[llvm-commits] [llvm] r78354 - in /llvm/trunk/lib/CodeGen: PBQP.cpp PBQP.h PBQP/ PBQP/AnnotatedGraph.h PBQP/ExhaustiveSolver.h PBQP/GraphBase.h PBQP/GraphGenerator.h PBQP/HeuristicSolver.h PBQP/Heuristics/ PBQP/Heuristics/Briggs.h PBQP/PBQPMath.h PBQP/SimpleGraph.h PBQP/Solution.h PBQP/Solver.h RegAllocPBQP.cpp

Sanjiv Gupta sanjiv.gupta at microchip.com
Sun Aug 9 21:42:42 PDT 2009


This is causing too much unnecessary spilling for PIC16.
Attached is a test case. The option to use with llc are
-pre-RA-sched=list-burr -regalloc=pbqp -march=pic16

Try it with 78353 and 78354 and see the difference for yourself.

- Sanjiv


Lang Hames wrote:
> Author: lhames
> Date: Thu Aug  6 18:32:48 2009
> New Revision: 78354
>
> URL: http://llvm.org/viewvc/llvm-project?rev=78354&view=rev
> Log:
> New C++ PBQP solver. Currently about as fast (read _slow_) as the old C based solver, but I'll be working to improve that. The PBQP allocator has been updated to use the new solver.
>
> Added:
>     llvm/trunk/lib/CodeGen/PBQP/
>     llvm/trunk/lib/CodeGen/PBQP/AnnotatedGraph.h
>     llvm/trunk/lib/CodeGen/PBQP/ExhaustiveSolver.h
>     llvm/trunk/lib/CodeGen/PBQP/GraphBase.h
>     llvm/trunk/lib/CodeGen/PBQP/GraphGenerator.h
>     llvm/trunk/lib/CodeGen/PBQP/HeuristicSolver.h
>     llvm/trunk/lib/CodeGen/PBQP/Heuristics/
>     llvm/trunk/lib/CodeGen/PBQP/Heuristics/Briggs.h
>     llvm/trunk/lib/CodeGen/PBQP/PBQPMath.h
>     llvm/trunk/lib/CodeGen/PBQP/SimpleGraph.h
>     llvm/trunk/lib/CodeGen/PBQP/Solution.h
>     llvm/trunk/lib/CodeGen/PBQP/Solver.h
> Removed:
>     llvm/trunk/lib/CodeGen/PBQP.cpp
>     llvm/trunk/lib/CodeGen/PBQP.h
> Modified:
>     llvm/trunk/lib/CodeGen/RegAllocPBQP.cpp
>
> Removed: llvm/trunk/lib/CodeGen/PBQP.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP.cpp?rev=78353&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP.cpp (original)
> +++ llvm/trunk/lib/CodeGen/PBQP.cpp (removed)
> @@ -1,1395 +0,0 @@
> -//===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===//
> -//
> -//                     The LLVM Compiler Infrastructure
> -//
> -// This file is distributed under the University of Illinois Open Source
> -// License. See LICENSE.TXT for details.
> -//
> -//===----------------------------------------------------------------------===//
> -//
> -// Developed by:                   Bernhard Scholz
> -//                             The University of Sydney
> -//                         http://www.it.usyd.edu.au/~scholz
> -//===----------------------------------------------------------------------===//
> -
> -#include "PBQP.h"
> -#include "llvm/Config/alloca.h"
> -#include <limits>
> -#include <cassert>
> -#include <cstring>
> -
> -namespace llvm {
> -
> -/**************************************************************************
> - * Data Structures 
> - **************************************************************************/
> -
> -/* edge of PBQP graph */
> -typedef struct adjnode {
> -  struct adjnode *prev,      /* doubly chained list */ 
> -                 *succ, 
> -                 *reverse;   /* reverse edge */
> -  int adj;                   /* adj. node */
> -  PBQPMatrix *costs;         /* cost matrix of edge */
> -
> -  bool tc_valid;              /* flag whether following fields are valid */
> -  int *tc_safe_regs;          /* safe registers */
> -  int tc_impact;              /* impact */ 
> -} adjnode;
> -
> -/* bucket node */
> -typedef struct bucketnode {
> -  struct bucketnode *prev;   /* doubly chained list */
> -  struct bucketnode *succ;   
> -  int u;                     /* node */
> -} bucketnode;
> -
> -/* data structure of partitioned boolean quadratic problem */
> -struct pbqp {
> -  int num_nodes;             /* number of nodes */
> -  int max_deg;               /* maximal degree of a node */
> -  bool solved;               /* flag that indicates whether PBQP has been solved yet */
> -  bool optimal;              /* flag that indicates whether PBQP is optimal */
> -  PBQPNum min;
> -  bool changed;              /* flag whether graph has changed in simplification */
> -
> -                             /* node fields */
> -  PBQPVector **node_costs;   /* cost vectors of nodes */
> -  int *node_deg;             /* node degree of nodes */
> -  int *solution;             /* solution for node */
> -  adjnode **adj_list;        /* adj. list */
> -  bucketnode **bucket_ptr;   /* bucket pointer of a node */
> -
> -                             /* node stack */
> -  int *stack;                /* stack of nodes */
> -  int stack_ptr;             /* stack pointer */
> -
> -                             /* bucket fields */
> -  bucketnode **bucket_list;  /* bucket list */
> -
> -  int num_r0;                /* counters for number statistics */
> -  int num_ri;
> -  int num_rii;
> -  int num_rn; 
> -  int num_rn_special;      
> -};
> -
> -bool isInf(PBQPNum n) { return n == std::numeric_limits<PBQPNum>::infinity(); } 
> -
> -/*****************************************************************************
> - * allocation/de-allocation of pbqp problem 
> - ****************************************************************************/
> -
> -/* allocate new partitioned boolean quadratic program problem */
> -pbqp *alloc_pbqp(int num_nodes)
> -{
> -  pbqp *this_;
> -  int u;
> -  
> -  assert(num_nodes > 0);
> -  
> -  /* allocate memory for pbqp data structure */   
> -  this_ = (pbqp *)malloc(sizeof(pbqp));
> -
> -  /* Initialize pbqp fields */
> -  this_->num_nodes = num_nodes;
> -  this_->solved = false;
> -  this_->optimal = true;
> -  this_->min = 0.0;
> -  this_->max_deg = 0;
> -  this_->changed = false;
> -  this_->num_r0 = 0;
> -  this_->num_ri = 0;
> -  this_->num_rii = 0;
> -  this_->num_rn = 0;
> -  this_->num_rn_special = 0;
> -  
> -  /* initialize/allocate stack fields of pbqp */ 
> -  this_->stack = (int *) malloc(sizeof(int)*num_nodes);
> -  this_->stack_ptr = 0;
> -  
> -  /* initialize/allocate node fields of pbqp */
> -  this_->adj_list = (adjnode **) malloc(sizeof(adjnode *)*num_nodes);
> -  this_->node_deg = (int *) malloc(sizeof(int)*num_nodes);
> -  this_->solution = (int *) malloc(sizeof(int)*num_nodes);
> -  this_->bucket_ptr = (bucketnode **) malloc(sizeof(bucketnode **)*num_nodes);
> -  this_->node_costs = (PBQPVector**) malloc(sizeof(PBQPVector*) * num_nodes);
> -  for(u=0;u<num_nodes;u++) {
> -    this_->solution[u]=-1;
> -    this_->adj_list[u]=NULL;
> -    this_->node_deg[u]=0;
> -    this_->bucket_ptr[u]=NULL;
> -    this_->node_costs[u]=NULL;
> -  }
> -  
> -  /* initialize bucket list */
> -  this_->bucket_list = NULL;
> -  
> -  return this_;
> -}
> -
> -/* free pbqp problem */
> -void free_pbqp(pbqp *this_)
> -{
> -  int u;
> -  int deg;
> -  adjnode *adj_ptr,*adj_next;
> -  bucketnode *bucket,*bucket_next;
> -  
