector into a vector multiply (instead of
>> lowering it into a long sequence of scalar shifts).
>> However, nothing is currently done in the case of other shifts by
>> constant build_vector.
>>
>> This patch teaches the backend how to lower v4i32 and v8i16 shifts
>> according to the following rules:
>>
>> 1.   VSHIFT  (v4i32 A), (build_vector <X, Y, Y, Y>)  --> MOVSS (VSHIFT
>> A, (build_vector <Y,Y,Y,Y>)), (VSHIFT A, (build_vector <X,X,X,X>))
>> 2.   VSHIFT  (v4i32 A), (build_vector <X, X, Y, Y>)  -->  (bitcast (
>> MOVSD (bitcast (VSHIFT A, (build_vector<Y,Y,Y,Y>)), v2i64), (bitcast
>> (VSHIFT A, (build_vector <X,X,X,X>)), v2i64), v4i32)
>> 3.   VSHIFT  (v8i16 A), (build_vector <X, X, Y, Y, Y,Y,Y,Y>)  -->
>> (bitcast (MOVSS (bitcast (VSHIFT A, (build_vector<Y,Y,Y,Y,Y,Y,Y,Y>)),
>> v4i32), (bitcast (VSHIFT A, (build_vector <X,X,X,X,X,X,X,X>)),
>> v4i32)), v8i16)
>> 4.   VSHIFT  (v8i16 A), (build_vector <X, X, X, X,Y,Y,Y,Y>)  -->
>> (bitcast (MOVSD (bitcast (VSHIFT A, (build_vector<Y,Y,Y,Y,Y,Y,Y,Y>)),
>> v2i64), (bitcast (VSHIFT A, (build_vector <X,X,X,X,X,X,X,X>)),
>> v2i64)), v8i16)
>>
>> Basically,
>> instead of scalarizing a vector shift, we try to expand it into a
>> sequence of two shifts by constant splat followed by a MOVSS/MOVSD.
>>
>> The following example:
>> ///--
>> define <8 x i16> @foo(<8 x i16> %a) {
>>   %lshr = lshr <8 x i16> %a, <i16 3, i16 3, i16 2, i16 2, i16 2, i16
>> 2, i16 2, i16 2>
>>   ret <8 x i16> %lshr
>> }
>> ///--
>>
>> Before this patch, for targets with no AVX2 support, the backend
>> always scalarized the logical packed shift right in function @foo into
>> a very long sequence of instructions (8 scalar shifts + 8 inserts + 8
>> extracts).
>> With this patch, the backend produces only three instructions (here is
>> the output on a -mcpu=corei7-avx):
>>    vpsrlw $2, %xmm0, %xmm1
>>    vpsrlw $3  %xmm0, %xmm0
>>    vmovss %xmm0, %xmm1, %xmm0
>>    retq
>>
>> Other examples can be found in the new test test/CodeGen/X86/lower-vec-shift.ll.
>>
>> For now, I decided to simply cover the above mentioned cases.
>> However, future patches could address even more patterns taking
>> advantage of other legal ways to do a blend of two vector shifts.
>>
>> Please let me know if ok to submit.
>>
>>
>> Thanks!
>> Andrea Di Biagio
>> SN Systems - Sony Computer Entertainment Group
-------------- next part --------------
Index: test/CodeGen/X86/lower-vec-shift.ll
===================================================================
--- test/CodeGen/X86/lower-vec-shift.ll	(revision 0)
+++ test/CodeGen/X86/lower-vec-shift.ll	(working copy)
@@ -0,0 +1,87 @@
+; RUN: llc < %s -mtriple=x86_64-unknown-linux-gnu -mcpu=corei7-avx | FileCheck %s
+
+; Verify that the following shifts are lowered into a sequence of two shifts plus
+; a blend. On pre-avx2 targets, instead of scalarizing logical and arithmetic
+; packed shift right by a constant build_vector the backend should always try to
+; emit a simpler sequence of two shifts + blend when possible.
