[llvm-commits] [zorg] r121642 - in /zorg/trunk: LICENSE.TXT lnt/lnt/external/ lnt/lnt/external/__init__.py lnt/lnt/external/stats/ lnt/lnt/external/stats/README.txt lnt/lnt/external/stats/__init__.py lnt/lnt/external/stats/pstat.py lnt/lnt/external/stats/stats.py

Daniel Dunbar daniel at zuster.org
Sun Dec 12 13:16:48 PST 2010


Author: ddunbar
Date: Sun Dec 12 15:16:48 2010
New Revision: 121642

URL: http://llvm.org/viewvc/llvm-project?rev=121642&view=rev
Log:
LNT: Add lnt.external.stats module containing a lot of useful stats
functionality (from Gary Strangman).

Added:
    zorg/trunk/lnt/lnt/external/
    zorg/trunk/lnt/lnt/external/__init__.py
    zorg/trunk/lnt/lnt/external/stats/
    zorg/trunk/lnt/lnt/external/stats/README.txt
    zorg/trunk/lnt/lnt/external/stats/__init__.py
    zorg/trunk/lnt/lnt/external/stats/pstat.py
    zorg/trunk/lnt/lnt/external/stats/stats.py
Modified:
    zorg/trunk/LICENSE.TXT

Modified: zorg/trunk/LICENSE.TXT
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/LICENSE.TXT?rev=121642&r1=121641&r2=121642&view=diff
==============================================================================
--- zorg/trunk/LICENSE.TXT (original)
+++ zorg/trunk/LICENSE.TXT Sun Dec 12 15:16:48 2010
@@ -63,3 +63,4 @@
 -------             ---------
 GTestCommand        zorg/buildbot/commands/GTestCommand.py
 sorttable.js        zorg/lnt/viewer/resources/sorttable.js
+External Stats      zorg/lnt/external/stats/

Added: zorg/trunk/lnt/lnt/external/__init__.py
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/lnt/lnt/external/__init__.py?rev=121642&view=auto
==============================================================================
--- zorg/trunk/lnt/lnt/external/__init__.py (added)
+++ zorg/trunk/lnt/lnt/external/__init__.py Sun Dec 12 15:16:48 2010
@@ -0,0 +1 @@
+__all__ = []

Added: zorg/trunk/lnt/lnt/external/stats/README.txt
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/lnt/lnt/external/stats/README.txt?rev=121642&view=auto
==============================================================================
--- zorg/trunk/lnt/lnt/external/stats/README.txt (added)
+++ zorg/trunk/lnt/lnt/external/stats/README.txt Sun Dec 12 15:16:48 2010
@@ -0,0 +1,3 @@
+This directory contains some useful statistics modules from Gary Strangman. They
+are more easily available inside SciPy, but we don't want to introduce a
+dependency onto SciPy solely for this functionality.

Added: zorg/trunk/lnt/lnt/external/stats/__init__.py
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/lnt/lnt/external/stats/__init__.py?rev=121642&view=auto
==============================================================================
    (empty)

Added: zorg/trunk/lnt/lnt/external/stats/pstat.py
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/lnt/lnt/external/stats/pstat.py?rev=121642&view=auto
==============================================================================
--- zorg/trunk/lnt/lnt/external/stats/pstat.py (added)
+++ zorg/trunk/lnt/lnt/external/stats/pstat.py Sun Dec 12 15:16:48 2010
@@ -0,0 +1,1066 @@
+# Copyright (c) 1999-2007 Gary Strangman; All Rights Reserved.
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+# 
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+# 
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+# THE SOFTWARE.
+#
+# Comments and/or additions are welcome (send e-mail to:
+# strang at nmr.mgh.harvard.edu).
+# 
+"""
+pstat.py module
+
+#################################################
+#######  Written by:  Gary Strangman  ###########
+#######  Last modified:  Dec 18, 2007 ###########
+#################################################
+
+This module provides some useful list and array manipulation routines
+modeled after those found in the |Stat package by Gary Perlman, plus a
+number of other useful list/file manipulation functions.  The list-based
+functions include:
+
+      abut (source,*args)
+      simpleabut (source, addon)
+      colex (listoflists,cnums)
+      collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
+      dm (listoflists,criterion)
+      flat (l)
+      linexand (listoflists,columnlist,valuelist)
+      linexor (listoflists,columnlist,valuelist)
+      linedelimited (inlist,delimiter)
+      lineincols (inlist,colsize) 
+      lineincustcols (inlist,colsizes)
+      list2string (inlist)
+      makelol(inlist)
+      makestr(x)
+      printcc (lst,extra=2)
+      printincols (listoflists,colsize)
+      pl (listoflists)
+      printl(listoflists)
+      replace (lst,oldval,newval)
+      recode (inlist,listmap,cols='all')
+      remap (listoflists,criterion)
+      roundlist (inlist,num_digits_to_round_floats_to)
+      sortby(listoflists,sortcols)
+      unique (inlist)
+      duplicates(inlist)
+      writedelimited (listoflists, delimiter, file, writetype='w')
+
+Some of these functions have alternate versions which are defined only if
+Numeric (NumPy) can be imported.  These functions are generally named as
+above, with an 'a' prefix.
+
+      aabut (source, *args)
+      acolex (a,indices,axis=1)
+      acollapse (a,keepcols,collapsecols,sterr=0,ns=0)
+      adm (a,criterion)
+      alinexand (a,columnlist,valuelist)
+      alinexor (a,columnlist,valuelist)
+      areplace (a,oldval,newval)
+      arecode (a,listmap,col='all')
+      arowcompare (row1, row2)
+      arowsame (row1, row2)
+      asortrows(a,axis=0)
+      aunique(inarray)
+      aduplicates(inarray)
+
+Currently, the code is all but completely un-optimized.  In many cases, the
+array versions of functions amount simply to aliases to built-in array
+functions/methods.  Their inclusion here is for function name consistency.
+"""
+
+## CHANGE LOG:
+## ==========
+## 07-11-26 ... edited to work with numpy
+## 01-11-15 ... changed list2string() to accept a delimiter
+## 01-06-29 ... converted exec()'s to eval()'s to make compatible with Py2.1
+## 01-05-31 ... added duplicates() and aduplicates() functions
+## 00-12-28 ... license made GPL, docstring and import requirements
+## 99-11-01 ... changed version to 0.3
+## 99-08-30 ... removed get, getstrings, put, aget, aput (into io.py)
+## 03/27/99 ... added areplace function, made replace fcn recursive
+## 12/31/98 ... added writefc function for ouput to fixed column sizes
+## 12/07/98 ... fixed import problem (failed on collapse() fcn)
+##              added __version__ variable (now 0.2)
+## 12/05/98 ... updated doc-strings
+##              added features to collapse() function
+##              added flat() function for lists
+##              fixed a broken asortrows() 
+## 11/16/98 ... fixed minor bug in aput for 1D arrays
+##
+## 11/08/98 ... fixed aput to output large arrays correctly
+
+import stats  # required 3rd party module
+import string, copy
+from types import *
+
+__version__ = 0.4
+
+###===========================  LIST FUNCTIONS  ==========================
+###
+### Here are the list functions, DEFINED FOR ALL SYSTEMS.
+### Array functions (for NumPy-enabled computers) appear below.
+###
+
+def abut (source,*args):
+    """
+Like the |Stat abut command.  It concatenates two lists side-by-side
+and returns the result.  '2D' lists are also accomodated for either argument
+(source or addon).  CAUTION:  If one list is shorter, it will be repeated
+until it is as long as the longest list.  If this behavior is not desired,
+use pstat.simpleabut().
+
+Usage:   abut(source, args)   where args=any # of lists
+Returns: a list of lists as long as the LONGEST list past, source on the
+         'left', lists in <args> attached consecutively on the 'right'
+"""
+
+    if type(source) not in [ListType,TupleType]:
+        source = [source]
+    for addon in args:
+        if type(addon) not in [ListType,TupleType]:
+            addon = [addon]
+        if len(addon) < len(source):                # is source list longer?
+            if len(source) % len(addon) == 0:        # are they integer multiples?
+                repeats = len(source)/len(addon)    # repeat addon n times
+                origadd = copy.deepcopy(addon)
+                for i in range(repeats-1):
+                    addon = addon + origadd
+            else:
+                repeats = len(source)/len(addon)+1  # repeat addon x times,
+                origadd = copy.deepcopy(addon)      #    x is NOT an integer
+                for i in range(repeats-1):
+                    addon = addon + origadd
+                    addon = addon[0:len(source)]
+        elif len(source) < len(addon):                # is addon list longer?
+            if len(addon) % len(source) == 0:        # are they integer multiples?
+                repeats = len(addon)/len(source)    # repeat source n times
+                origsour = copy.deepcopy(source)
+                for i in range(repeats-1):
+                    source = source + origsour
+            else:
+                repeats = len(addon)/len(source)+1  # repeat source x times,
+                origsour = copy.deepcopy(source)    #   x is NOT an integer
+                for i in range(repeats-1):
+                    source = source + origsour
+                source = source[0:len(addon)]
+
+        source = simpleabut(source,addon)
+    return source
+
+
+def simpleabut (source, addon):
+    """
+Concatenates two lists as columns and returns the result.  '2D' lists
+are also accomodated for either argument (source or addon).  This DOES NOT
+repeat either list to make the 2 lists of equal length.  Beware of list pairs
+with different lengths ... the resulting list will be the length of the
+FIRST list passed.
+
+Usage:   simpleabut(source,addon)  where source, addon=list (or list-of-lists)
+Returns: a list of lists as long as source, with source on the 'left' and
+                 addon on the 'right'
+"""
+    if type(source) not in [ListType,TupleType]:
+        source = [source]
+    if type(addon) not in [ListType,TupleType]:
+        addon = [addon]
+    minlen = min(len(source),len(addon))
+    list = copy.deepcopy(source)                # start abut process
+    if type(source[0]) not in [ListType,TupleType]:
+        if type(addon[0]) not in [ListType,TupleType]:
+            for i in range(minlen):
+                list[i] = [source[i]] + [addon[i]]        # source/addon = column
+        else:
+            for i in range(minlen):
+                list[i] = [source[i]] + addon[i]        # addon=list-of-lists
+    else:
+        if type(addon[0]) not in [ListType,TupleType]:
+            for i in range(minlen):
+                list[i] = source[i] + [addon[i]]        # source=list-of-lists
+        else:
+            for i in range(minlen):
+                list[i] = source[i] + addon[i]        # source/addon = list-of-lists
+    source = list
+    return source
+
+
+def colex (listoflists,cnums):
+    """
+Extracts from listoflists the columns specified in the list 'cnums'
+(cnums can be an integer, a sequence of integers, or a string-expression that
+corresponds to a slice operation on the variable x ... e.g., 'x[3:]' will colex
+columns 3 onward from the listoflists).
+
+Usage:   colex (listoflists,cnums)
+Returns: a list-of-lists corresponding to the columns from listoflists
+         specified by cnums, in the order the column numbers appear in cnums
+"""
+    global index
+    column = 0
+    if type(cnums) in [ListType,TupleType]:   # if multiple columns to get
+        index = cnums[0]
+        column = map(lambda x: x[index], listoflists)
+        for col in cnums[1:]:
+            index = col
+            column = abut(column,map(lambda x: x[index], listoflists))
+    elif type(cnums) == StringType:              # if an 'x[3:]' type expr.
+        evalstring = 'map(lambda x: x'+cnums+', listoflists)'
+        column = eval(evalstring)
+    else:                                     # else it's just 1 col to get
+        index = cnums
+        column = map(lambda x: x[index], listoflists)
+    return column
+
+
+def collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None):
+     """
+Averages data in collapsecol, keeping all unique items in keepcols
+(using unique, which keeps unique LISTS of column numbers), retaining the
+unique sets of values in keepcols, the mean for each.  Setting fcn1
+and/or fcn2 to point to a function rather than None (e.g., stats.sterr, len)
+will append those results (e.g., the sterr, N) after each calculated mean.
+cfcn is the collapse function to apply (defaults to mean, defined here in the
+pstat module to avoid circular imports with stats.py, but harmonicmean or
+others could be passed).
+
+Usage:    collapse (listoflists,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
+Returns: a list of lists with all unique permutations of entries appearing in
+     columns ("conditions") specified by keepcols, abutted with the result of
+     cfcn (if cfcn=None, defaults to the mean) of each column specified by
+     collapsecols.
+"""
+     def collmean (inlist):
+         s = 0
+         for item in inlist:
+             s = s + item
+         return s/float(len(inlist))
+
+     if type(keepcols) not in [ListType,TupleType]:
+         keepcols = [keepcols]
+     if type(collapsecols) not in [ListType,TupleType]:
+         collapsecols = [collapsecols]
+     if cfcn == None:
+         cfcn = collmean
+     if keepcols == []:
+         means = [0]*len(collapsecols)
+         for i in range(len(collapsecols)):
+             avgcol = colex(listoflists,collapsecols[i])
+             means[i] = cfcn(avgcol)
+             if fcn1:
+                 try:
+                     test = fcn1(avgcol)
+                 except:
+                     test = 'N/A'
+                     means[i] = [means[i], test]
+             if fcn2:
+                 try:
+                     test = fcn2(avgcol)
+                 except:
+                     test = 'N/A'
+                 try:
+                     means[i] = means[i] + [len(avgcol)]
+                 except TypeError:
+                     means[i] = [means[i],len(avgcol)]
+         return means
+     else:
+         values = colex(listoflists,keepcols)
+         uniques = unique(values)
+         uniques.sort()
+         newlist = []
+         if type(keepcols) not in [ListType,TupleType]:  keepcols = [keepcols]
+         for item in uniques:
+             if type(item) not in [ListType,TupleType]:  item =[item]
+             tmprows = linexand(listoflists,keepcols,item)
+             for col in collapsecols:
+                 avgcol = colex(tmprows,col)
+                 item.append(cfcn(avgcol))
+                 if fcn1 <> None:
+                     try:
+                         test = fcn1(avgcol)
+                     except:
+                         test = 'N/A'
+                     item.append(test)
+                 if fcn2 <> None:
+                     try:
+                         test = fcn2(avgcol)
+                     except:
+                         test = 'N/A'
+                     item.append(test)
+                 newlist.append(item)
+         return newlist
+
+
+def dm (listoflists,criterion):
+    """
+Returns rows from the passed list of lists that meet the criteria in
+the passed criterion expression (a string as a function of x; e.g., 'x[3]>=9'
+will return all rows where the 4th column>=9 and "x[2]=='N'" will return rows
+with column 2 equal to the string 'N').
+
+Usage:   dm (listoflists, criterion)
+Returns: rows from listoflists that meet the specified criterion.
+"""
+    function = 'filter(lambda x: '+criterion+',listoflists)'
+    lines = eval(function)
+    return lines
+
+
+def flat(l):
+    """
+Returns the flattened version of a '2D' list.  List-correlate to the a.ravel()()
+method of NumPy arrays.
+
+Usage:    flat(l)
+"""
+    newl = []
+    for i in range(len(l)):
+        for j in range(len(l[i])):
+            newl.append(l[i][j])
+    return newl
+
+
+def linexand (listoflists,columnlist,valuelist):
+    """
+Returns the rows of a list of lists where col (from columnlist) = val
+(from valuelist) for EVERY pair of values (columnlist[i],valuelists[i]).
+len(columnlist) must equal len(valuelist).
+
+Usage:   linexand (listoflists,columnlist,valuelist)
+Returns: the rows of listoflists where columnlist[i]=valuelist[i] for ALL i
+"""
+    if type(columnlist) not in [ListType,TupleType]:
+        columnlist = [columnlist]
+    if type(valuelist) not in [ListType,TupleType]:
+        valuelist = [valuelist]
+    criterion = ''
+    for i in range(len(columnlist)):
+        if type(valuelist[i])==StringType:
+            critval = '\'' + valuelist[i] + '\''
+        else:
+            critval = str(valuelist[i])
+        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' and'
+    criterion = criterion[0:-3]         # remove the "and" after the last crit
+    function = 'filter(lambda x: '+criterion+',listoflists)'
+    lines = eval(function)
+    return lines
+
+
+def linexor (listoflists,columnlist,valuelist):
+    """
+Returns the rows of a list of lists where col (from columnlist) = val
+(from valuelist) for ANY pair of values (colunmlist[i],valuelist[i[).
+One value is required for each column in columnlist.  If only one value
+exists for columnlist but multiple values appear in valuelist, the
+valuelist values are all assumed to pertain to the same column.
+
+Usage:   linexor (listoflists,columnlist,valuelist)
+Returns: the rows of listoflists where columnlist[i]=valuelist[i] for ANY i
+"""
+    if type(columnlist) not in [ListType,TupleType]:
+        columnlist = [columnlist]
+    if type(valuelist) not in [ListType,TupleType]:
+        valuelist = [valuelist]
+    criterion = ''
+    if len(columnlist) == 1 and len(valuelist) > 1:
+        columnlist = columnlist*len(valuelist)
+    for i in range(len(columnlist)):          # build an exec string
+        if type(valuelist[i])==StringType:
+            critval = '\'' + valuelist[i] + '\''
+        else:
+            critval = str(valuelist[i])
+        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' or'
+    criterion = criterion[0:-2]         # remove the "or" after the last crit
+    function = 'filter(lambda x: '+criterion+',listoflists)'
+    lines = eval(function)
+    return lines
+
+
+def linedelimited (inlist,delimiter):
+    """
+Returns a string composed of elements in inlist, with each element
+separated by 'delimiter.'  Used by function writedelimited.  Use '\t'
+for tab-delimiting.
+
+Usage:   linedelimited (inlist,delimiter)
+"""
+    outstr = ''
+    for item in inlist:
+        if type(item) <> StringType:
+            item = str(item)
+        outstr = outstr + item + delimiter
+    outstr = outstr[0:-1]
+    return outstr
+
+
+def lineincols (inlist,colsize):
+    """
+Returns a string composed of elements in inlist, with each element
+right-aligned in columns of (fixed) colsize.
+
+Usage:   lineincols (inlist,colsize)   where colsize is an integer
+"""
+    outstr = ''
+    for item in inlist:
+        if type(item) <> StringType:
+            item = str(item)
+        size = len(item)
+        if size <= colsize:
+            for i in range(colsize-size):
+                outstr = outstr + ' '
+            outstr = outstr + item
+        else:
+            outstr = outstr + item[0:colsize+1]
+    return outstr
+
+
+def lineincustcols (inlist,colsizes):
+    """
+Returns a string composed of elements in inlist, with each element
+right-aligned in a column of width specified by a sequence colsizes.  The
+length of colsizes must be greater than or equal to the number of columns
+in inlist.
+
+Usage:   lineincustcols (inlist,colsizes)
+Returns: formatted string created from inlist
+"""
+    outstr = ''
+    for i in range(len(inlist)):
+        if type(inlist[i]) <> StringType:
+            item = str(inlist[i])
+        else:
+            item = inlist[i]
+        size = len(item)
+        if size <= colsizes[i]:
+            for j in range(colsizes[i]-size):
+                outstr = outstr + ' '
+            outstr = outstr + item
+        else:
+            outstr = outstr + item[0:colsizes[i]+1]
+    return outstr
+
+
+def list2string (inlist,delimit=' '):
+    """
+Converts a 1D list to a single long string for file output, using
+the string.join function.
+
+Usage:   list2string (inlist,delimit=' ')
+Returns: the string created from inlist
+"""
+    stringlist = map(makestr,inlist)
+    return string.join(stringlist,delimit)
+
+
+def makelol(inlist):
+    """
+Converts a 1D list to a 2D list (i.e., a list-of-lists).  Useful when you
+want to use put() to write a 1D list one item per line in the file.
+
+Usage:   makelol(inlist)
+Returns: if l = [1,2,'hi'] then returns [[1],[2],['hi']] etc.
+"""
+    x = []
+    for item in inlist:
+        x.append([item])
+    return x
+
+
+def makestr (x):
+    if type(x) <> StringType:
+        x = str(x)
+    return x
+
+
+def printcc (lst,extra=2):
+    """
+Prints a list of lists in columns, customized by the max size of items
+within the columns (max size of items in col, plus 'extra' number of spaces).
+Use 'dashes' or '\\n' in the list-of-lists to print dashes or blank lines,
+respectively.
+
+Usage:   printcc (lst,extra=2)
+Returns: None
+"""
+    if type(lst[0]) not in [ListType,TupleType]:
+        lst = [lst]
+    rowstokill = []
+    list2print = copy.deepcopy(lst)
+    for i in range(len(lst)):
+        if lst[i] == ['\n'] or lst[i]=='\n' or lst[i]=='dashes' or lst[i]=='' or lst[i]==['']:
+            rowstokill = rowstokill + [i]
+    rowstokill.reverse()   # delete blank rows from the end
+    for row in rowstokill:
+        del list2print[row]
+    maxsize = [0]*len(list2print[0])
+    for col in range(len(list2print[0])):
+        items = colex(list2print,col)
+        items = map(makestr,items)
+        maxsize[col] = max(map(len,items)) + extra
+    for row in lst:
+        if row == ['\n'] or row == '\n' or row == '' or row == ['']:
+            print
+        elif row == ['dashes'] or row == 'dashes':
+            dashes = [0]*len(maxsize)
+            for j in range(len(maxsize)):
+                dashes[j] = '-'*(maxsize[j]-2)
+            print lineincustcols(dashes,maxsize)
+        else:
+            print lineincustcols(row,maxsize)
+    return None
+
+
+def printincols (listoflists,colsize):
+    """
+Prints a list of lists in columns of (fixed) colsize width, where
+colsize is an integer.
+
+Usage:   printincols (listoflists,colsize)
+Returns: None
+"""
+    for row in listoflists:
+        print lineincols(row,colsize)
+    return None
+
+
+def pl (listoflists):
+    """
+Prints a list of lists, 1 list (row) at a time.
+
+Usage:   pl(listoflists)
+Returns: None
+"""
+    for row in listoflists:
+        if row[-1] == '\n':
+            print row,
+        else:
+            print row
+    return None
+
+
+def printl(listoflists):
+    """Alias for pl."""
+    pl(listoflists)
+    return
+
+
+def replace (inlst,oldval,newval):
+    """
+Replaces all occurrences of 'oldval' with 'newval', recursively.
+
+Usage:   replace (inlst,oldval,newval)
+"""
+    lst = inlst*1
+    for i in range(len(lst)):
+        if type(lst[i]) not in [ListType,TupleType]:
+            if lst[i]==oldval: lst[i]=newval
+        else:
+            lst[i] = replace(lst[i],oldval,newval)
+    return lst
+
+
+def recode (inlist,listmap,cols=None):
+    """
+Changes the values in a list to a new set of values (useful when
+you need to recode data from (e.g.) strings to numbers.  cols defaults
+to None (meaning all columns are recoded).
+
+Usage:   recode (inlist,listmap,cols=None)  cols=recode cols, listmap=2D list
+Returns: inlist with the appropriate values replaced with new ones
+"""
+    lst = copy.deepcopy(inlist)
+    if cols != None:
+        if type(cols) not in [ListType,TupleType]:
+            cols = [cols]
+        for col in cols:
+            for row in range(len(lst)):
+                try:
+                    idx = colex(listmap,0).index(lst[row][col])
+                    lst[row][col] = listmap[idx][1]
+                except ValueError:
+                    pass
+    else:
+        for row in range(len(lst)):
+            for col in range(len(lst)):
+                try:
+                    idx = colex(listmap,0).index(lst[row][col])
+                    lst[row][col] = listmap[idx][1]
+                except ValueError:
+                    pass
+    return lst
+
+
+def remap (listoflists,criterion):
+    """
+Remaps values in a given column of a 2D list (listoflists).  This requires
+a criterion as a function of 'x' so that the result of the following is
+returned ... map(lambda x: 'criterion',listoflists).  
+
+Usage:   remap(listoflists,criterion)    criterion=string
+Returns: remapped version of listoflists
+"""
+    function = 'map(lambda x: '+criterion+',listoflists)'
+    lines = eval(function)
+    return lines
+
+
+def roundlist (inlist,digits):
+    """
+Goes through each element in a 1D or 2D inlist, and applies the following
+function to all elements of FloatType ... round(element,digits).
+
+Usage:   roundlist(inlist,digits)
+Returns: list with rounded floats
+"""
+    if type(inlist[0]) in [IntType, FloatType]:
+        inlist = [inlist]
+    l = inlist*1
+    for i in range(len(l)):
+        for j in range(len(l[i])):
+            if type(l[i][j])==FloatType:
+                l[i][j] = round(l[i][j],digits)
+    return l
+
+
+def sortby(listoflists,sortcols):
+    """
+Sorts a list of lists on the column(s) specified in the sequence
+sortcols.
+
+Usage:   sortby(listoflists,sortcols)
+Returns: sorted list, unchanged column ordering
+"""
+    newlist = abut(colex(listoflists,sortcols),listoflists)
+    newlist.sort()
+    try:
+        numcols = len(sortcols)
+    except TypeError:
+        numcols = 1
+    crit = '[' + str(numcols) + ':]'
+    newlist = colex(newlist,crit)
+    return newlist
+
+
+def unique (inlist):
+    """
+Returns all unique items in the passed list.  If the a list-of-lists
+is passed, unique LISTS are found (i.e., items in the first dimension are
+compared).
+
+Usage:   unique (inlist)
+Returns: the unique elements (or rows) in inlist
+"""
+    uniques = []
+    for item in inlist:
+        if item not in uniques:
+            uniques.append(item)
+    return uniques
+
+def duplicates(inlist):
+    """
+Returns duplicate items in the FIRST dimension of the passed list.
+
+Usage:   duplicates (inlist)
+"""
+    dups = []
+    for i in range(len(inlist)):
+        if inlist[i] in inlist[i+1:]:
+            dups.append(inlist[i])
+    return dups
+
+
+def nonrepeats(inlist):
+    """
+Returns items that are NOT duplicated in the first dim of the passed list.
+
+Usage:   nonrepeats (inlist)
+"""
+    nonrepeats = []
+    for i in range(len(inlist)):
+        if inlist.count(inlist[i]) == 1:
+            nonrepeats.append(inlist[i])
+    return nonrepeats
+
+
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+#===================   PSTAT ARRAY FUNCTIONS  =====================
+
+try:                         # DEFINE THESE *ONLY* IF numpy IS AVAILABLE
+ import numpy as N
+
+ def aabut (source, *args):
+    """
+Like the |Stat abut command.  It concatenates two arrays column-wise
+and returns the result.  CAUTION:  If one array is shorter, it will be
+repeated until it is as long as the other.