> -  assert(this_ != NULL);
> -  
> -  /* free node cost fields */
> -  for(u=0;u < this_->num_nodes;u++) {
> -    delete this_->node_costs[u];
> -  }
> -  free(this_->node_costs);
> -  
> -  /* free bucket list */
> -  for(deg=0;deg<=this_->max_deg;deg++) {
> -    for(bucket=this_->bucket_list[deg];bucket!=NULL;bucket=bucket_next) {
> -      this_->bucket_ptr[bucket->u] = NULL;
> -      bucket_next = bucket-> succ;
> -      free(bucket);
> -    }
> -  }
> -  free(this_->bucket_list);
> -  
> -  /* free adj. list */
> -  assert(this_->adj_list != NULL);
> -  for(u=0;u < this_->num_nodes; u++) {
> -    for(adj_ptr = this_->adj_list[u]; adj_ptr != NULL; adj_ptr = adj_next) {
> -      adj_next = adj_ptr -> succ;
> -      if (u < adj_ptr->adj) {
> -        assert(adj_ptr != NULL);
> -        delete adj_ptr->costs;
> -      }
> -      if (adj_ptr -> tc_safe_regs != NULL) {
> -           free(adj_ptr -> tc_safe_regs);
> -      }
> -      free(adj_ptr);
> -    }
> -  }
> -  free(this_->adj_list);
> -  
> -  /* free other node fields */
> -  free(this_->node_deg);
> -  free(this_->solution);
> -  free(this_->bucket_ptr);
> -
> -  /* free stack */
> -  free(this_->stack);
> -
> -  /* free pbqp data structure itself */
> -  free(this_);
> -}
> -
> -
> -/****************************************************************************
> - * adj. node routines 
> - ****************************************************************************/
> -
> -/* find data structure of adj. node of a given node */
> -static
> -adjnode *find_adjnode(pbqp *this_,int u,int v)
> -{
> -  adjnode *adj_ptr;
> -  
> -  assert (this_ != NULL);
> -  assert (u >= 0 && u < this_->num_nodes);
> -  assert (v >= 0 && v < this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -
> -  for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -    if (adj_ptr->adj == v) {
> -      return adj_ptr;
> -    }
> -  }
> -  return NULL;
> -}
> -
> -/* allocate a new data structure for adj. node */
> -static
> -adjnode *alloc_adjnode(pbqp *this_,int u, PBQPMatrix *costs)
> -{
> -  adjnode *p;
> -
> -  assert(this_ != NULL);
> -  assert(costs != NULL);
> -  assert(u >= 0 && u < this_->num_nodes);
> -
> -  p = (adjnode *)malloc(sizeof(adjnode));
> -  assert(p != NULL);
> -  
> -  p->adj = u;
> -  p->costs = costs;  
> -
> -  p->tc_valid= false;
> -  p->tc_safe_regs = NULL;
> -  p->tc_impact = 0;
> -
> -  return p;
> -}
> -
> -/* insert adjacence node to adj. list */
> -static
> -void insert_adjnode(pbqp *this_, int u, adjnode *adj_ptr)
> -{
> -
> -  assert(this_ != NULL);
> -  assert(adj_ptr != NULL);
> -  assert(u >= 0 && u < this_->num_nodes);
> -
> -  /* if adjacency list of node is not empty -> update
> -     first node of the list */
> -  if (this_ -> adj_list[u] != NULL) {
> -    assert(this_->adj_list[u]->prev == NULL);
> -    this_->adj_list[u] -> prev = adj_ptr;
> -  }
> -
> -  /* update doubly chained list pointers of pointers */
> -  adj_ptr -> succ = this_->adj_list[u];
> -  adj_ptr -> prev = NULL;
> -
> -  /* update adjacency list pointer of node u */
> -  this_->adj_list[u] = adj_ptr;
> -}
> -
> -/* remove entry in an adj. list */
> -static
> -void remove_adjnode(pbqp *this_, int u, adjnode *adj_ptr)
> -{
> -  assert(this_!= NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -  assert(adj_ptr != NULL);
> -  
> -  if (adj_ptr -> prev == NULL) {
> -    this_->adj_list[u] = adj_ptr -> succ;
> -  } else {
> -    adj_ptr -> prev -> succ = adj_ptr -> succ;
> -  } 
> -
> -  if (adj_ptr -> succ != NULL) {
> -    adj_ptr -> succ -> prev = adj_ptr -> prev;
> -  }
> -
> -  if(adj_ptr->reverse != NULL) {
> -    adjnode *rev = adj_ptr->reverse;
> -    rev->reverse = NULL;
> -  }
> -
> -  if (adj_ptr -> tc_safe_regs != NULL) {
> -     free(adj_ptr -> tc_safe_regs);
> -  }
> -
> -  free(adj_ptr);
> -}
> -
> -/*****************************************************************************
> - * node functions 
> - ****************************************************************************/
> -
> -/* get degree of a node */
> -static
> -int get_deg(pbqp *this_,int u)
> -{
> -  adjnode *adj_ptr;
> -  int deg = 0;
> -  
> -  assert(this_ != NULL);
> -  assert(u >= 0 && u < this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -
> -  for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -    deg ++;
> -  }
> -  return deg;
> -}
> -
> -/* reinsert node */
> -static
> -void reinsert_node(pbqp *this_,int u)
> -{
> -  adjnode *adj_u,
> -          *adj_v;
> -
> -  assert(this_!= NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -
> -  for(adj_u = this_ -> adj_list[u]; adj_u != NULL; adj_u = adj_u -> succ) {
> -    int v = adj_u -> adj;
> -    adj_v = alloc_adjnode(this_,u,adj_u->costs);
> -    insert_adjnode(this_,v,adj_v);
> -  }
> -}
> -
> -/* remove node */
> -static
> -void remove_node(pbqp *this_,int u)
> -{
> -  adjnode *adj_ptr;
> -
> -  assert(this_!= NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -
> -  for(adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -    remove_adjnode(this_,adj_ptr->adj,adj_ptr -> reverse);
> -  }
> -}
> -
> -/*****************************************************************************
> - * edge functions
> - ****************************************************************************/
> -
> -/* insert edge to graph */
> -/* (does not check whether edge exists in graph */
> -static
> -void insert_edge(pbqp *this_, int u, int v, PBQPMatrix *costs)
> -{
> -  adjnode *adj_u,
> -          *adj_v;
> -  
> -  /* create adjanceny entry for u */
> -  adj_u = alloc_adjnode(this_,v,costs);
> -  insert_adjnode(this_,u,adj_u);
> -
> -
> -  /* create adjanceny entry for v */
> -  adj_v = alloc_adjnode(this_,u,costs);
> -  insert_adjnode(this_,v,adj_v);
> -  
> -  /* create link for reverse edge */
> -  adj_u -> reverse = adj_v;
> -  adj_v -> reverse = adj_u;
> -}
> -
> -/* delete edge */
> -static
> -void delete_edge(pbqp *this_,int u,int v)
> -{
> -  adjnode *adj_ptr;
> -  adjnode *rev;
> -  
> -  assert(this_ != NULL);
> -  assert( u >= 0 && u < this_->num_nodes);
> -  assert( v >= 0 && v < this_->num_nodes);
> -
> -  adj_ptr=find_adjnode(this_,u,v);
> -  assert(adj_ptr != NULL);
> -  assert(adj_ptr->reverse != NULL);
> -
> -  delete adj_ptr -> costs;
> - 
> -  rev = adj_ptr->reverse; 
> -  remove_adjnode(this_,u,adj_ptr);
> -  remove_adjnode(this_,v,rev);
> -} 
> -
> -/*****************************************************************************
> - * cost functions 
> - ****************************************************************************/
> -
> -/* Note: Since cost(u,v) = transpose(cost(v,u)), it would be necessary to store 
> -   two matrices for both edges (u,v) and (v,u). However, we only store the 
> -   matrix for the case u < v. For the other case we transpose the stored matrix
> -   if required. 
