[llvm-commits] [compiler-rt] r107586 - in /compiler-rt/trunk/lib: divdf3.c divsf3.c fp_lib.h muldf3.c mulsf3.c

Stephen Canon scanon at apple.com
Sun Jul 4 09:53:39 PDT 2010


Author: scanon
Date: Sun Jul  4 11:53:39 2010
New Revision: 107586

URL: http://llvm.org/viewvc/llvm-project?rev=107586&view=rev
Log:
Initial implementation of double-precision soft-float division, moved a couple utility functions from the multiplications into the utility header

Added:
    compiler-rt/trunk/lib/divdf3.c
Modified:
    compiler-rt/trunk/lib/divsf3.c
    compiler-rt/trunk/lib/fp_lib.h
    compiler-rt/trunk/lib/muldf3.c
    compiler-rt/trunk/lib/mulsf3.c

Added: compiler-rt/trunk/lib/divdf3.c
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/divdf3.c?rev=107586&view=auto
==============================================================================
--- compiler-rt/trunk/lib/divdf3.c (added)
+++ compiler-rt/trunk/lib/divdf3.c Sun Jul  4 11:53:39 2010
@@ -0,0 +1,182 @@
+//===-- lib/divdf3.c - Double-precision division ------------------*- C -*-===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements double-precision soft-float division
+// with the IEEE-754 default rounding (to nearest, ties to even).
+//
+// For simplicity, this implementation currently flushes denormals to zero.
+// It should be a fairly straightforward exercise to implement gradual
+// underflow with correct rounding.
+//
+//===----------------------------------------------------------------------===//
+
+#define DOUBLE_PRECISION
+#include "fp_lib.h"
+
+fp_t __divdf3(fp_t a, fp_t b) {
+    
+    const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
+    const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
+    const rep_t quotientSign = (toRep(a) ^ toRep(b)) & signBit;
+    
+    rep_t aSignificand = toRep(a) & significandMask;
+    rep_t bSignificand = toRep(b) & significandMask;
+    int scale = 0;
+    
+    // Detect if a or b is zero, denormal, infinity, or NaN.
+    if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
+        
+        const rep_t aAbs = toRep(a) & absMask;
+        const rep_t bAbs = toRep(b) & absMask;
+        
+        // NaN / anything = qNaN
+        if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
+        // anything / NaN = qNaN
+        if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
+        
+        if (aAbs == infRep) {
+            // infinity / infinity = NaN
+            if (bAbs == infRep) return fromRep(qnanRep);
+            // infinity / anything else = +/- infinity
+            else return fromRep(aAbs | quotientSign);
+        }
+        
+        // anything else / infinity = +/- 0
+        if (bAbs == infRep) return fromRep(quotientSign);
+        
+        if (!aAbs) {
+            // zero / zero = NaN
+            if (!bAbs) return fromRep(qnanRep);
+            // zero / anything else = +/- zero
+            else return fromRep(quotientSign);
+        }
+        // anything else / zero = +/- infinity
+        if (!bAbs) return fromRep(infRep | quotientSign);
+        
+        // one or both of a or b is denormal, the other (if applicable) is a
+        // normal number.  Renormalize one or both of a and b, and set scale to
+        // include the necessary exponent adjustment.
+        if (aAbs < implicitBit) scale += normalize(&aSignificand);
+        if (bAbs < implicitBit) scale -= normalize(&bSignificand);
+    }
+    
+    // Or in the implicit significand bit.  (If we fell through from the
+    // denormal path it was already set by normalize( ), but setting it twice
+    // won't hurt anything.)
+    aSignificand |= implicitBit;
+    bSignificand |= implicitBit;
+    int quotientExponent = aExponent - bExponent + scale;
+    
+    // Align the significand of b as a Q31 fixed-point number in the range
+    // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax
+    // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2.  This
+    // is accurate to about 3.5 binary digits.
+    const uint32_t q31b = bSignificand >> 21;
+    uint32_t recip32 = UINT32_C(0x7504f333) - q31b;
+    
+    // Now refine the reciprocal estimate using a Newton-Raphson iteration:
+    //
+    //     x1 = x0 * (2 - x0 * b)
+    //
+    // This doubles the number of correct binary digits in the approximation
+    // with each iteration, so after three iterations, we have about 28 binary
+    // digits of accuracy.
