[llvm-commits] [llvm] r119787 - in /llvm/trunk: include/llvm/ADT/IntervalMap.h lib/Support/CMakeLists.txt lib/Support/IntervalMap.cpp unittests/ADT/IntervalMapTest.cpp unittests/CMakeLists.txt

Jakob Stoklund Olesen stoklund at 2pi.dk
Thu Nov 18 20:47:19 PST 2010


Author: stoklund
Date: Thu Nov 18 22:47:19 2010
New Revision: 119787

URL: http://llvm.org/viewvc/llvm-project?rev=119787&view=rev
Log:
Add ADT/IntervalMap.

This is a sorted interval map data structure for small keys and values with
automatic coalescing and bidirectional iteration over coalesced intervals.

Except for coalescing intervals, it provides similar functionality to std::map.
It is however much more compact for small keys and values, and hopefully faster
too.

The container object itself can hold the first few intervals without any
allocations, then it switches to a cache conscious B+-tree representation. A
recycling allocator can be shared between many containers, even between
containers holding different types.

The IntervalMap is initially intended to be used with SlotIndex intervals for:

- Backing store for LiveIntervalUnion that is smaller and faster than std::set.

- Backing store for LiveInterval with less overhead than std::vector for typical
  intervals and O(N log N) merging of large intervals. 99% of virtual registers
  need 4 entries or less and would benefit from the small object optimization.

- Backing store for LiveDebugVariable which doesn't exist yet, but will track
  debug variables during register allocation.

This is a work in progress. Missing items are:

- Performance metrics.
- erase().
- insert() shrinkage.
- clear().
- More performance metrics.
- Simplification and detemplatization.

Added:
    llvm/trunk/include/llvm/ADT/IntervalMap.h
    llvm/trunk/lib/Support/IntervalMap.cpp
    llvm/trunk/unittests/ADT/IntervalMapTest.cpp
Modified:
    llvm/trunk/lib/Support/CMakeLists.txt
    llvm/trunk/unittests/CMakeLists.txt