> -*/
> -
> -/* add costs to cost vector of a node */
> -void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs)
> -{
> -  assert(this_ != NULL);
> -  assert(costs != NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  
> -  if (!this_->node_costs[u]) {
> -    this_->node_costs[u] = new PBQPVector(*costs);
> -  } else {
> -    *this_->node_costs[u] += *costs;
> -  }
> -}
> -
> -/* get cost matrix ptr */
> -static
> -PBQPMatrix *get_costmatrix_ptr(pbqp *this_, int u, int v)
> -{
> -  adjnode *adj_ptr;
> -  PBQPMatrix *m = NULL;
> -
> -  assert (this_ != NULL);
> -  assert (u >= 0 && u < this_->num_nodes);
> -  assert (v >= 0 && v < this_->num_nodes); 
> -
> -  adj_ptr = find_adjnode(this_,u,v);
> -
> -  if (adj_ptr != NULL) {
> -    m = adj_ptr -> costs;
> -  } 
> -
> -  return m;
> -}
> -
> -/* get cost matrix ptr */
> -/* Note: only the pointer is returned for 
> -   cost(u,v), if u < v.
> -*/ 
> -static
> -PBQPMatrix *pbqp_get_costmatrix(pbqp *this_, int u, int v)
> -{
> -  adjnode *adj_ptr = find_adjnode(this_,u,v);
> -  
> -  if (adj_ptr != NULL) {
> -    if ( u < v) {
> -      return new PBQPMatrix(*adj_ptr->costs);
> -    } else {
> -      return new PBQPMatrix(adj_ptr->costs->transpose());
> -    }
> -  } else {
> -    return NULL;
> -  }  
> -}
> -
> -/* add costs to cost matrix of an edge */
> -void add_pbqp_edgecosts(pbqp *this_,int u,int v, PBQPMatrix *costs)
> -{
> -  PBQPMatrix *adj_costs;
> -
> -  assert(this_!= NULL);
> -  assert(costs != NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  assert(v >= 0 && v <= this_->num_nodes);
> -  
> -  /* does the edge u-v exists ? */
> -  if (u == v) {
> -    PBQPVector *diag = new PBQPVector(costs->diagonalize());
> -    add_pbqp_nodecosts(this_,v,diag);
> -    delete diag;
> -  } else if ((adj_costs = get_costmatrix_ptr(this_,u,v))!=NULL) {
> -    if ( u < v) {
> -      *adj_costs += *costs;
> -    } else {
> -      *adj_costs += costs->transpose();
> -    }
> -  } else {
> -    adj_costs = new PBQPMatrix((u < v) ? *costs : costs->transpose());
> -    insert_edge(this_,u,v,adj_costs);
> -  } 
> -}
> -
> -/* remove bucket from bucket list */
> -static
> -void pbqp_remove_bucket(pbqp *this_, bucketnode *bucket)
> -{
> -  int u = bucket->u;
> -  
> -  assert(this_ != NULL);
> -  assert(u >= 0 && u < this_->num_nodes);
> -  assert(this_->bucket_list != NULL);
> -  assert(this_->bucket_ptr[u] != NULL);
> -  
> -  /* update predecessor node in bucket list 
> -     (if no preceeding bucket exists, then
> -     the bucket_list pointer needs to be 
> -     updated.)
> -  */    
> -  if (bucket->prev != NULL) {
> -    bucket->prev-> succ = bucket->succ; 
> -  } else {
> -    this_->bucket_list[this_->node_deg[u]] = bucket -> succ;
> -  }
> -  
> -  /* update successor node in bucket list */ 
> -  if (bucket->succ != NULL) { 
> -    bucket->succ-> prev = bucket->prev;
> -  }
> -}
> -
> -/**********************************************************************************
> - * pop functions
> - **********************************************************************************/
> -
> -/* pop node of given degree */
> -static
> -int pop_node(pbqp *this_,int deg)
> -{
> -  bucketnode *bucket;
> -  int u;
> -
> -  assert(this_ != NULL);
> -  assert(deg >= 0 && deg <= this_->max_deg);
> -  assert(this_->bucket_list != NULL);
> -   
> -  /* get first bucket of bucket list */
> -  bucket = this_->bucket_list[deg];
> -  assert(bucket != NULL);
> -
> -  /* remove bucket */
> -  pbqp_remove_bucket(this_,bucket);
> -  u = bucket->u;
> -  free(bucket);
> -  return u;
> -}
> -
> -/**********************************************************************************
> - * reorder functions
> - **********************************************************************************/
> -
> -/* add bucket to bucketlist */
> -static
> -void add_to_bucketlist(pbqp *this_,bucketnode *bucket, int deg)
> -{
> -  bucketnode *old_head;
> -  
> -  assert(bucket != NULL);
> -  assert(this_ != NULL);
> -  assert(deg >= 0 && deg <= this_->max_deg);
> -  assert(this_->bucket_list != NULL);
> -
> -  /* store node degree (for re-ordering purposes)*/
> -  this_->node_deg[bucket->u] = deg;
> -  
> -  /* put bucket to front of doubly chained list */
> -  old_head = this_->bucket_list[deg];
> -  bucket -> prev = NULL;
> -  bucket -> succ = old_head;
> -  this_ -> bucket_list[deg] = bucket;
> -  if (bucket -> succ != NULL ) {
> -    assert ( old_head -> prev == NULL);
> -    old_head -> prev = bucket;
> -  }
> -}
> -
> -
> -/* reorder node in bucket list according to 
> -   current node degree */
> -static
> -void reorder_node(pbqp *this_, int u)
> -{
> -  int deg; 
> -  
> -  assert(this_ != NULL);
> -  assert(u>= 0 && u < this_->num_nodes);
> -  assert(this_->bucket_list != NULL);
> -  assert(this_->bucket_ptr[u] != NULL);
> -
> -  /* get current node degree */
> -  deg = get_deg(this_,u);
> -  
> -  /* remove bucket from old bucket list only
> -     if degree of node has changed. */
> -  if (deg != this_->node_deg[u]) {
> -    pbqp_remove_bucket(this_,this_->bucket_ptr[u]);
> -    add_to_bucketlist(this_,this_->bucket_ptr[u],deg);
> -  } 
> -}
> -
> -/* reorder adj. nodes of a node */
> -static
> -void reorder_adjnodes(pbqp *this_,int u)
> -{
> -  adjnode *adj_ptr;
> -  
> -  assert(this_!= NULL);
> -  assert(u >= 0 && u <= this_->num_nodes);
> -  assert(this_->adj_list != NULL);
> -
> -  for(adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -    reorder_node(this_,adj_ptr->adj);
> -  }
> -}
> -
> -/**********************************************************************************
> - * creation functions
> - **********************************************************************************/
> -
> -/* create new bucket entry */
> -/* consistency of the bucket list is not checked! */
> -static
> -void create_bucket(pbqp *this_,int u,int deg)
> -{
> -  bucketnode *bucket;
> -  
> -  assert(this_ != NULL);
> -  assert(u >= 0 && u < this_->num_nodes);
> -  assert(this_->bucket_list != NULL);
> -  
> -  bucket = (bucketnode *)malloc(sizeof(bucketnode));
> -  assert(bucket != NULL);
> -
> -  bucket -> u = u;
> -  this_->bucket_ptr[u] = bucket;
> -
> -  add_to_bucketlist(this_,bucket,deg);
> -}
> -
> -/* create bucket list */
> -static
> -void create_bucketlist(pbqp *this_)
> -{
> -  int u;
> -  int max_deg;
> -  int deg;
> -
> -  assert(this_ != NULL);
> -  assert(this_->bucket_list == NULL);
> -
> -  /* determine max. degree of the nodes */
> -  max_deg = 2;  /* at least of degree two! */
> -  for(u=0;u<this_->num_nodes;u++) {
> -    deg = this_->node_deg[u] = get_deg(this_,u);
> -    if (deg > max_deg) {
> -      max_deg = deg;
> -    }
> -  }
> -  this_->max_deg = max_deg;
> -  
> -  /* allocate bucket list */
> -  this_ -> bucket_list = (bucketnode **)malloc(sizeof(bucketnode *)*(max_deg + 1));
> -  memset(this_->bucket_list,0,sizeof(bucketnode *)*(max_deg + 1));
> -  assert(this_->bucket_list != NULL);
> -  
> -  /* insert nodes to the list */
> -  for(u=0;u<this_->num_nodes;u++) {
> -    create_bucket(this_,u,this_->node_deg[u]);  
> -  }
> -}
> -
> -/*****************************************************************************
> - * PBQP simplification for trivial nodes
> - ****************************************************************************/
> -
> -/* remove trivial node with cost vector length of one */
> -static
> -void disconnect_trivialnode(pbqp *this_,int u)
> -{
> -  int v;
> -  adjnode *adj_ptr, 
> -          *next;
> -  PBQPMatrix *c_uv;
> -  PBQPVector *c_v;
> -  
> -  assert(this_ != NULL);
> -  assert(this_->node_costs != NULL);
> -  assert(u >= 0 && u < this_ -> num_nodes);
> -  assert(this_->node_costs[u]->getLength() == 1);
> -  
> -  /* add edge costs to node costs of adj. nodes */
> -  for(adj_ptr = this_->adj_list[u]; adj_ptr != NULL; adj_ptr = next){
> -    next = adj_ptr -> succ;
> -    v = adj_ptr -> adj;
> -    assert(v >= 0 && v < this_ -> num_nodes);
> -    
> -    /* convert matrix to cost vector offset for adj. node */
> -    c_uv = pbqp_get_costmatrix(this_,u,v);
> -    c_v = new PBQPVector(c_uv->getRowAsVector(0));
> -    *this_->node_costs[v] += *c_v;
> -    
> -    /* delete edge & free vec/mat */
> -    delete c_v;
> -    delete c_uv;
> -    delete_edge(this_,u,v);
> -  }   
> -}
> -
> -/* find all trivial nodes and disconnect them */
> -static   
> -void eliminate_trivial_nodes(pbqp *this_)
> -{
> -   int u;
> -   
> -   assert(this_ != NULL);
> -   assert(this_ -> node_costs != NULL);
> -   
> -   for(u=0;u < this_ -> num_nodes; u++) {
> -     if (this_->node_costs[u]->getLength() == 1) {
> -       disconnect_trivialnode(this_,u); 
> -     }
> -   }
> -}
> -
> -/*****************************************************************************
> - * Normal form for PBQP 
> - ****************************************************************************/
> -
> -/* simplify a cost matrix. If the matrix
> -   is independent, then simplify_matrix
> -   returns true - otherwise false. In
> -   vectors u and v the offset values of
> -   the decomposition are stored. 