+    uint32_t correction32;
+    correction32 = -((uint64_t)recip32 * q31b >> 32);
+    recip32 = (uint64_t)recip32 * correction32 >> 31;
+    correction32 = -((uint64_t)recip32 * q31b >> 32);
+    recip32 = (uint64_t)recip32 * correction32 >> 31;
+    correction32 = -((uint64_t)recip32 * q31b >> 32);
+    recip32 = (uint64_t)recip32 * correction32 >> 31;
+    
+    // recip32 might have overflowed to exactly zero in the preceeding
+    // computation if the high word of b is exactly 1.0.  This would sabotage
+    // the full-width final stage of the computation that follows, so we adjust
+    // recip32 downward by one bit.
+    recip32--;
+    
+    // We need to perform one more iteration to get us to 56 binary digits;
+    // The last iteration needs to happen with extra precision.
+    const uint32_t q63blo = bSignificand << 11;
+    uint64_t correction, reciprocal;
+    correction = -((uint64_t)recip32*q31b + ((uint64_t)recip32*q63blo >> 32));
+    uint32_t cHi = correction >> 32;
+    uint32_t cLo = correction;
+    reciprocal = (uint64_t)recip32*cHi + ((uint64_t)recip32*cLo >> 32);
+    
+    // We already adjusted the 32-bit estimate, now we need to adjust the final
+    // 64-bit reciprocal estimate downward to ensure that it is strictly smaller
+    // than the infinitely precise exact reciprocal.  Because the computation
+    // of the Newton-Raphson step is truncating at every step, this adjustment
+    // is small; most of the work is already done.
+    reciprocal -= 2;
+    
+    // The numerical reciprocal is accurate to within 2^-56, lies in the
+    // interval [0.5, 1.0), and is strictly smaller than the true reciprocal
+    // of b.  Multiplying a by this reciprocal thus gives a numerical q = a/b
+    // in Q53 with the following properties:
+    //
+    //    1. q < a/b
+    //    2. q is in the interval [0.5, 2.0)
+    //    3. the error in q is bounded away from 2^-53 (actually, we have a
+    //       couple of bits to spare, but this is all we need).
+    
+    // We need a 64 x 64 multiply high to compute q, which isn't a basic
+    // operation in C, so we need to be a little bit fussy.
+    rep_t quotient, quotientLo;
+    wideMultiply(aSignificand << 2, reciprocal, &quotient, &quotientLo);
+    
+    // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0).
+    // In either case, we are going to compute a residual of the form
+    //
+    //     r = a - q*b
+    //
+    // We know from the construction of q that r satisfies:
+    //
+    //     0 <= r < ulp(q)*b
+    // 
+    // if r is greater than 1/2 ulp(q)*b, then q rounds up.  Otherwise, we
+    // already have the correct result.  The exact halfway case cannot occur.
+    // We also take this time to right shift quotient if it falls in the [1,2)
+    // range and adjust the exponent accordingly.
+    rep_t residual;
+    if (quotient < (implicitBit << 1)) {
+        residual = (aSignificand << 53) - quotient * bSignificand;
+        quotientExponent--;
+    } else {
+        quotient >>= 1;
+        residual = (aSignificand << 52) - quotient * bSignificand;
+    }
+    
+    const int writtenExponent = quotientExponent + exponentBias;
+    
+    if (writtenExponent >= maxExponent) {
+        // If we have overflowed the exponent, return infinity.
+        return fromRep(infRep | quotientSign);
+    }
+    
+    else if (writtenExponent < 1) {
+        // Flush denormals to zero.  In the future, it would be nice to add
+        // code to round them correctly.
+        return fromRep(quotientSign);
+    }
+    
+    else {
+        const bool round = (residual << 1) > bSignificand;
+        // Clear the implicit bit
+        rep_t absResult = quotient & significandMask;
+        // Insert the exponent
+        absResult |= (rep_t)writtenExponent << significandBits;
+        // Round
+        absResult += round;
+        // Insert the sign and return
+        const double result = fromRep(absResult | quotientSign);
+        return result;
+    }
+}

Modified: compiler-rt/trunk/lib/divsf3.c
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/divsf3.c?rev=107586&r1=107585&r2=107586&view=diff
==============================================================================
--- compiler-rt/trunk/lib/divsf3.c (original)
+++ compiler-rt/trunk/lib/divsf3.c Sun Jul  4 11:53:39 2010
@@ -19,8 +19,6 @@
 #define SINGLE_PRECISION
 #include "fp_lib.h"
 