Added: llvm/trunk/include/llvm/ADT/IntervalMap.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/ADT/IntervalMap.h?rev=119787&view=auto
==============================================================================
--- llvm/trunk/include/llvm/ADT/IntervalMap.h (added)
+++ llvm/trunk/include/llvm/ADT/IntervalMap.h Thu Nov 18 22:47:19 2010
@@ -0,0 +1,1705 @@
+//===- llvm/ADT/IntervalMap.h - A sorted interval map -----------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements a coalescing interval map for small objects.
+//
+// KeyT objects are mapped to ValT objects. Intervals of keys that map to the
+// same value are represented in a compressed form.
+//
+// Iterators provide ordered access to the compressed intervals rather than the
+// individual keys, and insert and erase operations use key intervals as well.
+//
+// Like SmallVector, IntervalMap will store the first N intervals in the map
+// object itself without any allocations. When space is exhausted it switches to
+// a B+-tree representation with very small overhead for small key and value
+// objects.
+//
+// A Traits class specifies how keys are compared. It also allows IntervalMap to
+// work with both closed and half-open intervals.
+//
+// Keys and values are not stored next to each other in a std::pair, so we don't
+// provide such a value_type. Dereferencing iterators only returns the mapped
+// value. The interval bounds are accessible through the start() and stop()
+// iterator methods.
+//
+// IntervalMap is optimized for small key and value objects, 4 or 8 bytes each
+// is the optimal size. For large objects use std::map instead.
+//
+//===----------------------------------------------------------------------===//
+//
+// Synopsis:
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap {
+// public:
+//   typedef KeyT key_type;
+//   typedef ValT mapped_type;
+//   typedef RecyclingAllocator<...> Allocator;
+//   class iterator;
+//   class const_iterator;
+//
+//   explicit IntervalMap(Allocator&);
+//   ~IntervalMap():
+//
+//   bool empty() const;
+//   KeyT start() const;
+//   KeyT stop() const;
+//   ValT lookup(KeyT x, Value NotFound = Value()) const;
+//
+//   const_iterator begin() const;
+//   const_iterator end() const;
+//   iterator begin();
+//   iterator end();
+//   const_iterator find(KeyT x) const;
+//   iterator find(KeyT x);
+//
+//   void insert(KeyT a, KeyT b, ValT y);
+//   void clear();
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::const_iterator :
+//   public std::iterator<std::bidirectional_iterator_tag, ValT> {
+// public:
+//   bool operator==(const const_iterator &) const;
+//   bool operator!=(const const_iterator &) const;
+//   bool valid() const;
+//
+//   const KeyT &start() const;
+//   const KeyT &stop() const;
+//   const ValT &value() const;
+//   const ValT &operator*() const;
+//   const ValT *operator->() const;
+//
+//   const_iterator &operator++();
+//   const_iterator &operator++(int);
+//   const_iterator &operator--();
+//   const_iterator &operator--(int);
+//   void goToBegin();
+//   void goToEnd();
+//   void find(KeyT x);
+//   void advanceTo(KeyT x);
+// };
+//
+// template <typename KeyT, typename ValT, unsigned N, typename Traits>
+// class IntervalMap::iterator : public const_iterator {
+// public:
+//   void insert(KeyT a, KeyT b, Value y);
+//   void erase();
+// };
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_INTERVALMAP_H
+#define LLVM_ADT_INTERVALMAP_H
+
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/RecyclingAllocator.h"
+#include <limits>
+#include <iterator>
+
+// FIXME: Remove debugging code
+#ifndef NDEBUG
+#include "llvm/Support/raw_ostream.h"
+#endif
+
+namespace llvm {
+
+
+//===----------------------------------------------------------------------===//
+//---                              Key traits                              ---//
+//===----------------------------------------------------------------------===//
+//
+// The IntervalMap works with closed or half-open intervals.
+// Adjacent intervals that map to the same value are coalesced.
+//
+// The IntervalMapInfo traits class is used to determine if a key is contained
+// in an interval, and if two intervals are adjacent so they can be coalesced.
+// The provided implementation works for closed integer intervals, other keys
+// probably need a specialized version.
+//
+// The point x is contained in [a;b] when !startLess(x, a) && !stopLess(b, x).
+//
+// It is assumed that (a;b] half-open intervals are not used, only [a;b) is
+// allowed. This is so that stopLess(a, b) can be used to determine if two
+// intervals overlap.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename T>
+struct IntervalMapInfo {
+
+  /// startLess - Return true if x is not in [a;b].
+  /// This is x < a both for closed intervals and for [a;b) half-open intervals.
+  static inline bool startLess(const T &x, const T &a) {
+    return x < a;
+  }
+
+  /// stopLess - Return true if x is not in [a;b].
+  /// This is b < x for a closed interval, b <= x for [a;b) half-open intervals.
+  static inline bool stopLess(const T &b, const T &x) {
+    return b < x;
+  }
+
+  /// adjacent - Return true when the intervals [x;a] and [b;y] can coalesce.
+  /// This is a+1 == b for closed intervals, a == b for half-open intervals.
+  static inline bool adjacent(const T &a, const T &b) {
+    return a+1 == b;
+  }
+
+};
+
+/// IntervalMapImpl - Namespace used for IntervalMap implementation details.
+/// It should be considered private to the implementation.
+namespace IntervalMapImpl {
+
+// Forward declarations.
+template <typename, typename, unsigned, typename> class LeafNode;
+template <typename, typename, unsigned, typename> class BranchNode;
+
+typedef std::pair<unsigned,unsigned> IdxPair;
+
+
+//===----------------------------------------------------------------------===//
+//---                            Node Storage                              ---//
+//===----------------------------------------------------------------------===//
+//
+// Both leaf and branch nodes store vectors of (key,value) pairs.
+// Leaves store ((KeyT, KeyT), ValT) pairs, branches use (KeyT, NodeRef).
+//
+// Keys and values are stored in separate arrays to avoid padding caused by
+// different object alignments. This also helps improve locality of reference
+// when searching the keys.
+//
+// The nodes don't know how many elements they contain - that information is
+// stored elsewhere. Omitting the size field prevents padding and allows a node
+// to fill the allocated cache lines completely.
+//
+// These are typical key and value sizes, the node branching factor (N), and
+// wasted space when nodes are sized to fit in three cache lines (192 bytes):
+//
+//   KT  VT   N Waste  Used by
+//    4   4  24   0    Branch<4> (32-bit pointers)
+//    4   8  16   0    Branch<4>
+//    8   4  16   0    Leaf<4,4>
+//    8   8  12   0    Leaf<4,8>, Branch<8>
+//   16   4   9  12    Leaf<8,4>
+//   16   8   8   0    Leaf<8,8>
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KT, typename VT, unsigned N>
+class NodeBase {
+public:
+  enum { Capacity = N };
+
+  KT key[N];
+  VT val[N];
+
+  /// copy - Copy elements from another node.
+  /// @param other Node elements are copied from.
+  /// @param i     Beginning of the source range in other.
+  /// @param j     Beginning of the destination range in this.
+  /// @param count Number of elements to copy.
+  template <unsigned M>
+  void copy(const NodeBase<KT, VT, M> &Other, unsigned i,
+            unsigned j, unsigned Count) {
+    assert(i + Count <= M && "Invalid source range");
+    assert(j + Count <= N && "Invalid dest range");
+    std::copy(Other.key + i, Other.key + i + Count, key + j);
+    std::copy(Other.val + i, Other.val + i + Count, val + j);
+  }
+
+  /// lmove - Move elements to the left.
+  /// @param i     Beginning of the source range.
+  /// @param j     Beginning of the destination range.
+  /// @param count Number of elements to copy.
+  void lmove(unsigned i, unsigned j, unsigned Count) {
+    assert(j <= i && "Use rmove shift elements right");
+    copy(*this, i, j, Count);
+  }
+
+  /// rmove - Move elements to the right.
+  /// @param i     Beginning of the source range.
+  /// @param j     Beginning of the destination range.
+  /// @param count Number of elements to copy.
+  void rmove(unsigned i, unsigned j, unsigned Count) {
+    assert(i <= j && "Use lmove shift elements left");
+    assert(j + Count <= N && "Invalid range");
+    std::copy_backward(key + i, key + i + Count, key + j + Count);
+    std::copy_backward(val + i, val + i + Count, val + j + Count);
+  }
+
+  /// erase - Erase elements [i;j).
+  /// @param i    Beginning of the range to erase.
+  /// @param j    End of the range. (Exclusive).
+  /// @param size Number of elements in node.
+  void erase(unsigned i, unsigned j, unsigned Size) {
+    lmove(j, i, Size - j);
+  }
+
+  /// shift - Shift elements [i;size) 1 position to the right.
+  /// @param i    Beginning of the range to move.
+  /// @param size Number of elements in node.
+  void shift(unsigned i, unsigned Size) {
+    rmove(i, i + 1, Size - i);
+  }
+
+  /// xferLeft - Transfer elements to a left sibling node.
+  /// @param size  Number of elements in this.
+  /// @param sib   Left sibling node.
+  /// @param ssize Number of elements in sib.
+  /// @param count Number of elements to transfer.
+  void xferLeft(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+    Sib.copy(*this, 0, SSize, Count);
+    erase(0, Count, Size);
+  }
+
+  /// xferRight - Transfer elements to a right sibling node.
+  /// @param size  Number of elements in this.
+  /// @param sib   Right sibling node.
+  /// @param ssize Number of elements in sib.
+  /// @param count Number of elements to transfer.
+  void xferRight(unsigned Size, NodeBase &Sib, unsigned SSize, unsigned Count) {
+    Sib.rmove(0, Count, SSize);
+    Sib.copy(*this, Size-Count, 0, Count);
+  }
+
+  /// adjLeftSib - Adjust the number if elements in this node by moving
+  /// elements to or from a left sibling node.
+  /// @param size  Number of elements in this.
+  /// @param sib   Right sibling node.
+  /// @param ssize Number of elements in sib.
+  /// @param add   The number of elements to add to this node, possibly < 0.
+  /// @return      Number of elements added to this node, possibly negative.
+  int adjLeftSib(unsigned Size, NodeBase &Sib, unsigned SSize, int Add) {
+    if (Add > 0) {
+      // We want to grow, copy from sib.
+      unsigned Count = std::min(std::min(unsigned(Add), SSize), N - Size);
+      Sib.xferRight(SSize, *this, Size, Count);
+      return Count;
+    } else {
+      // We want to shrink, copy to sib.
+      unsigned Count = std::min(std::min(unsigned(-Add), Size), N - SSize);
+      xferLeft(Size, Sib, SSize, Count);
+      return -Count;
+    }
+  }
+};
+
+
+//===----------------------------------------------------------------------===//
+//---                             NodeSizer                                ---//
+//===----------------------------------------------------------------------===//
+//
+// Compute node sizes from key and value types.
+//
+// The branching factors are chosen to make nodes fit in three cache lines.
+// This may not be possible if keys or values are very large. Such large objects
+// are handled correctly, but a std::map would probably give better performance.
+//
+//===----------------------------------------------------------------------===//
+
+enum {
+  // Cache line size. Most architectures have 32 or 64 byte cache lines.