> -*/
> -
> -static
> -bool normalize_matrix(PBQPMatrix *m, PBQPVector *u, PBQPVector *v)
> -{
> -  assert( m != NULL);
> -  assert( u != NULL);
> -  assert( v != NULL);
> -  assert( u->getLength() > 0);
> -  assert( v->getLength() > 0);
> -  
> -  assert(m->getRows() == u->getLength());
> -  assert(m->getCols() == v->getLength());
> -
> -  /* determine u vector */
> -  for(unsigned r = 0; r < m->getRows(); ++r) {
> -    PBQPNum min = m->getRowMin(r);
> -    (*u)[r] += min;
> -    if (!isInf(min)) {
> -      m->subFromRow(r, min);
> -    } else {
> -      m->setRow(r, 0);
> -    }
> -  }
> -  
> -  /* determine v vector */
> -  for(unsigned c = 0; c < m->getCols(); ++c) {
> -    PBQPNum min = m->getColMin(c);
> -    (*v)[c] += min;
> -    if (!isInf(min)) {
> -      m->subFromCol(c, min);
> -    } else {
> -      m->setCol(c, 0);
> -    }
> -  }
> -  
> -  /* determine whether matrix is 
> -     independent or not. 
> -    */
> -  return m->isZero();
> -}
> -
> -/* simplify single edge */
> -static
> -void simplify_edge(pbqp *this_,int u,int v)
> -{
> -  PBQPMatrix *costs;
> -  bool is_zero; 
> -  
> -  assert (this_ != NULL);
> -  assert (u >= 0 && u <this_->num_nodes);
> -  assert (v >= 0 && v <this_->num_nodes);
> -  assert (u != v);
> -
> -  /* swap u and v  if u > v in order to avoid un-necessary
> -     tranpositions of the cost matrix */
> -  
> -  if (u > v) {
> -    int swap = u;
> -    u = v;
> -    v = swap;
> -  }
> -  
> -  /* get cost matrix and simplify it */  
> -  costs = get_costmatrix_ptr(this_,u,v);
> -  is_zero=normalize_matrix(costs,this_->node_costs[u],this_->node_costs[v]);
> -
> -  /* delete edge */
> -  if(is_zero){
> -    delete_edge(this_,u,v);
> -    this_->changed = true;
> -  }
> -}
> -
> -/* normalize cost matrices and remove 
> -   edges in PBQP if they ary independent, 
> -   i.e. can be decomposed into two 
> -   cost vectors.
> -*/
> -static
> -void eliminate_independent_edges(pbqp *this_)
> -{
> -  int u,v;
> -  adjnode *adj_ptr,*next;
> -  
> -  assert(this_ != NULL);
> -  assert(this_ -> adj_list != NULL);
> -
> -  this_->changed = false;
> -  for(u=0;u < this_->num_nodes;u++) {
> -    for (adj_ptr = this_ -> adj_list[u]; adj_ptr != NULL; adj_ptr = next) {
> -      next = adj_ptr -> succ;
> -      v = adj_ptr -> adj;
> -      assert(v >= 0 && v < this_->num_nodes);
> -      if (u < v) {
> -        simplify_edge(this_,u,v);
> -      } 
> -    }
> -  }
> -}
> -
> -
> -/*****************************************************************************
> - * PBQP reduction rules 
> - ****************************************************************************/
> -
> -/* RI reduction
> -   This reduction rule is applied for nodes 
> -   of degree one. */
> -
> -static
> -void apply_RI(pbqp *this_,int x)
> -{
> -  int y;
> -  unsigned xlen,
> -           ylen;
> -  PBQPMatrix *c_yx;
> -  PBQPVector *c_x, *delta;
> -  
> -  assert(this_ != NULL);
> -  assert(x >= 0 && x < this_->num_nodes);
> -  assert(this_ -> adj_list[x] != NULL);
> -  assert(this_ -> adj_list[x] -> succ == NULL);
> -
> -  /* get adjacence matrix */
> -  y = this_ -> adj_list[x] -> adj;
> -  assert(y >= 0 && y < this_->num_nodes);
> -  
> -  /* determine length of cost vectors for node x and y */
> -  xlen = this_ -> node_costs[x]->getLength();
> -  ylen = this_ -> node_costs[y]->getLength();
> -
> -  /* get cost vector c_x and matrix c_yx */
> -  c_x = this_ -> node_costs[x];
> -  c_yx = pbqp_get_costmatrix(this_,y,x); 
> -  assert (c_yx != NULL);
> -
> -  
> -  /* allocate delta vector */
> -  delta = new PBQPVector(ylen);
> -
> -  /* compute delta vector */
> -  for(unsigned i = 0; i < ylen; ++i) {
> -    PBQPNum min =  (*c_yx)[i][0] + (*c_x)[0];
> -    for(unsigned j = 1; j < xlen; ++j) {
> -      PBQPNum c =  (*c_yx)[i][j] + (*c_x)[j];
> -      if ( c < min )  
> -         min = c;
> -    }
> -    (*delta)[i] = min; 
> -  } 
> -
> -  /* add delta vector */
> -  *this_ -> node_costs[y] += *delta;
> -
> -  /* delete node x */
> -  remove_node(this_,x);
> -
> -  /* reorder adj. nodes of node x */
> -  reorder_adjnodes(this_,x);
> -
> -  /* push node x on stack */
> -  assert(this_ -> stack_ptr < this_ -> num_nodes);
> -  this_->stack[this_ -> stack_ptr++] = x;
> -
> -  /* free vec/mat */
> -  delete c_yx;
> -  delete delta;
> -
> -  /* increment counter for number statistic */
> -  this_->num_ri++;
> -}
> -
> -/* RII reduction
> -   This reduction rule is applied for nodes 
> -   of degree two. */
> -
> -static
> -void apply_RII(pbqp *this_,int x)
> -{
> -  int y,z; 
> -  unsigned xlen,ylen,zlen;
> -  adjnode *adj_yz;
> -
> -  PBQPMatrix *c_yx, *c_zx;
> -  PBQPVector *cx;
> -  PBQPMatrix *delta;
> - 
> -  assert(this_ != NULL);
> -  assert(x >= 0 && x < this_->num_nodes);
> -  assert(this_ -> adj_list[x] != NULL);
> -  assert(this_ -> adj_list[x] -> succ != NULL);
> -  assert(this_ -> adj_list[x] -> succ -> succ == NULL);
> -
> -  /* get adjacence matrix */
> -  y = this_ -> adj_list[x] -> adj;
> -  z = this_ -> adj_list[x] -> succ -> adj;
> -  assert(y >= 0 && y < this_->num_nodes);
> -  assert(z >= 0 && z < this_->num_nodes);
> -  
> -  /* determine length of cost vectors for node x and y */
> -  xlen = this_ -> node_costs[x]->getLength();
> -  ylen = this_ -> node_costs[y]->getLength();
> -  zlen = this_ -> node_costs[z]->getLength();
> -
> -  /* get cost vector c_x and matrix c_yx */
> -  cx = this_ -> node_costs[x];
> -  c_yx = pbqp_get_costmatrix(this_,y,x); 
> -  c_zx = pbqp_get_costmatrix(this_,z,x); 
> -  assert(c_yx != NULL);
> -  assert(c_zx != NULL);
> -
> -  /* Colour Heuristic */
> -  if ( (adj_yz = find_adjnode(this_,y,z)) != NULL) {