+
+Usage:   aabut (source, args)    where args=any # of arrays
+Returns: an array as long as the LONGEST array past, source appearing on the
+         'left', arrays in <args> attached on the 'right'.
+"""
+    if len(source.shape)==1:
+        width = 1
+        source = N.resize(source,[source.shape[0],width])
+    else:
+        width = source.shape[1]
+    for addon in args:
+        if len(addon.shape)==1:
+            width = 1
+            addon = N.resize(addon,[source.shape[0],width])
+        else:
+            width = source.shape[1]
+        if len(addon) < len(source):
+            addon = N.resize(addon,[source.shape[0],addon.shape[1]])
+        elif len(source) < len(addon):
+            source = N.resize(source,[addon.shape[0],source.shape[1]])
+        source = N.concatenate((source,addon),1)
+    return source
+
+
+ def acolex (a,indices,axis=1):
+    """
+Extracts specified indices (a list) from passed array, along passed
+axis (column extraction is default).  BEWARE: A 1D array is presumed to be a
+column-array (and that the whole array will be returned as a column).
+
+Usage:   acolex (a,indices,axis=1)
+Returns: the columns of a specified by indices
+"""
+    if type(indices) not in [ListType,TupleType,N.ndarray]:
+        indices = [indices]
+    if len(N.shape(a)) == 1:
+        cols = N.resize(a,[a.shape[0],1])
+    else:
+        cols = N.take(a,indices,axis)
+    return cols
+
+
+ def acollapse (a,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None):
+    """
+Averages data in collapsecol, keeping all unique items in keepcols
+(using unique, which keeps unique LISTS of column numbers), retaining
+the unique sets of values in keepcols, the mean for each.  If stderror or
+N of the mean are desired, set either or both parameters to 1.
+
+Usage:   acollapse (a,keepcols,collapsecols,fcn1=None,fcn2=None,cfcn=None)
+Returns: unique 'conditions' specified by the contents of columns specified
+         by keepcols, abutted with the mean(s) of column(s) specified by
+         collapsecols
+"""
+    def acollmean (inarray):
+        return N.sum(N.ravel(inarray))
+
+    if type(keepcols) not in [ListType,TupleType,N.ndarray]:
+        keepcols = [keepcols]
+    if type(collapsecols) not in [ListType,TupleType,N.ndarray]:
+        collapsecols = [collapsecols]
+
+    if cfcn == None:
+        cfcn = acollmean
+    if keepcols == []:
+        avgcol = acolex(a,collapsecols)
+        means = N.sum(avgcol)/float(len(avgcol))
+        if fcn1<>None:
+            try:
+                test = fcn1(avgcol)
+            except:
+                test = N.array(['N/A']*len(means))
+            means = aabut(means,test)
+        if fcn2<>None:
+            try:
+                test = fcn2(avgcol)
+            except:
+                test = N.array(['N/A']*len(means))
+            means = aabut(means,test)
+        return means
+    else:
+        if type(keepcols) not in [ListType,TupleType,N.ndarray]:
+            keepcols = [keepcols]
+        values = colex(a,keepcols)   # so that "item" can be appended (below)
+        uniques = unique(values)  # get a LIST, so .sort keeps rows intact
+        uniques.sort()
+        newlist = []
+        for item in uniques:
+            if type(item) not in [ListType,TupleType,N.ndarray]:
+                item =[item]
+            tmprows = alinexand(a,keepcols,item)
+            for col in collapsecols:
+                avgcol = acolex(tmprows,col)
+                item.append(acollmean(avgcol))
+                if fcn1<>None:
+                    try:
+                        test = fcn1(avgcol)
+                    except:
+                        test = 'N/A'
+                    item.append(test)
+                if fcn2<>None:
+                    try:
+                        test = fcn2(avgcol)
+                    except:
+                        test = 'N/A'
+                    item.append(test)
+                newlist.append(item)
+        try:
+            new_a = N.array(newlist)
+        except TypeError:
+            new_a = N.array(newlist,'O')
+        return new_a
+
+
+ def adm (a,criterion):
+    """
+Returns rows from the passed list of lists that meet the criteria in
+the passed criterion expression (a string as a function of x).
+
+Usage:   adm (a,criterion)   where criterion is like 'x[2]==37'
+"""
+    function = 'filter(lambda x: '+criterion+',a)'
+    lines = eval(function)
+    try:
+        lines = N.array(lines)
+    except:
+        lines = N.array(lines,dtype='O')
+    return lines
+
+
+ def isstring(x):
+    if type(x)==StringType:
+        return 1
+    else:
+        return 0
+
+
+ def alinexand (a,columnlist,valuelist):
+    """
+Returns the rows of an array where col (from columnlist) = val
+(from valuelist).  One value is required for each column in columnlist.
+
+Usage:   alinexand (a,columnlist,valuelist)
+Returns: the rows of a where columnlist[i]=valuelist[i] for ALL i
+"""
+    if type(columnlist) not in [ListType,TupleType,N.ndarray]:
+        columnlist = [columnlist]
+    if type(valuelist) not in [ListType,TupleType,N.ndarray]:
+        valuelist = [valuelist]
+    criterion = ''
+    for i in range(len(columnlist)):
+        if type(valuelist[i])==StringType:
+            critval = '\'' + valuelist[i] + '\''
+        else:
+            critval = str(valuelist[i])
+        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' and'
+    criterion = criterion[0:-3]         # remove the "and" after the last crit
+    return adm(a,criterion)
+
+
+ def alinexor (a,columnlist,valuelist):
+    """
+Returns the rows of an array where col (from columnlist) = val (from
+valuelist).  One value is required for each column in columnlist.
+The exception is if either columnlist or valuelist has only 1 value,
+in which case that item will be expanded to match the length of the
+other list.
+
+Usage:   alinexor (a,columnlist,valuelist)
+Returns: the rows of a where columnlist[i]=valuelist[i] for ANY i
+"""
+    if type(columnlist) not in [ListType,TupleType,N.ndarray]:
+        columnlist = [columnlist]
+    if type(valuelist) not in [ListType,TupleType,N.ndarray]:
+        valuelist = [valuelist]
+    criterion = ''
+    if len(columnlist) == 1 and len(valuelist) > 1:
+        columnlist = columnlist*len(valuelist)
+    elif len(valuelist) == 1 and len(columnlist) > 1:
+        valuelist = valuelist*len(columnlist)
+    for i in range(len(columnlist)):
+        if type(valuelist[i])==StringType:
+            critval = '\'' + valuelist[i] + '\''
+        else:
+            critval = str(valuelist[i])
+        criterion = criterion + ' x['+str(columnlist[i])+']=='+critval+' or'
+    criterion = criterion[0:-2]         # remove the "or" after the last crit
+    return adm(a,criterion)
+
+
+ def areplace (a,oldval,newval):
+    """
+Replaces all occurrences of oldval with newval in array a.
+
+Usage:   areplace(a,oldval,newval)
+"""
+    return N.where(a==oldval,newval,a)
+
+
+ def arecode (a,listmap,col='all'):
+    """
+Remaps the values in an array to a new set of values (useful when
+you need to recode data from (e.g.) strings to numbers as most stats
+packages require.  Can work on SINGLE columns, or 'all' columns at once.
+@@@BROKEN 2007-11-26
+
+Usage:   arecode (a,listmap,col='all')
+Returns: a version of array a where listmap[i][0] = (instead) listmap[i][1]
+"""
+    ashape = a.shape
+    if col == 'all':
+        work = a.ravel()
+    else:
+        work = acolex(a,col)
+        work = work.ravel()
+    for pair in listmap:
+        if type(pair[1]) == StringType or work.dtype.char=='O' or a.dtype.char=='O':
+            work = N.array(work,dtype='O')
+            a = N.array(a,dtype='O')
+            for i in range(len(work)):
+                if work[i]==pair[0]:
+                    work[i] = pair[1]
+            if col == 'all':
+                return N.reshape(work,ashape)
+            else:
+                return N.concatenate([a[:,0:col],work[:,N.newaxis],a[:,col+1:]],1)
+        else:   # must be a non-Object type array and replacement
+            work = N.where(work==pair[0],pair[1],work)
+            return N.concatenate([a[:,0:col],work[:,N.newaxis],a[:,col+1:]],1)
+
+
+ def arowcompare(row1, row2):
+    """
+Compares two rows from an array, regardless of whether it is an
+array of numbers or of python objects (which requires the cmp function).
+@@@PURPOSE? 2007-11-26
+
+Usage:   arowcompare(row1,row2)
+Returns: an array of equal length containing 1s where the two rows had
+         identical elements and 0 otherwise
+"""
+    return 
+    if row1.dtype.char=='O' or row2.dtype=='O':
+        cmpvect = N.logical_not(abs(N.array(map(cmp,row1,row2)))) # cmp fcn gives -1,0,1
+    else:
+        cmpvect = N.equal(row1,row2)
+    return cmpvect
+
+
+ def arowsame(row1, row2):
+    """
+Compares two rows from an array, regardless of whether it is an
+array of numbers or of python objects (which requires the cmp function).
+
+Usage:   arowsame(row1,row2)
+Returns: 1 if the two rows are identical, 0 otherwise.
+"""
+    cmpval = N.alltrue(arowcompare(row1,row2))
+    return cmpval
+
+
+ def asortrows(a,axis=0):
+    """
+Sorts an array "by rows".  This differs from the Numeric.sort() function,
+which sorts elements WITHIN the given axis.  Instead, this function keeps
+the elements along the given axis intact, but shifts them 'up or down'
+relative to one another.
+
+Usage:   asortrows(a,axis=0)
+Returns: sorted version of a
+"""
+    return N.sort(a,axis=axis,kind='mergesort')
+
+
+ def aunique(inarray):
+    """
+Returns unique items in the FIRST dimension of the passed array. Only
+works on arrays NOT including string items.
+
+Usage:   aunique (inarray)
+"""
+    uniques = N.array([inarray[0]])
+    if len(uniques.shape) == 1:            # IF IT'S A 1D ARRAY
+        for item in inarray[1:]:
+            if N.add.reduce(N.equal(uniques,item).ravel()) == 0:
+                try:
+                    uniques = N.concatenate([uniques,N.array[N.newaxis,:]])
+                except TypeError:
+                    uniques = N.concatenate([uniques,N.array([item])])
+    else:                                  # IT MUST BE A 2+D ARRAY
+        if inarray.dtype.char != 'O':  # not an Object array
+            for item in inarray[1:]:
+                if not N.sum(N.alltrue(N.equal(uniques,item),1)):
+                    try:
+                        uniques = N.concatenate( [uniques,item[N.newaxis,:]] )
+                    except TypeError:    # the item to add isn't a list
+                        uniques = N.concatenate([uniques,N.array([item])])
+                else:
+                    pass  # this item is already in the uniques array
+        else:   # must be an Object array, alltrue/equal functions don't work
+            for item in inarray[1:]:
+                newflag = 1
+                for unq in uniques:  # NOTE: cmp --> 0=same, -1=<, 1=>
+                    test = N.sum(abs(N.array(map(cmp,item,unq))))
+                    if test == 0:   # if item identical to any 1 row in uniques
+                        newflag = 0 # then not a novel item to add
+                        break
+                if newflag == 1:
+                    try:
+                        uniques = N.concatenate( [uniques,item[N.newaxis,:]] )
+                    except TypeError:    # the item to add isn't a list
+                        uniques = N.concatenate([uniques,N.array([item])])
+    return uniques
+
+
+ def aduplicates(inarray):
+    """
+Returns duplicate items in the FIRST dimension of the passed array. Only
+works on arrays NOT including string items.
+
+Usage:   aunique (inarray)
+"""
+    inarray = N.array(inarray)
+    if len(inarray.shape) == 1:            # IF IT'S A 1D ARRAY
+        dups = []
+        inarray = inarray.tolist()
+        for i in range(len(inarray)):
+            if inarray[i] in inarray[i+1:]:
+                dups.append(inarray[i])
+        dups = aunique(dups)
+    else:                                  # IT MUST BE A 2+D ARRAY
+        dups = []
+        aslist = inarray.tolist()
+        for i in range(len(aslist)):
+            if aslist[i] in aslist[i+1:]:
+                dups.append(aslist[i])
+        dups = unique(dups)
+        dups = N.array(dups)
+    return dups
+
+except ImportError:    # IF NUMERIC ISN'T AVAILABLE, SKIP ALL arrayfuncs
+ pass

Added: zorg/trunk/lnt/lnt/external/stats/stats.py
URL: http://llvm.org/viewvc/llvm-project/zorg/trunk/lnt/lnt/external/stats/stats.py?rev=121642&view=auto
==============================================================================
--- zorg/trunk/lnt/lnt/external/stats/stats.py (added)
+++ zorg/trunk/lnt/lnt/external/stats/stats.py Sun Dec 12 15:16:48 2010
@@ -0,0 +1,4522 @@
+# Copyright (c) 1999-2007 Gary Strangman; All Rights Reserved.
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+# 
+# The above copyright notice and this permission notice shall be included in
+# all copies or substantial portions of the Software.
+# 
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+# THE SOFTWARE.
+#
+# Comments and/or additions are welcome (send e-mail to:
+# strang at nmr.mgh.harvard.edu).
+# 
+"""
+stats.py module
+
+(Requires pstat.py module.)
+
+#################################################
+#######  Written by:  Gary Strangman  ###########
+#######  Last modified:  Dec 18, 2007 ###########
+#################################################
+
+A collection of basic statistical functions for python.  The function
+names appear below.
+
+IMPORTANT:  There are really *3* sets of functions.  The first set has an 'l'
+prefix, which can be used with list or tuple arguments.  The second set has
+an 'a' prefix, which can accept NumPy array arguments.  These latter
+functions are defined only when NumPy is available on the system.  The third
+type has NO prefix (i.e., has the name that appears below).  Functions of
+this set are members of a "Dispatch" class, c/o David Ascher.  This class
+allows different functions to be called depending on the type of the passed
+arguments.  Thus, stats.mean is a member of the Dispatch class and
+stats.mean(range(20)) will call stats.lmean(range(20)) while
+stats.mean(Numeric.arange(20)) will call stats.amean(Numeric.arange(20)).
+This is a handy way to keep consistent function names when different
+argument types require different functions to be called.  Having
+implementated the Dispatch class, however, means that to get info on
+a given function, you must use the REAL function name ... that is
+"print stats.lmean.__doc__" or "print stats.amean.__doc__" work fine,
+while "print stats.mean.__doc__" will print the doc for the Dispatch
+class.  NUMPY FUNCTIONS ('a' prefix) generally have more argument options
+but should otherwise be consistent with the corresponding list functions.
+
+Disclaimers:  The function list is obviously incomplete and, worse, the
+functions are not optimized.  All functions have been tested (some more
+so than others), but they are far from bulletproof.  Thus, as with any
+free software, no warranty or guarantee is expressed or implied. :-)  A
+few extra functions that don't appear in the list below can be found by
+interested treasure-hunters.  These functions don't necessarily have
+both list and array versions but were deemed useful
+
+CENTRAL TENDENCY:  geometricmean
+                   harmonicmean
+                   mean
+                   median
+                   medianscore
+                   mode
+
+MOMENTS:  moment
+          variation
+          skew
+          kurtosis
+          skewtest   (for Numpy arrays only)
+          kurtosistest (for Numpy arrays only)
+          normaltest (for Numpy arrays only)
+
+ALTERED VERSIONS:  tmean  (for Numpy arrays only)
+                   tvar   (for Numpy arrays only)
+                   tmin   (for Numpy arrays only)
+                   tmax   (for Numpy arrays only)
+                   tstdev (for Numpy arrays only)
+                   tsem   (for Numpy arrays only)
+                   describe
+
+FREQUENCY STATS:  itemfreq
+                  scoreatpercentile
+                  percentileofscore
+                  histogram
+                  cumfreq
+                  relfreq
+
+VARIABILITY:  obrientransform
+              samplevar
+              samplestdev
+              signaltonoise (for Numpy arrays only)
+              var
+              stdev
+              sterr
+              sem
+              z
+              zs
+              zmap (for Numpy arrays only)
+
+TRIMMING FCNS:  threshold (for Numpy arrays only)
+                trimboth
+                trim1
+                round (round all vals to 'n' decimals; Numpy only)
+
+CORRELATION FCNS:  covariance  (for Numpy arrays only)
+                   correlation (for Numpy arrays only)
+                   paired
+                   pearsonr
+                   spearmanr
+                   pointbiserialr
+                   kendalltau
+                   linregress
+
+INFERENTIAL STATS:  ttest_1samp
+                    ttest_ind
+                    ttest_rel
+                    chisquare
+                    ks_2samp
+                    mannwhitneyu
+                    ranksums
+                    wilcoxont
+                    kruskalwallish
+                    friedmanchisquare
+
+PROBABILITY CALCS:  chisqprob
+                    erfcc
+                    zprob
+                    ksprob
+                    fprob
+                    betacf
+                    gammln 
+                    betai
+
+ANOVA FUNCTIONS:  F_oneway
+                  F_value
+
+SUPPORT FUNCTIONS:  writecc
+                    incr
+                    sign  (for Numpy arrays only)
+                    sum
+                    cumsum
+                    ss
+                    summult
+                    sumdiffsquared
+                    square_of_sums
+                    shellsort
+                    rankdata
+                    outputpairedstats
+                    findwithin
+"""
+## CHANGE LOG:
+## ===========
+## 07-11.26 ... conversion for numpy started
+## 07-05-16 ... added Lin's Concordance Correlation Coefficient (alincc) and acov
+## 05-08-21 ... added "Dice's coefficient"
+## 04-10-26 ... added ap2t(), an ugly fcn for converting p-vals to T-vals
+## 04-04-03 ... added amasslinregress() function to do regression on N-D arrays
+## 03-01-03 ... CHANGED VERSION TO 0.6
+##              fixed atsem() to properly handle limits=None case
+##              improved histogram and median functions (estbinwidth) and
+##                   fixed atvar() function (wrong answers for neg numbers?!?)
+## 02-11-19 ... fixed attest_ind and attest_rel for div-by-zero Overflows
+## 02-05-10 ... fixed lchisqprob indentation (failed when df=even)
+## 00-12-28 ... removed aanova() to separate module, fixed licensing to
+##                   match Python License, fixed doc string & imports
+## 00-04-13 ... pulled all "global" statements, except from aanova()
+##              added/fixed lots of documentation, removed io.py dependency
+##              changed to version 0.5
+## 99-11-13 ... added asign() function
+## 99-11-01 ... changed version to 0.4 ... enough incremental changes now
+## 99-10-25 ... added acovariance and acorrelation functions
+## 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
+##              added aglm function (crude, but will be improved)
+## 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, avar, etc. to
+##                   all handle lists of 'dimension's and keepdims
+##              REMOVED ar0, ar2, ar3, ar4 and replaced them with around
+##              reinserted fixes for abetai to avoid math overflows
+## 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
+##                   handle multi-dimensional arrays (whew!)
+## 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
+##              added anormaltest per same reference
+##              re-wrote azprob to calc arrays of probs all at once
+## 99-08-22 ... edited attest_ind printing section so arrays could be rounded
+## 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
+##                   short/byte arrays (mean of #s btw 100-300 = -150??)
+## 99-08-09 ... fixed asum so that the None case works for Byte arrays
+## 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
+## 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
+## 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
+## 04/11/99 ... added asignaltonoise, athreshold functions, changed all
+##                   max/min in array section to N.maximum/N.minimum,
+##                   fixed square_of_sums to prevent integer overflow
+## 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
+## 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
+## 02/28/99 ... Fixed aobrientransform to return an array rather than a list
+## 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
+## 01/13/99 ... CHANGED TO VERSION 0.3
+##              fixed bug in a/lmannwhitneyu p-value calculation
+## 12/31/98 ... fixed variable-name bug in ldescribe
+## 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
+## 12/16/98 ... changed amedianscore to return float (not array) for 1 score
+## 12/14/98 ... added atmin and atmax functions
+##              removed umath from import line (not needed)
+##              l/ageometricmean modified to reduce chance of overflows (take
+##                   nth root first, then multiply)
+## 12/07/98 ... added __version__variable (now 0.2)
+##              removed all 'stats.' from anova() fcn
+## 12/06/98 ... changed those functions (except shellsort) that altered
+##                   arguments in-place ... cumsum, ranksort, ...
+##              updated (and fixed some) doc-strings
+## 12/01/98 ... added anova() function (requires NumPy)
+##              incorporated Dispatch class
+## 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
+##              added 'asum' function (added functionality to N.add.reduce)
+##              fixed both moment and amoment (two errors)
+##              changed name of skewness and askewness to skew and askew
+##              fixed (a)histogram (which sometimes counted points <lowerlimit)
+
+import pstat               # required 3rd party module
+import math, string, copy  # required python modules
+from types import *
+
+__version__ = 0.6
+
+############# DISPATCH CODE ##############
+
+
+class Dispatch:
+    """
+The Dispatch class, care of David Ascher, allows different functions to
+be called depending on the argument types.  This way, there can be one
+function name regardless of the argument type.  To access function doc
+in stats.py module, prefix the function with an 'l' or 'a' for list or
+array arguments, respectively.  That is, print stats.lmean.__doc__ or
+print stats.amean.__doc__ or whatever.
+"""
+
+    def __init__(self, *tuples):
+        self._dispatch = {}
+        for func, types in tuples:
+            for t in types:
+                if t in self._dispatch.keys():
+                    raise ValueError, "can't have two dispatches on "+str(t)
+                self._dispatch[t] = func
+        self._types = self._dispatch.keys()
+
+    def __call__(self, arg1, *args, **kw):
+        if type(arg1) not in self._types:
+            raise TypeError, "don't know how to dispatch %s arguments" %  type(arg1)
+        return apply(self._dispatch[type(arg1)], (arg1,) + args, kw)
+
+
+##########################################################################
+########################   LIST-BASED FUNCTIONS   ########################
+##########################################################################
+
+### Define these regardless
+
+####################################
+#######  CENTRAL TENDENCY  #########
+####################################
+
+def lgeometricmean (inlist):
+    """
+Calculates the geometric mean of the values in the passed list.
+That is:  n-th root of (x1 * x2 * ... * xn).  Assumes a '1D' list.
+
+Usage:   lgeometricmean(inlist)
+"""
+    mult = 1.0
+    one_over_n = 1.0/len(inlist)
+    for item in inlist:
+        mult = mult * pow(item,one_over_n)
+    return mult
+
+
+def lharmonicmean (inlist):
+    """
+Calculates the harmonic mean of the values in the passed list.
+That is:  n / (1/x1 + 1/x2 + ... + 1/xn).  Assumes a '1D' list.
+
+Usage:   lharmonicmean(inlist)
+"""
+    sum = 0
+    for item in inlist:
+        sum = sum + 1.0/item
+    return len(inlist) / sum
+
+
+def lmean (inlist):
+    """
+Returns the arithematic mean of the values in the passed list.
+Assumes a '1D' list, but will function on the 1st dim of an array(!).
+
+Usage:   lmean(inlist)
+"""
+    sum = 0
+    for item in inlist:
+        sum = sum + item
+    return sum/float(len(inlist))
+
+
+def lmedian (inlist,numbins=1000):
+    """
+Returns the computed median value of a list of numbers, given the
+number of bins to use for the histogram (more bins brings the computed value
+closer to the median score, default number of bins = 1000).  See G.W.
+Heiman's Basic Stats (1st Edition), or CRC Probability & Statistics.
+
+Usage:   lmedian (inlist, numbins=1000)
+"""
+    (hist, smallest, binsize, extras) = histogram(inlist,numbins,[min(inlist),max(inlist)]) # make histog
+    cumhist = cumsum(hist)              # make cumulative histogram
+    for i in range(len(cumhist)):        # get 1st(!) index holding 50%ile score
+        if cumhist[i]>=len(inlist)/2.0:
+            cfbin = i
+            break
+    LRL = smallest + binsize*cfbin        # get lower read limit of that bin
+    cfbelow = cumhist[cfbin-1]
+    freq = float(hist[cfbin])                # frequency IN the 50%ile bin
+    median = LRL + ((len(inlist)/2.0 - cfbelow)/float(freq))*binsize  # median formula
+    return median
+
+
+def lmedianscore (inlist):
+    """
+Returns the 'middle' score of the passed list.  If there is an even
+number of scores, the mean of the 2 middle scores is returned.
+
+Usage:   lmedianscore(inlist)
+"""
+
+    newlist = copy.deepcopy(inlist)
+    newlist.sort()
+    if len(newlist) % 2 == 0:   # if even number of scores, average middle 2
+        index = len(newlist)/2  # integer division correct
+        median = float(newlist[index] + newlist[index-1]) /2
+    else:
+        index = len(newlist)/2  # int divsion gives mid value when count from 0
+        median = newlist[index]
+    return median
+
+
+def lmode(inlist):
+    """
+Returns a list of the modal (most common) score(s) in the passed
+list.  If there is more than one such score, all are returned.  The
+bin-count for the mode(s) is also returned.
+
+Usage:   lmode(inlist)
+Returns: bin-count for mode(s), a list of modal value(s)
+"""
+
+    scores = pstat.unique(inlist)
+    scores.sort()
+    freq = []
+    for item in scores:
+        freq.append(inlist.count(item))
+    maxfreq = max(freq)
+    mode = []
+    stillmore = 1
+    while stillmore:
+        try:
+            indx = freq.index(maxfreq)
+            mode.append(scores[indx])
+            del freq[indx]
+            del scores[indx]
+        except ValueError:
+            stillmore=0
+    return maxfreq, mode
+
+
+####################################
+############  MOMENTS  #############
+####################################
+
+def lmoment(inlist,moment=1):
+    """
+Calculates the nth moment about the mean for a sample (defaults to
+the 1st moment).  Used to calculate coefficients of skewness and kurtosis.
+
+Usage:   lmoment(inlist,moment=1)
+Returns: appropriate moment (r) from ... 1/n * SUM((inlist(i)-mean)**r)
+"""
+    if moment == 1:
+        return 0.0
+    else:
+        mn = mean(inlist)
+        n = len(inlist)
+        s = 0
+        for x in inlist:
+            s = s + (x-mn)**moment
+        return s/float(n)
+
+
+def lvariation(inlist):
+    """
+Returns the coefficient of variation, as defined in CRC Standard
+Probability and Statistics, p.6.