+  // We use 64 bytes here because it provides good branching factors.
+  Log2CacheLine = 6,
+  CacheLineBytes = 1 << Log2CacheLine,
+  DesiredNodeBytes = 3 * CacheLineBytes
+};
+
+template <typename KeyT, typename ValT>
+struct NodeSizer {
+  enum {
+    // Compute the leaf node branching factor that makes a node fit in three
+    // cache lines. The branching factor must be at least 3, or some B+-tree
+    // balancing algorithms won't work.
+    // LeafSize can't be larger than CacheLineBytes. This is required by the
+    // PointerIntPair used by NodeRef.
+    DesiredLeafSize = DesiredNodeBytes /
+      static_cast<unsigned>(2*sizeof(KeyT)+sizeof(ValT)),
+    MinLeafSize = 3,
+    LeafSize = DesiredLeafSize > MinLeafSize ? DesiredLeafSize : MinLeafSize,
+
+    // Now that we have the leaf branching factor, compute the actual allocation
+    // unit size by rounding up to a whole number of cache lines.
+    LeafBytes = sizeof(NodeBase<std::pair<KeyT, KeyT>, ValT, LeafSize>),
+    AllocBytes = (LeafBytes + CacheLineBytes-1) & ~(CacheLineBytes-1),
+
+    // Determine the branching factor for branch nodes.
+    BranchSize = AllocBytes /
+      static_cast<unsigned>(sizeof(KeyT) + sizeof(void*))
+  };
+
+  /// Allocator - The recycling allocator used for both branch and leaf nodes.
+  /// This typedef is very likely to be identical for all IntervalMaps with
+  /// reasonably sized entries, so the same allocator can be shared among
+  /// different kinds of maps.
+  typedef RecyclingAllocator<BumpPtrAllocator, char,
+                             AllocBytes, CacheLineBytes> Allocator;
+
+};
+
+
+//===----------------------------------------------------------------------===//
+//---                              NodeRef                                 ---//
+//===----------------------------------------------------------------------===//
+//
+// B+-tree nodes can be leaves or branches, so we need a polymorphic node
+// pointer that can point to both kinds.
+//
+// All nodes are cache line aligned and the low 6 bits of a node pointer are
+// always 0. These bits are used to store the number of elements in the
+// referenced node. Besides saving space, placing node sizes in the parents
+// allow tree balancing algorithms to run without faulting cache lines for nodes
+// that may not need to be modified.
+//
+// A NodeRef doesn't know whether it references a leaf node or a branch node.
+// It is the responsibility of the caller to use the correct types.
+//
+// Nodes are never supposed to be empty, and it is invalid to store a node size
+// of 0 in a NodeRef. The valid range of sizes is 1-64.
+//
+//===----------------------------------------------------------------------===//
+
+struct CacheAlignedPointerTraits {
+  static inline void *getAsVoidPointer(void *P) { return P; }
+  static inline void *getFromVoidPointer(void *P) { return P; }
+  enum { NumLowBitsAvailable = Log2CacheLine };
+};
+
+template <typename KeyT, typename ValT, typename Traits>
+class NodeRef {
+public:
+  typedef LeafNode<KeyT, ValT, NodeSizer<KeyT, ValT>::LeafSize, Traits> Leaf;
+  typedef BranchNode<KeyT, ValT, NodeSizer<KeyT, ValT>::BranchSize,
+                     Traits> Branch;
+
+private:
+  PointerIntPair<void*, Log2CacheLine, unsigned, CacheAlignedPointerTraits> pip;
+
+public:
+  /// NodeRef - Create a null ref.
+  NodeRef() {}
+
+  /// operator bool - Detect a null ref.
+  operator bool() const { return pip.getOpaqueValue(); }
+
+  /// NodeRef - Create a reference to the leaf node p with n elements.
+  NodeRef(Leaf *p, unsigned n) : pip(p, n - 1) {}
+
+  /// NodeRef - Create a reference to the branch node p with n elements.
+  NodeRef(Branch *p, unsigned n) : pip(p, n - 1) {}
+
+  /// size - Return the number of elements in the referenced node.
+  unsigned size() const { return pip.getInt() + 1; }
+
+  /// setSize - Update the node size.
+  void setSize(unsigned n) { pip.setInt(n - 1); }
+
+  /// leaf - Return the referenced leaf node.
+  /// Note there are no dynamic type checks.
+  Leaf &leaf() const {
+    return *reinterpret_cast<Leaf*>(pip.getPointer());
+  }
+
+  /// branch - Return the referenced branch node.
+  /// Note there are no dynamic type checks.
+  Branch &branch() const {
+    return *reinterpret_cast<Branch*>(pip.getPointer());
+  }
+
+  bool operator==(const NodeRef &RHS) const {
+    if (pip == RHS.pip)
+      return true;
+    assert(pip.getPointer() != RHS.pip.getPointer() && "Inconsistent NodeRefs");
+    return false;
+  }
+
+  bool operator!=(const NodeRef &RHS) const {
+    return !operator==(RHS);
+  }
+};
+
+//===----------------------------------------------------------------------===//
+//---                            Leaf nodes                                ---//
+//===----------------------------------------------------------------------===//
+//
+// Leaf nodes store up to N disjoint intervals with corresponding values.
+//
+// The intervals are kept sorted and fully coalesced so there are no adjacent
+// intervals mapping to the same value.
+//
+// These constraints are always satisfied:
+//
+// - Traits::stopLess(key[i].start, key[i].stop) - Non-empty, sane intervals.
+//
+// - Traits::stopLess(key[i].stop, key[i + 1].start) - Sorted.
+//
+// - val[i] != val[i + 1] ||
+//     !Traits::adjacent(key[i].stop, key[i + 1].start) - Fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class LeafNode : public NodeBase<std::pair<KeyT, KeyT>, ValT, N> {
+public:
+  const KeyT &start(unsigned i) const { return this->key[i].first; }
+  const KeyT &stop(unsigned i) const { return this->key[i].second; }
+  const ValT &value(unsigned i) const { return this->val[i]; }
+
+  KeyT &start(unsigned i) { return this->key[i].first; }
+  KeyT &stop(unsigned i) { return this->key[i].second; }
+  ValT &value(unsigned i) { return this->val[i]; }
+
+  /// findFrom - Find the first interval after i that may contain x.
+  /// @param i    Starting index for the search.
+  /// @param size Number of elements in node.
+  /// @param x    Key to search for.
+  /// @return     First index with !stopLess(key[i].stop, x), or size.
+  ///             This is the first interval that can possibly contain x.
+  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+    assert(i <= Size && Size <= N && "Bad indices");
+    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+           "Index is past the needed point");
+    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+    return i;
+  }
+
+  /// safeFind - Find an interval that is known to exist. This is the same as
+  /// findFrom except is it assumed that x is at least within range of the last
+  /// interval.
+  /// @param i Starting index for the search.
+  /// @param x Key to search for.
+  /// @return  First index with !stopLess(key[i].stop, x), never size.
+  ///          This is the first interval that can possibly contain x.
+  unsigned safeFind(unsigned i, KeyT x) const {
+    assert(i < N && "Bad index");
+    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+           "Index is past the needed point");
+    while (Traits::stopLess(stop(i), x)) ++i;
+    assert(i < N && "Unsafe intervals");
+    return i;
+  }
+
+  /// safeLookup - Lookup mapped value for a safe key.
+  /// It is assumed that x is within range of the last entry.
+  /// @param x        Key to search for.
+  /// @param NotFound Value to return if x is not in any interval.
+  /// @return         The mapped value at x or NotFound.
+  ValT safeLookup(KeyT x, ValT NotFound) const {
+    unsigned i = safeFind(0, x);
+    return Traits::startLess(x, start(i)) ? NotFound : value(i);
+  }
+
+  IdxPair insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y);
+  unsigned extendStop(unsigned i, unsigned Size, KeyT b);
+
+#ifndef NDEBUG
+  void dump(unsigned Size) {
+    errs() << "  N" << this << " [shape=record label=\"{ " << Size << '/' << N;
+    for (unsigned i = 0; i != Size; ++i)
+      errs() << " | {" << start(i) << '-' << stop(i) << "|" << value(i) << '}';
+    errs() << "}\"];\n";
+  }
+#endif
+
+};
+
+/// insertFrom - Add mapping of [a;b] to y if possible, coalescing as much as
+/// possible. This may cause the node to grow by 1, or it may cause the node
+/// to shrink because of coalescing.
+/// @param i    Starting index = insertFrom(0, size, a)
+/// @param size Number of elements in node.
+/// @param a    Interval start.
+/// @param b    Interval stop.
+/// @param y    Value be mapped.
+/// @return     (insert position, new size), or (i, Capacity+1) on overflow.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IdxPair LeafNode<KeyT, ValT, N, Traits>::
+insertFrom(unsigned i, unsigned Size, KeyT a, KeyT b, ValT y) {
+  assert(i <= Size && Size <= N && "Invalid index");
+  assert(!Traits::stopLess(b, a) && "Invalid interval");
+
+  // Verify the findFrom invariant.
+  assert((i == 0 || Traits::stopLess(stop(i - 1), a)));
+  assert((i == Size || !Traits::stopLess(stop(i), a)));
+
+  // Coalesce with previous interval.
+  if (i && value(i - 1) == y && Traits::adjacent(stop(i - 1), a))
+    return IdxPair(i - 1, extendStop(i - 1, Size, b));
+
+  // Detect overflow.
+  if (i == N)
+    return IdxPair(i, N + 1);
+
+  // Add new interval at end.
+  if (i == Size) {
+    start(i) = a;
+    stop(i) = b;
+    value(i) = y;
+    return IdxPair(i, Size + 1);
+  }
+
+  // Overlapping intervals?
+  if (!Traits::stopLess(b, start(i))) {
+    assert(value(i) == y && "Inconsistent values in overlapping intervals");
+    if (Traits::startLess(a, start(i)))
+      start(i) = a;
+    return IdxPair(i, extendStop(i, Size, b));
+  }
+
+  // Try to coalesce with following interval.
+  if (value(i) == y && Traits::adjacent(b, start(i))) {
+    start(i) = a;
+    return IdxPair(i, Size);
+  }
+
+  // We must insert before i. Detect overflow.
+  if (Size == N)
+    return IdxPair(i, N + 1);
+
+  // Insert before i.
+  this->shift(i, Size);
+  start(i) = a;
+  stop(i) = b;
+  value(i) = y;
+  return IdxPair(i, Size + 1);
+}
+
+/// extendStop - Extend stop(i) to b, coalescing with following intervals.
+/// @param i    Interval to extend.
+/// @param size Number of elements in node.
+/// @param b    New interval end point.
+/// @return     New node size after coalescing.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+unsigned LeafNode<KeyT, ValT, N, Traits>::
+extendStop(unsigned i, unsigned Size, KeyT b) {
+  assert(i < Size && Size <= N && "Bad indices");
+
+  // Are we even extending the interval?
+  if (Traits::startLess(b, stop(i)))
+    return Size;
+
+  // Find the first interval that may be preserved.
+  unsigned j = findFrom(i + 1, Size, b);
+  if (j < Size) {
+    // Would key[i] overlap key[j] after the extension?
+    if (Traits::stopLess(b, start(j))) {
+      // Not overlapping. Perhaps adjacent and coalescable?
+      if (value(i) == value(j) && Traits::adjacent(b, start(j)))
+        b = stop(j++);
+    } else {
+      // Overlap. Include key[j] in the new interval.
+      assert(value(i) == value(j) && "Overlapping values");
+      b = stop(j++);
+    }
+  }
+  stop(i) =  b;
+
+  // Entries [i+1;j) were coalesced.
+  if (i + 1 < j && j < Size)
+    this->erase(i + 1, j, Size);
+  return Size - (j - (i + 1));
+}
+
+
+//===----------------------------------------------------------------------===//
+//---                             Branch nodes                             ---//
+//===----------------------------------------------------------------------===//
+//
+// A branch node stores references to 1--N subtrees all of the same height.
+//
+// The key array in a branch node holds the rightmost stop key of each subtree.