> -    adj_yz->tc_valid = false;
> -    adj_yz->reverse->tc_valid = false; 
> -  }
> -
> -  /* allocate delta matrix */
> -  delta = new PBQPMatrix(ylen, zlen);
> -
> -  /* compute delta matrix */
> -  for(unsigned i=0;i<ylen;i++) {
> -    for(unsigned j=0;j<zlen;j++) {
> -      PBQPNum min = (*c_yx)[i][0] + (*c_zx)[j][0] + (*cx)[0];
> -      for(unsigned k=1;k<xlen;k++) {
> -        PBQPNum c = (*c_yx)[i][k] + (*c_zx)[j][k] + (*cx)[k];
> -        if ( c < min ) {
> -          min = c;
> -        }
> -      }
> -      (*delta)[i][j] = min;
> -    }
> -  }
> -
> -  /* add delta matrix */
> -  add_pbqp_edgecosts(this_,y,z,delta);
> -
> -  /* delete node x */
> -  remove_node(this_,x);
> -
> -  /* simplify cost matrix c_yz */
> -  simplify_edge(this_,y,z);
> -
> -  /* reorder adj. nodes */
> -  reorder_adjnodes(this_,x);
> -
> -  /* push node x on stack */
> -  assert(this_ -> stack_ptr < this_ -> num_nodes);
> -  this_->stack[this_ -> stack_ptr++] = x;
> -
> -  /* free vec/mat */
> -  delete c_yx;
> -  delete c_zx;
> -  delete delta;
> -
> -  /* increment counter for number statistic */
> -  this_->num_rii++;
> -
> -}
> -
> -/* RN reduction */
> -static
> -void apply_RN(pbqp *this_,int x)
> -{
> -  unsigned xlen;
> -
> -  assert(this_ != NULL);
> -  assert(x >= 0 && x < this_->num_nodes);
> -  assert(this_ -> node_costs[x] != NULL);
> -
> -  xlen = this_ -> node_costs[x] -> getLength();
> -
> -  /* after application of RN rule no optimality
> -     can be guaranteed! */
> -  this_ -> optimal = false;
> -  
> -  /* push node x on stack */
> -  assert(this_ -> stack_ptr < this_ -> num_nodes);
> -  this_->stack[this_ -> stack_ptr++] = x;
> -
> -  /* delete node x */ 
> -  remove_node(this_,x);
> -
> -  /* reorder adj. nodes of node x */
> -  reorder_adjnodes(this_,x);
> -
> -  /* increment counter for number statistic */
> -  this_->num_rn++;
> -}
> -
> -
> -static
> -void compute_tc_info(pbqp *this_, adjnode *p)
> -{
> -   adjnode *r;
> -   PBQPMatrix *m;
> -   int x,y;
> -   PBQPVector *c_x, *c_y;
> -   int *row_inf_counts;
> -
> -   assert(p->reverse != NULL);
> -
> -   /* set flags */ 
> -   r = p->reverse;
> -   p->tc_valid = true;
> -   r->tc_valid = true;
> -
> -   /* get edge */
> -   x = r->adj;
> -   y = p->adj;
> -
> -   /* get cost vectors */
> -   c_x = this_ -> node_costs[x];
> -   c_y = this_ -> node_costs[y];
> -
> -   /* get cost matrix */
> -   m = pbqp_get_costmatrix(this_, x, y);
> -
> -  
> -   /* allocate allowed set for edge (x,y) and (y,x) */
> -   if (p->tc_safe_regs == NULL) {
> -     p->tc_safe_regs = (int *) malloc(sizeof(int) * c_x->getLength());
> -   } 
> -
> -   if (r->tc_safe_regs == NULL ) {
> -     r->tc_safe_regs = (int *) malloc(sizeof(int) * c_y->getLength());
> -   }
> -
> -   p->tc_impact = r->tc_impact = 0;
> -
> -   row_inf_counts = (int *) alloca(sizeof(int) * c_x->getLength());
> -
> -   /* init arrays */
> -   p->tc_safe_regs[0] = 0;
> -   row_inf_counts[0] = 0;
> -   for(unsigned i = 1; i < c_x->getLength(); ++i){
> -     p->tc_safe_regs[i] = 1;
> -     row_inf_counts[i] = 0;
> -   }
> -
> -   r->tc_safe_regs[0] = 0;
> -   for(unsigned j = 1; j < c_y->getLength(); ++j){
> -     r->tc_safe_regs[j] = 1;
> -   }
> -
> -   for(unsigned j = 0; j < c_y->getLength(); ++j) {
> -      int col_inf_counts = 0;
> -      for (unsigned i = 0; i < c_x->getLength(); ++i) {
> -         if (isInf((*m)[i][j])) {
> -              ++col_inf_counts;
> -              ++row_inf_counts[i];
> -         
> -              p->tc_safe_regs[i] = 0;
> -              r->tc_safe_regs[j] = 0;
> -         }
> -      }
> -      if (col_inf_counts > p->tc_impact) {
> -           p->tc_impact = col_inf_counts;
> -      }
> -   }
> -
> -   for(unsigned i = 0; i < c_x->getLength(); ++i){
> -     if (row_inf_counts[i] > r->tc_impact)
> -     {
> -           r->tc_impact = row_inf_counts[i];
> -     }
> -   }
> -           
> -   delete m;
> -}
> -
> -/* 
> - * Checks whether node x can be locally coloured. 
> - */
> -static 
> -int is_colorable(pbqp *this_,int x)
> -{
> -  adjnode *adj_ptr;
> -  PBQPVector *c_x;
> -  int result = 1;
> -  int *allowed;
> -  int num_allowed = 0;
> -  unsigned total_impact = 0;
> -
> -  assert(this_ != NULL);
> -  assert(x >= 0 && x < this_->num_nodes);
> -  assert(this_ -> node_costs[x] != NULL);
> -
> -  c_x = this_ -> node_costs[x];
> -
> -  /* allocate allowed set */
> -  allowed = (int *)malloc(sizeof(int) * c_x->getLength());
> -  for(unsigned i = 0; i < c_x->getLength(); ++i){
> -    if (!isInf((*c_x)[i]) && i > 0) {
> -      allowed[i] = 1;
> -      ++num_allowed;
> -    } else { 
> -      allowed[i] = 0;
> -    }
> -  }
> -
> -  /* determine local minimum */
> -  for(adj_ptr=this_->adj_list[x] ;adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -      if (!adj_ptr -> tc_valid) { 
> -          compute_tc_info(this_, adj_ptr);
> -      }
> -
> -      total_impact += adj_ptr->tc_impact;
> -
> -      if (num_allowed > 0) {
> -          for (unsigned i = 1; i < c_x->getLength(); ++i){
> -            if (allowed[i]){
> -              if (!adj_ptr->tc_safe_regs[i]){
> -                allowed[i] = 0;
> -                --num_allowed;
> -                if (num_allowed == 0)
> -                    break;
> -              }
> -            }
> -          }
> -      }
> -      
> -      if ( total_impact >= c_x->getLength() - 1 && num_allowed == 0 ) {
> -         result = 0;
> -         break;
> -      }
> -  }
> -  free(allowed);
> -
> -  return result;
> -}
> -
> -/* use briggs heuristic 
> -  note: this_ is not a general heuristic. it only is useful for 
> -  interference graphs.