+
+Usage:   lvariation(inlist)
+"""
+    return 100.0*samplestdev(inlist)/float(mean(inlist))
+
+
+def lskew(inlist):
+    """
+Returns the skewness of a distribution, as defined in Numerical
+Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
+
+Usage:   lskew(inlist)
+"""
+    return moment(inlist,3)/pow(moment(inlist,2),1.5)
+
+
+def lkurtosis(inlist):
+    """
+Returns the kurtosis of a distribution, as defined in Numerical
+Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
+
+Usage:   lkurtosis(inlist)
+"""
+    return moment(inlist,4)/pow(moment(inlist,2),2.0)
+
+
+def ldescribe(inlist):
+    """
+Returns some descriptive statistics of the passed list (assumed to be 1D).
+
+Usage:   ldescribe(inlist)
+Returns: n, mean, standard deviation, skew, kurtosis
+"""
+    n = len(inlist)
+    mm = (min(inlist),max(inlist))
+    m = mean(inlist)
+    sd = stdev(inlist)
+    sk = skew(inlist)
+    kurt = kurtosis(inlist)
+    return n, mm, m, sd, sk, kurt
+
+
+####################################
+#######  FREQUENCY STATS  ##########
+####################################
+
+def litemfreq(inlist):
+    """
+Returns a list of pairs.  Each pair consists of one of the scores in inlist
+and it's frequency count.  Assumes a 1D list is passed.
+
+Usage:   litemfreq(inlist)
+Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)
+"""
+    scores = pstat.unique(inlist)
+    scores.sort()
+    freq = []
+    for item in scores:
+        freq.append(inlist.count(item))
+    return pstat.abut(scores, freq)
+
+
+def lscoreatpercentile (inlist, percent):
+    """
+Returns the score at a given percentile relative to the distribution
+given by inlist.
+
+Usage:   lscoreatpercentile(inlist,percent)
+"""
+    if percent > 1:
+        print "\nDividing percent>1 by 100 in lscoreatpercentile().\n"
+        percent = percent / 100.0
+    targetcf = percent*len(inlist)
+    h, lrl, binsize, extras = histogram(inlist)
+    cumhist = cumsum(copy.deepcopy(h))
+    for i in range(len(cumhist)):
+        if cumhist[i] >= targetcf:
+            break
+    score = binsize * ((targetcf - cumhist[i-1]) / float(h[i])) + (lrl+binsize*i)
+    return score
+
+
+def lpercentileofscore (inlist, score,histbins=10,defaultlimits=None):
+    """
+Returns the percentile value of a score relative to the distribution
+given by inlist.  Formula depends on the values used to histogram the data(!).
+
+Usage:   lpercentileofscore(inlist,score,histbins=10,defaultlimits=None)
+"""
+
+    h, lrl, binsize, extras = histogram(inlist,histbins,defaultlimits)
+    cumhist = cumsum(copy.deepcopy(h))
+    i = int((score - lrl)/float(binsize))
+    pct = (cumhist[i-1]+((score-(lrl+binsize*i))/float(binsize))*h[i])/float(len(inlist)) * 100
+    return pct
+
+
+def lhistogram (inlist,numbins=10,defaultreallimits=None,printextras=0):
+    """
+Returns (i) a list of histogram bin counts, (ii) the smallest value
+of the histogram binning, and (iii) the bin width (the last 2 are not
+necessarily integers).  Default number of bins is 10.  If no sequence object
+is given for defaultreallimits, the routine picks (usually non-pretty) bins
+spanning all the numbers in the inlist.
+
+Usage:   lhistogram (inlist, numbins=10, defaultreallimits=None,suppressoutput=0)
+Returns: list of bin values, lowerreallimit, binsize, extrapoints
+"""
+    if (defaultreallimits <> None):
+        if type(defaultreallimits) not in [ListType,TupleType] or len(defaultreallimits)==1: # only one limit given, assumed to be lower one & upper is calc'd
+            lowerreallimit = defaultreallimits
+            upperreallimit = 1.000001 * max(inlist)
+        else: # assume both limits given
+            lowerreallimit = defaultreallimits[0]
+            upperreallimit = defaultreallimits[1]
+        binsize = (upperreallimit-lowerreallimit)/float(numbins)
+    else:     # no limits given for histogram, both must be calc'd
+        estbinwidth=(max(inlist)-min(inlist))/float(numbins) +1e-6 #1=>cover all
+        binsize = ((max(inlist)-min(inlist)+estbinwidth))/float(numbins)
+        lowerreallimit = min(inlist) - binsize/2 #lower real limit,1st bin
+    bins = [0]*(numbins)
+    extrapoints = 0
+    for num in inlist:
+        try:
+            if (num-lowerreallimit) < 0:
+                extrapoints = extrapoints + 1
+            else:
+                bintoincrement = int((num-lowerreallimit)/float(binsize))
+                bins[bintoincrement] = bins[bintoincrement] + 1
+        except:
+            extrapoints = extrapoints + 1
+    if (extrapoints > 0 and printextras == 1):
+        print '\nPoints outside given histogram range =',extrapoints
+    return (bins, lowerreallimit, binsize, extrapoints)
+
+
+def lcumfreq(inlist,numbins=10,defaultreallimits=None):
+    """
+Returns a cumulative frequency histogram, using the histogram function.
+
+Usage:   lcumfreq(inlist,numbins=10,defaultreallimits=None)
+Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints
+"""
+    h,l,b,e = histogram(inlist,numbins,defaultreallimits)
+    cumhist = cumsum(copy.deepcopy(h))
+    return cumhist,l,b,e
+
+
+def lrelfreq(inlist,numbins=10,defaultreallimits=None):
+    """
+Returns a relative frequency histogram, using the histogram function.
+
+Usage:   lrelfreq(inlist,numbins=10,defaultreallimits=None)
+Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints
+"""
+    h,l,b,e = histogram(inlist,numbins,defaultreallimits)
+    for i in range(len(h)):
+        h[i] = h[i]/float(len(inlist))
+    return h,l,b,e
+
+
+####################################
+#####  VARIABILITY FUNCTIONS  ######
+####################################
+
+def lobrientransform(*args):
+    """
+Computes a transform on input data (any number of columns).  Used to
+test for homogeneity of variance prior to running one-way stats.  From
+Maxwell and Delaney, p.112.
+
+Usage:   lobrientransform(*args)
+Returns: transformed data for use in an ANOVA
+"""
+    TINY = 1e-10
+    k = len(args)
+    n = [0.0]*k
+    v = [0.0]*k
+    m = [0.0]*k
+    nargs = []
+    for i in range(k):
+        nargs.append(copy.deepcopy(args[i]))
+        n[i] = float(len(nargs[i]))
+        v[i] = var(nargs[i])
+        m[i] = mean(nargs[i])
+    for j in range(k):
+        for i in range(n[j]):
+            t1 = (n[j]-1.5)*n[j]*(nargs[j][i]-m[j])**2
+            t2 = 0.5*v[j]*(n[j]-1.0)
+            t3 = (n[j]-1.0)*(n[j]-2.0)
+            nargs[j][i] = (t1-t2) / float(t3)
+    check = 1
+    for j in range(k):
+        if v[j] - mean(nargs[j]) > TINY:
+            check = 0
+    if check <> 1:
+        raise ValueError, 'Problem in obrientransform.'
+    else:
+        return nargs
+
+
+def lsamplevar (inlist):
+    """
+Returns the variance of the values in the passed list using
+N for the denominator (i.e., DESCRIBES the sample variance only).
+
+Usage:   lsamplevar(inlist)
+"""
+    n = len(inlist)
+    mn = mean(inlist)
+    deviations = []
+    for item in inlist:
+        deviations.append(item-mn)
+    return ss(deviations)/float(n)
+
+
+def lsamplestdev (inlist):
+    """
+Returns the standard deviation of the values in the passed list using
+N for the denominator (i.e., DESCRIBES the sample stdev only).
+
+Usage:   lsamplestdev(inlist)
+"""
+    return math.sqrt(samplevar(inlist))
+
+
+def lcov (x,y, keepdims=0):
+    """
+Returns the estimated covariance of the values in the passed
+array (i.e., N-1).  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions).  Set keepdims=1 to return an array with the
+same number of dimensions as inarray.
+
+Usage:   lcov(x,y,keepdims=0)
+"""
+
+    n = len(x)
+    xmn = mean(x)
+    ymn = mean(y)
+    xdeviations = [0]*len(x)
+    ydeviations = [0]*len(y)
+    for i in range(len(x)):
+        xdeviations[i] = x[i] - xmn
+        ydeviations[i] = y[i] - ymn
+    ss = 0.0
+    for i in range(len(xdeviations)):
+        ss = ss + xdeviations[i]*ydeviations[i]
+    return ss/float(n-1)
+
+
+def lvar (inlist):
+    """
+Returns the variance of the values in the passed list using N-1
+for the denominator (i.e., for estimating population variance).
+
+Usage:   lvar(inlist)
+"""
+    n = len(inlist)
+    mn = mean(inlist)
+    deviations = [0]*len(inlist)
+    for i in range(len(inlist)):
+        deviations[i] = inlist[i] - mn
+    return ss(deviations)/float(n-1)
+
+
+def lstdev (inlist):
+    """
+Returns the standard deviation of the values in the passed list
+using N-1 in the denominator (i.e., to estimate population stdev).
+
+Usage:   lstdev(inlist)
+"""
+    return math.sqrt(var(inlist))
+
+
+def lsterr(inlist):
+    """
+Returns the standard error of the values in the passed list using N-1
+in the denominator (i.e., to estimate population standard error).
+
+Usage:   lsterr(inlist)
+"""
+    return stdev(inlist) / float(math.sqrt(len(inlist)))
+
+
+def lsem (inlist):
+    """
+Returns the estimated standard error of the mean (sx-bar) of the
+values in the passed list.  sem = stdev / sqrt(n)
+
+Usage:   lsem(inlist)
+"""
+    sd = stdev(inlist)
+    n = len(inlist)
+    return sd/math.sqrt(n)
+
+
+def lz (inlist, score):
+    """
+Returns the z-score for a given input score, given that score and the
+list from which that score came.  Not appropriate for population calculations.
+
+Usage:   lz(inlist, score)
+"""
+    z = (score-mean(inlist))/samplestdev(inlist)
+    return z
+
+
+def lzs (inlist):
+    """
+Returns a list of z-scores, one for each score in the passed list.
+
+Usage:   lzs(inlist)
+"""
+    zscores = []
+    for item in inlist:
+        zscores.append(z(inlist,item))
+    return zscores
+
+
+####################################
+#######  TRIMMING FUNCTIONS  #######
+####################################
+
+def ltrimboth (l,proportiontocut):
+    """
+Slices off the passed proportion of items from BOTH ends of the passed
+list (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost'
+10% of scores.  Assumes list is sorted by magnitude.  Slices off LESS if
+proportion results in a non-integer slice index (i.e., conservatively
+slices off proportiontocut).
+
+Usage:   ltrimboth (l,proportiontocut)
+Returns: trimmed version of list l
+"""
+    lowercut = int(proportiontocut*len(l))
+    uppercut = len(l) - lowercut
+    return l[lowercut:uppercut]
+
+
+def ltrim1 (l,proportiontocut,tail='right'):
+    """
+Slices off the passed proportion of items from ONE end of the passed
+list (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
+10% of scores).  Slices off LESS if proportion results in a non-integer
+slice index (i.e., conservatively slices off proportiontocut).
+
+Usage:   ltrim1 (l,proportiontocut,tail='right')  or set tail='left'
+Returns: trimmed version of list l
+"""
+    if tail == 'right':
+        lowercut = 0
+        uppercut = len(l) - int(proportiontocut*len(l))
+    elif tail == 'left':
+        lowercut = int(proportiontocut*len(l))
+        uppercut = len(l)
+    return l[lowercut:uppercut]
+
+
+####################################
+#####  CORRELATION FUNCTIONS  ######
+####################################
+
+def lpaired(x,y):
+    """
+Interactively determines the type of data and then runs the
+appropriated statistic for paired group data.
+
+Usage:   lpaired(x,y)
+Returns: appropriate statistic name, value, and probability
+"""
+    samples = ''
+    while samples not in ['i','r','I','R','c','C']:
+        print '\nIndependent or related samples, or correlation (i,r,c): ',
+        samples = raw_input()
+
+    if samples in ['i','I','r','R']:
+        print '\nComparing variances ...',
+# USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
+        r = obrientransform(x,y)
+        f,p = F_oneway(pstat.colex(r,0),pstat.colex(r,1))
+        if p<0.05:
+            vartype='unequal, p='+str(round(p,4))
+        else:
+            vartype='equal'
+        print vartype
+        if samples in ['i','I']:
+            if vartype[0]=='e':
+                t,p = ttest_ind(x,y,0)
+                print '\nIndependent samples t-test:  ', round(t,4),round(p,4)
+            else:
+                if len(x)>20 or len(y)>20:
+                    z,p = ranksums(x,y)
+                    print '\nRank Sums test (NONparametric, n>20):  ', round(z,4),round(p,4)
+                else:
+                    u,p = mannwhitneyu(x,y)
+                    print '\nMann-Whitney U-test (NONparametric, ns<20):  ', round(u,4),round(p,4)
+
+        else:  # RELATED SAMPLES
+            if vartype[0]=='e':
+                t,p = ttest_rel(x,y,0)
+                print '\nRelated samples t-test:  ', round(t,4),round(p,4)
+            else:
+                t,p = ranksums(x,y)
+                print '\nWilcoxon T-test (NONparametric):  ', round(t,4),round(p,4)
+    else:  # CORRELATION ANALYSIS
+        corrtype = ''
+        while corrtype not in ['c','C','r','R','d','D']:
+            print '\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ',
+            corrtype = raw_input()
+        if corrtype in ['c','C']:
+            m,b,r,p,see = linregress(x,y)
+            print '\nLinear regression for continuous variables ...'
+            lol = [['Slope','Intercept','r','Prob','SEestimate'],[round(m,4),round(b,4),round(r,4),round(p,4),round(see,4)]]
+            pstat.printcc(lol)
+        elif corrtype in ['r','R']:
+            r,p = spearmanr(x,y)
+            print '\nCorrelation for ranked variables ...'
+            print "Spearman's r: ",round(r,4),round(p,4)
+        else: # DICHOTOMOUS
+            r,p = pointbiserialr(x,y)
+            print '\nAssuming x contains a dichotomous variable ...'
+            print 'Point Biserial r: ',round(r,4),round(p,4)
+    print '\n\n'
+    return None
+
+
+def lpearsonr(x,y):
+    """
+Calculates a Pearson correlation coefficient and the associated
+probability value.  Taken from Heiman's Basic Statistics for the Behav.
+Sci (2nd), p.195.
+
+Usage:   lpearsonr(x,y)      where x and y are equal-length lists
+Returns: Pearson's r value, two-tailed p-value
+"""
+    TINY = 1.0e-30
+    if len(x) <> len(y):
+        raise ValueError, 'Input values not paired in pearsonr.  Aborting.'
+    n = len(x)
+    x = map(float,x)
+    y = map(float,y)
+    xmean = mean(x)
+    ymean = mean(y)
+    r_num = n*(summult(x,y)) - sum(x)*sum(y)
+    r_den = math.sqrt((n*ss(x) - square_of_sums(x))*(n*ss(y)-square_of_sums(y)))
+    r = (r_num / r_den)  # denominator already a float
+    df = n-2
+    t = r*math.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
+    prob = betai(0.5*df,0.5,df/float(df+t*t))
+    return r, prob
+
+
+def llincc(x,y):
+    """
+Calculates Lin's concordance correlation coefficient.
+
+Usage:   alincc(x,y)    where x, y are equal-length arrays
+Returns: Lin's CC
+"""
+    covar = lcov(x,y)*(len(x)-1)/float(len(x))  # correct denom to n
+    xvar = lvar(x)*(len(x)-1)/float(len(x))  # correct denom to n
+    yvar = lvar(y)*(len(y)-1)/float(len(y))  # correct denom to n
+    lincc = (2 * covar) / ((xvar+yvar) +((amean(x)-amean(y))**2))
+    return lincc
+
+
+def lspearmanr(x,y):
+    """
+Calculates a Spearman rank-order correlation coefficient.  Taken
+from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.
+
+Usage:   lspearmanr(x,y)      where x and y are equal-length lists
+Returns: Spearman's r, two-tailed p-value
+"""
+    TINY = 1e-30
+    if len(x) <> len(y):
+        raise ValueError, 'Input values not paired in spearmanr.  Aborting.'
+    n = len(x)
+    rankx = rankdata(x)
+    ranky = rankdata(y)
+    dsq = sumdiffsquared(rankx,ranky)
+    rs = 1 - 6*dsq / float(n*(n**2-1))
+    t = rs * math.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
+    df = n-2
+    probrs = betai(0.5*df,0.5,df/(df+t*t))  # t already a float
+# probability values for rs are from part 2 of the spearman function in
+# Numerical Recipies, p.510.  They are close to tables, but not exact. (?)
+    return rs, probrs
+
+
+def lpointbiserialr(x,y):
+    """
+Calculates a point-biserial correlation coefficient and the associated
+probability value.  Taken from Heiman's Basic Statistics for the Behav.
+Sci (1st), p.194.
+
+Usage:   lpointbiserialr(x,y)      where x,y are equal-length lists
+Returns: Point-biserial r, two-tailed p-value
+"""
+    TINY = 1e-30
+    if len(x) <> len(y):
+        raise ValueError, 'INPUT VALUES NOT PAIRED IN pointbiserialr.  ABORTING.'
+    data = pstat.abut(x,y)
+    categories = pstat.unique(x)
+    if len(categories) <> 2:
+        raise ValueError, "Exactly 2 categories required for pointbiserialr()."
+    else:   # there are 2 categories, continue
+        codemap = pstat.abut(categories,range(2))
+        recoded = pstat.recode(data,codemap,0)
+        x = pstat.linexand(data,0,categories[0])
+        y = pstat.linexand(data,0,categories[1])
+        xmean = mean(pstat.colex(x,1))
+        ymean = mean(pstat.colex(y,1))
+        n = len(data)
+        adjust = math.sqrt((len(x)/float(n))*(len(y)/float(n)))
+        rpb = (ymean - xmean)/samplestdev(pstat.colex(data,1))*adjust
+        df = n-2
+        t = rpb*math.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
+        prob = betai(0.5*df,0.5,df/(df+t*t))  # t already a float
+        return rpb, prob
+
+
+def lkendalltau(x,y):
+    """
+Calculates Kendall's tau ... correlation of ordinal data.  Adapted
+from function kendl1 in Numerical Recipies.  Needs good test-routine.@@@
+
+Usage:   lkendalltau(x,y)
+Returns: Kendall's tau, two-tailed p-value
+"""
+    n1 = 0
+    n2 = 0
+    iss = 0
+    for j in range(len(x)-1):
+        for k in range(j,len(y)):
+            a1 = x[j] - x[k]
+            a2 = y[j] - y[k]
+            aa = a1 * a2
+            if (aa):             # neither list has a tie
+                n1 = n1 + 1
+                n2 = n2 + 1
+                if aa > 0:
+                    iss = iss + 1
+                else:
+                    iss = iss -1
+            else:
+                if (a1):
+                    n1 = n1 + 1
+                else:
+                    n2 = n2 + 1
+    tau = iss / math.sqrt(n1*n2)
+    svar = (4.0*len(x)+10.0) / (9.0*len(x)*(len(x)-1))
+    z = tau / math.sqrt(svar)
+    prob = erfcc(abs(z)/1.4142136)
+    return tau, prob
+
+
+def llinregress(x,y):
+    """
+Calculates a regression line on x,y pairs.  
+
+Usage:   llinregress(x,y)      x,y are equal-length lists of x-y coordinates
+Returns: slope, intercept, r, two-tailed prob, sterr-of-estimate
+"""
+    TINY = 1.0e-20
+    if len(x) <> len(y):
+        raise ValueError, 'Input values not paired in linregress.  Aborting.'
+    n = len(x)
+    x = map(float,x)
+    y = map(float,y)
+    xmean = mean(x)
+    ymean = mean(y)
+    r_num = float(n*(summult(x,y)) - sum(x)*sum(y))
+    r_den = math.sqrt((n*ss(x) - square_of_sums(x))*(n*ss(y)-square_of_sums(y)))
+    r = r_num / r_den
+    z = 0.5*math.log((1.0+r+TINY)/(1.0-r+TINY))
+    df = n-2
+    t = r*math.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
+    prob = betai(0.5*df,0.5,df/(df+t*t))
+    slope = r_num / float(n*ss(x) - square_of_sums(x))
+    intercept = ymean - slope*xmean
+    sterrest = math.sqrt(1-r*r)*samplestdev(y)
+    return slope, intercept, r, prob, sterrest
+
+
+####################################
+#####  INFERENTIAL STATISTICS  #####
+####################################
+
+def lttest_1samp(a,popmean,printit=0,name='Sample',writemode='a'):
+    """
+Calculates the t-obtained for the independent samples T-test on ONE group
+of scores a, given a population mean.  If printit=1, results are printed
+to the screen.  If printit='filename', the results are output to 'filename'
+using the given writemode (default=append).  Returns t-value, and prob.
+
+Usage:   lttest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
+Returns: t-value, two-tailed prob
+"""
+    x = mean(a)
+    v = var(a)
+    n = len(a)
+    df = n-1
+    svar = ((n-1)*v)/float(df)
+    t = (x-popmean)/math.sqrt(svar*(1.0/n))
+    prob = betai(0.5*df,0.5,float(df)/(df+t*t))
+
+    if printit <> 0:
+        statname = 'Single-sample T-test.'
+        outputpairedstats(printit,writemode,
+                          'Population','--',popmean,0,0,0,
+                          name,n,x,v,min(a),max(a),
+                          statname,t,prob)
+    return t,prob
+
+
+def lttest_ind (a, b, printit=0, name1='Samp1', name2='Samp2', writemode='a'):
+    """
+Calculates the t-obtained T-test on TWO INDEPENDENT samples of
+scores a, and b.  From Numerical Recipies, p.483.  If printit=1, results
+are printed to the screen.  If printit='filename', the results are output
+to 'filename' using the given writemode (default=append).  Returns t-value,
+and prob.
+
+Usage:   lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a')
+Returns: t-value, two-tailed prob
+"""
+    x1 = mean(a)
+    x2 = mean(b)
+    v1 = stdev(a)**2
+    v2 = stdev(b)**2
+    n1 = len(a)
+    n2 = len(b)
+    df = n1+n2-2
+    svar = ((n1-1)*v1+(n2-1)*v2)/float(df)
+    t = (x1-x2)/math.sqrt(svar*(1.0/n1 + 1.0/n2))
+    prob = betai(0.5*df,0.5,df/(df+t*t))
+
+    if printit <> 0:
+        statname = 'Independent samples T-test.'
+        outputpairedstats(printit,writemode,
+                          name1,n1,x1,v1,min(a),max(a),
+                          name2,n2,x2,v2,min(b),max(b),
+                          statname,t,prob)
+    return t,prob
+
+
+def lttest_rel (a,b,printit=0,name1='Sample1',name2='Sample2',writemode='a'):
+    """
+Calculates the t-obtained T-test on TWO RELATED samples of scores,
+a and b.  From Numerical Recipies, p.483.  If printit=1, results are
+printed to the screen.  If printit='filename', the results are output to
+'filename' using the given writemode (default=append).  Returns t-value,
+and prob.
+
+Usage:   lttest_rel(a,b,printit=0,name1='Sample1',name2='Sample2',writemode='a')
+Returns: t-value, two-tailed prob
+"""
+    if len(a)<>len(b):
+        raise ValueError, 'Unequal length lists in ttest_rel.'
+    x1 = mean(a)
+    x2 = mean(b)
+    v1 = var(a)
+    v2 = var(b)
+    n = len(a)
+    cov = 0
+    for i in range(len(a)):
+        cov = cov + (a[i]-x1) * (b[i]-x2)
+    df = n-1
+    cov = cov / float(df)
+    sd = math.sqrt((v1+v2 - 2.0*cov)/float(n))
+    t = (x1-x2)/sd
+    prob = betai(0.5*df,0.5,df/(df+t*t))
+
+    if printit <> 0:
+        statname = 'Related samples T-test.'
+        outputpairedstats(printit,writemode,
+                          name1,n,x1,v1,min(a),max(a),
+                          name2,n,x2,v2,min(b),max(b),
+                          statname,t,prob)
+    return t, prob
+
+
+def lchisquare(f_obs,f_exp=None):
+    """
+Calculates a one-way chi square for list of observed frequencies and returns
+the result.  If no expected frequencies are given, the total N is assumed to
+be equally distributed across all groups.
+
+Usage:   lchisquare(f_obs, f_exp=None)   f_obs = list of observed cell freq.
+Returns: chisquare-statistic, associated p-value
+"""
+    k = len(f_obs)                 # number of groups
+    if f_exp == None:
+        f_exp = [sum(f_obs)/float(k)] * len(f_obs) # create k bins with = freq.
+    chisq = 0
+    for i in range(len(f_obs)):
+        chisq = chisq + (f_obs[i]-f_exp[i])**2 / float(f_exp[i])
+    return chisq, chisqprob(chisq, k-1)
+
+
+def lks_2samp (data1,data2):
+    """
+Computes the Kolmogorov-Smirnof statistic on 2 samples.  From
+Numerical Recipies in C, page 493.
+
+Usage:   lks_2samp(data1,data2)   data1&2 are lists of values for 2 conditions
+Returns: KS D-value, associated p-value
+"""
+    j1 = 0
+    j2 = 0
+    fn1 = 0.0
+    fn2 = 0.0
+    n1 = len(data1)
+    n2 = len(data2)
+    en1 = n1
+    en2 = n2
+    d = 0.0
+    data1.sort()
+    data2.sort()
+    while j1 < n1 and j2 < n2:
+        d1=data1[j1]
+        d2=data2[j2]
+        if d1 <= d2:
+            fn1 = (j1)/float(en1)
+            j1 = j1 + 1
+        if d2 <= d1:
+            fn2 = (j2)/float(en2)
+            j2 = j2 + 1
+        dt = (fn2-fn1)
+        if math.fabs(dt) > math.fabs(d):
+            d = dt
+    try:
+        en = math.sqrt(en1*en2/float(en1+en2))
+        prob = ksprob((en+0.12+0.11/en)*abs(d))
+    except:
+        prob = 1.0
+    return d, prob
+
+
+def lmannwhitneyu(x,y):
+    """
+Calculates a Mann-Whitney U statistic on the provided scores and
+returns the result.  Use only when the n in each condition is < 20 and
+you have 2 independent samples of ranks.  NOTE: Mann-Whitney U is
+significant if the u-obtained is LESS THAN or equal to the critical
+value of U found in the tables.  Equivalent to Kruskal-Wallis H with
+just 2 groups.