+// It is redundant to store the last stop key since it can be found in the
+// parent node, but doing so makes tree balancing a lot simpler.
+//
+// It is unusual for a branch node to only have one subtree, but it can happen
+// in the root node if it is smaller than the normal nodes.
+//
+// When all of the leaf nodes from all the subtrees are concatenated, they must
+// satisfy the same constraints as a single leaf node. They must be sorted,
+// sane, and fully coalesced.
+//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class BranchNode : public NodeBase<KeyT, NodeRef<KeyT, ValT, Traits>, N> {
+  typedef  NodeRef<KeyT, ValT, Traits> NodeRefT;
+public:
+  const KeyT &stop(unsigned i) const { return this->key[i]; }
+  const NodeRefT &subtree(unsigned i) const { return this->val[i]; }
+
+  KeyT &stop(unsigned i) { return this->key[i]; }
+  NodeRefT &subtree(unsigned i) { return this->val[i]; }
+
+  /// findFrom - Find the first subtree after i that may contain x.
+  /// @param i    Starting index for the search.
+  /// @param size Number of elements in node.
+  /// @param x    Key to search for.
+  /// @return     First index with !stopLess(key[i], x), or size.
+  ///             This is the first subtree that can possibly contain x.
+  unsigned findFrom(unsigned i, unsigned Size, KeyT x) const {
+    assert(i <= Size && Size <= N && "Bad indices");
+    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+           "Index to findFrom is past the needed point");
+    while (i != Size && Traits::stopLess(stop(i), x)) ++i;
+    return i;
+  }
+
+  /// safeFind - Find a subtree that is known to exist. This is the same as
+  /// findFrom except is it assumed that x is in range.
+  /// @param i Starting index for the search.
+  /// @param x Key to search for.
+  /// @return  First index with !stopLess(key[i], x), never size.
+  ///          This is the first subtree that can possibly contain x.
+  unsigned safeFind(unsigned i, KeyT x) const {
+    assert(i < N && "Bad index");
+    assert((i == 0 || Traits::stopLess(stop(i - 1), x)) &&
+           "Index is past the needed point");
+    while (Traits::stopLess(stop(i), x)) ++i;
+    assert(i < N && "Unsafe intervals");
+    return i;
+  }
+
+  /// safeLookup - Get the subtree containing x, Assuming that x is in range.
+  /// @param x Key to search for.
+  /// @return  Subtree containing x
+  NodeRefT safeLookup(KeyT x) const {
+    return subtree(safeFind(0, x));
+  }
+
+  /// insert - Insert a new (subtree, stop) pair.
+  /// @param i    Insert position, following entries will be shifted.
+  /// @param size Number of elements in node.
+  /// @param node Subtree to insert.
+  /// @param stp  Last key in subtree.
+  void insert(unsigned i, unsigned Size, NodeRefT Node, KeyT Stop) {
+    assert(Size < N && "branch node overflow");
+    assert(i <= Size && "Bad insert position");
+    this->shift(i, Size);
+    subtree(i) = Node;
+    stop(i) = Stop;
+  }
+
+#ifndef NDEBUG
+  void dump(unsigned Size) {
+    errs() << "  N" << this << " [shape=record label=\"" << Size << '/' << N;
+    for (unsigned i = 0; i != Size; ++i)
+      errs() << " | <s" << i << "> " << stop(i);
+    errs() << "\"];\n";
+    for (unsigned i = 0; i != Size; ++i)
+      errs() << "  N" << this << ":s" << i << " -> N"
+             << &subtree(i).branch() << ";\n";
+  }
+#endif
+
+};
+
+} // namespace IntervalMapImpl
+
+
+//===----------------------------------------------------------------------===//
+//---                          IntervalMap                                ----//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT,
+          unsigned N = IntervalMapImpl::NodeSizer<KeyT, ValT>::LeafSize,
+          typename Traits = IntervalMapInfo<KeyT> >
+class IntervalMap {
+  typedef IntervalMapImpl::NodeRef<KeyT, ValT, Traits> NodeRef;
+  typedef IntervalMapImpl::NodeSizer<KeyT, ValT> NodeSizer;
+  typedef typename NodeRef::Leaf Leaf;
+  typedef typename NodeRef::Branch Branch;
+  typedef IntervalMapImpl::LeafNode<KeyT, ValT, N, Traits> RootLeaf;
+  typedef IntervalMapImpl::IdxPair IdxPair;
+
+  // The RootLeaf capacity is given as a template parameter. We must compute the
+  // corresponding RootBranch capacity.
+  enum {
+    DesiredRootBranchCap = (sizeof(RootLeaf) - sizeof(KeyT)) /
+      (sizeof(KeyT) + sizeof(NodeRef)),
+    RootBranchCap = DesiredRootBranchCap ? DesiredRootBranchCap : 1
+  };
+
+  typedef IntervalMapImpl::BranchNode<KeyT, ValT, RootBranchCap, Traits> RootBranch;
+
+  // When branched, we store a global start key as well as the branch node.
+  struct RootBranchData {
+    KeyT start;
+    RootBranch node;
+  };
+
+  enum {
+    RootDataSize = sizeof(RootBranchData) > sizeof(RootLeaf) ?
+                   sizeof(RootBranchData) : sizeof(RootLeaf)
+  };
+
+public:
+  typedef typename NodeSizer::Allocator Allocator;
+
+private:
+  // The root data is either a RootLeaf or a RootBranchData instance.
+  // We can't put them in a union since C++03 doesn't allow non-trivial
+  // constructors in unions.
+  // Instead, we use a char array with pointer alignment. The alignment is
+  // ensured by the allocator member in the class, but still verified in the
+  // constructor. We don't support keys or values that are more aligned than a
+  // pointer.
+  char data[RootDataSize];
+
+  // Tree height.
+  // 0: Leaves in root.
+  // 1: Root points to leaf.
+  // 2: root->branch->leaf ...
+  unsigned height;
+
+  // Number of entries in the root node.
+  unsigned rootSize;
+
+  // Allocator used for creating external nodes.
+  Allocator &allocator;
+
+  /// dataAs - Represent data as a node type without breaking aliasing rules.
+  template <typename T>
+  T &dataAs() const {
+    union {
+      const char *d;
+      T *t;
+    } u;
+    u.d = data;
+    return *u.t;
+  }
+
+  const RootLeaf &rootLeaf() const {
+    assert(!branched() && "Cannot acces leaf data in branched root");
+    return dataAs<RootLeaf>();
+  }
+  RootLeaf &rootLeaf() {
+    assert(!branched() && "Cannot acces leaf data in branched root");
+    return dataAs<RootLeaf>();
+  }
+  RootBranchData &rootBranchData() const {
+    assert(branched() && "Cannot access branch data in non-branched root");
+    return dataAs<RootBranchData>();
+  }
+  RootBranchData &rootBranchData() {
+    assert(branched() && "Cannot access branch data in non-branched root");
+    return dataAs<RootBranchData>();
+  }
+  const RootBranch &rootBranch() const { return rootBranchData().node; }
+  RootBranch &rootBranch()             { return rootBranchData().node; }
+  KeyT rootBranchStart() const { return rootBranchData().start; }
+  KeyT &rootBranchStart()      { return rootBranchData().start; }
+
+  Leaf *allocLeaf()  {
+    return new(allocator.template Allocate<Leaf>()) Leaf();
+  }
+  void freeLeaf(Leaf *P) {
+    P->~Leaf();
+    allocator.Deallocate(P);
+  }
+
+  Branch *allocBranch() {
+    return new(allocator.template Allocate<Branch>()) Branch();
+  }
+  void freeBranch(Branch *P) {
+    P->~Branch();
+    allocator.Deallocate(P);
+  }
+
+
+  IdxPair branchRoot(unsigned Position);
+  IdxPair splitRoot(unsigned Position);
+
+  void switchRootToBranch() {
+    rootLeaf().~RootLeaf();
+    height = 1;
+    new (&rootBranchData()) RootBranchData();
+  }
+
+  void switchRootToLeaf() {
+    rootBranchData().~RootBranchData();
+    height = 0;
+    new(&rootLeaf()) RootLeaf();
+  }
+
+  bool branched() const { return height > 0; }
+
+  ValT treeSafeLookup(KeyT x, ValT NotFound) const;
+
+  void visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Level));
+
+public:
+  explicit IntervalMap(Allocator &a) : height(0), rootSize(0), allocator(a) {
+    assert((uintptr_t(data) & (alignOf<RootLeaf>() - 1)) == 0 &&
+           "Insufficient alignment");
+    new(&rootLeaf()) RootLeaf();
+  }
+
+  /// empty -  Return true when no intervals are mapped.
+  bool empty() const {
+    return rootSize == 0;
+  }
+
+  /// start - Return the smallest mapped key in a non-empty map.
+  KeyT start() const {
+    assert(!empty() && "Empty IntervalMap has no start");
+    return !branched() ? rootLeaf().start(0) : rootBranchStart();
+  }
+
+  /// stop - Return the largest mapped key in a non-empty map.
+  KeyT stop() const {
+    assert(!empty() && "Empty IntervalMap has no stop");
+    return !branched() ? rootLeaf().stop(rootSize - 1) :
+                         rootBranch().stop(rootSize - 1);
+  }
+
+  /// lookup - Return the mapped value at x or NotFound.
+  ValT lookup(KeyT x, ValT NotFound = ValT()) const {
+    if (empty() || Traits::startLess(x, start()) || Traits::stopLess(stop(), x))
+      return NotFound;
+    return branched() ? treeSafeLookup(x, NotFound) :
+                        rootLeaf().safeLookup(x, NotFound);
+  }
+
+  /// insert - Add a mapping of [a;b] to y, coalesce with adjacent intervals.
+  /// It is assumed that no key in the interval is mapped to another value, but
+  /// overlapping intervals already mapped to y will be coalesced.
+  void insert(KeyT a, KeyT b, ValT y) {
+    find(a).insert(a, b, y);
+  }
+
+  class const_iterator;
+  class iterator;
+  friend class const_iterator;
+  friend class iterator;
+
+  const_iterator begin() const {
+    iterator I(*this);
+    I.goToBegin();
+    return I;
+  }
+
+  iterator begin() {
+    iterator I(*this);
+    I.goToBegin();
+    return I;
+  }
+
+  const_iterator end() const {
+    iterator I(*this);
+    I.goToEnd();
+    return I;
+  }
+
+  iterator end() {
+    iterator I(*this);
+    I.goToEnd();
+    return I;
+  }
+
+  /// find - Return an iterator pointing to the first interval ending at or
+  /// after x, or end().
+  const_iterator find(KeyT x) const {
+    iterator I(*this);
+    I.find(x);
+    return I;
+  }
+
+  iterator find(KeyT x) {
+    iterator I(*this);
+    I.find(x);
+    return I;
+  }
+
+#ifndef NDEBUG
+  void dump();
+  void dumpNode(NodeRef Node, unsigned Height);
+#endif
+};
+
+/// treeSafeLookup - Return the mapped value at x or NotFound, assuming a
+/// branched root.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+ValT IntervalMap<KeyT, ValT, N, Traits>::
+treeSafeLookup(KeyT x, ValT NotFound) const {
+  assert(branched() && "treeLookup assumes a branched root");
+
+  NodeRef NR = rootBranch().safeLookup(x);
+  for (unsigned h = height-1; h; --h)
+    NR = NR.branch().safeLookup(x);
+  return NR.leaf().safeLookup(x, NotFound);
+}
+
+
+// branchRoot - Switch from a leaf root to a branched root.
+// Return the new (root offset, node offset) corresponding to Position.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
+branchRoot(unsigned Position) {
+  // How many external leaf nodes to hold RootLeaf+1?
+  const unsigned Nodes = RootLeaf::Capacity / Leaf::Capacity + 1;
+
+  // Compute element distribution among new nodes.
+  unsigned size[Nodes];
+  IdxPair NewOffset(0, Position);
+
+  // Is is very common for the root node to be smaller than external nodes.
+  if (Nodes == 1)
+    size[0] = rootSize;
+  else
+    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, size,
+                           Position, true);
+
+  // Allocate new nodes.
+  unsigned pos = 0;
+  NodeRef node[Nodes];
+  for (unsigned n = 0; n != Nodes; ++n) {
+    node[n] = NodeRef(allocLeaf(), size[n]);
+    node[n].leaf().copy(rootLeaf(), pos, 0, size[n]);
+    pos += size[n];
+  }
+
+  // Destroy the old leaf node, construct branch node instead.
+  switchRootToBranch();
+  for (unsigned n = 0; n != Nodes; ++n) {
+    rootBranch().stop(n) = node[n].leaf().stop(size[n]-1);
+    rootBranch().subtree(n) = node[n];
+  }