> - */
> -int pop_colorablenode(pbqp *this_)
> -{
> -  int deg;
> -  bucketnode *min_bucket=NULL;
> -  PBQPNum min = std::numeric_limits<PBQPNum>::infinity();
> - 
> -  /* select node where the number of colors is less than the node degree */
> -  for(deg=this_->max_deg;deg > 2;deg--) {
> -    bucketnode *bucket;
> -    for(bucket=this_->bucket_list[deg];bucket!= NULL;bucket = bucket -> succ) {
> -      int u = bucket->u;
> -      if (is_colorable(this_,u)) {
> -        pbqp_remove_bucket(this_,bucket);
> -        this_->num_rn_special++;
> -        free(bucket);
> -        return u; 
> -      } 
> -    }
> -  }
> -
> -  /* select node with minimal ratio between average node costs and degree of node */
> -  for(deg=this_->max_deg;deg >2; deg--) {
> -    bucketnode *bucket;
> -    for(bucket=this_->bucket_list[deg];bucket!= NULL;bucket = bucket -> succ) {
> -      PBQPNum h;
> -      int u;
> - 
> -      u = bucket->u;
> -      assert(u>=0 && u < this_->num_nodes);
> -      h = (*this_->node_costs[u])[0] / (PBQPNum) deg;
> -      if (h < min) {
> -        min_bucket = bucket;
> -        min = h;
> -      } 
> -    }
> -  }
> -
> -  /* return node and free bucket */
> -  if (min_bucket != NULL) {
> -    int u;
> -
> -    pbqp_remove_bucket(this_,min_bucket);
> -    u = min_bucket->u;
> -    free(min_bucket);
> -    return u;
> -  } else {
> -    return -1;
> -  }
> -}
> -
> -
> -/*****************************************************************************
> - * PBQP graph parsing
> - ****************************************************************************/
> - 
> -/* reduce pbqp problem (first phase) */
> -static
> -void reduce_pbqp(pbqp *this_)
> -{
> -  int u;
> -
> -  assert(this_ != NULL);
> -  assert(this_->bucket_list != NULL);
> -
> -  for(;;){
> -
> -    if (this_->bucket_list[1] != NULL) {
> -      u = pop_node(this_,1);
> -      apply_RI(this_,u); 
> -    } else if (this_->bucket_list[2] != NULL) {
> -      u = pop_node(this_,2);
> -      apply_RII(this_,u);
> -    } else if ((u = pop_colorablenode(this_)) != -1) {
> -      apply_RN(this_,u);
> -    } else {
> -      break;
> -    }
> -  } 
> -}
> -
> -/*****************************************************************************
> - * PBQP back propagation
> - ****************************************************************************/
> -
> -/* determine solution of a reduced node. Either
> -   RI or RII was applied for this_ node. */
> -static
> -void determine_solution(pbqp *this_,int x)
> -{
> -  PBQPVector *v = new PBQPVector(*this_ -> node_costs[x]);
> -  adjnode *adj_ptr;
> -
> -  assert(this_ != NULL);
> -  assert(x >= 0 && x < this_->num_nodes);
> -  assert(this_ -> adj_list != NULL);
> -  assert(this_ -> solution != NULL);
> -
> -  for(adj_ptr=this_->adj_list[x] ;adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -    int y = adj_ptr -> adj;
> -    int y_sol = this_ -> solution[y];
> -
> -    PBQPMatrix *c_yx = pbqp_get_costmatrix(this_,y,x);
> -    assert(y_sol >= 0 && y_sol < (int)this_->node_costs[y]->getLength());
> -    (*v) += c_yx->getRowAsVector(y_sol);
> -    delete c_yx;
> -  }
> -  this_ -> solution[x] = v->minIndex();
> -
> -  delete v;
> -}
> -
> -/* back popagation phase of PBQP */
> -static
> -void back_propagate(pbqp *this_)
> -{
> -   int i;
> -
> -   assert(this_ != NULL);
> -   assert(this_->stack != NULL);
> -   assert(this_->stack_ptr < this_->num_nodes);
> -
> -   for(i=this_ -> stack_ptr-1;i>=0;i--) {
> -      int x = this_ -> stack[i];
> -      assert( x >= 0 && x < this_ -> num_nodes);
> -      reinsert_node(this_,x);
> -      determine_solution(this_,x);
> -   }
> -}
> -
> -/* solve trivial nodes of degree zero */
> -static
> -void determine_trivialsolution(pbqp *this_)
> -{
> -  int u;
> -  PBQPNum delta;
> -
> -  assert( this_ != NULL);
> -  assert( this_ -> bucket_list != NULL);
> -
> -  /* determine trivial solution */
> -  while (this_->bucket_list[0] != NULL) {
> -    u = pop_node(this_,0);
> -
> -    assert( u >= 0 && u < this_ -> num_nodes);
> -
> -    this_->solution[u] = this_->node_costs[u]->minIndex();
> -    delta = (*this_->node_costs[u])[this_->solution[u]];
> -    this_->min = this_->min + delta;
> -
> -    /* increment counter for number statistic */
> -    this_->num_r0++;
> -  }
> -}
> -
> -/*****************************************************************************
> - * debug facilities
> - ****************************************************************************/
> -static
> -void check_pbqp(pbqp *this_)
> -{
> -  int u,v;
> -  PBQPMatrix *costs;
> -  adjnode *adj_ptr;
> -  
> -  assert( this_ != NULL);
> -  
> -  for(u=0;u< this_->num_nodes; u++) {
> -    assert (this_ -> node_costs[u] != NULL);
> -    for(adj_ptr = this_ -> adj_list[u];adj_ptr != NULL; adj_ptr = adj_ptr -> succ) {
> -      v = adj_ptr -> adj;
> -      assert( v>= 0 && v < this_->num_nodes);
> -      if (u < v ) {
> -        costs = adj_ptr -> costs;
> -        assert( costs->getRows() == this_->node_costs[u]->getLength() &&
> -                costs->getCols() == this_->node_costs[v]->getLength());
> -      }           
> -    }
> -  }
> -}
> -
> -/*****************************************************************************
> - * PBQP solve routines 
> - ****************************************************************************/
> -
> -/* solve PBQP problem */
> -void solve_pbqp(pbqp *this_)
> -{
> -  assert(this_ != NULL);
> -  assert(!this_->solved); 
> -  
> -  /* check vector & matrix dimensions */
> -  check_pbqp(this_);
> -
> -  /* simplify PBQP problem */  
> -  
> -  /* eliminate trivial nodes, i.e.
> -     nodes with cost vectors of length one.  */
> -  eliminate_trivial_nodes(this_); 
> -
> -  /* eliminate edges with independent 
> -     cost matrices and normalize matrices */
> -  eliminate_independent_edges(this_);
> -  
> -  /* create bucket list for graph parsing */
> -  create_bucketlist(this_);
> -  
> -  /* reduce phase */
> -  reduce_pbqp(this_);
> -  
> -  /* solve trivial nodes */
> -  determine_trivialsolution(this_);
> -
> -  /* back propagation phase */
> -  back_propagate(this_); 
> -  
> -  this_->solved = true;
> -}
> -
> -/* get solution of a node */
> -int get_pbqp_solution(pbqp *this_,int x)
> -{
> -  assert(this_ != NULL);
> -  assert(this_->solution != NULL);
> -  assert(this_ -> solved);
> -  
> -  return this_->solution[x];
> -}
> -
> -/* is solution optimal? */
> -bool is_pbqp_optimal(pbqp *this_)
> -{
> -  assert(this_ -> solved);
> -  return this_->optimal;
> -}
> -
> -} 
> -
> -/* end of pbqp.c */
>
> Removed: llvm/trunk/lib/CodeGen/PBQP.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP.h?rev=78353&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP.h (original)
> +++ llvm/trunk/lib/CodeGen/PBQP.h (removed)
> @@ -1,284 +0,0 @@
> -//===---------------- PBQP.cpp --------- PBQP Solver ------------*- C++ -*-===//
> -//
> -//                     The LLVM Compiler Infrastructure
> -//
> -// This file is distributed under the University of Illinois Open Source
> -// License. See LICENSE.TXT for details.