+
+Usage:   lmannwhitneyu(data)
+Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))
+"""
+    n1 = len(x)
+    n2 = len(y)
+    ranked = rankdata(x+y)
+    rankx = ranked[0:n1]       # get the x-ranks
+    ranky = ranked[n1:]        # the rest are y-ranks
+    u1 = n1*n2 + (n1*(n1+1))/2.0 - sum(rankx)  # calc U for x
+    u2 = n1*n2 - u1                            # remainder is U for y
+    bigu = max(u1,u2)
+    smallu = min(u1,u2)
+    T = math.sqrt(tiecorrect(ranked))  # correction factor for tied scores
+    if T == 0:
+        raise ValueError, 'All numbers are identical in lmannwhitneyu'
+    sd = math.sqrt(T*n1*n2*(n1+n2+1)/12.0)
+    z = abs((bigu-n1*n2/2.0) / sd)  # normal approximation for prob calc
+    return smallu, 1.0 - zprob(z)
+
+
+def ltiecorrect(rankvals):
+    """
+Corrects for ties in Mann Whitney U and Kruskal Wallis H tests.  See
+Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences.
+New York: McGraw-Hill.  Code adapted from |Stat rankind.c code.
+
+Usage:   ltiecorrect(rankvals)
+Returns: T correction factor for U or H
+"""
+    sorted,posn = shellsort(rankvals)
+    n = len(sorted)
+    T = 0.0
+    i = 0
+    while (i<n-1):
+        if sorted[i] == sorted[i+1]:
+            nties = 1
+            while (i<n-1) and (sorted[i] == sorted[i+1]):
+                nties = nties +1
+                i = i +1
+            T = T + nties**3 - nties
+        i = i+1
+    T = T / float(n**3-n)
+    return 1.0 - T
+
+
+def lranksums(x,y):
+    """
+Calculates the rank sums statistic on the provided scores and
+returns the result.  Use only when the n in each condition is > 20 and you
+have 2 independent samples of ranks.
+
+Usage:   lranksums(x,y)
+Returns: a z-statistic, two-tailed p-value
+"""
+    n1 = len(x)
+    n2 = len(y)
+    alldata = x+y
+    ranked = rankdata(alldata)
+    x = ranked[:n1]
+    y = ranked[n1:]
+    s = sum(x)
+    expected = n1*(n1+n2+1) / 2.0
+    z = (s - expected) / math.sqrt(n1*n2*(n1+n2+1)/12.0)
+    prob = 2*(1.0 -zprob(abs(z)))
+    return z, prob
+
+
+def lwilcoxont(x,y):
+    """
+Calculates the Wilcoxon T-test for related samples and returns the
+result.  A non-parametric T-test.
+
+Usage:   lwilcoxont(x,y)
+Returns: a t-statistic, two-tail probability estimate
+"""
+    if len(x) <> len(y):
+        raise ValueError, 'Unequal N in wilcoxont.  Aborting.'
+    d=[]
+    for i in range(len(x)):
+        diff = x[i] - y[i]
+        if diff <> 0:
+            d.append(diff)
+    count = len(d)
+    absd = map(abs,d)
+    absranked = rankdata(absd)
+    r_plus = 0.0
+    r_minus = 0.0
+    for i in range(len(absd)):
+        if d[i] < 0:
+            r_minus = r_minus + absranked[i]
+        else:
+            r_plus = r_plus + absranked[i]
+    wt = min(r_plus, r_minus)
+    mn = count * (count+1) * 0.25
+    se =  math.sqrt(count*(count+1)*(2.0*count+1.0)/24.0)
+    z = math.fabs(wt-mn) / se
+    prob = 2*(1.0 -zprob(abs(z)))
+    return wt, prob
+
+
+def lkruskalwallish(*args):
+    """
+The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
+groups, requiring at least 5 subjects in each group.  This function
+calculates the Kruskal-Wallis H-test for 3 or more independent samples
+and returns the result.  
+
+Usage:   lkruskalwallish(*args)
+Returns: H-statistic (corrected for ties), associated p-value
+"""
+    args = list(args)
+    n = [0]*len(args)
+    all = []
+    n = map(len,args)
+    for i in range(len(args)):
+        all = all + args[i]
+    ranked = rankdata(all)
+    T = tiecorrect(ranked)
+    for i in range(len(args)):
+        args[i] = ranked[0:n[i]]
+        del ranked[0:n[i]]
+    rsums = []
+    for i in range(len(args)):
+        rsums.append(sum(args[i])**2)
+        rsums[i] = rsums[i] / float(n[i])
+    ssbn = sum(rsums)
+    totaln = sum(n)
+    h = 12.0 / (totaln*(totaln+1)) * ssbn - 3*(totaln+1)
+    df = len(args) - 1
+    if T == 0:
+        raise ValueError, 'All numbers are identical in lkruskalwallish'
+    h = h / float(T)
+    return h, chisqprob(h,df)
+
+
+def lfriedmanchisquare(*args):
+    """
+Friedman Chi-Square is a non-parametric, one-way within-subjects
+ANOVA.  This function calculates the Friedman Chi-square test for repeated
+measures and returns the result, along with the associated probability
+value.  It assumes 3 or more repeated measures.  Only 3 levels requires a
+minimum of 10 subjects in the study.  Four levels requires 5 subjects per
+level(??).
+
+Usage:   lfriedmanchisquare(*args)
+Returns: chi-square statistic, associated p-value
+"""
+    k = len(args)
+    if k < 3:
+        raise ValueError, 'Less than 3 levels.  Friedman test not appropriate.'
+    n = len(args[0])
+    data = apply(pstat.abut,tuple(args))
+    for i in range(len(data)):
+        data[i] = rankdata(data[i])
+    ssbn = 0
+    for i in range(k):
+        ssbn = ssbn + sum(args[i])**2
+    chisq = 12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)
+    return chisq, chisqprob(chisq,k-1)
+
+
+####################################
+####  PROBABILITY CALCULATIONS  ####
+####################################
+
+def lchisqprob(chisq,df):
+    """
+Returns the (1-tailed) probability value associated with the provided
+chi-square value and df.  Adapted from chisq.c in Gary Perlman's |Stat.
+
+Usage:   lchisqprob(chisq,df)
+"""
+    BIG = 20.0
+    def ex(x):
+        BIG = 20.0
+        if x < -BIG:
+            return 0.0
+        else:
+            return math.exp(x)
+
+    if chisq <=0 or df < 1:
+        return 1.0
+    a = 0.5 * chisq
+    if df%2 == 0:
+        even = 1
+    else:
+        even = 0
+    if df > 1:
+        y = ex(-a)
+    if even:
+        s = y
+    else:
+        s = 2.0 * zprob(-math.sqrt(chisq))
+    if (df > 2):
+        chisq = 0.5 * (df - 1.0)
+        if even:
+            z = 1.0
+        else:
+            z = 0.5
+        if a > BIG:
+            if even:
+                e = 0.0
+            else:
+                e = math.log(math.sqrt(math.pi))
+            c = math.log(a)
+            while (z <= chisq):
+                e = math.log(z) + e
+                s = s + ex(c*z-a-e)
+                z = z + 1.0
+            return s
+        else:
+            if even:
+                e = 1.0
+            else:
+                e = 1.0 / math.sqrt(math.pi) / math.sqrt(a)
+            c = 0.0
+            while (z <= chisq):
+                e = e * (a/float(z))
+                c = c + e
+                z = z + 1.0
+            return (c*y+s)
+    else:
+        return s
+
+
+def lerfcc(x):
+    """
+Returns the complementary error function erfc(x) with fractional
+error everywhere less than 1.2e-7.  Adapted from Numerical Recipies.
+
+Usage:   lerfcc(x)
+"""
+    z = abs(x)
+    t = 1.0 / (1.0+0.5*z)
+    ans = t * math.exp(-z*z-1.26551223 + t*(1.00002368+t*(0.37409196+t*(0.09678418+t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+t*(-0.82215223+t*0.17087277)))))))))
+    if x >= 0:
+        return ans
+    else:
+        return 2.0 - ans
+
+
+def lzprob(z):
+    """
+Returns the area under the normal curve 'to the left of' the given z value.
+Thus, 
+    for z<0, zprob(z) = 1-tail probability
+    for z>0, 1.0-zprob(z) = 1-tail probability
+    for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
+Adapted from z.c in Gary Perlman's |Stat.
+
+Usage:   lzprob(z)
+"""
+    Z_MAX = 6.0    # maximum meaningful z-value
+    if z == 0.0:
+        x = 0.0
+    else:
+        y = 0.5 * math.fabs(z)
+        if y >= (Z_MAX*0.5):
+            x = 1.0
+        elif (y < 1.0):
+            w = y*y
+            x = ((((((((0.000124818987 * w
+                        -0.001075204047) * w +0.005198775019) * w
+                      -0.019198292004) * w +0.059054035642) * w
+                    -0.151968751364) * w +0.319152932694) * w
+                  -0.531923007300) * w +0.797884560593) * y * 2.0
+        else:
+            y = y - 2.0
+            x = (((((((((((((-0.000045255659 * y
+                             +0.000152529290) * y -0.000019538132) * y
+                           -0.000676904986) * y +0.001390604284) * y
+                         -0.000794620820) * y -0.002034254874) * y
+                       +0.006549791214) * y -0.010557625006) * y
+                     +0.011630447319) * y -0.009279453341) * y
+                   +0.005353579108) * y -0.002141268741) * y
+                 +0.000535310849) * y +0.999936657524
+    if z > 0.0:
+        prob = ((x+1.0)*0.5)
+    else:
+        prob = ((1.0-x)*0.5)
+    return prob
+
+
+def lksprob(alam):
+    """
+Computes a Kolmolgorov-Smirnov t-test significance level.  Adapted from
+Numerical Recipies.
+
+Usage:   lksprob(alam)
+"""
+    fac = 2.0
+    sum = 0.0
+    termbf = 0.0
+    a2 = -2.0*alam*alam
+    for j in range(1,201):
+        term = fac*math.exp(a2*j*j)
+        sum = sum + term
+        if math.fabs(term) <= (0.001*termbf) or math.fabs(term) < (1.0e-8*sum):
+            return sum
+        fac = -fac
+        termbf = math.fabs(term)
+    return 1.0             # Get here only if fails to converge; was 0.0!!
+
+
+def lfprob (dfnum, dfden, F):
+    """
+Returns the (1-tailed) significance level (p-value) of an F
+statistic given the degrees of freedom for the numerator (dfR-dfF) and
+the degrees of freedom for the denominator (dfF).
+
+Usage:   lfprob(dfnum, dfden, F)   where usually dfnum=dfbn, dfden=dfwn
+"""
+    p = betai(0.5*dfden, 0.5*dfnum, dfden/float(dfden+dfnum*F))
+    return p
+
+
+def lbetacf(a,b,x):
+    """
+This function evaluates the continued fraction form of the incomplete
+Beta function, betai.  (Adapted from: Numerical Recipies in C.)
+
+Usage:   lbetacf(a,b,x)
+"""
+    ITMAX = 200
+    EPS = 3.0e-7
+
+    bm = az = am = 1.0
+    qab = a+b
+    qap = a+1.0
+    qam = a-1.0
+    bz = 1.0-qab*x/qap
+    for i in range(ITMAX+1):
+        em = float(i+1)
+        tem = em + em
+        d = em*(b-em)*x/((qam+tem)*(a+tem))
+        ap = az + d*am
+        bp = bz+d*bm
+        d = -(a+em)*(qab+em)*x/((qap+tem)*(a+tem))
+        app = ap+d*az
+        bpp = bp+d*bz
+        aold = az
+        am = ap/bpp
+        bm = bp/bpp
+        az = app/bpp
+        bz = 1.0
+        if (abs(az-aold)<(EPS*abs(az))):
+            return az
+    print 'a or b too big, or ITMAX too small in Betacf.'
+
+
+def lgammln(xx):
+    """
+Returns the gamma function of xx.
+    Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
+(Adapted from: Numerical Recipies in C.)
+
+Usage:   lgammln(xx)
+"""
+
+    coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516,
+             0.120858003e-2, -0.536382e-5]
+    x = xx - 1.0
+    tmp = x + 5.5
+    tmp = tmp - (x+0.5)*math.log(tmp)
+    ser = 1.0
+    for j in range(len(coeff)):
+        x = x + 1
+        ser = ser + coeff[j]/x
+    return -tmp + math.log(2.50662827465*ser)
+
+
+def lbetai(a,b,x):
+    """
+Returns the incomplete beta function:
+
+    I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
+
+where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
+function of a.  The continued fraction formulation is implemented here,
+using the betacf function.  (Adapted from: Numerical Recipies in C.)
+
+Usage:   lbetai(a,b,x)
+"""
+    if (x<0.0 or x>1.0):
+        raise ValueError, 'Bad x in lbetai'
+    if (x==0.0 or x==1.0):
+        bt = 0.0
+    else:
+        bt = math.exp(gammln(a+b)-gammln(a)-gammln(b)+a*math.log(x)+b*
+                      math.log(1.0-x))
+    if (x<(a+1.0)/(a+b+2.0)):
+        return bt*betacf(a,b,x)/float(a)
+    else:
+        return 1.0-bt*betacf(b,a,1.0-x)/float(b)
+
+
+####################################
+#######  ANOVA CALCULATIONS  #######
+####################################
+
+def lF_oneway(*lists):
+    """
+Performs a 1-way ANOVA, returning an F-value and probability given
+any number of groups.  From Heiman, pp.394-7.
+
+Usage:   F_oneway(*lists)    where *lists is any number of lists, one per
+                                  treatment group
+Returns: F value, one-tailed p-value
+"""
+    a = len(lists)           # ANOVA on 'a' groups, each in it's own list
+    means = [0]*a
+    vars = [0]*a
+    ns = [0]*a
+    alldata = []
+    tmp = map(N.array,lists)
+    means = map(amean,tmp)
+    vars = map(avar,tmp)
+    ns = map(len,lists)
+    for i in range(len(lists)):
+        alldata = alldata + lists[i]
+    alldata = N.array(alldata)
+    bign = len(alldata)
+    sstot = ass(alldata)-(asquare_of_sums(alldata)/float(bign))
+    ssbn = 0
+    for list in lists:
+        ssbn = ssbn + asquare_of_sums(N.array(list))/float(len(list))
+    ssbn = ssbn - (asquare_of_sums(alldata)/float(bign))
+    sswn = sstot-ssbn
+    dfbn = a-1
+    dfwn = bign - a
+    msb = ssbn/float(dfbn)
+    msw = sswn/float(dfwn)
+    f = msb/msw
+    prob = fprob(dfbn,dfwn,f)
+    return f, prob
+
+
+def lF_value (ER,EF,dfnum,dfden):
+    """
+Returns an F-statistic given the following:
+        ER  = error associated with the null hypothesis (the Restricted model)
+        EF  = error associated with the alternate hypothesis (the Full model)
+        dfR-dfF = degrees of freedom of the numerator
+        dfF = degrees of freedom associated with the denominator/Full model
+
+Usage:   lF_value(ER,EF,dfnum,dfden)
+"""
+    return ((ER-EF)/float(dfnum) / (EF/float(dfden)))
+
+
+####################################
+########  SUPPORT FUNCTIONS  #######
+####################################
+
+def writecc (listoflists,file,writetype='w',extra=2):
+    """
+Writes a list of lists to a file in columns, customized by the max
+size of items within the columns (max size of items in col, +2 characters)
+to specified file.  File-overwrite is the default.
+
+Usage:   writecc (listoflists,file,writetype='w',extra=2)
+Returns: None
+"""
+    if type(listoflists[0]) not in [ListType,TupleType]:
+        listoflists = [listoflists]
+    outfile = open(file,writetype)
+    rowstokill = []
+    list2print = copy.deepcopy(listoflists)
+    for i in range(len(listoflists)):
+        if listoflists[i] == ['\n'] or listoflists[i]=='\n' or listoflists[i]=='dashes':
+            rowstokill = rowstokill + [i]
+    rowstokill.reverse()
+    for row in rowstokill:
+        del list2print[row]
+    maxsize = [0]*len(list2print[0])
+    for col in range(len(list2print[0])):
+        items = pstat.colex(list2print,col)
+        items = map(pstat.makestr,items)
+        maxsize[col] = max(map(len,items)) + extra
+    for row in listoflists:
+        if row == ['\n'] or row == '\n':
+            outfile.write('\n')
+        elif row == ['dashes'] or row == 'dashes':
+            dashes = [0]*len(maxsize)
+            for j in range(len(maxsize)):
+                dashes[j] = '-'*(maxsize[j]-2)
+            outfile.write(pstat.lineincustcols(dashes,maxsize))
+        else:
+            outfile.write(pstat.lineincustcols(row,maxsize))
+        outfile.write('\n')
+    outfile.close()
+    return None
+
+
+def lincr(l,cap):        # to increment a list up to a max-list of 'cap'
+    """
+Simulate a counting system from an n-dimensional list.
+
+Usage:   lincr(l,cap)   l=list to increment, cap=max values for each list pos'n
+Returns: next set of values for list l, OR -1 (if overflow)
+"""
+    l[0] = l[0] + 1     # e.g., [0,0,0] --> [2,4,3] (=cap)
+    for i in range(len(l)):
+        if l[i] > cap[i] and i < len(l)-1: # if carryover AND not done
+            l[i] = 0
+            l[i+1] = l[i+1] + 1
+        elif l[i] > cap[i] and i == len(l)-1: # overflow past last column, must be finished
+            l = -1
+    return l
+
+
+def lsum (inlist):
+    """
+Returns the sum of the items in the passed list.
+
+Usage:   lsum(inlist)
+"""
+    s = 0
+    for item in inlist:
+        s = s + item
+    return s
+
+
+def lcumsum (inlist):
+    """
+Returns a list consisting of the cumulative sum of the items in the
+passed list.
+
+Usage:   lcumsum(inlist)
+"""
+    newlist = copy.deepcopy(inlist)
+    for i in range(1,len(newlist)):
+        newlist[i] = newlist[i] + newlist[i-1]
+    return newlist
+
+
+def lss(inlist):
+    """
+Squares each value in the passed list, adds up these squares and
+returns the result.
+
+Usage:   lss(inlist)
+"""
+    ss = 0
+    for item in inlist:
+        ss = ss + item*item
+    return ss
+
+
+def lsummult (list1,list2):
+    """
+Multiplies elements in list1 and list2, element by element, and
+returns the sum of all resulting multiplications.  Must provide equal
+length lists.
+
+Usage:   lsummult(list1,list2)
+"""
+    if len(list1) <> len(list2):
+        raise ValueError, "Lists not equal length in summult."
+    s = 0
+    for item1,item2 in pstat.abut(list1,list2):
+        s = s + item1*item2
+    return s
+
+
+def lsumdiffsquared(x,y):
+    """
+Takes pairwise differences of the values in lists x and y, squares
+these differences, and returns the sum of these squares.
+
+Usage:   lsumdiffsquared(x,y)
+Returns: sum[(x[i]-y[i])**2]
+"""
+    sds = 0
+    for i in range(len(x)):
+        sds = sds + (x[i]-y[i])**2
+    return sds
+
+
+def lsquare_of_sums(inlist):
+    """
+Adds the values in the passed list, squares the sum, and returns
+the result.
+
+Usage:   lsquare_of_sums(inlist)
+Returns: sum(inlist[i])**2
+"""
+    s = sum(inlist)
+    return float(s)*s
+
+
+def lshellsort(inlist):
+    """
+Shellsort algorithm.  Sorts a 1D-list.
+
+Usage:   lshellsort(inlist)
+Returns: sorted-inlist, sorting-index-vector (for original list)
+"""
+    n = len(inlist)
+    svec = copy.deepcopy(inlist)
+    ivec = range(n)
+    gap = n/2   # integer division needed
+    while gap >0:
+        for i in range(gap,n):
+            for j in range(i-gap,-1,-gap):
+                while j>=0 and svec[j]>svec[j+gap]:
+                    temp        = svec[j]
+                    svec[j]     = svec[j+gap]
+                    svec[j+gap] = temp
+                    itemp       = ivec[j]
+                    ivec[j]     = ivec[j+gap]
+                    ivec[j+gap] = itemp
+        gap = gap / 2  # integer division needed
+# svec is now sorted inlist, and ivec has the order svec[i] = vec[ivec[i]]
+    return svec, ivec
+
+
+def lrankdata(inlist):
+    """
+Ranks the data in inlist, dealing with ties appropritely.  Assumes
+a 1D inlist.  Adapted from Gary Perlman's |Stat ranksort.
+
+Usage:   lrankdata(inlist)
+Returns: a list of length equal to inlist, containing rank scores
+"""
+    n = len(inlist)
+    svec, ivec = shellsort(inlist)
+    sumranks = 0
+    dupcount = 0
+    newlist = [0]*n
+    for i in range(n):
+        sumranks = sumranks + i
+        dupcount = dupcount + 1
+        if i==n-1 or svec[i] <> svec[i+1]:
+            averank = sumranks / float(dupcount) + 1
+            for j in range(i-dupcount+1,i+1):
+                newlist[ivec[j]] = averank
+            sumranks = 0
+            dupcount = 0
+    return newlist
+
+
+def outputpairedstats(fname,writemode,name1,n1,m1,se1,min1,max1,name2,n2,m2,se2,min2,max2,statname,stat,prob):
+    """
+Prints or write to a file stats for two groups, using the name, n,
+mean, sterr, min and max for each group, as well as the statistic name,
+its value, and the associated p-value.
+
+Usage:   outputpairedstats(fname,writemode,
+                           name1,n1,mean1,stderr1,min1,max1,
+                           name2,n2,mean2,stderr2,min2,max2,
+                           statname,stat,prob)
+Returns: None
+"""
+    suffix = ''                       # for *s after the p-value
+    try:
+        x = prob.shape
+        prob = prob[0]
+    except:
+        pass
+    if  prob < 0.001:  suffix = '  ***'
+    elif prob < 0.01:  suffix = '  **'
+    elif prob < 0.05:  suffix = '  *'
+    title = [['Name','N','Mean','SD','Min','Max']]
+    lofl = title+[[name1,n1,round(m1,3),round(math.sqrt(se1),3),min1,max1],
+                  [name2,n2,round(m2,3),round(math.sqrt(se2),3),min2,max2]]
+    if type(fname)<>StringType or len(fname)==0:
+        print
+        print statname
+        print
+        pstat.printcc(lofl)
+        print
+        try:
+            if stat.shape == ():
+                stat = stat[0]
+            if prob.shape == ():
+                prob = prob[0]
+        except:
+            pass
+        print 'Test statistic = ',round(stat,3),'   p = ',round(prob,3),suffix
+        print
+    else:
+        file = open(fname,writemode)
+        file.write('\n'+statname+'\n\n')
+        file.close()
+        writecc(lofl,fname,'a')
+        file = open(fname,'a')
+        try:
+            if stat.shape == ():
+                stat = stat[0]
+            if prob.shape == ():
+                prob = prob[0]
+        except:
+            pass
+        file.write(pstat.list2string(['\nTest statistic = ',round(stat,4),'   p = ',round(prob,4),suffix,'\n\n']))
+        file.close()
+    return None
+
+
+def lfindwithin (data):
+    """
+Returns an integer representing a binary vector, where 1=within-
+subject factor, 0=between.  Input equals the entire data 2D list (i.e.,
+column 0=random factor, column -1=measured values (those two are skipped).
+Note: input data is in |Stat format ... a list of lists ("2D list") with 
+one row per measured value, first column=subject identifier, last column=
+score, one in-between column per factor (these columns contain level
+designations on each factor).  See also stats.anova.__doc__.
+
+Usage:   lfindwithin(data)     data in |Stat format
+"""
+
+    numfact = len(data[0])-1
+    withinvec = 0
+    for col in range(1,numfact):
+        examplelevel = pstat.unique(pstat.colex(data,col))[0]
+        rows = pstat.linexand(data,col,examplelevel)  # get 1 level of this factor
+        factsubjs = pstat.unique(pstat.colex(rows,0))
+        allsubjs = pstat.unique(pstat.colex(data,0))
+        if len(factsubjs) == len(allsubjs):  # fewer Ss than scores on this factor?