+  rootBranchStart() = node[0].leaf().start(0);
+  rootSize = Nodes;
+  return NewOffset;
+}
+
+// splitRoot - Split the current BranchRoot into multiple Branch nodes.
+// Return the new (root offset, node offset) corresponding to Position.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+IntervalMapImpl::IdxPair IntervalMap<KeyT, ValT, N, Traits>::
+splitRoot(unsigned Position) {
+  // How many external leaf nodes to hold RootBranch+1?
+  const unsigned Nodes = RootBranch::Capacity / Branch::Capacity + 1;
+
+  // Compute element distribution among new nodes.
+  unsigned Size[Nodes];
+  IdxPair NewOffset(0, Position);
+
+  // Is is very common for the root node to be smaller than external nodes.
+  if (Nodes == 1)
+    Size[0] = rootSize;
+  else
+    NewOffset = distribute(Nodes, rootSize, Leaf::Capacity,  NULL, Size,
+                           Position, true);
+
+  // Allocate new nodes.
+  unsigned Pos = 0;
+  NodeRef Node[Nodes];
+  for (unsigned n = 0; n != Nodes; ++n) {
+    Node[n] = NodeRef(allocBranch(), Size[n]);
+    Node[n].branch().copy(rootBranch(), Pos, 0, Size[n]);
+    Pos += Size[n];
+  }
+
+  for (unsigned n = 0; n != Nodes; ++n) {
+    rootBranch().stop(n) = Node[n].branch().stop(Size[n]-1);
+    rootBranch().subtree(n) = Node[n];
+  }
+  rootSize = Nodes;
+  return NewOffset;
+}
+
+/// visitNodes - Visit each external node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+visitNodes(void (IntervalMap::*f)(NodeRef, unsigned Height)) {
+  if (!branched())
+    return;
+  SmallVector<NodeRef, 4> Refs, NextRefs;
+
+  // Collect level 0 nodes from the root.
+  for (unsigned i = 0; i != rootSize; ++i)
+    Refs.push_back(rootBranch().subtree(i));
+
+  // Visit all branch nodes.
+  for (unsigned h = height - 1; h; --h) {
+    for (unsigned i = 0, e = Refs.size(); i != e; ++i) {
+      Branch &B = Refs[i].branch();
+      for (unsigned j = 0, s = Refs[i].size(); j != s; ++j)
+        NextRefs.push_back(B.subtree(j));
+      (this->*f)(Refs[i], h);
+    }
+    Refs.clear();
+    Refs.swap(NextRefs);
+  }
+
+  // Visit all leaf nodes.
+  for (unsigned i = 0, e = Refs.size(); i != e; ++i)
+    (this->*f)(Refs[i], 0);
+}
+
+#ifndef NDEBUG
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+dumpNode(NodeRef Node, unsigned Height) {
+  if (Height)
+    Node.branch().dump(Node.size());
+  else
+    Node.leaf().dump(Node.size());
+}
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+dump() {
+  errs() << "digraph {\n";
+  if (branched())
+    rootBranch().dump(rootSize);
+  else
+    rootLeaf().dump(rootSize);
+  visitNodes(&IntervalMap::dumpNode);
+  errs() << "}\n";
+}
+#endif
+
+//===----------------------------------------------------------------------===//
+//---                             const_iterator                          ----//
+//===----------------------------------------------------------------------===//
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class IntervalMap<KeyT, ValT, N, Traits>::const_iterator :
+  public std::iterator<std::bidirectional_iterator_tag, ValT> {
+protected:
+  friend class IntervalMap;
+  typedef std::pair<NodeRef, unsigned> PathEntry;
+  typedef SmallVector<PathEntry, 4> Path;
+
+  // The map referred to.
+  IntervalMap *map;
+
+  // The offset into map's root node.
+  unsigned rootOffset;
+
+  // We store a full path from the root to the current position.
+  //
+  // When rootOffset == map->rootSize, we are at end() and path() is empty.
+  // Otherwise, when branched these conditions hold:
+  //
+  // 1. path.front().first == rootBranch().subtree(rootOffset)
+  // 2. path[i].first == path[i-1].first.branch().subtree(path[i-1].second)
+  // 3. path.size() == map->height.
+  //
+  // Thus, path.back() always refers to the current leaf node unless the root is
+  // unbranched.
+  //
+  // The path may be partially filled, but never between iterator calls.
+  Path path;
+
+  explicit const_iterator(IntervalMap &map)
+    : map(&map), rootOffset(map.rootSize) {}
+
+  bool branched() const {
+    assert(map && "Invalid iterator");
+    return map->branched();
+  }
+
+  NodeRef   pathNode(unsigned h)   const { return path[h].first; }
+  NodeRef  &pathNode(unsigned h)         { return path[h].first; }
+  unsigned  pathOffset(unsigned h) const { return path[h].second; }
+  unsigned &pathOffset(unsigned h)       { return path[h].second; }
+
+  Leaf &treeLeaf() const {
+    assert(branched() && path.size() == map->height);
+    return path.back().first.leaf();
+  }
+  unsigned treeLeafSize() const {
+    assert(branched() && path.size() == map->height);
+    return path.back().first.size();
+  }
+  unsigned &treeLeafOffset() {
+    assert(branched() && path.size() == map->height);
+    return path.back().second;
+  }
+  unsigned treeLeafOffset() const {
+    assert(branched() && path.size() == map->height);
+    return path.back().second;
+  }
+
+  // Get the next node ptr for an incomplete path.
+  NodeRef pathNextDown() {
+    assert(path.size() < map->height && "Path is already complete");
+
+    if (path.empty())
+      return map->rootBranch().subtree(rootOffset);
+    else
+      return path.back().first.branch().subtree(path.back().second);
+  }
+
+  void pathFillLeft();
+  void pathFillFind(KeyT x);
+  void pathFillRight();
+
+  NodeRef leftSibling(unsigned level) const;
+  NodeRef rightSibling(unsigned level) const;
+
+  void treeIncrement();
+  void treeDecrement();
+  void treeFind(KeyT x);
+
+public:
+  /// valid - Return true if the current position is valid, false for end().
+  bool valid() const {
+    assert(map && "Invalid iterator");
+    return rootOffset < map->rootSize;
+  }
+
+  /// start - Return the beginning of the current interval.
+  const KeyT &start() const {
+    assert(valid() && "Cannot access invalid iterator");
+    return branched() ? treeLeaf().start(treeLeafOffset()) :
+                        map->rootLeaf().start(rootOffset);
+  }
+
+  /// stop - Return the end of the current interval.
+  const KeyT &stop() const {
+    assert(valid() && "Cannot access invalid iterator");
+    return branched() ? treeLeaf().stop(treeLeafOffset()) :
+                        map->rootLeaf().stop(rootOffset);
+  }
+
+  /// value - Return the mapped value at the current interval.
+  const ValT &value() const {
+    assert(valid() && "Cannot access invalid iterator");
+    return branched() ? treeLeaf().value(treeLeafOffset()) :
+                        map->rootLeaf().value(rootOffset);
+  }
+
+  const ValT &operator*() const {
+    return value();
+  }
+
+  bool operator==(const const_iterator &RHS) const {
+    assert(map == RHS.map && "Cannot compare iterators from different maps");
+    return rootOffset == RHS.rootOffset &&
+             (!valid() || !branched() || path.back() == RHS.path.back());
+  }
+
+  bool operator!=(const const_iterator &RHS) const {
+    return !operator==(RHS);
+  }
+
+  /// goToBegin - Move to the first interval in map.
+  void goToBegin() {
+    rootOffset = 0;
+    path.clear();
+    if (branched())
+      pathFillLeft();
+  }
+
+  /// goToEnd - Move beyond the last interval in map.
+  void goToEnd() {
+    rootOffset = map->rootSize;
+    path.clear();
+  }
+
+  /// preincrement - move to the next interval.
+  const_iterator &operator++() {
+    assert(valid() && "Cannot increment end()");
+    if (!branched())
+      ++rootOffset;
+    else if (treeLeafOffset() != treeLeafSize() - 1)
+      ++treeLeafOffset();
+    else
+      treeIncrement();
+    return *this;
+  }
+
+  /// postincrement - Dont do that!
+  const_iterator operator++(int) {
+    const_iterator tmp = *this;
+    operator++();
+    return tmp;
+  }
+
+  /// predecrement - move to the previous interval.
+  const_iterator &operator--() {
+    if (!branched()) {
+      assert(rootOffset && "Cannot decrement begin()");
+      --rootOffset;
+    } else if (treeLeafOffset())
+      --treeLeafOffset();
+    else
+      treeDecrement();
+    return *this;
+  }
+
+  /// postdecrement - Dont do that!
+  const_iterator operator--(int) {
+    const_iterator tmp = *this;
+    operator--();
+    return tmp;
+  }
+
+  /// find - Move to the first interval with stop >= x, or end().
+  /// This is a full search from the root, the current position is ignored.
+  void find(KeyT x) {
+    if (branched())
+      treeFind(x);
+    else
+      rootOffset = map->rootLeaf().findFrom(0, map->rootSize, x);
+  }
+
+  /// advanceTo - Move to the first interval with stop >= x, or end().
+  /// The search is started from the current position, and no earlier positions
+  /// can be found. This is much faster than find() for small moves.
+  void advanceTo(KeyT x) {
+    if (branched())
+      treeAdvanceTo(x);
+    else
+      rootOffset = map->rootLeaf().findFrom(rootOffset, map->rootSize, x);
+  }
+
+};
+
+// pathFillLeft - Complete path by following left-most branches.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillLeft() {
+  NodeRef NR = pathNextDown();
+  for (unsigned i = map->height - path.size() - 1; i; --i) {
+    path.push_back(PathEntry(NR, 0));
+    NR = NR.branch().subtree(0);
+  }
+  path.push_back(PathEntry(NR, 0));
+}
+
+// pathFillFind - Complete path by searching for x.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillFind(KeyT x) {
+  NodeRef NR = pathNextDown();
+  for (unsigned i = map->height - path.size() - 1; i; --i) {
+    unsigned p = NR.branch().safeFind(0, x);
+    path.push_back(PathEntry(NR, p));
+    NR = NR.branch().subtree(p);
+  }
+  path.push_back(PathEntry(NR, NR.leaf().safeFind(0, x)));
+}
+
+// pathFillRight - Complete path by adding rightmost entries.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::pathFillRight() {
+  NodeRef NR = pathNextDown();
+  for (unsigned i = map->height - path.size() - 1; i; --i) {
+    unsigned p = NR.size() - 1;
+    path.push_back(PathEntry(NR, p));
+    NR = NR.branch().subtree(p);
+  }
+  path.push_back(PathEntry(NR, NR.size() - 1));
+}
+
+/// leftSibling - find the left sibling node to path[level].
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @return The left sibling NodeRef, or NULL.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
+IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::leftSibling(unsigned level) const {
+  assert(branched() && "Not at a branched node");
+  assert(level <= path.size() && "Bad level");
+
+  // Go up the tree until we can go left.
+  unsigned h = level;
+  while (h && pathOffset(h - 1) == 0)
+    --h;
+
+  // We are at the first leaf node, no left sibling.
+  if (!h && rootOffset == 0)
+    return NodeRef();
+
+  // NR is the subtree containing our left sibling.
+  NodeRef NR = h ?
+    pathNode(h - 1).branch().subtree(pathOffset(h - 1) - 1) :
+    map->rootBranch().subtree(rootOffset - 1);
+
+  // Keep right all the way down.
+  for (; h != level; ++h)
+    NR = NR.branch().subtree(NR.size() - 1);
+  return NR;
+}
+
+/// rightSibling - find the right sibling node to path[level].
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @return The right sibling NodeRef, or NULL.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+typename IntervalMap<KeyT, ValT, N, Traits>::NodeRef
+IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::rightSibling(unsigned level) const {
+  assert(branched() && "Not at a branched node");
+  assert(level <= this->path.size() && "Bad level");
+
+  // Go up the tree until we can go right.
+  unsigned h = level;
+  while (h && pathOffset(h - 1) == pathNode(h - 1).size() - 1)
+    --h;
+
+  // We are at the last leaf node, no right sibling.
+  if (!h && rootOffset == map->rootSize - 1)