-#include <stdio.h>
-
 fp_t __divsf3(fp_t a, fp_t b) {
     
     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
@@ -166,28 +164,3 @@
         return fromRep(absResult | quotientSign);
     }
 }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

Modified: compiler-rt/trunk/lib/fp_lib.h
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/fp_lib.h?rev=107586&r1=107585&r2=107586&view=diff
==============================================================================
--- compiler-rt/trunk/lib/fp_lib.h (original)
+++ compiler-rt/trunk/lib/fp_lib.h Sun Jul  4 11:53:39 2010
@@ -37,6 +37,13 @@
     return __builtin_clz(a);
 }
 
+// 32x32 --> 64 bit multiply
+static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
+    const uint64_t product = (uint64_t)a*b;
+    *hi = product >> 32;
+    *lo = product;
+}
+
 #elif defined DOUBLE_PRECISION
 
 typedef uint64_t rep_t;
@@ -56,6 +63,26 @@
 #endif
 }
 
+#define loWord(a) (a & 0xffffffffU)
+#define hiWord(a) (a >> 32)
+
+// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
+// many 64-bit platforms have this operation, but they tend to have hardware
+// floating-point, so we don't bother with a special case for them here.
+static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
+    // Each of the component 32x32 -> 64 products
+    const uint64_t plolo = loWord(a) * loWord(b);
+    const uint64_t plohi = loWord(a) * hiWord(b);
+    const uint64_t philo = hiWord(a) * loWord(b);
+    const uint64_t phihi = hiWord(a) * hiWord(b);
+    // Sum terms that contribute to lo in a way that allows us to get the carry
+    const uint64_t r0 = loWord(plolo);
+    const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
+    *lo = r0 + (r1 << 32);
+    // Sum terms contributing to hi with the carry from lo
+    *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
+}
+
 #else
 #error Either SINGLE_PRECISION or DOUBLE_PRECISION must be defined.
 #endif

Modified: compiler-rt/trunk/lib/muldf3.c
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/muldf3.c?rev=107586&r1=107585&r2=107586&view=diff
==============================================================================
--- compiler-rt/trunk/lib/muldf3.c (original)
+++ compiler-rt/trunk/lib/muldf3.c Sun Jul  4 11:53:39 2010
@@ -15,26 +15,6 @@
 #define DOUBLE_PRECISION
 #include "fp_lib.h"
 
-#define loWord(a) (a & 0xffffffffU)
-#define hiWord(a) (a >> 32)
-
-// 64x64 -> 128 wide multiply for platforms that don't have such an operation;
-// many 64-bit platforms have this operation, but they tend to have hardware
-// floating-point, so we don't bother with a special case for them here.
-static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
-    // Each of the component 32x32 -> 64 products
-    const uint64_t plolo = loWord(a) * loWord(b);
-    const uint64_t plohi = loWord(a) * hiWord(b);
-    const uint64_t philo = hiWord(a) * loWord(b);
-    const uint64_t phihi = hiWord(a) * hiWord(b);
-    // Sum terms that contribute to lo in a way that allows us to get the carry
-    const uint64_t r0 = loWord(plolo);
-    const uint64_t r1 = hiWord(plolo) + loWord(plohi) + loWord(philo);
-    *lo = r0 + (r1 << 32);
-    // Sum terms contributing to hi with the carry from lo
-    *hi = hiWord(plohi) + hiWord(philo) + hiWord(r1) + phihi;
-}
-
 fp_t __muldf3(fp_t a, fp_t b) {
     
     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;

Modified: compiler-rt/trunk/lib/mulsf3.c
URL: http://llvm.org/viewvc/llvm-project/compiler-rt/trunk/lib/mulsf3.c?rev=107586&r1=107585&r2=107586&view=diff
==============================================================================
--- compiler-rt/trunk/lib/mulsf3.c (original)
+++ compiler-rt/trunk/lib/mulsf3.c Sun Jul  4 11:53:39 2010
@@ -15,13 +15,6 @@
 #define SINGLE_PRECISION
 #include "fp_lib.h"
 
-// 32x32 --> 64 bit multiply
-static inline void wideMultiply(rep_t a, rep_t b, rep_t *hi, rep_t *lo) {
-    const uint64_t product = (uint64_t)a*b;
-    *hi = product >> 32;
-    *lo = product;
-}
-
 fp_t __mulsf3(fp_t a, fp_t b) {
     
     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;





More information about the llvm-commits mailing list