+            withinvec = withinvec + (1 << col)
+    return withinvec
+
+
+#########################################################
+#########################################################
+####### DISPATCH LISTS AND TUPLES TO ABOVE FCNS #########
+#########################################################
+#########################################################
+
+## CENTRAL TENDENCY:
+geometricmean = Dispatch ( (lgeometricmean, (ListType, TupleType)), )
+harmonicmean = Dispatch ( (lharmonicmean, (ListType, TupleType)), )
+mean = Dispatch ( (lmean, (ListType, TupleType)), )
+median = Dispatch ( (lmedian, (ListType, TupleType)), )
+medianscore = Dispatch ( (lmedianscore, (ListType, TupleType)), )
+mode = Dispatch ( (lmode, (ListType, TupleType)), )
+
+## MOMENTS:
+moment = Dispatch ( (lmoment, (ListType, TupleType)), )
+variation = Dispatch ( (lvariation, (ListType, TupleType)), )
+skew = Dispatch ( (lskew, (ListType, TupleType)), )
+kurtosis = Dispatch ( (lkurtosis, (ListType, TupleType)), )
+describe = Dispatch ( (ldescribe, (ListType, TupleType)), )
+
+## FREQUENCY STATISTICS:
+itemfreq = Dispatch ( (litemfreq, (ListType, TupleType)), )
+scoreatpercentile = Dispatch ( (lscoreatpercentile, (ListType, TupleType)), )
+percentileofscore = Dispatch ( (lpercentileofscore, (ListType, TupleType)), )
+histogram = Dispatch ( (lhistogram, (ListType, TupleType)), )
+cumfreq = Dispatch ( (lcumfreq, (ListType, TupleType)), )
+relfreq = Dispatch ( (lrelfreq, (ListType, TupleType)), )
+
+## VARIABILITY:
+obrientransform = Dispatch ( (lobrientransform, (ListType, TupleType)), )
+samplevar = Dispatch ( (lsamplevar, (ListType, TupleType)), )
+samplestdev = Dispatch ( (lsamplestdev, (ListType, TupleType)), )
+var = Dispatch ( (lvar, (ListType, TupleType)), )
+stdev = Dispatch ( (lstdev, (ListType, TupleType)), )
+sterr = Dispatch ( (lsterr, (ListType, TupleType)), )
+sem = Dispatch ( (lsem, (ListType, TupleType)), )
+z = Dispatch ( (lz, (ListType, TupleType)), )
+zs = Dispatch ( (lzs, (ListType, TupleType)), )
+
+## TRIMMING FCNS:
+trimboth = Dispatch ( (ltrimboth, (ListType, TupleType)), )
+trim1 = Dispatch ( (ltrim1, (ListType, TupleType)), )
+
+## CORRELATION FCNS:
+paired = Dispatch ( (lpaired, (ListType, TupleType)), )
+pearsonr = Dispatch ( (lpearsonr, (ListType, TupleType)), )
+spearmanr = Dispatch ( (lspearmanr, (ListType, TupleType)), )
+pointbiserialr = Dispatch ( (lpointbiserialr, (ListType, TupleType)), )
+kendalltau = Dispatch ( (lkendalltau, (ListType, TupleType)), )
+linregress = Dispatch ( (llinregress, (ListType, TupleType)), )
+
+## INFERENTIAL STATS:
+ttest_1samp = Dispatch ( (lttest_1samp, (ListType, TupleType)), )
+ttest_ind = Dispatch ( (lttest_ind, (ListType, TupleType)), )
+ttest_rel = Dispatch ( (lttest_rel, (ListType, TupleType)), )
+chisquare = Dispatch ( (lchisquare, (ListType, TupleType)), )
+ks_2samp = Dispatch ( (lks_2samp, (ListType, TupleType)), )
+mannwhitneyu = Dispatch ( (lmannwhitneyu, (ListType, TupleType)), )
+ranksums = Dispatch ( (lranksums, (ListType, TupleType)), )
+tiecorrect = Dispatch ( (ltiecorrect, (ListType, TupleType)), )
+wilcoxont = Dispatch ( (lwilcoxont, (ListType, TupleType)), )
+kruskalwallish = Dispatch ( (lkruskalwallish, (ListType, TupleType)), )
+friedmanchisquare = Dispatch ( (lfriedmanchisquare, (ListType, TupleType)), )
+
+## PROBABILITY CALCS:
+chisqprob = Dispatch ( (lchisqprob, (IntType, FloatType)), )
+zprob = Dispatch ( (lzprob, (IntType, FloatType)), )
+ksprob = Dispatch ( (lksprob, (IntType, FloatType)), )
+fprob = Dispatch ( (lfprob, (IntType, FloatType)), )
+betacf = Dispatch ( (lbetacf, (IntType, FloatType)), )
+betai = Dispatch ( (lbetai, (IntType, FloatType)), )
+erfcc = Dispatch ( (lerfcc, (IntType, FloatType)), )
+gammln = Dispatch ( (lgammln, (IntType, FloatType)), )
+
+## ANOVA FUNCTIONS:
+F_oneway = Dispatch ( (lF_oneway, (ListType, TupleType)), )
+F_value = Dispatch ( (lF_value, (ListType, TupleType)), )
+
+## SUPPORT FUNCTIONS:
+incr = Dispatch ( (lincr, (ListType, TupleType)), )
+sum = Dispatch ( (lsum, (ListType, TupleType)), )
+cumsum = Dispatch ( (lcumsum, (ListType, TupleType)), )
+ss = Dispatch ( (lss, (ListType, TupleType)), )
+summult = Dispatch ( (lsummult, (ListType, TupleType)), )
+square_of_sums = Dispatch ( (lsquare_of_sums, (ListType, TupleType)), )
+sumdiffsquared = Dispatch ( (lsumdiffsquared, (ListType, TupleType)), )
+shellsort = Dispatch ( (lshellsort, (ListType, TupleType)), )
+rankdata = Dispatch ( (lrankdata, (ListType, TupleType)), )
+findwithin = Dispatch ( (lfindwithin, (ListType, TupleType)), )
+
+
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+#=============  THE ARRAY-VERSION OF THE STATS FUNCTIONS  ===============
+
+try:                         # DEFINE THESE *ONLY* IF NUMERIC IS AVAILABLE
+ import numpy as N
+ import numpy.linalg as LA
+
+
+#####################################
+########  ACENTRAL TENDENCY  ########
+#####################################
+
+ def ageometricmean (inarray,dimension=None,keepdims=0):
+    """
+Calculates the geometric mean of the values in the passed array.
+That is:  n-th root of (x1 * x2 * ... * xn).  Defaults to ALL values in
+the passed array.  Use dimension=None to flatten array first.  REMEMBER: if
+dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
+if dimension is a sequence, it collapses over all specified dimensions.  If
+keepdims is set to 1, the resulting array will have as many dimensions as
+inarray, with only 1 'level' per dim that was collapsed over.
+
+Usage:   ageometricmean(inarray,dimension=None,keepdims=0)
+Returns: geometric mean computed over dim(s) listed in dimension
+"""
+    inarray = N.array(inarray,N.float_)
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        size = len(inarray)
+        mult = N.power(inarray,1.0/size)
+        mult = N.multiply.reduce(mult)
+    elif type(dimension) in [IntType,FloatType]:
+        size = inarray.shape[dimension]
+        mult = N.power(inarray,1.0/size)
+        mult = N.multiply.reduce(mult,dimension)
+        if keepdims == 1:
+            shp = list(inarray.shape)
+            shp[dimension] = 1
+            sum = N.reshape(sum,shp)
+    else: # must be a SEQUENCE of dims to average over
+        dims = list(dimension)
+        dims.sort()
+        dims.reverse()
+        size = N.array(N.multiply.reduce(N.take(inarray.shape,dims)),N.float_)
+        mult = N.power(inarray,1.0/size)
+        for dim in dims:
+            mult = N.multiply.reduce(mult,dim)
+        if keepdims == 1:
+            shp = list(inarray.shape)
+            for dim in dims:
+                shp[dim] = 1
+            mult = N.reshape(mult,shp)
+    return mult
+
+
+ def aharmonicmean (inarray,dimension=None,keepdims=0):
+    """
+Calculates the harmonic mean of the values in the passed array.
+That is:  n / (1/x1 + 1/x2 + ... + 1/xn).  Defaults to ALL values in
+the passed array.  Use dimension=None to flatten array first.  REMEMBER: if
+dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
+if dimension is a sequence, it collapses over all specified dimensions.  If
+keepdims is set to 1, the resulting array will have as many dimensions as
+inarray, with only 1 'level' per dim that was collapsed over.
+
+Usage:   aharmonicmean(inarray,dimension=None,keepdims=0)
+Returns: harmonic mean computed over dim(s) in dimension
+"""
+    inarray = inarray.astype(N.float_)
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        size = len(inarray)
+        s = N.add.reduce(1.0 / inarray)
+    elif type(dimension) in [IntType,FloatType]:
+        size = float(inarray.shape[dimension])
+        s = N.add.reduce(1.0/inarray, dimension)
+        if keepdims == 1:
+            shp = list(inarray.shape)
+            shp[dimension] = 1
+            s = N.reshape(s,shp)
+    else: # must be a SEQUENCE of dims to average over
+        dims = list(dimension)
+        dims.sort()
+        nondims = []
+        for i in range(len(inarray.shape)):
+            if i not in dims:
+                nondims.append(i)
+        tinarray = N.transpose(inarray,nondims+dims) # put keep-dims first
+        idx = [0] *len(nondims)
+        if idx == []:
+            size = len(N.ravel(inarray))
+            s = asum(1.0 / inarray)
+            if keepdims == 1:
+                s = N.reshape([s],N.ones(len(inarray.shape)))
+        else:
+            idx[0] = -1
+            loopcap = N.array(tinarray.shape[0:len(nondims)]) -1
+            s = N.zeros(loopcap+1,N.float_)
+            while incr(idx,loopcap) <> -1:
+                s[idx] = asum(1.0/tinarray[idx])
+            size = N.multiply.reduce(N.take(inarray.shape,dims))
+            if keepdims == 1:
+                shp = list(inarray.shape)
+                for dim in dims:
+                    shp[dim] = 1
+                s = N.reshape(s,shp)
+    return size / s
+
+
+ def amean (inarray,dimension=None,keepdims=0):
+    """
+Calculates the arithmatic mean of the values in the passed array.
+That is:  1/n * (x1 + x2 + ... + xn).  Defaults to ALL values in the
+passed array.  Use dimension=None to flatten array first.  REMEMBER: if
+dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and
+if dimension is a sequence, it collapses over all specified dimensions.  If
+keepdims is set to 1, the resulting array will have as many dimensions as
+inarray, with only 1 'level' per dim that was collapsed over.
+
+Usage:   amean(inarray,dimension=None,keepdims=0)
+Returns: arithematic mean calculated over dim(s) in dimension
+"""
+    if inarray.dtype in [N.int_, N.short,N.ubyte]:
+        inarray = inarray.astype(N.float_)
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        sum = N.add.reduce(inarray)
+        denom = float(len(inarray))
+    elif type(dimension) in [IntType,FloatType]:
+        sum = asum(inarray,dimension)
+        denom = float(inarray.shape[dimension])
+        if keepdims == 1:
+            shp = list(inarray.shape)
+            shp[dimension] = 1
+            sum = N.reshape(sum,shp)
+    else: # must be a TUPLE of dims to average over
+        dims = list(dimension)
+        dims.sort()
+        dims.reverse()
+        sum = inarray *1.0
+        for dim in dims:
+            sum = N.add.reduce(sum,dim)
+        denom = N.array(N.multiply.reduce(N.take(inarray.shape,dims)),N.float_)
+        if keepdims == 1:
+            shp = list(inarray.shape)
+            for dim in dims:
+                shp[dim] = 1
+            sum = N.reshape(sum,shp)
+    return sum/denom
+
+
+ def amedian (inarray,numbins=1000):
+    """
+Calculates the COMPUTED median value of an array of numbers, given the
+number of bins to use for the histogram (more bins approaches finding the
+precise median value of the array; default number of bins = 1000).  From
+G.W. Heiman's Basic Stats, or CRC Probability & Statistics.
+NOTE:  THIS ROUTINE ALWAYS uses the entire passed array (flattens it first).
+
+Usage:   amedian(inarray,numbins=1000)
+Returns: median calculated over ALL values in inarray
+"""
+    inarray = N.ravel(inarray)
+    (hist, smallest, binsize, extras) = ahistogram(inarray,numbins,[min(inarray),max(inarray)])
+    cumhist = N.cumsum(hist)            # make cumulative histogram
+    otherbins = N.greater_equal(cumhist,len(inarray)/2.0)
+    otherbins = list(otherbins)         # list of 0/1s, 1s start at median bin
+    cfbin = otherbins.index(1)                # get 1st(!) index holding 50%ile score
+    LRL = smallest + binsize*cfbin        # get lower read limit of that bin
+    cfbelow = N.add.reduce(hist[0:cfbin])        # cum. freq. below bin
+    freq = hist[cfbin]                        # frequency IN the 50%ile bin
+    median = LRL + ((len(inarray)/2.0-cfbelow)/float(freq))*binsize # MEDIAN
+    return median
+
+
+ def amedianscore (inarray,dimension=None):
+    """
+Returns the 'middle' score of the passed array.  If there is an even
+number of scores, the mean of the 2 middle scores is returned.  Can function
+with 1D arrays, or on the FIRST dimension of 2D arrays (i.e., dimension can
+be None, to pre-flatten the array, or else dimension must equal 0).
+
+Usage:   amedianscore(inarray,dimension=None)
+Returns: 'middle' score of the array, or the mean of the 2 middle scores
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    inarray = N.sort(inarray,dimension)
+    if inarray.shape[dimension] % 2 == 0:   # if even number of elements
+        indx = inarray.shape[dimension]/2   # integer division correct
+        median = N.asarray(inarray[indx]+inarray[indx-1]) / 2.0
+    else:
+        indx = inarray.shape[dimension] / 2 # integer division correct
+        median = N.take(inarray,[indx],dimension)
+        if median.shape == (1,):
+            median = median[0]
+    return median
+
+
+ def amode(a, dimension=None):
+    """
+Returns an array of the modal (most common) score in the passed array.
+If there is more than one such score, ONLY THE FIRST is returned.
+The bin-count for the modal values is also returned.  Operates on whole
+array (dimension=None), or on a given dimension.
+
+Usage:   amode(a, dimension=None)
+Returns: array of bin-counts for mode(s), array of corresponding modal values
+"""
+
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    scores = pstat.aunique(N.ravel(a))       # get ALL unique values
+    testshape = list(a.shape)
+    testshape[dimension] = 1
+    oldmostfreq = N.zeros(testshape)
+    oldcounts = N.zeros(testshape)
+    for score in scores:
+        template = N.equal(a,score)
+        counts = asum(template,dimension,1)
+        mostfrequent = N.where(counts>oldcounts,score,oldmostfreq)
+        oldcounts = N.where(counts>oldcounts,counts,oldcounts)
+        oldmostfreq = mostfrequent
+    return oldcounts, mostfrequent
+
+
+ def atmean(a,limits=None,inclusive=(1,1)):
+     """
+Returns the arithmetic mean of all values in an array, ignoring values
+strictly outside the sequence passed to 'limits'.   Note: either limit
+in the sequence, or the value of limits itself, can be set to None.  The
+inclusive list/tuple determines whether the lower and upper limiting bounds
+(respectively) are open/exclusive (0) or closed/inclusive (1).
+
+Usage:   atmean(a,limits=None,inclusive=(1,1))
+"""
+     if a.dtype in [N.int_, N.short,N.ubyte]:
+         a = a.astype(N.float_)
+     if limits == None:
+         return mean(a)
+     assert type(limits) in [ListType,TupleType,N.ndarray], "Wrong type for limits in atmean"
+     if inclusive[0]:         lowerfcn = N.greater_equal
+     else:               lowerfcn = N.greater
+     if inclusive[1]:         upperfcn = N.less_equal
+     else:               upperfcn = N.less
+     if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
+         raise ValueError, "No array values within given limits (atmean)."
+     elif limits[0]==None and limits[1]<>None:
+         mask = upperfcn(a,limits[1])
+     elif limits[0]<>None and limits[1]==None:
+         mask = lowerfcn(a,limits[0])
+     elif limits[0]<>None and limits[1]<>None:
+         mask = lowerfcn(a,limits[0])*upperfcn(a,limits[1])
+     s = float(N.add.reduce(N.ravel(a*mask)))
+     n = float(N.add.reduce(N.ravel(mask)))
+     return s/n
+
+
+ def atvar(a,limits=None,inclusive=(1,1)):
+     """
+Returns the sample variance of values in an array, (i.e., using N-1),
+ignoring values strictly outside the sequence passed to 'limits'.  
+Note: either limit in the sequence, or the value of limits itself,
+can be set to None.  The inclusive list/tuple determines whether the lower
+and upper limiting bounds (respectively) are open/exclusive (0) or
+closed/inclusive (1). ASSUMES A FLAT ARRAY (OR ELSE PREFLATTENS).
+
+Usage:   atvar(a,limits=None,inclusive=(1,1))
+"""
+     a = a.astype(N.float_)
+     if limits == None or limits == [None,None]:
+         return avar(a)
+     assert type(limits) in [ListType,TupleType,N.ndarray], "Wrong type for limits in atvar"
+     if inclusive[0]:    lowerfcn = N.greater_equal
+     else:               lowerfcn = N.greater
+     if inclusive[1]:    upperfcn = N.less_equal
+     else:               upperfcn = N.less
+     if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
+         raise ValueError, "No array values within given limits (atvar)."
+     elif limits[0]==None and limits[1]<>None:
+         mask = upperfcn(a,limits[1])
+     elif limits[0]<>None and limits[1]==None:
+         mask = lowerfcn(a,limits[0])
+     elif limits[0]<>None and limits[1]<>None:
+         mask = lowerfcn(a,limits[0])*upperfcn(a,limits[1])
+
+     a = N.compress(mask,a)  # squish out excluded values
+     return avar(a)
+
+
+ def atmin(a,lowerlimit=None,dimension=None,inclusive=1):
+     """
+Returns the minimum value of a, along dimension, including only values less
+than (or equal to, if inclusive=1) lowerlimit.  If the limit is set to None,
+all values in the array are used.
+
+Usage:   atmin(a,lowerlimit=None,dimension=None,inclusive=1)
+"""
+     if inclusive:         lowerfcn = N.greater
+     else:               lowerfcn = N.greater_equal
+     if dimension == None:
+         a = N.ravel(a)
+         dimension = 0
+     if lowerlimit == None:
+         lowerlimit = N.minimum.reduce(N.ravel(a))-11
+     biggest = N.maximum.reduce(N.ravel(a))
+     ta = N.where(lowerfcn(a,lowerlimit),a,biggest)
+     return N.minimum.reduce(ta,dimension)
+
+
+ def atmax(a,upperlimit,dimension=None,inclusive=1):
+     """
+Returns the maximum value of a, along dimension, including only values greater
+than (or equal to, if inclusive=1) upperlimit.  If the limit is set to None,
+a limit larger than the max value in the array is used.
+
+Usage:   atmax(a,upperlimit,dimension=None,inclusive=1)
+"""
+     if inclusive:         upperfcn = N.less
+     else:               upperfcn = N.less_equal
+     if dimension == None:
+         a = N.ravel(a)
+         dimension = 0
+     if upperlimit == None:
+         upperlimit = N.maximum.reduce(N.ravel(a))+1
+     smallest = N.minimum.reduce(N.ravel(a))
+     ta = N.where(upperfcn(a,upperlimit),a,smallest)
+     return N.maximum.reduce(ta,dimension)
+
+
+ def atstdev(a,limits=None,inclusive=(1,1)):
+     """
+Returns the standard deviation of all values in an array, ignoring values
+strictly outside the sequence passed to 'limits'.   Note: either limit
+in the sequence, or the value of limits itself, can be set to None.  The
+inclusive list/tuple determines whether the lower and upper limiting bounds
+(respectively) are open/exclusive (0) or closed/inclusive (1).
+
+Usage:   atstdev(a,limits=None,inclusive=(1,1))
+"""
+     return N.sqrt(tvar(a,limits,inclusive))
+
+
+ def atsem(a,limits=None,inclusive=(1,1)):
+     """
+Returns the standard error of the mean for the values in an array,
+(i.e., using N for the denominator), ignoring values strictly outside
+the sequence passed to 'limits'.   Note: either limit in the sequence,
+or the value of limits itself, can be set to None.  The inclusive list/tuple
+determines whether the lower and upper limiting bounds (respectively) are
+open/exclusive (0) or closed/inclusive (1).
+
+Usage:   atsem(a,limits=None,inclusive=(1,1))
+"""
+     sd = tstdev(a,limits,inclusive)
+     if limits == None or limits == [None,None]:
+         n = float(len(N.ravel(a)))
+         limits = [min(a)-1, max(a)+1]
+     assert type(limits) in [ListType,TupleType,N.ndarray], "Wrong type for limits in atsem"
+     if inclusive[0]:         lowerfcn = N.greater_equal
+     else:               lowerfcn = N.greater
+     if inclusive[1]:         upperfcn = N.less_equal
+     else:               upperfcn = N.less
+     if limits[0] > N.maximum.reduce(N.ravel(a)) or limits[1] < N.minimum.reduce(N.ravel(a)):
+         raise ValueError, "No array values within given limits (atsem)."
+     elif limits[0]==None and limits[1]<>None:
+         mask = upperfcn(a,limits[1])
+     elif limits[0]<>None and limits[1]==None:
+         mask = lowerfcn(a,limits[0])
+     elif limits[0]<>None and limits[1]<>None:
+         mask = lowerfcn(a,limits[0])*upperfcn(a,limits[1])
+     term1 = N.add.reduce(N.ravel(a*a*mask))
+     n = float(N.add.reduce(N.ravel(mask)))
+     return sd/math.sqrt(n)
+
+
+#####################################
+############  AMOMENTS  #############
+#####################################
+
+ def amoment(a,moment=1,dimension=None):
+    """
+Calculates the nth moment about the mean for a sample (defaults to the
+1st moment).  Generally used to calculate coefficients of skewness and
+kurtosis.  Dimension can equal None (ravel array first), an integer
+(the dimension over which to operate), or a sequence (operate over
+multiple dimensions).
+
+Usage:   amoment(a,moment=1,dimension=None)
+Returns: appropriate moment along given dimension
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    if moment == 1:
+        return 0.0
+    else:
+        mn = amean(a,dimension,1)  # 1=keepdims
+        s = N.power((a-mn),moment)
+        return amean(s,dimension)
+
+
+ def avariation(a,dimension=None):
+    """
+Returns the coefficient of variation, as defined in CRC Standard
+Probability and Statistics, p.6. Dimension can equal None (ravel array
+first), an integer (the dimension over which to operate), or a
+sequence (operate over multiple dimensions).
+
+Usage:   avariation(a,dimension=None)
+"""
+    return 100.0*asamplestdev(a,dimension)/amean(a,dimension)
+
+
+ def askew(a,dimension=None): 
+    """ 
+Returns the skewness of a distribution (normal ==> 0.0; >0 means extra
+weight in left tail).  Use askewtest() to see if it's close enough.
+Dimension can equal None (ravel array first), an integer (the
+dimension over which to operate), or a sequence (operate over multiple
+dimensions).
+
+Usage:   askew(a, dimension=None)
+Returns: skew of vals in a along dimension, returning ZERO where all vals equal
+"""
+    denom = N.power(amoment(a,2,dimension),1.5)
+    zero = N.equal(denom,0)
+    if type(denom) == N.ndarray and asum(zero) <> 0:
+        print "Number of zeros in askew: ",asum(zero)
+    denom = denom + zero  # prevent divide-by-zero
+    return N.where(zero, 0, amoment(a,3,dimension)/denom)
+
+
+ def akurtosis(a,dimension=None):
+    """
+Returns the kurtosis of a distribution (normal ==> 3.0; >3 means
+heavier in the tails, and usually more peaked).  Use akurtosistest()
+to see if it's close enough.  Dimension can equal None (ravel array
+first), an integer (the dimension over which to operate), or a
+sequence (operate over multiple dimensions).
+
+Usage:   akurtosis(a,dimension=None)
+Returns: kurtosis of values in a along dimension, and ZERO where all vals equal
+"""
+    denom = N.power(amoment(a,2,dimension),2)
+    zero = N.equal(denom,0)
+    if type(denom) == N.ndarray and asum(zero) <> 0:
+        print "Number of zeros in akurtosis: ",asum(zero)
+    denom = denom + zero  # prevent divide-by-zero
+    return N.where(zero,0,amoment(a,4,dimension)/denom)
+
+
+ def adescribe(inarray,dimension=None):
+     """
+Returns several descriptive statistics of the passed array.  Dimension
+can equal None (ravel array first), an integer (the dimension over
+which to operate), or a sequence (operate over multiple dimensions).
+
+Usage:   adescribe(inarray,dimension=None)
+Returns: n, (min,max), mean, standard deviation, skew, kurtosis
+"""
+     if dimension == None:
+         inarray = N.ravel(inarray)
+         dimension = 0
+     n = inarray.shape[dimension]
+     mm = (N.minimum.reduce(inarray),N.maximum.reduce(inarray))
+     m = amean(inarray,dimension)
+     sd = astdev(inarray,dimension)
+     skew = askew(inarray,dimension)
+     kurt = akurtosis(inarray,dimension)
+     return n, mm, m, sd, skew, kurt
+
+
+#####################################
+########  NORMALITY TESTS  ##########
+#####################################
+
+ def askewtest(a,dimension=None):
+    """
+Tests whether the skew is significantly different from a normal
+distribution.  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions).
+
+Usage:   askewtest(a,dimension=None)
+Returns: z-score and 2-tail z-probability
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    b2 = askew(a,dimension)
+    n = float(a.shape[dimension])
+    y = b2 * N.sqrt(((n+1)*(n+3)) / (6.0*(n-2)) )
+    beta2 = ( 3.0*(n*n+27*n-70)*(n+1)*(n+3) ) / ( (n-2.0)*(n+5)*(n+7)*(n+9) )
+    W2 = -1 + N.sqrt(2*(beta2-1))
+    delta = 1/N.sqrt(N.log(N.sqrt(W2)))
+    alpha = N.sqrt(2/(W2-1))
+    y = N.where(y==0,1,y)
+    Z = delta*N.log(y/alpha + N.sqrt((y/alpha)**2+1))
+    return Z, (1.0-zprob(Z))*2
+
+
+ def akurtosistest(a,dimension=None):
+    """
+Tests whether a dataset has normal kurtosis (i.e.,
+kurtosis=3(n-1)/(n+1)) Valid only for n>20.  Dimension can equal None
+(ravel array first), an integer (the dimension over which to operate),
+or a sequence (operate over multiple dimensions).
+
+Usage:   akurtosistest(a,dimension=None)
+Returns: z-score and 2-tail z-probability, returns 0 for bad pixels
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    n = float(a.shape[dimension])
+    if n<20:
+        print "akurtosistest only valid for n>=20 ... continuing anyway, n=",n
+    b2 = akurtosis(a,dimension)
+    E = 3.0*(n-1) /(n+1)
+    varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
+    x = (b2-E)/N.sqrt(varb2)
+    sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * N.sqrt((6.0*(n+3)*(n+5))/
+                                                       (n*(n-2)*(n-3)))
+    A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + N.sqrt(1+4.0/(sqrtbeta1**2)))
+    term1 = 1 -2/(9.0*A)
+    denom = 1 +x*N.sqrt(2/(A-4.0))
+    denom = N.where(N.less(denom,0), 99, denom)
+    term2 = N.where(N.equal(denom,0), term1, N.power((1-2.0/A)/denom,1/3.0))
+    Z = ( term1 - term2 ) / N.sqrt(2/(9.0*A))
+    Z = N.where(N.equal(denom,99), 0, Z)
+    return Z, (1.0-zprob(Z))*2
+
+
+ def anormaltest(a,dimension=None):
+    """
+Tests whether skew and/OR kurtosis of dataset differs from normal
+curve.  Can operate over multiple dimensions.  Dimension can equal
+None (ravel array first), an integer (the dimension over which to
+operate), or a sequence (operate over multiple dimensions).