> -//
> -//===----------------------------------------------------------------------===//
> -//
> -// Developed by:                   Bernhard Scholz
> -//                             The University of Sydney
> -//                         http://www.it.usyd.edu.au/~scholz
> -//===----------------------------------------------------------------------===//
> -
> -// TODO:
> -//
> -//  * Default to null costs on vector initialisation?
> -//  * C++-ify the rest of the solver.
> -
> -#ifndef LLVM_CODEGEN_PBQPSOLVER_H
> -#define LLVM_CODEGEN_PBQPSOLVER_H
> -
> -#include <cassert>
> -#include <algorithm>
> -#include <functional>
> -
> -namespace llvm {
> -
> -//! \brief Floating point type to use in PBQP solver.
> -typedef double PBQPNum;
> -
> -//! \brief PBQP Vector class.
> -class PBQPVector {
> -public:
> -
> -  //! \brief Construct a PBQP vector of the given size.
> -  explicit PBQPVector(unsigned length) :
> -    length(length), data(new PBQPNum[length]) {
> -    std::fill(data, data + length, 0);
> -  }
> -
> -  //! \brief Copy construct a PBQP vector.
> -  PBQPVector(const PBQPVector &v) :
> -    length(v.length), data(new PBQPNum[length]) {
> -    std::copy(v.data, v.data + length, data);
> -  }
> -
> -  ~PBQPVector() { delete[] data; }
> -
> -  //! \brief Assignment operator.
> -  PBQPVector& operator=(const PBQPVector &v) {
> -    delete[] data;
> -    length = v.length;
> -    data = new PBQPNum[length];
> -    std::copy(v.data, v.data + length, data);
> -    return *this;
> -  }
> -
> -  //! \brief Return the length of the vector
> -  unsigned getLength() const throw () {
> -    return length;
> -  }
> -
> -  //! \brief Element access.
> -  PBQPNum& operator[](unsigned index) {
> -    assert(index < length && "PBQPVector element access out of bounds.");
> -    return data[index];
> -  }
> -
> -  //! \brief Const element access.
> -  const PBQPNum& operator[](unsigned index) const {
> -    assert(index < length && "PBQPVector element access out of bounds.");
> -    return data[index];
> -  }
> -
> -  //! \brief Add another vector to this one.
> -  PBQPVector& operator+=(const PBQPVector &v) {
> -    assert(length == v.length && "PBQPVector length mismatch.");
> -    std::transform(data, data + length, v.data, data, std::plus<PBQPNum>()); 
> -    return *this;
> -  }
> -
> -  //! \brief Subtract another vector from this one.
> -  PBQPVector& operator-=(const PBQPVector &v) {
> -    assert(length == v.length && "PBQPVector length mismatch.");
> -    std::transform(data, data + length, v.data, data, std::minus<PBQPNum>()); 
> -    return *this;
> -  }
> -
> -  //! \brief Returns the index of the minimum value in this vector
> -  unsigned minIndex() const {
> -    return std::min_element(data, data + length) - data;
> -  }
> -
> -private:
> -  unsigned length;
> -  PBQPNum *data;
> -};
> -
> -
> -//! \brief PBQP Matrix class
> -class PBQPMatrix {
> -public:
> -
> -  //! \brief Construct a PBQP Matrix with the given dimensions.
> -  PBQPMatrix(unsigned rows, unsigned cols) :
> -    rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
> -    std::fill(data, data + (rows * cols), 0);
> -  }
> -
> -  //! \brief Copy construct a PBQP matrix.
> -  PBQPMatrix(const PBQPMatrix &m) :
> -    rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
> -    std::copy(m.data, m.data + (rows * cols), data);  
> -  }
> -
> -  ~PBQPMatrix() { delete[] data; }
> -
> -  //! \brief Assignment operator.
> -  PBQPMatrix& operator=(const PBQPMatrix &m) {
> -    delete[] data;
> -    rows = m.rows; cols = m.cols;
> -    data = new PBQPNum[rows * cols];
> -    std::copy(m.data, m.data + (rows * cols), data);
> -    return *this;
> -  }
> -
> -  //! \brief Return the number of rows in this matrix.
> -  unsigned getRows() const throw () { return rows; }
> -
> -  //! \brief Return the number of cols in this matrix.
> -  unsigned getCols() const throw () { return cols; }
> -
> -  //! \brief Matrix element access.
> -  PBQPNum* operator[](unsigned r) {
> -    assert(r < rows && "Row out of bounds.");
> -    return data + (r * cols);
> -  }
> -
> -  //! \brief Matrix element access.
> -  const PBQPNum* operator[](unsigned r) const {
> -    assert(r < rows && "Row out of bounds.");
> -    return data + (r * cols);
> -  }
> -
> -  //! \brief Returns the given row as a vector.
> -  PBQPVector getRowAsVector(unsigned r) const {
> -    PBQPVector v(cols);
> -    for (unsigned c = 0; c < cols; ++c)
> -      v[c] = (*this)[r][c];
> -    return v; 
> -  }
> -
> -  //! \brief Reset the matrix to the given value.
> -  PBQPMatrix& reset(PBQPNum val = 0) {
> -    std::fill(data, data + (rows * cols), val);
> -    return *this;
> -  }
> -
> -  //! \brief Set a single row of this matrix to the given value.
> -  PBQPMatrix& setRow(unsigned r, PBQPNum val) {
> -    assert(r < rows && "Row out of bounds.");
> -    std::fill(data + (r * cols), data + ((r + 1) * cols), val);
> -    return *this;
> -  }
> -
> -  //! \brief Set a single column of this matrix to the given value.
> -  PBQPMatrix& setCol(unsigned c, PBQPNum val) {
> -    assert(c < cols && "Column out of bounds.");
> -    for (unsigned r = 0; r < rows; ++r)
> -      (*this)[r][c] = val;
> -    return *this;
> -  }
> -
> -  //! \brief Matrix transpose.
> -  PBQPMatrix transpose() const {
> -    PBQPMatrix m(cols, rows);
> -    for (unsigned r = 0; r < rows; ++r)
> -      for (unsigned c = 0; c < cols; ++c)
> -        m[c][r] = (*this)[r][c];
> -    return m;
> -  }
> -
> -  //! \brief Returns the diagonal of the matrix as a vector.
> -  //!
> -  //! Matrix must be square.
> -  PBQPVector diagonalize() const {
> -    assert(rows == cols && "Attempt to diagonalize non-square matrix.");
> -
> -    PBQPVector v(rows);
> -    for (unsigned r = 0; r < rows; ++r)
> -      v[r] = (*this)[r][r];
> -    return v;
> -  } 
> -
> -  //! \brief Add the given matrix to this one.
> -  PBQPMatrix& operator+=(const PBQPMatrix &m) {
> -    assert(rows == m.rows && cols == m.cols &&
> -           "Matrix dimensions mismatch.");
> -    std::transform(data, data + (rows * cols), m.data, data,
> -                   std::plus<PBQPNum>());
> -    return *this;
> -  }
> -
> -  //! \brief Returns the minimum of the given row
> -  PBQPNum getRowMin(unsigned r) const {
> -    assert(r < rows && "Row out of bounds");
> -    return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
> -  }
> -
> -  //! \brief Returns the minimum of the given column
> -  PBQPNum getColMin(unsigned c) const {
> -    PBQPNum minElem = (*this)[0][c];
> -    for (unsigned r = 1; r < rows; ++r)
> -      if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
> -    return minElem;
> -  }
> -
> -  //! \brief Subtracts the given scalar from the elements of the given row.
> -  PBQPMatrix& subFromRow(unsigned r, PBQPNum val) {
> -    assert(r < rows && "Row out of bounds");
> -    std::transform(data + (r * cols), data + ((r + 1) * cols),
> -                   data + (r * cols),
> -                   std::bind2nd(std::minus<PBQPNum>(), val));
> -    return *this;
> -  }
> -
> -  //! \brief Subtracts the given scalar from the elements of the given column.