+    return NodeRef();
+
+  // NR is the subtree containing our right sibling.
+  NodeRef NR = h ?
+    pathNode(h - 1).branch().subtree(pathOffset(h - 1) + 1) :
+    map->rootBranch().subtree(rootOffset + 1);
+
+  // Keep left all the way down.
+  for (; h != level; ++h)
+    NR = NR.branch().subtree(0);
+  return NR;
+}
+
+// treeIncrement - Move to the beginning of the next leaf node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeIncrement() {
+  assert(branched() && "treeIncrement is not for small maps");
+  assert(path.size() == map->height && "inconsistent iterator");
+  do path.pop_back();
+  while (!path.empty() && path.back().second == path.back().first.size() - 1);
+  if (path.empty()) {
+    ++rootOffset;
+    if (!valid())
+      return;
+  } else
+    ++path.back().second;
+  pathFillLeft();
+}
+
+// treeDecrement - Move to the end of the previous leaf node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeDecrement() {
+  assert(branched() && "treeDecrement is not for small maps");
+  if (valid()) {
+    assert(path.size() == map->height && "inconsistent iterator");
+    do path.pop_back();
+    while (!path.empty() && path.back().second == 0);
+  }
+  if (path.empty()) {
+    assert(rootOffset && "cannot treeDecrement() on begin()");
+    --rootOffset;
+  } else
+    --path.back().second;
+  pathFillRight();
+}
+
+// treeFind - Find in a branched tree.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+const_iterator::treeFind(KeyT x) {
+  path.clear();
+  rootOffset = map->rootBranch().findFrom(0, map->rootSize, x);
+  if (valid())
+    pathFillFind(x);
+}
+
+
+//===----------------------------------------------------------------------===//
+//---                                iterator                             ----//
+//===----------------------------------------------------------------------===//
+
+namespace IntervalMapImpl {
+
+  /// distribute - Compute a new distribution of node elements after an overflow
+  /// or underflow. Reserve space for a new element at Position, and compute the
+  /// node that will hold Position after redistributing node elements.
+  ///
+  /// It is required that
+  ///
+  ///   Elements == sum(CurSize), and
+  ///   Elements + Grow <= Nodes * Capacity.
+  ///
+  /// NewSize[] will be filled in such that:
+  ///
+  ///   sum(NewSize) == Elements, and
+  ///   NewSize[i] <= Capacity.
+  ///
+  /// The returned index is the node where Position will go, so:
+  ///
+  ///   sum(NewSize[0..idx-1]) <= Position
+  ///   sum(NewSize[0..idx])   >= Position
+  ///
+  /// The last equality, sum(NewSize[0..idx]) == Position, can only happen when
+  /// Grow is set and NewSize[idx] == Capacity-1. The index points to the node
+  /// before the one holding the Position'th element where there is room for an
+  /// insertion.
+  ///
+  /// @param Nodes    The number of nodes.
+  /// @param Elements Total elements in all nodes.
+  /// @param Capacity The capacity of each node.
+  /// @param CurSize  Array[Nodes] of current node sizes, or NULL.
+  /// @param NewSize  Array[Nodes] to receive the new node sizes.
+  /// @param Position Insert position.
+  /// @param Grow     Reserve space for a new element at Position.
+  /// @return         (node, offset) for Position.
+  IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
+                     const unsigned *CurSize, unsigned NewSize[],
+                     unsigned Position, bool Grow);
+
+}
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+class IntervalMap<KeyT, ValT, N, Traits>::iterator : public const_iterator {
+  friend class IntervalMap;
+  typedef IntervalMapImpl::IdxPair IdxPair;
+
+  explicit iterator(IntervalMap &map) : const_iterator(map) {}
+
+  void setNodeSize(unsigned Level, unsigned Size);
+  void setNodeStop(unsigned Level, KeyT Stop);
+  void insertNode(unsigned Level, NodeRef Node, KeyT Stop);
+  void overflowLeaf();
+  void treeInsert(KeyT a, KeyT b, ValT y);
+
+public:
+  /// insert - Insert mapping [a;b] -> y before the current position.
+  void insert(KeyT a, KeyT b, ValT y);
+
+};
+
+/// setNodeSize - Set the size of the node at path[level], updating both path
+/// and the real tree.
+/// @param level 0 is just below the root, map->height - 1 for the leaves.
+/// @param size  New node size.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::setNodeSize(unsigned Level, unsigned Size) {
+  this->pathNode(Level).setSize(Size);
+  if (Level)
+    this->pathNode(Level-1).branch()
+      .subtree(this->pathOffset(Level-1)).setSize(Size);
+  else
+    this->map->rootBranch().subtree(this->rootOffset).setSize(Size);
+}
+
+/// setNodeStop - Update the stop key of the current node at level and above.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::setNodeStop(unsigned Level, KeyT Stop) {
+  while (Level--) {
+    this->pathNode(Level).branch().stop(this->pathOffset(Level)) = Stop;
+    if (this->pathOffset(Level) != this->pathNode(Level).size() - 1)
+      return;
+  }
+  this->map->rootBranch().stop(this->rootOffset) = Stop;
+}
+
+/// insertNode - insert a node before the current path at level.
+/// Leave the current path pointing at the new node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::insertNode(unsigned Level, NodeRef Node, KeyT Stop) {
+  if (!Level) {
+    // Insert into the root branch node.
+    IntervalMap &IM = *this->map;
+    if (IM.rootSize < RootBranch::Capacity) {
+      IM.rootBranch().insert(this->rootOffset, IM.rootSize, Node, Stop);
+      ++IM.rootSize;
+      return;
+    }
+
+    // We need to split the root while keeping our position.
+    IdxPair Offset = IM.splitRoot(this->rootOffset);
+    this->rootOffset = Offset.first;
+    this->path.insert(this->path.begin(),std::make_pair(
+      this->map->rootBranch().subtree(Offset.first), Offset.second));
+    Level = 1;
+  }
+
+  // When inserting before end(), make sure we have a valid path.
+  if (!this->valid()) {
+    this->treeDecrement();
+    ++this->pathOffset(Level-1);
+  }
+
+  // Insert into the branch node at level-1.
+  NodeRef NR = this->pathNode(Level-1);
+  unsigned Offset = this->pathOffset(Level-1);
+  assert(NR.size() < Branch::Capacity && "Branch overflow");
+  NR.branch().insert(Offset, NR.size(), Node, Stop);
+  setNodeSize(Level - 1, NR.size() + 1);
+}
+
+// insert
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::insert(KeyT a, KeyT b, ValT y) {
+  if (this->branched())
+    return treeInsert(a, b, y);
+  IdxPair IP = this->map->rootLeaf().insertFrom(this->rootOffset,
+                                                this->map->rootSize,
+                                                a, b, y);
+  if (IP.second <= RootLeaf::Capacity) {
+    this->rootOffset = IP.first;
+    this->map->rootSize = IP.second;
+    return;
+  }
+  IdxPair Offset = this->map->branchRoot(this->rootOffset);
+  this->rootOffset = Offset.first;
+  this->path.push_back(std::make_pair(
+    this->map->rootBranch().subtree(Offset.first), Offset.second));
+  treeInsert(a, b, y);
+}
+
+
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::treeInsert(KeyT a, KeyT b, ValT y) {
+  if (!this->valid()) {
+    // end() has an empty path. Go back to the last leaf node and use an
+    // invalid offset instead.
+    this->treeDecrement();
+    ++this->treeLeafOffset();
+  }
+  IdxPair IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
+                                           this->treeLeafSize(), a, b, y);
+  this->treeLeafOffset() = IP.first;
+  if (IP.second <= Leaf::Capacity) {
+    setNodeSize(this->map->height - 1, IP.second);
+    if (IP.first == IP.second - 1)
+      setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
+    return;
+  }
+  // Leaf node has no space.
+  overflowLeaf();
+  IP = this->treeLeaf().insertFrom(this->treeLeafOffset(),
+                                   this->treeLeafSize(), a, b, y);
+  this->treeLeafOffset() = IP.first;
+  setNodeSize(this->map->height-1, IP.second);
+  if (IP.first == IP.second - 1)
+    setNodeStop(this->map->height - 1, this->treeLeaf().stop(IP.first));
+
+  // FIXME: Handle cross-node coalescing.
+}
+
+// overflowLeaf - Distribute entries of the current leaf node evenly among
+// its siblings and ensure that the current node is not full.
+// This may require allocating a new node.
+template <typename KeyT, typename ValT, unsigned N, typename Traits>
+void IntervalMap<KeyT, ValT, N, Traits>::
+iterator::overflowLeaf() {
+  unsigned CurSize[4];
+  Leaf *Node[4];
+  unsigned Nodes = 0;
+  unsigned Elements = 0;
+  unsigned Offset = this->treeLeafOffset();
+
+  // Do we have a left sibling?
+  NodeRef LeftSib = this->leftSibling(this->map->height-1);
+  if (LeftSib) {
+    Offset += Elements = CurSize[Nodes] = LeftSib.size();
+    Node[Nodes++] = &LeftSib.leaf();
+  }
+
+  // Current leaf node.
+  Elements += CurSize[Nodes] = this->treeLeafSize();
+  Node[Nodes++] = &this->treeLeaf();
+
+  // Do we have a right sibling?
+  NodeRef RightSib = this->rightSibling(this->map->height-1);
+  if (RightSib) {
+    Offset += Elements = CurSize[Nodes] = RightSib.size();
+    Node[Nodes++] = &RightSib.leaf();
+  }
+
+  // Do we need to allocate a new node?
+  unsigned NewNode = 0;
+  if (Elements + 1 > Nodes * Leaf::Capacity) {
+    // Insert NewNode at the penultimate position, or after a single node.
+    NewNode = Nodes == 1 ? 1 : Nodes - 1;
+    CurSize[Nodes] = CurSize[NewNode];
+    Node[Nodes] = Node[NewNode];
+    CurSize[NewNode] = 0;
+    Node[NewNode] = this->map->allocLeaf();
+    ++Nodes;
+  }
+
+  // Compute the new element distribution.
+  unsigned NewSize[4];
+  IdxPair NewOffset =
+    IntervalMapImpl::distribute(Nodes, Elements, Leaf::Capacity,
+                                CurSize, NewSize, Offset, true);
+
+  // Move current location to the leftmost node.
+  if (LeftSib)
+    this->treeDecrement();
+
+  // Move elements right.
+  for (int n = Nodes - 1; n; --n) {
+    if (CurSize[n] == NewSize[n])
+      continue;
+    for (int m = n - 1; m != -1; --m) {
+      int d = Node[n]->adjLeftSib(CurSize[n], *Node[m], CurSize[m],
+                                        NewSize[n] - CurSize[n]);
+      CurSize[m] -= d;
+      CurSize[n] += d;
+      // Keep going if the current node was exhausted.
+      if (CurSize[n] >= NewSize[n])
+          break;
+    }
+  }
+
+  // Move elements left.
+  for (unsigned n = 0; n != Nodes - 1; ++n) {
+    if (CurSize[n] == NewSize[n])
+      continue;
+    for (unsigned m = n + 1; m != Nodes; ++m) {
+      int d = Node[m]->adjLeftSib(CurSize[m], *Node[n], CurSize[n],
+                                        CurSize[n] -  NewSize[n]);
+      CurSize[m] += d;
+      CurSize[n] -= d;
+      // Keep going if the current node was exhausted.
+      if (CurSize[n] >= NewSize[n])
+          break;
+    }
+  }
+
+#ifndef NDEBUG
+  for (unsigned n = 0; n != Nodes; n++)
+    assert(CurSize[n] == NewSize[n] && "Insufficient element shuffle");
+#endif
+
+  // Elements have been rearranged, now update node sizes and stops.
+  unsigned Pos = 0;
+  for (;;) {
+    KeyT Stop = Node[Pos]->stop(NewSize[Pos]-1);
+    if (NewNode && Pos == NewNode)
+      insertNode(this->map->height - 1, NodeRef(Node[Pos], NewSize[Pos]), Stop);
+    else {
+      setNodeSize(this->map->height - 1, NewSize[Pos]);
+      setNodeStop(this->map->height - 1, Stop);
+    }
+    if (Pos + 1 == Nodes)
+      break;
+    this->treeIncrement();
+    ++Pos;
+  }
+
+  // Where was I? Find NewOffset.
+  while(Pos != NewOffset.first) {
+    this->treeDecrement();
+    --Pos;
+  }
+  this->treeLeafOffset() = NewOffset.second;
+}
+
+} // namespace llvm
+
+#endif