+
+Usage:   anormaltest(a,dimension=None)
+Returns: z-score and 2-tail probability
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    s,p = askewtest(a,dimension)
+    k,p = akurtosistest(a,dimension)
+    k2 = N.power(s,2) + N.power(k,2)
+    return k2, achisqprob(k2,2)
+
+
+#####################################
+######  AFREQUENCY FUNCTIONS  #######
+#####################################
+
+ def aitemfreq(a):
+    """
+Returns a 2D array of item frequencies.  Column 1 contains item values,
+column 2 contains their respective counts.  Assumes a 1D array is passed.
+@@@sorting OK?
+
+Usage:   aitemfreq(a)
+Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)
+"""
+    scores = pstat.aunique(a)
+    scores = N.sort(scores)
+    freq = N.zeros(len(scores))
+    for i in range(len(scores)):
+        freq[i] = N.add.reduce(N.equal(a,scores[i]))
+    return N.array(pstat.aabut(scores, freq))
+
+
+ def ascoreatpercentile (inarray, percent):
+    """
+Usage:   ascoreatpercentile(inarray,percent)   0<percent<100
+Returns: score at given percentile, relative to inarray distribution
+"""
+    percent = percent / 100.0
+    targetcf = percent*len(inarray)
+    h, lrl, binsize, extras = histogram(inarray)
+    cumhist = cumsum(h*1)
+    for i in range(len(cumhist)):
+        if cumhist[i] >= targetcf:
+            break
+    score = binsize * ((targetcf - cumhist[i-1]) / float(h[i])) + (lrl+binsize*i)
+    return score
+
+
+ def apercentileofscore (inarray,score,histbins=10,defaultlimits=None):
+    """
+Note: result of this function depends on the values used to histogram
+the data(!).
+
+Usage:   apercentileofscore(inarray,score,histbins=10,defaultlimits=None)
+Returns: percentile-position of score (0-100) relative to inarray
+"""
+    h, lrl, binsize, extras = histogram(inarray,histbins,defaultlimits)
+    cumhist = cumsum(h*1)
+    i = int((score - lrl)/float(binsize))
+    pct = (cumhist[i-1]+((score-(lrl+binsize*i))/float(binsize))*h[i])/float(len(inarray)) * 100
+    return pct
+
+
+ def ahistogram (inarray,numbins=10,defaultlimits=None,printextras=1):
+    """
+Returns (i) an array of histogram bin counts, (ii) the smallest value
+of the histogram binning, and (iii) the bin width (the last 2 are not
+necessarily integers).  Default number of bins is 10.  Defaultlimits
+can be None (the routine picks bins spanning all the numbers in the
+inarray) or a 2-sequence (lowerlimit, upperlimit).  Returns all of the
+following: array of bin values, lowerreallimit, binsize, extrapoints.
+
+Usage:   ahistogram(inarray,numbins=10,defaultlimits=None,printextras=1)
+Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)
+"""
+    inarray = N.ravel(inarray)               # flatten any >1D arrays
+    if (defaultlimits <> None):
+        lowerreallimit = defaultlimits[0]
+        upperreallimit = defaultlimits[1]
+        binsize = (upperreallimit-lowerreallimit) / float(numbins)
+    else:
+        Min = N.minimum.reduce(inarray)
+        Max = N.maximum.reduce(inarray)
+        estbinwidth = float(Max - Min)/float(numbins) + 1e-6
+        binsize = (Max-Min+estbinwidth)/float(numbins)
+        lowerreallimit = Min - binsize/2.0  #lower real limit,1st bin
+    bins = N.zeros(numbins)
+    extrapoints = 0
+    for num in inarray:
+        try:
+            if (num-lowerreallimit) < 0:
+                extrapoints = extrapoints + 1
+            else:
+                bintoincrement = int((num-lowerreallimit) / float(binsize))
+                bins[bintoincrement] = bins[bintoincrement] + 1
+        except:                           # point outside lower/upper limits
+            extrapoints = extrapoints + 1
+    if (extrapoints > 0 and printextras == 1):
+        print '\nPoints outside given histogram range =',extrapoints
+    return (bins, lowerreallimit, binsize, extrapoints)
+
+
+ def acumfreq(a,numbins=10,defaultreallimits=None):
+    """
+Returns a cumulative frequency histogram, using the histogram function.
+Defaultreallimits can be None (use all data), or a 2-sequence containing
+lower and upper limits on values to include.
+
+Usage:   acumfreq(a,numbins=10,defaultreallimits=None)
+Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
+"""
+    h,l,b,e = histogram(a,numbins,defaultreallimits)
+    cumhist = cumsum(h*1)
+    return cumhist,l,b,e
+
+
+ def arelfreq(a,numbins=10,defaultreallimits=None):
+    """
+Returns a relative frequency histogram, using the histogram function.
+Defaultreallimits can be None (use all data), or a 2-sequence containing
+lower and upper limits on values to include.
+
+Usage:   arelfreq(a,numbins=10,defaultreallimits=None)
+Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints
+"""
+    h,l,b,e = histogram(a,numbins,defaultreallimits)
+    h = N.array(h/float(a.shape[0]))
+    return h,l,b,e
+
+
+#####################################
+######  AVARIABILITY FUNCTIONS  #####
+#####################################
+
+ def aobrientransform(*args):
+    """
+Computes a transform on input data (any number of columns).  Used to
+test for homogeneity of variance prior to running one-way stats.  Each
+array in *args is one level of a factor.  If an F_oneway() run on the
+transformed data and found significant, variances are unequal.   From
+Maxwell and Delaney, p.112.
+
+Usage:   aobrientransform(*args)    *args = 1D arrays, one per level of factor
+Returns: transformed data for use in an ANOVA
+"""
+    TINY = 1e-10
+    k = len(args)
+    n = N.zeros(k,N.float_)
+    v = N.zeros(k,N.float_)
+    m = N.zeros(k,N.float_)
+    nargs = []
+    for i in range(k):
+        nargs.append(args[i].astype(N.float_))
+        n[i] = float(len(nargs[i]))
+        v[i] = var(nargs[i])
+        m[i] = mean(nargs[i])
+    for j in range(k):
+        for i in range(n[j]):
+            t1 = (n[j]-1.5)*n[j]*(nargs[j][i]-m[j])**2
+            t2 = 0.5*v[j]*(n[j]-1.0)
+            t3 = (n[j]-1.0)*(n[j]-2.0)
+            nargs[j][i] = (t1-t2) / float(t3)
+    check = 1
+    for j in range(k):
+        if v[j] - mean(nargs[j]) > TINY:
+            check = 0
+    if check <> 1:
+        raise ValueError, 'Lack of convergence in obrientransform.'
+    else:
+        return N.array(nargs)
+
+
+ def asamplevar (inarray,dimension=None,keepdims=0):
+    """
+Returns the sample standard deviation of the values in the passed
+array (i.e., using N).  Dimension can equal None (ravel array first),
+an integer (the dimension over which to operate), or a sequence
+(operate over multiple dimensions).  Set keepdims=1 to return an array
+with the same number of dimensions as inarray.
+
+Usage:   asamplevar(inarray,dimension=None,keepdims=0)
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    if dimension == 1:
+        mn = amean(inarray,dimension)[:,N.NewAxis]
+    else:
+        mn = amean(inarray,dimension,keepdims=1)
+    deviations = inarray - mn 
+    if type(dimension) == ListType:
+        n = 1
+        for d in dimension:
+            n = n*inarray.shape[d]
+    else:
+        n = inarray.shape[dimension]
+    svar = ass(deviations,dimension,keepdims) / float(n)
+    return svar
+
+
+ def asamplestdev (inarray, dimension=None, keepdims=0):
+    """
+Returns the sample standard deviation of the values in the passed
+array (i.e., using N).  Dimension can equal None (ravel array first),
+an integer (the dimension over which to operate), or a sequence
+(operate over multiple dimensions).  Set keepdims=1 to return an array
+with the same number of dimensions as inarray.
+
+Usage:   asamplestdev(inarray,dimension=None,keepdims=0)
+"""
+    return N.sqrt(asamplevar(inarray,dimension,keepdims))
+
+
+ def asignaltonoise(instack,dimension=0):
+    """
+Calculates signal-to-noise.  Dimension can equal None (ravel array
+first), an integer (the dimension over which to operate), or a
+sequence (operate over multiple dimensions).
+
+Usage:   asignaltonoise(instack,dimension=0):
+Returns: array containing the value of (mean/stdev) along dimension,
+         or 0 when stdev=0
+"""
+    m = mean(instack,dimension)
+    sd = stdev(instack,dimension)
+    return N.where(sd==0,0,m/sd)
+
+
+ def acov (x,y, dimension=None,keepdims=0):
+    """
+Returns the estimated covariance of the values in the passed
+array (i.e., N-1).  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions).  Set keepdims=1 to return an array with the
+same number of dimensions as inarray.
+
+Usage:   acov(x,y,dimension=None,keepdims=0)
+"""
+    if dimension == None:
+        x = N.ravel(x)
+        y = N.ravel(y)
+        dimension = 0
+    xmn = amean(x,dimension,1)  # keepdims
+    xdeviations = x - xmn
+    ymn = amean(y,dimension,1)  # keepdims
+    ydeviations = y - ymn
+    if type(dimension) == ListType:
+        n = 1
+        for d in dimension:
+            n = n*x.shape[d]
+    else:
+        n = x.shape[dimension]
+    covar = N.sum(xdeviations*ydeviations)/float(n-1)
+    return covar
+
+
+ def avar (inarray, dimension=None,keepdims=0):
+    """
+Returns the estimated population variance of the values in the passed
+array (i.e., N-1).  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions).  Set keepdims=1 to return an array with the
+same number of dimensions as inarray.
+
+Usage:   avar(inarray,dimension=None,keepdims=0)
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    mn = amean(inarray,dimension,1)
+    deviations = inarray - mn
+    if type(dimension) == ListType:
+        n = 1
+        for d in dimension:
+            n = n*inarray.shape[d]
+    else:
+        n = inarray.shape[dimension]
+    var = ass(deviations,dimension,keepdims)/float(n-1)
+    return var
+
+
+ def astdev (inarray, dimension=None, keepdims=0):
+    """
+Returns the estimated population standard deviation of the values in
+the passed array (i.e., N-1).  Dimension can equal None (ravel array
+first), an integer (the dimension over which to operate), or a
+sequence (operate over multiple dimensions).  Set keepdims=1 to return
+an array with the same number of dimensions as inarray.
+
+Usage:   astdev(inarray,dimension=None,keepdims=0)
+"""
+    return N.sqrt(avar(inarray,dimension,keepdims))
+
+
+ def asterr (inarray, dimension=None, keepdims=0):
+    """
+Returns the estimated population standard error of the values in the
+passed array (i.e., N-1).  Dimension can equal None (ravel array
+first), an integer (the dimension over which to operate), or a
+sequence (operate over multiple dimensions).  Set keepdims=1 to return
+an array with the same number of dimensions as inarray.
+
+Usage:   asterr(inarray,dimension=None,keepdims=0)
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    return astdev(inarray,dimension,keepdims) / float(N.sqrt(inarray.shape[dimension]))
+
+
+ def asem (inarray, dimension=None, keepdims=0):
+    """
+Returns the standard error of the mean (i.e., using N) of the values
+in the passed array.  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions).  Set keepdims=1 to return an array with the
+same number of dimensions as inarray.
+
+Usage:   asem(inarray,dimension=None, keepdims=0)
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    if type(dimension) == ListType:
+        n = 1
+        for d in dimension:
+            n = n*inarray.shape[d]
+    else:
+        n = inarray.shape[dimension]
+    s = asamplestdev(inarray,dimension,keepdims) / N.sqrt(n-1)
+    return s
+
+
+ def az (a, score):
+    """
+Returns the z-score of a given input score, given thearray from which
+that score came.  Not appropriate for population calculations, nor for
+arrays > 1D.
+
+Usage:   az(a, score)
+"""
+    z = (score-amean(a)) / asamplestdev(a)
+    return z
+
+
+ def azs (a):
+    """
+Returns a 1D array of z-scores, one for each score in the passed array,
+computed relative to the passed array.
+
+Usage:   azs(a)
+"""
+    zscores = []
+    for item in a:
+        zscores.append(z(a,item))
+    return N.array(zscores)
+
+
+ def azmap (scores, compare, dimension=0):
+    """
+Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to
+array passed to compare (e.g., [time,x,y]).  Assumes collapsing over dim 0
+of the compare array.
+
+Usage:   azs(scores, compare, dimension=0)
+"""
+    mns = amean(compare,dimension)
+    sstd = asamplestdev(compare,0)
+    return (scores - mns) / sstd
+
+
+#####################################
+#######  ATRIMMING FUNCTIONS  #######
+#####################################
+
+## deleted around() as it's in numpy now
+
+ def athreshold(a,threshmin=None,threshmax=None,newval=0):
+    """
+Like Numeric.clip() except that values <threshmid or >threshmax are replaced
+by newval instead of by threshmin/threshmax (respectively).
+
+Usage:   athreshold(a,threshmin=None,threshmax=None,newval=0)
+Returns: a, with values <threshmin or >threshmax replaced with newval
+"""
+    mask = N.zeros(a.shape)
+    if threshmin <> None:
+        mask = mask + N.where(a<threshmin,1,0)
+    if threshmax <> None:
+        mask = mask + N.where(a>threshmax,1,0)
+    mask = N.clip(mask,0,1)
+    return N.where(mask,newval,a)
+
+
+ def atrimboth (a,proportiontocut):
+    """
+Slices off the passed proportion of items from BOTH ends of the passed
+array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND
+'rightmost' 10% of scores.  You must pre-sort the array if you want
+"proper" trimming.  Slices off LESS if proportion results in a
+non-integer slice index (i.e., conservatively slices off
+proportiontocut).
+
+Usage:   atrimboth (a,proportiontocut)
+Returns: trimmed version of array a
+"""
+    lowercut = int(proportiontocut*len(a))
+    uppercut = len(a) - lowercut
+    return a[lowercut:uppercut]
+
+
+ def atrim1 (a,proportiontocut,tail='right'):
+    """
+Slices off the passed proportion of items from ONE end of the passed
+array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost'
+10% of scores).  Slices off LESS if proportion results in a non-integer
+slice index (i.e., conservatively slices off proportiontocut).
+
+Usage:   atrim1(a,proportiontocut,tail='right')  or set tail='left'
+Returns: trimmed version of array a
+"""
+    if string.lower(tail) == 'right':
+        lowercut = 0
+        uppercut = len(a) - int(proportiontocut*len(a))
+    elif string.lower(tail) == 'left':
+        lowercut = int(proportiontocut*len(a))
+        uppercut = len(a)
+    return a[lowercut:uppercut]
+
+
+#####################################
+#####  ACORRELATION FUNCTIONS  ######
+#####################################
+
+ def acovariance(X):
+    """
+Computes the covariance matrix of a matrix X.  Requires a 2D matrix input.
+
+Usage:   acovariance(X)
+Returns: covariance matrix of X
+"""
+    if len(X.shape) <> 2:
+        raise TypeError, "acovariance requires 2D matrices"
+    n = X.shape[0]
+    mX = amean(X,0)
+    return N.dot(N.transpose(X),X) / float(n) - N.multiply.outer(mX,mX)
+
+
+ def acorrelation(X):
+    """
+Computes the correlation matrix of a matrix X.  Requires a 2D matrix input.
+
+Usage:   acorrelation(X)
+Returns: correlation matrix of X
+"""
+    C = acovariance(X)
+    V = N.diagonal(C)
+    return C / N.sqrt(N.multiply.outer(V,V))
+
+
+ def apaired(x,y):
+    """
+Interactively determines the type of data in x and y, and then runs the
+appropriated statistic for paired group data.
+
+Usage:   apaired(x,y)     x,y = the two arrays of values to be compared
+Returns: appropriate statistic name, value, and probability
+"""
+    samples = ''
+    while samples not in ['i','r','I','R','c','C']:
+        print '\nIndependent or related samples, or correlation (i,r,c): ',
+        samples = raw_input()
+
+    if samples in ['i','I','r','R']:
+        print '\nComparing variances ...',
+# USE O'BRIEN'S TEST FOR HOMOGENEITY OF VARIANCE, Maxwell & delaney, p.112
+        r = obrientransform(x,y)
+        f,p = F_oneway(pstat.colex(r,0),pstat.colex(r,1))
+        if p<0.05:
+            vartype='unequal, p='+str(round(p,4))
+        else:
+            vartype='equal'
+        print vartype
+        if samples in ['i','I']:
+            if vartype[0]=='e':
+                t,p = ttest_ind(x,y,None,0)
+                print '\nIndependent samples t-test:  ', round(t,4),round(p,4)
+            else:
+                if len(x)>20 or len(y)>20:
+                    z,p = ranksums(x,y)
+                    print '\nRank Sums test (NONparametric, n>20):  ', round(z,4),round(p,4)
+                else:
+                    u,p = mannwhitneyu(x,y)
+                    print '\nMann-Whitney U-test (NONparametric, ns<20):  ', round(u,4),round(p,4)
+
+        else:  # RELATED SAMPLES
+            if vartype[0]=='e':
+                t,p = ttest_rel(x,y,0)
+                print '\nRelated samples t-test:  ', round(t,4),round(p,4)
+            else:
+                t,p = ranksums(x,y)
+                print '\nWilcoxon T-test (NONparametric):  ', round(t,4),round(p,4)
+    else:  # CORRELATION ANALYSIS
+        corrtype = ''
+        while corrtype not in ['c','C','r','R','d','D']:
+            print '\nIs the data Continuous, Ranked, or Dichotomous (c,r,d): ',
+            corrtype = raw_input()
+        if corrtype in ['c','C']:
+            m,b,r,p,see = linregress(x,y)
+            print '\nLinear regression for continuous variables ...'
+            lol = [['Slope','Intercept','r','Prob','SEestimate'],[round(m,4),round(b,4),round(r,4),round(p,4),round(see,4)]]
+            pstat.printcc(lol)
+        elif corrtype in ['r','R']:
+            r,p = spearmanr(x,y)
+            print '\nCorrelation for ranked variables ...'
+            print "Spearman's r: ",round(r,4),round(p,4)
+        else: # DICHOTOMOUS
+            r,p = pointbiserialr(x,y)
+            print '\nAssuming x contains a dichotomous variable ...'
+            print 'Point Biserial r: ',round(r,4),round(p,4)
+    print '\n\n'
+    return None
+
+
+ def dices(x,y):
+    """
+Calculates Dice's coefficient ... (2*number of common terms)/(number of terms in x +
+number of terms in y). Returns a value between 0 (orthogonal) and 1.
+
+Usage:  dices(x,y)
+"""
+    import sets
+    x = sets.Set(x)
+    y = sets.Set(y)
+    common = len(x.intersection(y))
+    total = float(len(x) + len(y))
+    return 2*common/total
+
+
+ def icc(x,y=None,verbose=0):
+    """
+Calculates intraclass correlation coefficients using simple, Type I sums of squares.
+If only one variable is passed, assumed it's an Nx2 matrix
+
+Usage:   icc(x,y=None,verbose=0)
+Returns: icc rho, prob ####PROB IS A GUESS BASED ON PEARSON
+"""
+    TINY = 1.0e-20
+    if y:
+        all = N.concatenate([x,y],0)
+    else:
+        all = x+0
+        x = all[:,0]
+        y = all[:,1]
+    totalss = ass(all-mean(all))
+    pairmeans = (x+y)/2.
+    withinss = ass(x-pairmeans) + ass(y-pairmeans)
+    withindf = float(len(x))
+    betwdf = float(len(x)-1)
+    withinms = withinss / withindf
+    betweenms = (totalss-withinss) / betwdf
+    rho = (betweenms-withinms)/(withinms+betweenms)
+    t = rho*math.sqrt(betwdf/((1.0-rho+TINY)*(1.0+rho+TINY)))
+    prob = abetai(0.5*betwdf,0.5,betwdf/(betwdf+t*t),verbose)
+    return rho, prob
+
+
+ def alincc(x,y):
+    """
+Calculates Lin's concordance correlation coefficient.
+
+Usage:   alincc(x,y)    where x, y are equal-length arrays
+Returns: Lin's CC
+"""
+    x = N.ravel(x)
+    y = N.ravel(y)
+    covar = acov(x,y)*(len(x)-1)/float(len(x))  # correct denom to n
+    xvar = avar(x)*(len(x)-1)/float(len(x))  # correct denom to n
+    yvar = avar(y)*(len(y)-1)/float(len(y))  # correct denom to n
+    lincc = (2 * covar) / ((xvar+yvar) +((amean(x)-amean(y))**2))
+    return lincc
+
+
+ def apearsonr(x,y,verbose=1):
+    """
+Calculates a Pearson correlation coefficient and returns p.  Taken
+from Heiman's Basic Statistics for the Behav. Sci (2nd), p.195.
+
+Usage:   apearsonr(x,y,verbose=1)      where x,y are equal length arrays
+Returns: Pearson's r, two-tailed p-value
+"""
+    TINY = 1.0e-20
+    n = len(x)
+    xmean = amean(x)
+    ymean = amean(y)
+    r_num = n*(N.add.reduce(x*y)) - N.add.reduce(x)*N.add.reduce(y)
+    r_den = math.sqrt((n*ass(x) - asquare_of_sums(x))*(n*ass(y)-asquare_of_sums(y)))
+    r = (r_num / r_den)
+    df = n-2
+    t = r*math.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
+    prob = abetai(0.5*df,0.5,df/(df+t*t),verbose)
+    return r,prob
+
+
+ def aspearmanr(x,y):
+    """
+Calculates a Spearman rank-order correlation coefficient.  Taken
+from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.
+
+Usage:   aspearmanr(x,y)      where x,y are equal-length arrays
+Returns: Spearman's r, two-tailed p-value
+"""
+    TINY = 1e-30
+    n = len(x)
+    rankx = rankdata(x)
+    ranky = rankdata(y)
+    dsq = N.add.reduce((rankx-ranky)**2)
+    rs = 1 - 6*dsq / float(n*(n**2-1))
+    t = rs * math.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
+    df = n-2
+    probrs = abetai(0.5*df,0.5,df/(df+t*t))
+# probability values for rs are from part 2 of the spearman function in
+# Numerical Recipies, p.510.  They close to tables, but not exact.(?)
+    return rs, probrs
+
+
+ def apointbiserialr(x,y):
+    """
+Calculates a point-biserial correlation coefficient and the associated
+probability value.  Taken from Heiman's Basic Statistics for the Behav.
+Sci (1st), p.194.
+
+Usage:   apointbiserialr(x,y)      where x,y are equal length arrays
+Returns: Point-biserial r, two-tailed p-value
+"""
+    TINY = 1e-30
+    categories = pstat.aunique(x)
+    data = pstat.aabut(x,y)
+    if len(categories) <> 2:
+        raise ValueError, "Exactly 2 categories required (in x) for pointbiserialr()."
+    else:   # there are 2 categories, continue
+        codemap = pstat.aabut(categories,N.arange(2))
+        recoded = pstat.arecode(data,codemap,0)
+        x = pstat.alinexand(data,0,categories[0])
+        y = pstat.alinexand(data,0,categories[1])
+        xmean = amean(pstat.acolex(x,1))
+        ymean = amean(pstat.acolex(y,1))
+        n = len(data)
+        adjust = math.sqrt((len(x)/float(n))*(len(y)/float(n)))
+        rpb = (ymean - xmean)/asamplestdev(pstat.acolex(data,1))*adjust
+        df = n-2
+        t = rpb*math.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
+        prob = abetai(0.5*df,0.5,df/(df+t*t))
+        return rpb, prob
+
+
+ def akendalltau(x,y):
+    """
+Calculates Kendall's tau ... correlation of ordinal data.  Adapted
+from function kendl1 in Numerical Recipies.  Needs good test-cases.@@@
+
+Usage:   akendalltau(x,y)
+Returns: Kendall's tau, two-tailed p-value
+"""
+    n1 = 0
+    n2 = 0
+    iss = 0
+    for j in range(len(x)-1):
+        for k in range(j,len(y)):
+            a1 = x[j] - x[k]
+            a2 = y[j] - y[k]
+            aa = a1 * a2
+            if (aa):             # neither array has a tie
+                n1 = n1 + 1
+                n2 = n2 + 1
+                if aa > 0:
+                    iss = iss + 1
+                else:
+                    iss = iss -1
+            else:
+                if (a1):
+                    n1 = n1 + 1
+                else:
+                    n2 = n2 + 1
+    tau = iss / math.sqrt(n1*n2)
+    svar = (4.0*len(x)+10.0) / (9.0*len(x)*(len(x)-1))
+    z = tau / math.sqrt(svar)
+    prob = erfcc(abs(z)/1.4142136)
+    return tau, prob
+
+
+ def alinregress(*args):
+    """
+Calculates a regression line on two arrays, x and y, corresponding to x,y
+pairs.  If a single 2D array is passed, alinregress finds dim with 2 levels
+and splits data into x,y pairs along that dim.
+
+Usage:   alinregress(*args)    args=2 equal-length arrays, or one 2D array
+Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate, n
+"""
+    TINY = 1.0e-20
+    if len(args) == 1:  # more than 1D array?
+        args = args[0]
+        if len(args) == 2:
+            x = args[0]
+            y = args[1]
+        else:
+            x = args[:,0]
+            y = args[:,1]
+    else:
+        x = args[0]
+        y = args[1]
+    n = len(x)
+    xmean = amean(x)
+    ymean = amean(y)
+    r_num = n*(N.add.reduce(x*y)) - N.add.reduce(x)*N.add.reduce(y)
+    r_den = math.sqrt((n*ass(x) - asquare_of_sums(x))*(n*ass(y)-asquare_of_sums(y)))
+    r = r_num / r_den
+    z = 0.5*math.log((1.0+r+TINY)/(1.0-r+TINY))
+    df = n-2
+    t = r*math.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
+    prob = abetai(0.5*df,0.5,df/(df+t*t))
+    slope = r_num / (float(n)*ass(x) - asquare_of_sums(x))
+    intercept = ymean - slope*xmean
+    sterrest = math.sqrt(1-r*r)*asamplestdev(y)
+    return slope, intercept, r, prob, sterrest, n
+
+ def amasslinregress(*args):
+    """
+Calculates a regression line on one 1D array (x) and one N-D array (y).