+
+define <8 x i16> @test1(<8 x i16> %a) {
+  %lshr = lshr <8 x i16> %a, <i16 3, i16 3, i16 2, i16 2, i16 2, i16 2, i16 2, i16 2>
+  ret <8 x i16> %lshr
+}
+; CHECK-LABEL: test1
+; CHECK: vpsrlw
+; CHECK-NEXT: vpsrlw
+; CHECK-NEXT: vmovss
+; CHECK-NEXT: ret
+
+
+define <8 x i16> @test2(<8 x i16> %a) {
+  %lshr = lshr <8 x i16> %a, <i16 3, i16 3, i16 3, i16 3, i16 2, i16 2, i16 2, i16 2>
+  ret <8 x i16> %lshr
+}
+; CHECK-LABEL: test2
+; CHECK: vpsrlw
+; CHECK-NEXT: vpsrlw
+; CHECK-NEXT: vmovsd
+; CHECK-NEXT: ret
+
+
+define <4 x i32> @test3(<4 x i32> %a) {
+  %lshr = lshr <4 x i32> %a, <i32 3, i32 2, i32 2, i32 2>
+  ret <4 x i32> %lshr
+}
+; CHECK-LABEL: test3
+; CHECK: vpsrld
+; CHECK-NEXT: vpsrld
+; CHECK-NEXT: vmovss
+; CHECK-NEXT: ret
+
+
+define <4 x i32> @test4(<4 x i32> %a) {
+  %lshr = lshr <4 x i32> %a, <i32 3, i32 3, i32 2, i32 2>
+  ret <4 x i32> %lshr
+}
+; CHECK-LABEL: test4
+; CHECK: vpsrld
+; CHECK-NEXT: vpsrld
+; CHECK-NEXT: vmovsd
+; CHECK-NEXT: ret
+
+define <8 x i16> @test5(<8 x i16> %a) {
+  %lshr = ashr <8 x i16> %a, <i16 3, i16 3, i16 2, i16 2, i16 2, i16 2, i16 2, i16 2>
+  ret <8 x i16> %lshr
+}
+
+define <8 x i16> @test6(<8 x i16> %a) {
+  %lshr = ashr <8 x i16> %a, <i16 3, i16 3, i16 3, i16 3, i16 2, i16 2, i16 2, i16 2>
+  ret <8 x i16> %lshr
+}
+; CHECK-LABEL: test6
+; CHECK: vpsraw
+; CHECK-NEXT: vpsraw
+; CHECK-NEXT: vmovsd
+; CHECK-NEXT: ret
+
+
+define <4 x i32> @test7(<4 x i32> %a) {
+  %lshr = ashr <4 x i32> %a, <i32 3, i32 2, i32 2, i32 2>
+  ret <4 x i32> %lshr
+}
+; CHECK-LABEL: test7
+; CHECK: vpsrad
+; CHECK-NEXT: vpsrad
+; CHECK-NEXT: vmovss
+; CHECK-NEXT: ret
+
+
+define <4 x i32> @test8(<4 x i32> %a) {
+  %lshr = ashr <4 x i32> %a, <i32 3, i32 3, i32 2, i32 2>
+  ret <4 x i32> %lshr
+}
+; CHECK-LABEL: test8
+; CHECK: vpsrad
+; CHECK-NEXT: vpsrad
+; CHECK-NEXT: vmovsd
+; CHECK-NEXT: ret
+
Index: lib/Target/X86/X86ISelLowering.cpp
===================================================================
--- lib/Target/X86/X86ISelLowering.cpp	(revision 206293)
+++ lib/Target/X86/X86ISelLowering.cpp	(working copy)
@@ -13359,6 +13359,79 @@
     return DAG.getNode(ISD::MUL, dl, VT, Op, R);
   }
 
+  // If possible, lower this shift as a sequence of two shifts by
+  // constant plus a MOVSS/MOVSD instead of scalarizing it.