Modified: llvm/trunk/lib/Support/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/CMakeLists.txt?rev=119787&r1=119786&r2=119787&view=diff
==============================================================================
--- llvm/trunk/lib/Support/CMakeLists.txt (original)
+++ llvm/trunk/lib/Support/CMakeLists.txt Thu Nov 18 22:47:19 2010
@@ -19,6 +19,7 @@
   FoldingSet.cpp
   FormattedStream.cpp
   GraphWriter.cpp
+  IntervalMap.cpp
   IsInf.cpp
   IsNAN.cpp
   ManagedStatic.cpp

Added: llvm/trunk/lib/Support/IntervalMap.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Support/IntervalMap.cpp?rev=119787&view=auto
==============================================================================
--- llvm/trunk/lib/Support/IntervalMap.cpp (added)
+++ llvm/trunk/lib/Support/IntervalMap.cpp Thu Nov 18 22:47:19 2010
@@ -0,0 +1,60 @@
+//===- lib/Support/IntervalMap.cpp - A sorted interval map ----------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the few non-templated functions in IntervalMap.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/IntervalMap.h"
+
+namespace llvm {
+namespace IntervalMapImpl {
+
+IdxPair distribute(unsigned Nodes, unsigned Elements, unsigned Capacity,
+                   const unsigned *CurSize, unsigned NewSize[],
+                   unsigned Position, bool Grow) {
+  assert(Elements + Grow <= Nodes * Capacity && "Not enough room for elements");
+  assert(Position <= Elements && "Invalid position");
+  if (!Nodes)
+    return IdxPair();
+
+  // Trivial algorithm: left-leaning even distribution.
+  const unsigned PerNode = (Elements + Grow) / Nodes;
+  const unsigned Extra = (Elements + Grow) % Nodes;
+  IdxPair PosPair = IdxPair(Nodes, 0);
+  unsigned Sum = 0;
+  for (unsigned n = 0; n != Nodes; ++n) {
+    Sum += NewSize[n] = PerNode + (n < Extra);
+    if (PosPair.first == Nodes && Sum > Position)
+      PosPair = IdxPair(n, Position - (Sum - NewSize[n]));
+  }
+  assert(Sum == Elements + Grow && "Bad distribution sum");
+
+  // Subtract the Grow element that was added.
+  if (Grow) {
+    assert(PosPair.first < Nodes && "Bad algebra");
+    assert(NewSize[PosPair.first] && "Too few elements to need Grow");
+    --NewSize[PosPair.first];
+  }
+
+#ifndef NDEBUG
+  Sum = 0;
+  for (unsigned n = 0; n != Nodes; ++n) {
+    assert(NewSize[n] <= Capacity && "Overallocated node");
+    Sum += NewSize[n];
+  }
+  assert(Sum == Elements && "Bad distribution sum");
+#endif
+
+  return PosPair;
+}
+
+} // namespace IntervalMapImpl
+} // namespace llvm 
+