+
+Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate, n
+"""
+    TINY = 1.0e-20
+    if len(args) == 1:  # more than 1D array?
+        args = args[0]
+        if len(args) == 2:
+            x = N.ravel(args[0])
+            y = args[1]
+        else:
+            x = N.ravel(args[:,0])
+            y = args[:,1]
+    else:
+        x = args[0]
+        y = args[1]
+    x = x.astype(N.float_)
+    y = y.astype(N.float_)
+    n = len(x)
+    xmean = amean(x)
+    ymean = amean(y,0)
+    shp = N.ones(len(y.shape))
+    shp[0] = len(x)
+    x.shape = shp
+    print x.shape, y.shape
+    r_num = n*(N.add.reduce(x*y,0)) - N.add.reduce(x)*N.add.reduce(y,0)
+    r_den = N.sqrt((n*ass(x) - asquare_of_sums(x))*(n*ass(y,0)-asquare_of_sums(y,0)))
+    zerodivproblem = N.equal(r_den,0)
+    r_den = N.where(zerodivproblem,1,r_den)  # avoid zero-division in 1st place
+    r = r_num / r_den  # need to do this nicely for matrix division
+    r = N.where(zerodivproblem,0.0,r)
+    z = 0.5*N.log((1.0+r+TINY)/(1.0-r+TINY))
+    df = n-2
+    t = r*N.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
+    prob = abetai(0.5*df,0.5,df/(df+t*t))
+
+    ss = float(n)*ass(x)-asquare_of_sums(x)
+    s_den = N.where(ss==0,1,ss)  # avoid zero-division in 1st place
+    slope = r_num / s_den
+    intercept = ymean - slope*xmean
+    sterrest = N.sqrt(1-r*r)*asamplestdev(y,0)
+    return slope, intercept, r, prob, sterrest, n
+
+
+#####################################
+#####  AINFERENTIAL STATISTICS  #####
+#####################################
+
+ def attest_1samp(a,popmean,printit=0,name='Sample',writemode='a'):
+    """
+Calculates the t-obtained for the independent samples T-test on ONE group
+of scores a, given a population mean.  If printit=1, results are printed
+to the screen.  If printit='filename', the results are output to 'filename'
+using the given writemode (default=append).  Returns t-value, and prob.
+
+Usage:   attest_1samp(a,popmean,Name='Sample',printit=0,writemode='a')
+Returns: t-value, two-tailed prob
+"""
+    if type(a) != N.ndarray:
+        a = N.array(a)
+    x = amean(a)
+    v = avar(a)
+    n = len(a)
+    df = n-1
+    svar = ((n-1)*v) / float(df)
+    t = (x-popmean)/math.sqrt(svar*(1.0/n))
+    prob = abetai(0.5*df,0.5,df/(df+t*t))
+
+    if printit <> 0:
+        statname = 'Single-sample T-test.'
+        outputpairedstats(printit,writemode,
+                          'Population','--',popmean,0,0,0,
+                          name,n,x,v,N.minimum.reduce(N.ravel(a)),
+                          N.maximum.reduce(N.ravel(a)),
+                          statname,t,prob)
+    return t,prob
+
+
+ def attest_ind (a, b, dimension=None, printit=0, name1='Samp1', name2='Samp2',writemode='a'):
+    """
+Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores
+a, and b.  From Numerical Recipies, p.483.  If printit=1, results are
+printed to the screen.  If printit='filename', the results are output
+to 'filename' using the given writemode (default=append).  Dimension
+can equal None (ravel array first), or an integer (the dimension over
+which to operate on a and b).
+
+Usage:   attest_ind (a,b,dimension=None,printit=0,
+                     Name1='Samp1',Name2='Samp2',writemode='a')
+Returns: t-value, two-tailed p-value
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        b = N.ravel(b)
+        dimension = 0
+    x1 = amean(a,dimension)
+    x2 = amean(b,dimension)
+    v1 = avar(a,dimension)
+    v2 = avar(b,dimension)
+    n1 = a.shape[dimension]
+    n2 = b.shape[dimension]
+    df = n1+n2-2
+    svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
+    zerodivproblem = N.equal(svar,0)
+    svar = N.where(zerodivproblem,1,svar)  # avoid zero-division in 1st place
+    t = (x1-x2)/N.sqrt(svar*(1.0/n1 + 1.0/n2))  # N-D COMPUTATION HERE!!!!!!
+    t = N.where(zerodivproblem,1.0,t)     # replace NaN/wrong t-values with 1.0
+    probs = abetai(0.5*df,0.5,float(df)/(df+t*t))
+
+    if type(t) == N.ndarray:
+        probs = N.reshape(probs,t.shape)
+    if probs.shape == (1,):
+        probs = probs[0]
+        
+    if printit <> 0:
+        if type(t) == N.ndarray:
+            t = t[0]
+        if type(probs) == N.ndarray:
+            probs = probs[0]
+        statname = 'Independent samples T-test.'
+        outputpairedstats(printit,writemode,
+                          name1,n1,x1,v1,N.minimum.reduce(N.ravel(a)),
+                          N.maximum.reduce(N.ravel(a)),
+                          name2,n2,x2,v2,N.minimum.reduce(N.ravel(b)),
+                          N.maximum.reduce(N.ravel(b)),
+                          statname,t,probs)
+        return
+    return t, probs
+
+ def ap2t(pval,df):
+    """
+Tries to compute a t-value from a p-value (or pval array) and associated df.
+SLOW for large numbers of elements(!) as it re-computes p-values 20 times
+(smaller step-sizes) at which point it decides it's done. Keeps the signs
+of the input array. Returns 1000 (or -1000) if t>100.
+
+Usage:  ap2t(pval,df)
+Returns: an array of t-values with the shape of pval
+    """
+    pval = N.array(pval)
+    signs = N.sign(pval)
+    pval = abs(pval)
+    t = N.ones(pval.shape,N.float_)*50
+    step = N.ones(pval.shape,N.float_)*25
+    print "Initial ap2t() prob calc"
+    prob = abetai(0.5*df,0.5,float(df)/(df+t*t))
+    print 'ap2t() iter: ',
+    for i in range(10):
+        print i,' ',
+        t = N.where(pval<prob,t+step,t-step)
+        prob = abetai(0.5*df,0.5,float(df)/(df+t*t))
+        step = step/2
+    print
+    # since this is an ugly hack, we get ugly boundaries
+    t = N.where(t>99.9,1000,t)      # hit upper-boundary
+    t = t+signs
+    return t #, prob, pval
+
+
+ def attest_rel (a,b,dimension=None,printit=0,name1='Samp1',name2='Samp2',writemode='a'):
+    """
+Calculates the t-obtained T-test on TWO RELATED samples of scores, a
+and b.  From Numerical Recipies, p.483.  If printit=1, results are
+printed to the screen.  If printit='filename', the results are output
+to 'filename' using the given writemode (default=append).  Dimension
+can equal None (ravel array first), or an integer (the dimension over
+which to operate on a and b).
+
+Usage:   attest_rel(a,b,dimension=None,printit=0,
+                    name1='Samp1',name2='Samp2',writemode='a')
+Returns: t-value, two-tailed p-value
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        b = N.ravel(b)
+        dimension = 0
+    if len(a)<>len(b):
+        raise ValueError, 'Unequal length arrays.'
+    x1 = amean(a,dimension)
+    x2 = amean(b,dimension)
+    v1 = avar(a,dimension)
+    v2 = avar(b,dimension)
+    n = a.shape[dimension]
+    df = float(n-1)
+    d = (a-b).astype('d')
+
+    denom = N.sqrt((n*N.add.reduce(d*d,dimension) - N.add.reduce(d,dimension)**2) /df)
+    zerodivproblem = N.equal(denom,0)
+    denom = N.where(zerodivproblem,1,denom)  # avoid zero-division in 1st place
+    t = N.add.reduce(d,dimension) / denom      # N-D COMPUTATION HERE!!!!!!
+    t = N.where(zerodivproblem,1.0,t)     # replace NaN/wrong t-values with 1.0
+    probs = abetai(0.5*df,0.5,float(df)/(df+t*t))
+    if type(t) == N.ndarray:
+        probs = N.reshape(probs,t.shape)
+    if probs.shape == (1,):
+        probs = probs[0]
+
+    if printit <> 0:
+        statname = 'Related samples T-test.'
+        outputpairedstats(printit,writemode,
+                          name1,n,x1,v1,N.minimum.reduce(N.ravel(a)),
+                          N.maximum.reduce(N.ravel(a)),
+                          name2,n,x2,v2,N.minimum.reduce(N.ravel(b)),
+                          N.maximum.reduce(N.ravel(b)),
+                          statname,t,probs)
+        return
+    return t, probs
+
+
+ def achisquare(f_obs,f_exp=None):
+    """
+Calculates a one-way chi square for array of observed frequencies and returns
+the result.  If no expected frequencies are given, the total N is assumed to
+be equally distributed across all groups.
+@@@NOT RIGHT??
+
+Usage:   achisquare(f_obs, f_exp=None)   f_obs = array of observed cell freq.
+Returns: chisquare-statistic, associated p-value
+"""
+
+    k = len(f_obs)
+    if f_exp == None:
+        f_exp = N.array([sum(f_obs)/float(k)] * len(f_obs),N.float_)
+    f_exp = f_exp.astype(N.float_)
+    chisq = N.add.reduce((f_obs-f_exp)**2 / f_exp)
+    return chisq, achisqprob(chisq, k-1)
+
+
+ def aks_2samp (data1,data2):
+    """
+Computes the Kolmogorov-Smirnof statistic on 2 samples.  Modified from
+Numerical Recipies in C, page 493.  Returns KS D-value, prob.  Not ufunc-
+like.
+
+Usage:   aks_2samp(data1,data2)  where data1 and data2 are 1D arrays
+Returns: KS D-value, p-value
+"""
+    j1 = 0    # N.zeros(data1.shape[1:]) TRIED TO MAKE THIS UFUNC-LIKE
+    j2 = 0    # N.zeros(data2.shape[1:])
+    fn1 = 0.0 # N.zeros(data1.shape[1:],N.float_)
+    fn2 = 0.0 # N.zeros(data2.shape[1:],N.float_)
+    n1 = data1.shape[0]
+    n2 = data2.shape[0]
+    en1 = n1*1
+    en2 = n2*1
+    d = N.zeros(data1.shape[1:],N.float_)
+    data1 = N.sort(data1,0)
+    data2 = N.sort(data2,0)
+    while j1 < n1 and j2 < n2:
+        d1=data1[j1]
+        d2=data2[j2]
+        if d1 <= d2:
+            fn1 = (j1)/float(en1)
+            j1 = j1 + 1
+        if d2 <= d1:
+            fn2 = (j2)/float(en2)
+            j2 = j2 + 1
+        dt = (fn2-fn1)
+        if abs(dt) > abs(d):
+            d = dt
+#    try:
+    en = math.sqrt(en1*en2/float(en1+en2))
+    prob = aksprob((en+0.12+0.11/en)*N.fabs(d))
+#    except:
+#        prob = 1.0
+    return d, prob
+
+
+ def amannwhitneyu(x,y):
+    """
+Calculates a Mann-Whitney U statistic on the provided scores and
+returns the result.  Use only when the n in each condition is < 20 and
+you have 2 independent samples of ranks.  REMEMBER: Mann-Whitney U is
+significant if the u-obtained is LESS THAN or equal to the critical
+value of U.
+
+Usage:   amannwhitneyu(x,y)     where x,y are arrays of values for 2 conditions
+Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))
+"""
+    n1 = len(x)
+    n2 = len(y)
+    ranked = rankdata(N.concatenate((x,y)))
+    rankx = ranked[0:n1]       # get the x-ranks
+    ranky = ranked[n1:]        # the rest are y-ranks
+    u1 = n1*n2 + (n1*(n1+1))/2.0 - sum(rankx)  # calc U for x
+    u2 = n1*n2 - u1                            # remainder is U for y
+    bigu = max(u1,u2)
+    smallu = min(u1,u2)
+    T = math.sqrt(tiecorrect(ranked))  # correction factor for tied scores
+    if T == 0:
+        raise ValueError, 'All numbers are identical in amannwhitneyu'
+    sd = math.sqrt(T*n1*n2*(n1+n2+1)/12.0)
+    z = abs((bigu-n1*n2/2.0) / sd)  # normal approximation for prob calc
+    return smallu, 1.0 - azprob(z)
+
+
+ def atiecorrect(rankvals):
+    """
+Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
+See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
+Sciences.  New York: McGraw-Hill.  Code adapted from |Stat rankind.c
+code.
+
+Usage:   atiecorrect(rankvals)
+Returns: T correction factor for U or H
+"""
+    sorted,posn = ashellsort(N.array(rankvals))
+    n = len(sorted)
+    T = 0.0
+    i = 0
+    while (i<n-1):
+        if sorted[i] == sorted[i+1]:
+            nties = 1
+            while (i<n-1) and (sorted[i] == sorted[i+1]):
+                nties = nties +1
+                i = i +1
+            T = T + nties**3 - nties
+        i = i+1
+    T = T / float(n**3-n)
+    return 1.0 - T
+
+
+ def aranksums(x,y):
+    """
+Calculates the rank sums statistic on the provided scores and returns
+the result.
+
+Usage:   aranksums(x,y)     where x,y are arrays of values for 2 conditions
+Returns: z-statistic, two-tailed p-value
+"""
+    n1 = len(x)
+    n2 = len(y)
+    alldata = N.concatenate((x,y))
+    ranked = arankdata(alldata)
+    x = ranked[:n1]
+    y = ranked[n1:]
+    s = sum(x)
+    expected = n1*(n1+n2+1) / 2.0
+    z = (s - expected) / math.sqrt(n1*n2*(n1+n2+1)/12.0)
+    prob = 2*(1.0 - azprob(abs(z)))
+    return z, prob
+
+
+ def awilcoxont(x,y):
+    """
+Calculates the Wilcoxon T-test for related samples and returns the
+result.  A non-parametric T-test.
+
+Usage:   awilcoxont(x,y)     where x,y are equal-length arrays for 2 conditions
+Returns: t-statistic, two-tailed p-value
+"""
+    if len(x) <> len(y):
+        raise ValueError, 'Unequal N in awilcoxont.  Aborting.'
+    d = x-y
+    d = N.compress(N.not_equal(d,0),d) # Keep all non-zero differences
+    count = len(d)
+    absd = abs(d)
+    absranked = arankdata(absd)
+    r_plus = 0.0
+    r_minus = 0.0
+    for i in range(len(absd)):
+        if d[i] < 0:
+            r_minus = r_minus + absranked[i]
+        else:
+            r_plus = r_plus + absranked[i]
+    wt = min(r_plus, r_minus)
+    mn = count * (count+1) * 0.25
+    se =  math.sqrt(count*(count+1)*(2.0*count+1.0)/24.0)
+    z = math.fabs(wt-mn) / se
+    z = math.fabs(wt-mn) / se
+    prob = 2*(1.0 -zprob(abs(z)))
+    return wt, prob
+
+
+ def akruskalwallish(*args):
+    """
+The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more
+groups, requiring at least 5 subjects in each group.  This function
+calculates the Kruskal-Wallis H and associated p-value for 3 or more
+independent samples.
+
+Usage:   akruskalwallish(*args)     args are separate arrays for 3+ conditions
+Returns: H-statistic (corrected for ties), associated p-value
+"""
+    assert len(args) == 3, "Need at least 3 groups in stats.akruskalwallish()"
+    args = list(args)
+    n = [0]*len(args)
+    n = map(len,args)
+    all = []
+    for i in range(len(args)):
+        all = all + args[i].tolist()
+    ranked = rankdata(all)
+    T = tiecorrect(ranked)
+    for i in range(len(args)):
+        args[i] = ranked[0:n[i]]
+        del ranked[0:n[i]]
+    rsums = []
+    for i in range(len(args)):
+        rsums.append(sum(args[i])**2)
+        rsums[i] = rsums[i] / float(n[i])
+    ssbn = sum(rsums)
+    totaln = sum(n)
+    h = 12.0 / (totaln*(totaln+1)) * ssbn - 3*(totaln+1)
+    df = len(args) - 1
+    if T == 0:
+        raise ValueError, 'All numbers are identical in akruskalwallish'
+    h = h / float(T)
+    return h, chisqprob(h,df)
+
+
+ def afriedmanchisquare(*args):
+    """
+Friedman Chi-Square is a non-parametric, one-way within-subjects
+ANOVA.  This function calculates the Friedman Chi-square test for
+repeated measures and returns the result, along with the associated
+probability value.  It assumes 3 or more repeated measures.  Only 3
+levels requires a minimum of 10 subjects in the study.  Four levels
+requires 5 subjects per level(??).
+
+Usage:   afriedmanchisquare(*args)   args are separate arrays for 2+ conditions
+Returns: chi-square statistic, associated p-value
+"""
+    k = len(args)
+    if k < 3:
+        raise ValueError, '\nLess than 3 levels.  Friedman test not appropriate.\n'
+    n = len(args[0])
+    data = apply(pstat.aabut,args)
+    data = data.astype(N.float_)
+    for i in range(len(data)):
+        data[i] = arankdata(data[i])
+    ssbn = asum(asum(args,1)**2)
+    chisq = 12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1)
+    return chisq, achisqprob(chisq,k-1)
+
+
+#####################################
+####  APROBABILITY CALCULATIONS  ####
+#####################################
+
+ def achisqprob(chisq,df):
+    """
+Returns the (1-tail) probability value associated with the provided chi-square
+value and df.  Heavily modified from chisq.c in Gary Perlman's |Stat.  Can
+handle multiple dimensions.
+
+Usage:   achisqprob(chisq,df)    chisq=chisquare stat., df=degrees of freedom
+"""
+    BIG = 200.0
+    def ex(x):
+        BIG = 200.0
+        exponents = N.where(N.less(x,-BIG),-BIG,x)
+        return N.exp(exponents)
+
+    if type(chisq) == N.ndarray:
+        arrayflag = 1
+    else:
+        arrayflag = 0
+        chisq = N.array([chisq])
+    if df < 1:
+        return N.ones(chisq.shape,N.float)
+    probs = N.zeros(chisq.shape,N.float_)
+    probs = N.where(N.less_equal(chisq,0),1.0,probs)  # set prob=1 for chisq<0
+    a = 0.5 * chisq
+    if df > 1:
+        y = ex(-a)
+    if df%2 == 0:
+        even = 1
+        s = y*1
+        s2 = s*1
+    else:
+        even = 0
+        s = 2.0 * azprob(-N.sqrt(chisq))
+        s2 = s*1
+    if (df > 2):
+        chisq = 0.5 * (df - 1.0)
+        if even:
+            z = N.ones(probs.shape,N.float_)
+        else:
+            z = 0.5 *N.ones(probs.shape,N.float_)
+        if even:
+            e = N.zeros(probs.shape,N.float_)
+        else:
+            e = N.log(N.sqrt(N.pi)) *N.ones(probs.shape,N.float_)
+        c = N.log(a)
+        mask = N.zeros(probs.shape)
+        a_big = N.greater(a,BIG)
+        a_big_frozen = -1 *N.ones(probs.shape,N.float_)
+        totalelements = N.multiply.reduce(N.array(probs.shape))
+        while asum(mask)<>totalelements:
+            e = N.log(z) + e
+            s = s + ex(c*z-a-e)
+            z = z + 1.0
+#            print z, e, s
+            newmask = N.greater(z,chisq)
+            a_big_frozen = N.where(newmask*N.equal(mask,0)*a_big, s, a_big_frozen)
+            mask = N.clip(newmask+mask,0,1)
+        if even:
+            z = N.ones(probs.shape,N.float_)
+            e = N.ones(probs.shape,N.float_)
+        else:
+            z = 0.5 *N.ones(probs.shape,N.float_)
+            e = 1.0 / N.sqrt(N.pi) / N.sqrt(a) * N.ones(probs.shape,N.float_)
+        c = 0.0
+        mask = N.zeros(probs.shape)
+        a_notbig_frozen = -1 *N.ones(probs.shape,N.float_)
+        while asum(mask)<>totalelements:
+            e = e * (a/z.astype(N.float_))
+            c = c + e
+            z = z + 1.0
+#            print '#2', z, e, c, s, c*y+s2
+            newmask = N.greater(z,chisq)
+            a_notbig_frozen = N.where(newmask*N.equal(mask,0)*(1-a_big),
+                                      c*y+s2, a_notbig_frozen)
+            mask = N.clip(newmask+mask,0,1)
+        probs = N.where(N.equal(probs,1),1,
+                        N.where(N.greater(a,BIG),a_big_frozen,a_notbig_frozen))
+        return probs
+    else:
+        return s
+
+
+ def aerfcc(x):
+    """
+Returns the complementary error function erfc(x) with fractional error
+everywhere less than 1.2e-7.  Adapted from Numerical Recipies.  Can
+handle multiple dimensions.
+
+Usage:   aerfcc(x)
+"""
+    z = abs(x)
+    t = 1.0 / (1.0+0.5*z)
+    ans = t * N.exp(-z*z-1.26551223 + t*(1.00002368+t*(0.37409196+t*(0.09678418+t*(-0.18628806+t*(0.27886807+t*(-1.13520398+t*(1.48851587+t*(-0.82215223+t*0.17087277)))))))))
+    return N.where(N.greater_equal(x,0), ans, 2.0-ans)
+
+
+ def azprob(z):
+    """
+Returns the area under the normal curve 'to the left of' the given z value.
+Thus, 
+    for z<0, zprob(z) = 1-tail probability
+    for z>0, 1.0-zprob(z) = 1-tail probability
+    for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
+Adapted from z.c in Gary Perlman's |Stat.  Can handle multiple dimensions.
+
+Usage:   azprob(z)    where z is a z-value
+"""
+    def yfunc(y):
+        x = (((((((((((((-0.000045255659 * y
+                         +0.000152529290) * y -0.000019538132) * y
+                       -0.000676904986) * y +0.001390604284) * y
+                     -0.000794620820) * y -0.002034254874) * y
+                   +0.006549791214) * y -0.010557625006) * y
+                 +0.011630447319) * y -0.009279453341) * y
+               +0.005353579108) * y -0.002141268741) * y
+             +0.000535310849) * y +0.999936657524
+        return x
+
+    def wfunc(w):
+        x = ((((((((0.000124818987 * w
+                    -0.001075204047) * w +0.005198775019) * w
+                  -0.019198292004) * w +0.059054035642) * w
+                -0.151968751364) * w +0.319152932694) * w
+              -0.531923007300) * w +0.797884560593) * N.sqrt(w) * 2.0
+        return x
+
+    Z_MAX = 6.0    # maximum meaningful z-value
+    x = N.zeros(z.shape,N.float_) # initialize
+    y = 0.5 * N.fabs(z)
+    x = N.where(N.less(y,1.0),wfunc(y*y),yfunc(y-2.0)) # get x's
+    x = N.where(N.greater(y,Z_MAX*0.5),1.0,x)          # kill those with big Z
+    prob = N.where(N.greater(z,0),(x+1)*0.5,(1-x)*0.5)
+    return prob
+
+
+ def aksprob(alam):
+     """
+Returns the probability value for a K-S statistic computed via ks_2samp.
+Adapted from Numerical Recipies.  Can handle multiple dimensions.
+
+Usage:   aksprob(alam)
+"""
+     if type(alam) == N.ndarray:
+         frozen = -1 *N.ones(alam.shape,N.float64)
+         alam = alam.astype(N.float64)
+         arrayflag = 1
+     else:
+         frozen = N.array(-1.)
+         alam = N.array(alam,N.float64)
+         arrayflag = 1
+     mask = N.zeros(alam.shape)
+     fac = 2.0 *N.ones(alam.shape,N.float_)
+     sum = N.zeros(alam.shape,N.float_)
+     termbf = N.zeros(alam.shape,N.float_)
+     a2 = N.array(-2.0*alam*alam,N.float64)
+     totalelements = N.multiply.reduce(N.array(mask.shape))
+     for j in range(1,201):
+         if asum(mask) == totalelements:
+             break
+         exponents = (a2*j*j)
+         overflowmask = N.less(exponents,-746)
+         frozen = N.where(overflowmask,0,frozen)
+         mask = mask+overflowmask
+         term = fac*N.exp(exponents)
+         sum = sum + term
+         newmask = N.where(N.less_equal(abs(term),(0.001*termbf)) +
+                           N.less(abs(term),1.0e-8*sum), 1, 0)
+         frozen = N.where(newmask*N.equal(mask,0), sum, frozen)
+         mask = N.clip(mask+newmask,0,1)
+         fac = -fac
+         termbf = abs(term)
+     if arrayflag:
+         return N.where(N.equal(frozen,-1), 1.0, frozen)  # 1.0 if doesn't converge
+     else:
+         return N.where(N.equal(frozen,-1), 1.0, frozen)[0]  # 1.0 if doesn't converge
+
+
+ def afprob (dfnum, dfden, F):
+    """
+Returns the 1-tailed significance level (p-value) of an F statistic
+given the degrees of freedom for the numerator (dfR-dfF) and the degrees
+of freedom for the denominator (dfF).  Can handle multiple dims for F.
+
+Usage:   afprob(dfnum, dfden, F)   where usually dfnum=dfbn, dfden=dfwn
+"""
+    if type(F) == N.ndarray:
+        return abetai(0.5*dfden, 0.5*dfnum, dfden/(1.0*dfden+dfnum*F))
+    else:
+        return abetai(0.5*dfden, 0.5*dfnum, dfden/float(dfden+dfnum*F))
+
+
+ def abetacf(a,b,x,verbose=1):
+    """
+Evaluates the continued fraction form of the incomplete Beta function,
+betai.  (Adapted from: Numerical Recipies in C.)  Can handle multiple
+dimensions for x.