+  // Example:
+  //   (v4i32 (srl A, (build_vector < X, Y, Y, Y>)))
+  //
+  // Could be rewritten as:
+  //   (v4i32 (MOVSS (srl A, <Y,Y,Y,Y>), (srl A, <X,X,X,X>)))
+  //
+  // The advantage is that the two shifts from the example would be
+  // lowered as X86ISD::VSRLI nodes. This would be cheaper than scalarizing
+  // the vector shift into four scalar shifts plus four pairs of vector
+  // insert/extract.
+  if ((VT == MVT::v8i16 || VT == MVT::v4i32) &&
+      ISD::isBuildVectorOfConstantSDNodes(Amt.getNode())) {
+    unsigned TargetOpcode = X86ISD::MOVSS;
+    bool CanBeSimplified;
+    // The splat value for the first packed shift (the 'X' from the example).
+    SDValue Amt1 = Amt->getOperand(0);
+    // The splat value for the second packed shift (the 'Y' from the example).
+    SDValue Amt2 = (VT == MVT::v4i32) ? Amt->getOperand(1) :
+                                        Amt->getOperand(2);
+
+    // See if it is possible to replace this node with a sequence of
+    // two shifts followed by a MOVSS/MOVSD
+    if (VT == MVT::v4i32) {
+      // Check if it is legal to use a MOVSS.
+      CanBeSimplified = Amt2 == Amt->getOperand(2) &&
+                        Amt2 == Amt->getOperand(3);
+      if (!CanBeSimplified) {
+        // Otherwise, check if we can still simplify this node using a MOVSD.
+        CanBeSimplified = Amt1 == Amt->getOperand(1) &&
+                          Amt->getOperand(2) == Amt->getOperand(3);
+        TargetOpcode = X86ISD::MOVSD;
+        Amt2 = Amt->getOperand(2);
+      }
+    } else {
+      // Do similar checks for the case where the machine value type
+      // is MVT::v8i16.
+      CanBeSimplified = Amt1 == Amt->getOperand(1);
+      for (unsigned i=3; i != 8 && CanBeSimplified; ++i)
+        CanBeSimplified = Amt2 == Amt->getOperand(i);
+
+      if (!CanBeSimplified) {
+        TargetOpcode = X86ISD::MOVSD;
+        CanBeSimplified = true;
+        Amt2 = Amt->getOperand(4);
+        for (unsigned i=0; i != 4 && CanBeSimplified; ++i)
+          CanBeSimplified = Amt1 == Amt->getOperand(i);
+        for (unsigned j=4; j != 8 && CanBeSimplified; ++j)
+          CanBeSimplified = Amt2 == Amt->getOperand(j);
+      }
+    }
+    
+    if (CanBeSimplified && isa<ConstantSDNode>(Amt1) &&
+        isa<ConstantSDNode>(Amt2)) {
+      // Replace this node with two shifts followed by a MOVSS/MOVSD.
+      EVT CastVT = MVT::v4i32;
+      SDValue Splat1 = 
+        DAG.getConstant(cast<ConstantSDNode>(Amt1)->getAPIntValue(), VT);
+      SDValue Shift1 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat1);
+      SDValue Splat2 = 
+        DAG.getConstant(cast<ConstantSDNode>(Amt2)->getAPIntValue(), VT);
+      SDValue Shift2 = DAG.getNode(Op->getOpcode(), dl, VT, R, Splat2);
+      if (TargetOpcode == X86ISD::MOVSD)
+        CastVT = MVT::v2i64;
+      SDValue BitCast1 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift1);
+      SDValue BitCast2 = DAG.getNode(ISD::BITCAST, dl, CastVT, Shift2);
+      SDValue Result = getTargetShuffleNode(TargetOpcode, dl, CastVT, BitCast2,
+                                            BitCast1, DAG);
+      return DAG.getNode(ISD::BITCAST, dl, VT, Result);
+    }
+  }
+
   if (VT == MVT::v16i8 && Op->getOpcode() == ISD::SHL) {
     assert(Subtarget->hasSSE2() && "Need SSE2 for pslli/pcmpeq.");
 


More information about the llvm-commits mailing list