Added: llvm/trunk/unittests/ADT/IntervalMapTest.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/ADT/IntervalMapTest.cpp?rev=119787&view=auto
==============================================================================
--- llvm/trunk/unittests/ADT/IntervalMapTest.cpp (added)
+++ llvm/trunk/unittests/ADT/IntervalMapTest.cpp Thu Nov 18 22:47:19 2010
@@ -0,0 +1,357 @@
+//===---- ADT/IntervalMapTest.cpp - IntervalMap unit tests ------*- C++ -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/IntervalMap.h"
+#include "gtest/gtest.h"
+
+using namespace llvm;
+
+namespace {
+
+typedef IntervalMap<unsigned, unsigned> UUMap;
+
+// Empty map tests
+TEST(IntervalMapTest, EmptyMap) {
+  UUMap::Allocator allocator;
+  UUMap map(allocator);
+  EXPECT_TRUE(map.empty());
+
+  // Lookup on empty map.
+  EXPECT_EQ(0u, map.lookup(0));
+  EXPECT_EQ(7u, map.lookup(0, 7));
+  EXPECT_EQ(0u, map.lookup(~0u-1));
+  EXPECT_EQ(7u, map.lookup(~0u-1, 7));
+
+  // Iterators.
+  EXPECT_TRUE(map.begin() == map.begin());
+  EXPECT_TRUE(map.begin() == map.end());
+  EXPECT_TRUE(map.end() == map.end());
+  EXPECT_FALSE(map.begin() != map.begin());
+  EXPECT_FALSE(map.begin() != map.end());
+  EXPECT_FALSE(map.end() != map.end());
+  EXPECT_FALSE(map.begin().valid());
+  EXPECT_FALSE(map.end().valid());
+  UUMap::iterator I = map.begin();
+  EXPECT_FALSE(I.valid());
+  EXPECT_TRUE(I == map.end());
+}
+
+// Single entry map tests
+TEST(IntervalMapTest, SingleEntryMap) {
+  UUMap::Allocator allocator;
+  UUMap map(allocator);
+  map.insert(100, 150, 1);
+  EXPECT_FALSE(map.empty());
+
+  // Lookup around interval.
+  EXPECT_EQ(0u, map.lookup(0));
+  EXPECT_EQ(0u, map.lookup(99));
+  EXPECT_EQ(1u, map.lookup(100));
+  EXPECT_EQ(1u, map.lookup(101));
+  EXPECT_EQ(1u, map.lookup(125));
+  EXPECT_EQ(1u, map.lookup(149));
+  EXPECT_EQ(1u, map.lookup(150));
+  EXPECT_EQ(0u, map.lookup(151));
+  EXPECT_EQ(0u, map.lookup(200));
+  EXPECT_EQ(0u, map.lookup(~0u-1));
+
+  // Iterators.
+  EXPECT_TRUE(map.begin() == map.begin());
+  EXPECT_FALSE(map.begin() == map.end());
+  EXPECT_TRUE(map.end() == map.end());
+  EXPECT_TRUE(map.begin().valid());
+  EXPECT_FALSE(map.end().valid());
+
+  // Iter deref.
+  UUMap::iterator I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  EXPECT_EQ(1u, I.value());
+
+  // Preincrement.
+  ++I;
+  EXPECT_FALSE(I.valid());
+  EXPECT_FALSE(I == map.begin());
+  EXPECT_TRUE(I == map.end());
+
+  // PreDecrement.
+  --I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  EXPECT_EQ(1u, I.value());
+  EXPECT_TRUE(I == map.begin());
+  EXPECT_FALSE(I == map.end());
+}
+
+// Flat coalescing tests.
+TEST(IntervalMapTest, RootCoalescing) {
+  UUMap::Allocator allocator;
+  UUMap map(allocator);
+  map.insert(100, 150, 1);
+
+  // Coalesce from the left.
+  map.insert(90, 99, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(90u, map.start());
+  EXPECT_EQ(150u, map.stop());
+
+  // Overlap left.
+  map.insert(80, 100, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(80u, map.start());
+  EXPECT_EQ(150u, map.stop());
+
+  // Inside.
+  map.insert(100, 130, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(80u, map.start());
+  EXPECT_EQ(150u, map.stop());
+
+  // Overlap both.
+  map.insert(70, 160, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(70u, map.start());
+  EXPECT_EQ(160u, map.stop());
+
+  // Overlap right.
+  map.insert(80, 170, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(70u, map.start());
+  EXPECT_EQ(170u, map.stop());
+
+  // Coalesce from the right.
+  map.insert(170, 200, 1);
+  EXPECT_EQ(1, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(70u, map.start());
+  EXPECT_EQ(200u, map.stop());
+
+  // Non-coalesce from the left.
+  map.insert(60, 69, 2);
+  EXPECT_EQ(2, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(60u, map.start());
+  EXPECT_EQ(200u, map.stop());
+  EXPECT_EQ(2u, map.lookup(69));
+  EXPECT_EQ(1u, map.lookup(70));
+
+  UUMap::iterator I = map.begin();
+  EXPECT_EQ(60u, I.start());
+  EXPECT_EQ(69u, I.stop());
+  EXPECT_EQ(2u, I.value());
+  ++I;
+  EXPECT_EQ(70u, I.start());
+  EXPECT_EQ(200u, I.stop());
+  EXPECT_EQ(1u, I.value());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Non-coalesce from the right.
+  map.insert(201, 210, 2);
+  EXPECT_EQ(3, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(60u, map.start());
+  EXPECT_EQ(210u, map.stop());
+  EXPECT_EQ(2u, map.lookup(201));
+  EXPECT_EQ(1u, map.lookup(200));
+}
+
+// Flat multi-coalescing tests.
+TEST(IntervalMapTest, RootMultiCoalescing) {
+  UUMap::Allocator allocator;
+  UUMap map(allocator);
+  map.insert(140, 150, 1);
+  map.insert(160, 170, 1);
+  map.insert(100, 110, 1);
+  map.insert(120, 130, 1);
+  EXPECT_EQ(4, std::distance(map.begin(), map.end()));
+  EXPECT_EQ(100u, map.start());
+  EXPECT_EQ(170u, map.stop());
+
+  // Verify inserts.
+  UUMap::iterator I = map.begin();
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(110u, I.stop());
+  ++I;
+  EXPECT_EQ(120u, I.start());
+  EXPECT_EQ(130u, I.stop());
+  ++I;
+  EXPECT_EQ(140u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  ++I;
+  EXPECT_EQ(160u, I.start());
+  EXPECT_EQ(170u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+
+  // Coalesce left with followers.
+  // [100;110] [120;130] [140;150] [160;170]
+  map.insert(111, 115, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(115u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(120u, I.start());
+  EXPECT_EQ(130u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(140u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(160u, I.start());
+  EXPECT_EQ(170u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Coalesce right with followers.
+  // [100;115] [120;130] [140;150] [160;170]
+  map.insert(135, 139, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(115u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(120u, I.start());
+  EXPECT_EQ(130u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(135u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(160u, I.start());
+  EXPECT_EQ(170u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Coalesce left and right with followers.
+  // [100;115] [120;130] [135;150] [160;170]
+  map.insert(131, 134, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(115u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(120u, I.start());
+  EXPECT_EQ(150u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(160u, I.start());
+  EXPECT_EQ(170u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Coalesce multiple with overlap right.
+  // [100;115] [120;150] [160;170]
+  map.insert(116, 165, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(170u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Coalesce multiple with overlap left
+  // [100;170]
+  map.insert(180, 190, 1);
+  map.insert(200, 210, 1);
+  map.insert(220, 230, 1);
+  // [100;170] [180;190] [200;210] [220;230]
+  map.insert(160, 199, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(100u, I.start());
+  EXPECT_EQ(210u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(220u, I.start());
+  EXPECT_EQ(230u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Overwrite 2 from gap to gap.
+  // [100;210] [220;230]
+  map.insert(50, 250, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(50u, I.start());
+  EXPECT_EQ(250u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+
+  // Coalesce at end of full root.
+  // [50;250]
+  map.insert(260, 270, 1);
+  map.insert(280, 290, 1);
+  map.insert(300, 310, 1);
+  // [50;250] [260;270] [280;290] [300;310]
+  map.insert(311, 320, 1);
+  I = map.begin();
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(50u, I.start());
+  EXPECT_EQ(250u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(260u, I.start());
+  EXPECT_EQ(270u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(280u, I.start());
+  EXPECT_EQ(290u, I.stop());
+  ++I;
+  ASSERT_TRUE(I.valid());
+  EXPECT_EQ(300u, I.start());
+  EXPECT_EQ(320u, I.stop());
+  ++I;
+  EXPECT_FALSE(I.valid());
+}
+
+// Branched, non-coalescing tests.
+TEST(IntervalMapTest, Branched) {
+  UUMap::Allocator allocator;
+  UUMap map(allocator);
+
+  // Insert enough intervals to force a branched tree.
+  // This creates 9 leaf nodes with 11 elements each, tree height = 1.
+  for (unsigned i = 1; i < 100; ++i)
+    map.insert(10*i, 10*i+5, i);
+
+  // Tree limits.
+  EXPECT_FALSE(map.empty());
+  EXPECT_EQ(10u, map.start());
+  EXPECT_EQ(995u, map.stop());
+
+  // Tree lookup.
+  for (unsigned i = 1; i < 100; ++i) {
+    EXPECT_EQ(0u, map.lookup(10*i-1));
+    EXPECT_EQ(i, map.lookup(10*i));
+    EXPECT_EQ(i, map.lookup(10*i+5));
+    EXPECT_EQ(0u, map.lookup(10*i+6));
+  }
+
+  // Forward iteration.
+  UUMap::iterator I = map.begin();
+  for (unsigned i = 1; i < 100; ++i) {
+    ASSERT_TRUE(I.valid());
+    EXPECT_EQ(10*i, I.start());
+    EXPECT_EQ(10*i+5, I.stop());
+    EXPECT_EQ(i, *I);
+    ++I;
+  }
+  EXPECT_FALSE(I.valid());
+  EXPECT_TRUE(I == map.end());
+
+}
+
+} // namespace

Modified: llvm/trunk/unittests/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/unittests/CMakeLists.txt?rev=119787&r1=119786&r2=119787&view=diff
==============================================================================
--- llvm/trunk/unittests/CMakeLists.txt (original)
+++ llvm/trunk/unittests/CMakeLists.txt Thu Nov 18 22:47:19 2010
@@ -45,6 +45,7 @@
   ADT/DenseSetTest.cpp
   ADT/ilistTest.cpp
   ADT/ImmutableSetTest.cpp
+  ADT/IntervalMapTest.cpp
   ADT/SmallBitVectorTest.cpp
   ADT/SmallStringTest.cpp
   ADT/SmallVectorTest.cpp





More information about the llvm-commits mailing list