+
+Usage:   abetacf(a,b,x,verbose=1)
+"""
+    ITMAX = 200
+    EPS = 3.0e-7
+
+    arrayflag = 1
+    if type(x) == N.ndarray:
+        frozen = N.ones(x.shape,N.float_) *-1  #start out w/ -1s, should replace all
+    else:
+        arrayflag = 0
+        frozen = N.array([-1])
+        x = N.array([x])
+    mask = N.zeros(x.shape)
+    bm = az = am = 1.0
+    qab = a+b
+    qap = a+1.0
+    qam = a-1.0
+    bz = 1.0-qab*x/qap
+    for i in range(ITMAX+1):
+        if N.sum(N.ravel(N.equal(frozen,-1)))==0:
+            break
+        em = float(i+1)
+        tem = em + em
+        d = em*(b-em)*x/((qam+tem)*(a+tem))
+        ap = az + d*am
+        bp = bz+d*bm
+        d = -(a+em)*(qab+em)*x/((qap+tem)*(a+tem))
+        app = ap+d*az
+        bpp = bp+d*bz
+        aold = az*1
+        am = ap/bpp
+        bm = bp/bpp
+        az = app/bpp
+        bz = 1.0
+        newmask = N.less(abs(az-aold),EPS*abs(az))
+        frozen = N.where(newmask*N.equal(mask,0), az, frozen)
+        mask = N.clip(mask+newmask,0,1)
+    noconverge = asum(N.equal(frozen,-1))
+    if noconverge <> 0 and verbose:
+        print 'a or b too big, or ITMAX too small in Betacf for ',noconverge,' elements'
+    if arrayflag:
+        return frozen
+    else:
+        return frozen[0]
+
+
+ def agammln(xx):
+    """
+Returns the gamma function of xx.
+    Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
+Adapted from: Numerical Recipies in C.  Can handle multiple dims ... but
+probably doesn't normally have to.
+
+Usage:   agammln(xx)
+"""
+    coeff = [76.18009173, -86.50532033, 24.01409822, -1.231739516,
+             0.120858003e-2, -0.536382e-5]
+    x = xx - 1.0
+    tmp = x + 5.5
+    tmp = tmp - (x+0.5)*N.log(tmp)
+    ser = 1.0
+    for j in range(len(coeff)):
+        x = x + 1
+        ser = ser + coeff[j]/x
+    return -tmp + N.log(2.50662827465*ser)
+
+
+ def abetai(a,b,x,verbose=1):
+    """
+Returns the incomplete beta function:
+
+    I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
+
+where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
+function of a.  The continued fraction formulation is implemented
+here, using the betacf function.  (Adapted from: Numerical Recipies in
+C.)  Can handle multiple dimensions.
+
+Usage:   abetai(a,b,x,verbose=1)
+"""
+    TINY = 1e-15
+    if type(a) == N.ndarray:
+        if asum(N.less(x,0)+N.greater(x,1)) <> 0:
+            raise ValueError, 'Bad x in abetai'
+    x = N.where(N.equal(x,0),TINY,x)
+    x = N.where(N.equal(x,1.0),1-TINY,x)
+
+    bt = N.where(N.equal(x,0)+N.equal(x,1), 0, -1)
+    exponents = ( gammln(a+b)-gammln(a)-gammln(b)+a*N.log(x)+b*
+                  N.log(1.0-x) )
+    # 746 (below) is the MAX POSSIBLE BEFORE OVERFLOW
+    exponents = N.where(N.less(exponents,-740),-740,exponents)
+    bt = N.exp(exponents)
+    if type(x) == N.ndarray:
+        ans = N.where(N.less(x,(a+1)/(a+b+2.0)),
+                      bt*abetacf(a,b,x,verbose)/float(a),
+                      1.0-bt*abetacf(b,a,1.0-x,verbose)/float(b))
+    else:
+        if x<(a+1)/(a+b+2.0):
+            ans = bt*abetacf(a,b,x,verbose)/float(a)
+        else:
+            ans = 1.0-bt*abetacf(b,a,1.0-x,verbose)/float(b)
+    return ans
+
+
+#####################################
+#######  AANOVA CALCULATIONS  #######
+#####################################
+
+ import LinearAlgebra, operator
+ LA = LinearAlgebra
+
+ def aglm(data,para):
+    """
+Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken
+from:
+    Peterson et al. Statistical limitations in functional neuroimaging
+    I. Non-inferential methods and statistical models.  Phil Trans Royal Soc
+    Lond B 354: 1239-1260.
+
+Usage:   aglm(data,para)
+Returns: statistic, p-value ???
+"""
+    if len(para) <> len(data):
+        print "data and para must be same length in aglm"
+        return
+    n = len(para)
+    p = pstat.aunique(para)
+    x = N.zeros((n,len(p)))  # design matrix
+    for l in range(len(p)):
+        x[:,l] = N.equal(para,p[l])
+    b = N.dot(N.dot(LA.inv(N.dot(N.transpose(x),x)),  # i.e., b=inv(X'X)X'Y
+                    N.transpose(x)),
+              data)
+    diffs = (data - N.dot(x,b))
+    s_sq = 1./(n-len(p)) * N.dot(N.transpose(diffs), diffs)
+
+    if len(p) == 2:  # ttest_ind
+        c = N.array([1,-1])
+        df = n-2
+        fact = asum(1.0/asum(x,0))  # i.e., 1/n1 + 1/n2 + 1/n3 ...
+        t = N.dot(c,b) / N.sqrt(s_sq*fact)
+        probs = abetai(0.5*df,0.5,float(df)/(df+t*t))
+        return t, probs
+
+
+ def aF_oneway(*args):
+    """
+Performs a 1-way ANOVA, returning an F-value and probability given
+any number of groups.  From Heiman, pp.394-7.
+
+Usage:   aF_oneway (*args)    where *args is 2 or more arrays, one per
+                                  treatment group
+Returns: f-value, probability
+"""
+    na = len(args)            # ANOVA on 'na' groups, each in it's own array
+    means = [0]*na
+    vars = [0]*na
+    ns = [0]*na
+    alldata = []
+    tmp = map(N.array,args)
+    means = map(amean,tmp)
+    vars = map(avar,tmp)
+    ns = map(len,args)
+    alldata = N.concatenate(args)
+    bign = len(alldata)
+    sstot = ass(alldata)-(asquare_of_sums(alldata)/float(bign))
+    ssbn = 0
+    for a in args:
+        ssbn = ssbn + asquare_of_sums(N.array(a))/float(len(a))
+    ssbn = ssbn - (asquare_of_sums(alldata)/float(bign))
+    sswn = sstot-ssbn
+    dfbn = na-1
+    dfwn = bign - na
+    msb = ssbn/float(dfbn)
+    msw = sswn/float(dfwn)
+    f = msb/msw
+    prob = fprob(dfbn,dfwn,f)
+    return f, prob
+
+
+ def aF_value (ER,EF,dfR,dfF):
+    """
+Returns an F-statistic given the following:
+        ER  = error associated with the null hypothesis (the Restricted model)
+        EF  = error associated with the alternate hypothesis (the Full model)
+        dfR = degrees of freedom the Restricted model
+        dfF = degrees of freedom associated with the Restricted model
+"""
+    return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF)))
+
+
+ def outputfstats(Enum, Eden, dfnum, dfden, f, prob):
+     Enum = round(Enum,3)
+     Eden = round(Eden,3)
+     dfnum = round(Enum,3)
+     dfden = round(dfden,3)
+     f = round(f,3)
+     prob = round(prob,3)
+     suffix = ''                       # for *s after the p-value
+     if  prob < 0.001:  suffix = '  ***'
+     elif prob < 0.01:  suffix = '  **'
+     elif prob < 0.05:  suffix = '  *'
+     title = [['EF/ER','DF','Mean Square','F-value','prob','']]
+     lofl = title+[[Enum, dfnum, round(Enum/float(dfnum),3), f, prob, suffix],
+                   [Eden, dfden, round(Eden/float(dfden),3),'','','']]
+     pstat.printcc(lofl)
+     return
+
+
+ def F_value_multivariate(ER, EF, dfnum, dfden):
+     """
+Returns an F-statistic given the following:
+        ER  = error associated with the null hypothesis (the Restricted model)
+        EF  = error associated with the alternate hypothesis (the Full model)
+        dfR = degrees of freedom the Restricted model
+        dfF = degrees of freedom associated with the Restricted model
+where ER and EF are matrices from a multivariate F calculation.
+"""
+     if type(ER) in [IntType, FloatType]:
+         ER = N.array([[ER]])
+     if type(EF) in [IntType, FloatType]:
+         EF = N.array([[EF]])
+     n_um = (LA.det(ER) - LA.det(EF)) / float(dfnum)
+     d_en = LA.det(EF) / float(dfden)
+     return n_um / d_en
+
+
+#####################################
+#######  ASUPPORT FUNCTIONS  ########
+#####################################
+
+ def asign(a):
+    """
+Usage:   asign(a)
+Returns: array shape of a, with -1 where a<0 and +1 where a>=0
+"""
+    a = N.asarray(a)
+    if ((type(a) == type(1.4)) or (type(a) == type(1))):
+        return a-a-N.less(a,0)+N.greater(a,0)
+    else:
+        return N.zeros(N.shape(a))-N.less(a,0)+N.greater(a,0)
+
+
+ def asum (a, dimension=None,keepdims=0):
+     """
+An alternative to the Numeric.add.reduce function, which allows one to
+(1) collapse over multiple dimensions at once, and/or (2) to retain
+all dimensions in the original array (squashing one down to size.
+Dimension can equal None (ravel array first), an integer (the
+dimension over which to operate), or a sequence (operate over multiple
+dimensions).  If keepdims=1, the resulting array will have as many
+dimensions as the input array.
+
+Usage:   asum(a, dimension=None, keepdims=0)
+Returns: array summed along 'dimension'(s), same _number_ of dims if keepdims=1
+"""
+     if type(a) == N.ndarray and a.dtype in [N.int_, N.short, N.ubyte]:
+         a = a.astype(N.float_)
+     if dimension == None:
+         s = N.sum(N.ravel(a))
+     elif type(dimension) in [IntType,FloatType]:
+         s = N.add.reduce(a, dimension)
+         if keepdims == 1:
+             shp = list(a.shape)
+             shp[dimension] = 1
+             s = N.reshape(s,shp)
+     else: # must be a SEQUENCE of dims to sum over
+        dims = list(dimension)
+        dims.sort()
+        dims.reverse()
+        s = a *1.0
+        for dim in dims:
+            s = N.add.reduce(s,dim)
+        if keepdims == 1:
+            shp = list(a.shape)
+            for dim in dims:
+                shp[dim] = 1
+            s = N.reshape(s,shp)
+     return s
+
+
+ def acumsum (a,dimension=None):
+    """
+Returns an array consisting of the cumulative sum of the items in the
+passed array.  Dimension can equal None (ravel array first), an
+integer (the dimension over which to operate), or a sequence (operate
+over multiple dimensions, but this last one just barely makes sense).
+
+Usage:   acumsum(a,dimension=None)
+"""
+    if dimension == None:
+        a = N.ravel(a)
+        dimension = 0
+    if type(dimension) in [ListType, TupleType, N.ndarray]:
+        dimension = list(dimension)
+        dimension.sort()
+        dimension.reverse()
+        for d in dimension:
+            a = N.add.accumulate(a,d)
+        return a
+    else:
+        return N.add.accumulate(a,dimension)
+
+
+ def ass(inarray, dimension=None, keepdims=0):
+    """
+Squares each value in the passed array, adds these squares & returns
+the result.  Unfortunate function name. :-) Defaults to ALL values in
+the array.  Dimension can equal None (ravel array first), an integer
+(the dimension over which to operate), or a sequence (operate over
+multiple dimensions).  Set keepdims=1 to maintain the original number
+of dimensions.
+
+Usage:   ass(inarray, dimension=None, keepdims=0)
+Returns: sum-along-'dimension' for (inarray*inarray)
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    return asum(inarray*inarray,dimension,keepdims)
+
+
+ def asummult (array1,array2,dimension=None,keepdims=0):
+    """
+Multiplies elements in array1 and array2, element by element, and
+returns the sum (along 'dimension') of all resulting multiplications.
+Dimension can equal None (ravel array first), an integer (the
+dimension over which to operate), or a sequence (operate over multiple
+dimensions).  A trivial function, but included for completeness.
+
+Usage:   asummult(array1,array2,dimension=None,keepdims=0)
+"""
+    if dimension == None:
+        array1 = N.ravel(array1)
+        array2 = N.ravel(array2)
+        dimension = 0
+    return asum(array1*array2,dimension,keepdims)
+
+
+ def asquare_of_sums(inarray, dimension=None, keepdims=0):
+    """
+Adds the values in the passed array, squares that sum, and returns the
+result.  Dimension can equal None (ravel array first), an integer (the
+dimension over which to operate), or a sequence (operate over multiple
+dimensions).  If keepdims=1, the returned array will have the same
+NUMBER of dimensions as the original.
+
+Usage:   asquare_of_sums(inarray, dimension=None, keepdims=0)
+Returns: the square of the sum over dim(s) in dimension
+"""
+    if dimension == None:
+        inarray = N.ravel(inarray)
+        dimension = 0
+    s = asum(inarray,dimension,keepdims)
+    if type(s) == N.ndarray:
+        return s.astype(N.float_)*s
+    else:
+        return float(s)*s
+
+
+ def asumdiffsquared(a,b, dimension=None, keepdims=0):
+    """
+Takes pairwise differences of the values in arrays a and b, squares
+these differences, and returns the sum of these squares.  Dimension
+can equal None (ravel array first), an integer (the dimension over
+which to operate), or a sequence (operate over multiple dimensions).
+keepdims=1 means the return shape = len(a.shape) = len(b.shape)
+
+Usage:   asumdiffsquared(a,b)
+Returns: sum[ravel(a-b)**2]
+"""
+    if dimension == None:
+        inarray = N.ravel(a)
+        dimension = 0
+    return asum((a-b)**2,dimension,keepdims)
+
+
+ def ashellsort(inarray):
+    """
+Shellsort algorithm.  Sorts a 1D-array.
+
+Usage:   ashellsort(inarray)
+Returns: sorted-inarray, sorting-index-vector (for original array)
+"""
+    n = len(inarray)
+    svec = inarray *1.0
+    ivec = range(n)
+    gap = n/2   # integer division needed
+    while gap >0:
+        for i in range(gap,n):
+            for j in range(i-gap,-1,-gap):
+                while j>=0 and svec[j]>svec[j+gap]:
+                    temp        = svec[j]
+                    svec[j]     = svec[j+gap]
+                    svec[j+gap] = temp
+                    itemp       = ivec[j]
+                    ivec[j]     = ivec[j+gap]
+                    ivec[j+gap] = itemp
+        gap = gap / 2  # integer division needed
+#    svec is now sorted input vector, ivec has the order svec[i] = vec[ivec[i]]
+    return svec, ivec
+
+
+ def arankdata(inarray):
+    """
+Ranks the data in inarray, dealing with ties appropritely.  Assumes
+a 1D inarray.  Adapted from Gary Perlman's |Stat ranksort.
+
+Usage:   arankdata(inarray)
+Returns: array of length equal to inarray, containing rank scores
+"""
+    n = len(inarray)
+    svec, ivec = ashellsort(inarray)
+    sumranks = 0
+    dupcount = 0
+    newarray = N.zeros(n,N.float_)
+    for i in range(n):
+        sumranks = sumranks + i
+        dupcount = dupcount + 1
+        if i==n-1 or svec[i] <> svec[i+1]:
+            averank = sumranks / float(dupcount) + 1
+            for j in range(i-dupcount+1,i+1):
+                newarray[ivec[j]] = averank
+            sumranks = 0
+            dupcount = 0
+    return newarray
+
+
+ def afindwithin(data):
+    """
+Returns a binary vector, 1=within-subject factor, 0=between.  Input
+equals the entire data array (i.e., column 1=random factor, last
+column = measured values.
+
+Usage:   afindwithin(data)     data in |Stat format
+"""
+    numfact = len(data[0])-2
+    withinvec = [0]*numfact
+    for col in range(1,numfact+1):
+        rows = pstat.linexand(data,col,pstat.unique(pstat.colex(data,1))[0])  # get 1 level of this factor
+        if len(pstat.unique(pstat.colex(rows,0))) < len(rows):   # if fewer subjects than scores on this factor
+            withinvec[col-1] = 1
+    return withinvec
+
+
+ #########################################################
+ #########################################################
+ ######  RE-DEFINE DISPATCHES TO INCLUDE ARRAYS  #########
+ #########################################################
+ #########################################################
+
+## CENTRAL TENDENCY:
+ geometricmean = Dispatch ( (lgeometricmean, (ListType, TupleType)),
+                            (ageometricmean, (N.ndarray,)) )
+ harmonicmean = Dispatch ( (lharmonicmean, (ListType, TupleType)),
+                           (aharmonicmean, (N.ndarray,)) )
+ mean = Dispatch ( (lmean, (ListType, TupleType)),
+                   (amean, (N.ndarray,)) )
+ median = Dispatch ( (lmedian, (ListType, TupleType)),
+                     (amedian, (N.ndarray,)) )
+ medianscore = Dispatch ( (lmedianscore, (ListType, TupleType)),
+                          (amedianscore, (N.ndarray,)) )
+ mode = Dispatch ( (lmode, (ListType, TupleType)),
+                   (amode, (N.ndarray,)) )
+ tmean = Dispatch ( (atmean, (N.ndarray,)) )
+ tvar = Dispatch ( (atvar, (N.ndarray,)) )
+ tstdev = Dispatch ( (atstdev, (N.ndarray,)) )
+ tsem = Dispatch ( (atsem, (N.ndarray,)) )
+
+## VARIATION:
+ moment = Dispatch ( (lmoment, (ListType, TupleType)),
+                     (amoment, (N.ndarray,)) )
+ variation = Dispatch ( (lvariation, (ListType, TupleType)),
+                        (avariation, (N.ndarray,)) )
+ skew = Dispatch ( (lskew, (ListType, TupleType)),
+                   (askew, (N.ndarray,)) )
+ kurtosis = Dispatch ( (lkurtosis, (ListType, TupleType)),
+                       (akurtosis, (N.ndarray,)) )
+ describe = Dispatch ( (ldescribe, (ListType, TupleType)),
+                       (adescribe, (N.ndarray,)) )
+
+## DISTRIBUTION TESTS
+
+ skewtest = Dispatch ( (askewtest, (ListType, TupleType)),
+                       (askewtest, (N.ndarray,)) )
+ kurtosistest = Dispatch ( (akurtosistest, (ListType, TupleType)),
+                           (akurtosistest, (N.ndarray,)) )
+ normaltest = Dispatch ( (anormaltest, (ListType, TupleType)),
+                         (anormaltest, (N.ndarray,)) )
+
+## FREQUENCY STATS:
+ itemfreq = Dispatch ( (litemfreq, (ListType, TupleType)),
+                       (aitemfreq, (N.ndarray,)) )
+ scoreatpercentile = Dispatch ( (lscoreatpercentile, (ListType, TupleType)),
+                                (ascoreatpercentile, (N.ndarray,)) )
+ percentileofscore = Dispatch ( (lpercentileofscore, (ListType, TupleType)),
+                                 (apercentileofscore, (N.ndarray,)) )
+ histogram = Dispatch ( (lhistogram, (ListType, TupleType)),
+                        (ahistogram, (N.ndarray,)) )
+ cumfreq = Dispatch ( (lcumfreq, (ListType, TupleType)),
+                      (acumfreq, (N.ndarray,)) )
+ relfreq = Dispatch ( (lrelfreq, (ListType, TupleType)),
+                      (arelfreq, (N.ndarray,)) )
+ 
+## VARIABILITY:
+ obrientransform = Dispatch ( (lobrientransform, (ListType, TupleType)),
+                              (aobrientransform, (N.ndarray,)) )
+ samplevar = Dispatch ( (lsamplevar, (ListType, TupleType)),
+                        (asamplevar, (N.ndarray,)) )
+ samplestdev = Dispatch ( (lsamplestdev, (ListType, TupleType)),
+                          (asamplestdev, (N.ndarray,)) )
+ signaltonoise = Dispatch( (asignaltonoise, (N.ndarray,)),)
+ var = Dispatch ( (lvar, (ListType, TupleType)),
+                  (avar, (N.ndarray,)) )
+ stdev = Dispatch ( (lstdev, (ListType, TupleType)),
+                    (astdev, (N.ndarray,)) )
+ sterr = Dispatch ( (lsterr, (ListType, TupleType)),
+                    (asterr, (N.ndarray,)) )
+ sem = Dispatch ( (lsem, (ListType, TupleType)),
+                  (asem, (N.ndarray,)) )
+ z = Dispatch ( (lz, (ListType, TupleType)),
+                (az, (N.ndarray,)) )
+ zs = Dispatch ( (lzs, (ListType, TupleType)),
+                 (azs, (N.ndarray,)) )
+ 
+## TRIMMING FCNS:
+ threshold = Dispatch( (athreshold, (N.ndarray,)),)
+ trimboth = Dispatch ( (ltrimboth, (ListType, TupleType)),
+                       (atrimboth, (N.ndarray,)) )
+ trim1 = Dispatch ( (ltrim1, (ListType, TupleType)),
+                    (atrim1, (N.ndarray,)) )
+ 
+## CORRELATION FCNS:
+ paired = Dispatch ( (lpaired, (ListType, TupleType)),
+                     (apaired, (N.ndarray,)) )
+ lincc = Dispatch ( (llincc, (ListType, TupleType)),
+                       (alincc, (N.ndarray,)) )
+ pearsonr = Dispatch ( (lpearsonr, (ListType, TupleType)),
+                       (apearsonr, (N.ndarray,)) )
+ spearmanr = Dispatch ( (lspearmanr, (ListType, TupleType)),
+                        (aspearmanr, (N.ndarray,)) )
+ pointbiserialr = Dispatch ( (lpointbiserialr, (ListType, TupleType)),
+                             (apointbiserialr, (N.ndarray,)) )
+ kendalltau = Dispatch ( (lkendalltau, (ListType, TupleType)),
+                         (akendalltau, (N.ndarray,)) )
+ linregress = Dispatch ( (llinregress, (ListType, TupleType)),
+                         (alinregress, (N.ndarray,)) )
+ 
+## INFERENTIAL STATS:
+ ttest_1samp = Dispatch ( (lttest_1samp, (ListType, TupleType)),
+                          (attest_1samp, (N.ndarray,)) )
+ ttest_ind = Dispatch ( (lttest_ind, (ListType, TupleType)),
+                        (attest_ind, (N.ndarray,)) )
+ ttest_rel = Dispatch ( (lttest_rel, (ListType, TupleType)),
+                        (attest_rel, (N.ndarray,)) )
+ chisquare = Dispatch ( (lchisquare, (ListType, TupleType)),
+                        (achisquare, (N.ndarray,)) )
+ ks_2samp = Dispatch ( (lks_2samp, (ListType, TupleType)),
+                       (aks_2samp, (N.ndarray,)) )
+ mannwhitneyu = Dispatch ( (lmannwhitneyu, (ListType, TupleType)),
+                           (amannwhitneyu, (N.ndarray,)) )
+ tiecorrect = Dispatch ( (ltiecorrect, (ListType, TupleType)),
+                         (atiecorrect, (N.ndarray,)) )
+ ranksums = Dispatch ( (lranksums, (ListType, TupleType)),
+                       (aranksums, (N.ndarray,)) )
+ wilcoxont = Dispatch ( (lwilcoxont, (ListType, TupleType)),
+                        (awilcoxont, (N.ndarray,)) )
+ kruskalwallish = Dispatch ( (lkruskalwallish, (ListType, TupleType)),
+                             (akruskalwallish, (N.ndarray,)) )
+ friedmanchisquare = Dispatch ( (lfriedmanchisquare, (ListType, TupleType)),
+                                (afriedmanchisquare, (N.ndarray,)) )
+ 
+## PROBABILITY CALCS:
+ chisqprob = Dispatch ( (lchisqprob, (IntType, FloatType)),
+                        (achisqprob, (N.ndarray,)) )
+ zprob = Dispatch ( (lzprob, (IntType, FloatType)),
+                    (azprob, (N.ndarray,)) )
+ ksprob = Dispatch ( (lksprob, (IntType, FloatType)),
+                     (aksprob, (N.ndarray,)) )
+ fprob = Dispatch ( (lfprob, (IntType, FloatType)),
+                    (afprob, (N.ndarray,)) )
+ betacf = Dispatch ( (lbetacf, (IntType, FloatType)),
+                     (abetacf, (N.ndarray,)) )
+ betai = Dispatch ( (lbetai, (IntType, FloatType)),
+                    (abetai, (N.ndarray,)) )
+ erfcc = Dispatch ( (lerfcc, (IntType, FloatType)),
+                    (aerfcc, (N.ndarray,)) )
+ gammln = Dispatch ( (lgammln, (IntType, FloatType)),
+                     (agammln, (N.ndarray,)) )
+ 
+## ANOVA FUNCTIONS:
+ F_oneway = Dispatch ( (lF_oneway, (ListType, TupleType)),
+                       (aF_oneway, (N.ndarray,)) )
+ F_value = Dispatch ( (lF_value, (ListType, TupleType)),
+                      (aF_value, (N.ndarray,)) )
+
+## SUPPORT FUNCTIONS:
+ incr = Dispatch ( (lincr, (ListType, TupleType, N.ndarray)), )
+ sum = Dispatch ( (lsum, (ListType, TupleType)),
+                  (asum, (N.ndarray,)) )
+ cumsum = Dispatch ( (lcumsum, (ListType, TupleType)),
+                     (acumsum, (N.ndarray,)) )
+ ss = Dispatch ( (lss, (ListType, TupleType)),
+                 (ass, (N.ndarray,)) )
+ summult = Dispatch ( (lsummult, (ListType, TupleType)),
+                      (asummult, (N.ndarray,)) )
+ square_of_sums = Dispatch ( (lsquare_of_sums, (ListType, TupleType)),
+                             (asquare_of_sums, (N.ndarray,)) )
+ sumdiffsquared = Dispatch ( (lsumdiffsquared, (ListType, TupleType)),
+                             (asumdiffsquared, (N.ndarray,)) )
+ shellsort = Dispatch ( (lshellsort, (ListType, TupleType)),
+                        (ashellsort, (N.ndarray,)) )
+ rankdata = Dispatch ( (lrankdata, (ListType, TupleType)),
+                       (arankdata, (N.ndarray,)) )
+ findwithin = Dispatch ( (lfindwithin, (ListType, TupleType)),
+                         (afindwithin, (N.ndarray,)) )
+
+######################  END OF NUMERIC FUNCTION BLOCK  #####################
+
+######################  END OF STATISTICAL FUNCTIONS  ######################
+
+except ImportError:
+ pass





More information about the llvm-commits mailing list