> -  PBQPMatrix& subFromCol(unsigned c, PBQPNum val) {
> -    for (unsigned r = 0; r < rows; ++r)
> -      (*this)[r][c] -= val;
> -    return *this;
> -  }
> -
> -  //! \brief Returns true if this is a zero matrix.
> -  bool isZero() const {
> -    return find_if(data, data + (rows * cols),
> -                   std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
> -                     data + (rows * cols);
> -  }
> -
> -private:
> -  unsigned rows, cols;
> -  PBQPNum *data;
> -};
> -
> -#define EPS (1E-8)
> -
> -#ifndef PBQP_TYPE
> -#define PBQP_TYPE
> -struct pbqp;
> -typedef struct pbqp pbqp;
> -#endif
> -
> -/*****************
> - * PBQP routines *
> - *****************/
> -
> -/* allocate pbqp problem */
> -pbqp *alloc_pbqp(int num);
> -
> -/* add node costs */
> -void add_pbqp_nodecosts(pbqp *this_,int u, PBQPVector *costs);
> -
> -/* add edge mat */
> -void add_pbqp_edgecosts(pbqp *this_,int u,int v,PBQPMatrix *costs);
> -
> -/* solve PBQP problem */
> -void solve_pbqp(pbqp *this_);
> -
> -/* get solution of a node */
> -int get_pbqp_solution(pbqp *this_,int u);
> -
> -/* alloc PBQP */
> -pbqp *alloc_pbqp(int num);
> -
> -/* free PBQP */
> -void free_pbqp(pbqp *this_);
> -
> -/* is optimal */
> -bool is_pbqp_optimal(pbqp *this_);
> -
> -}
> -#endif
>
> Added: llvm/trunk/lib/CodeGen/PBQP/AnnotatedGraph.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/AnnotatedGraph.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/AnnotatedGraph.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/AnnotatedGraph.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,170 @@
> +#ifndef LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
> +#define LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
> +
> +#include "GraphBase.h"
> +
> +namespace PBQP {
> +
> +
> +template <typename NodeData, typename EdgeData> class AnnotatedEdge;
> +
> +template <typename NodeData, typename EdgeData>
> +class AnnotatedNode : public NodeBase<AnnotatedNode<NodeData, EdgeData>,
> +                                      AnnotatedEdge<NodeData, EdgeData> > {
> +private:
> +
> +  NodeData nodeData; 
> +
> +public:
> +
> +  AnnotatedNode(const Vector &costs, const NodeData &nodeData) :
> +    NodeBase<AnnotatedNode<NodeData, EdgeData>,
> +             AnnotatedEdge<NodeData, EdgeData> >(costs),
> +             nodeData(nodeData) {}
> +
> +  NodeData& getNodeData() { return nodeData; }
> +  const NodeData& getNodeData() const { return nodeData; }
> +
> +};
> +
> +template <typename NodeData, typename EdgeData>
> +class AnnotatedEdge : public EdgeBase<AnnotatedNode<NodeData, EdgeData>,
> +                                      AnnotatedEdge<NodeData, EdgeData> > {
> +private:
> +
> +  typedef typename GraphBase<AnnotatedNode<NodeData, EdgeData>,
> +                             AnnotatedEdge<NodeData, EdgeData> >::NodeIterator
> +    NodeIterator;
> +
> +  EdgeData edgeData; 
> +
> +public:
> +
> +
> +  AnnotatedEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
> +                const Matrix &costs, const EdgeData &edgeData) :
> +    EdgeBase<AnnotatedNode<NodeData, EdgeData>,
> +             AnnotatedEdge<NodeData, EdgeData> >(node1Itr, node2Itr, costs),
> +    edgeData(edgeData) {}
> +
> +  EdgeData& getEdgeData() { return edgeData; }
> +  const EdgeData& getEdgeData() const { return edgeData; }
> +
> +};
> +
> +template <typename NodeData, typename EdgeData>
> +class AnnotatedGraph : public GraphBase<AnnotatedNode<NodeData, EdgeData>,
> +                                        AnnotatedEdge<NodeData, EdgeData> > {
> +private:
> +
> +  typedef GraphBase<AnnotatedNode<NodeData, EdgeData>,
> +                    AnnotatedEdge<NodeData, EdgeData> > PGraph;
> +
> +  typedef AnnotatedNode<NodeData, EdgeData> NodeEntry;
> +  typedef AnnotatedEdge<NodeData, EdgeData> EdgeEntry;
> +
> +
> +  void copyFrom(const AnnotatedGraph &other) {
> +    if (!other.areNodeIDsValid()) {
> +      other.assignNodeIDs();
> +    }
> +    std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
> +
> +    for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
> +         nItr != nEnd; ++nItr) {
> +      newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
> +    }
> +
> +    for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
> +         eItr != eEnd; ++eItr) {
> +
> +      unsigned node1ID = other.getNodeID(other.getEdgeNode1(eItr)),
> +               node2ID = other.getNodeID(other.getEdgeNode2(eItr));
> +
> +      addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
> +              other.getEdgeCosts(eItr), other.getEdgeData(eItr));
> +    }
> +
> +  }
> +
> +public:
> +
> +  typedef typename PGraph::NodeIterator NodeIterator;
> +  typedef typename PGraph::ConstNodeIterator ConstNodeIterator;
> +  typedef typename PGraph::EdgeIterator EdgeIterator;
> +  typedef typename PGraph::ConstEdgeIterator ConstEdgeIterator;
> +
> +  AnnotatedGraph() {}
> +
> +  AnnotatedGraph(const AnnotatedGraph &other) {
> +    copyFrom(other);
> +  }
> +
> +  AnnotatedGraph& operator=(const AnnotatedGraph &other) {
> +    PGraph::clear();
> +    copyFrom(other);
> +    return *this;
> +  }
> +
> +  NodeIterator addNode(const Vector &costs, const NodeData &data) {
> +    return PGraph::addConstructedNode(NodeEntry(costs, data));
> +  }
> +
> +  EdgeIterator addEdge(const NodeIterator &node1Itr,
> +                       const NodeIterator &node2Itr,
> +                       const Matrix &costs, const EdgeData &data) {
> +    return PGraph::addConstructedEdge(EdgeEntry(node1Itr, node2Itr,
> +                                                costs, data));
> +  }
> +
> +  NodeData& getNodeData(const NodeIterator &nodeItr) {
> +    return getNodeEntry(nodeItr).getNodeData();
> +  }
> +
> +  const NodeData& getNodeData(const NodeIterator &nodeItr) const {
> +    return getNodeEntry(nodeItr).getNodeData();
> +  }
> +
> +  EdgeData& getEdgeData(const EdgeIterator &edgeItr) {
> +    return getEdgeEntry(edgeItr).getEdgeData();
> +  }
> +
> +  const EdgeEntry& getEdgeData(const EdgeIterator &edgeItr) const {
> +    return getEdgeEntry(edgeItr).getEdgeData();
> +  }
> +
> +  SimpleGraph toSimpleGraph() const {
> +    SimpleGraph g;
> +
> +    if (!PGraph::areNodeIDsValid()) {
> +      PGraph::assignNodeIDs();
> +    }
> +    std::vector<SimpleGraph::NodeIterator> newNodeItrs(PGraph::getNumNodes());
> +
> +    for (ConstNodeIterator nItr = PGraph::nodesBegin(), 
> +         nEnd = PGraph::nodesEnd();
> +         nItr != nEnd; ++nItr) {
> +
> +      newNodeItrs[getNodeID(nItr)] = g.addNode(getNodeCosts(nItr));
> +    }
> +
> +    for (ConstEdgeIterator
> +         eItr = PGraph::edgesBegin(), eEnd = PGraph::edgesEnd();
> +         eItr != eEnd; ++eItr) {
> +
> +      unsigned node1ID = getNodeID(getEdgeNode1(eItr)),
> +               node2ID = getNodeID(getEdgeNode2(eItr));
> +
> +        g.addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
> +                  getEdgeCosts(eItr));
> +    }
> +
> +    return g;
> +  }
> +
> +};
> +
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_ANNOTATEDGRAPH_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/ExhaustiveSolver.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/ExhaustiveSolver.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/ExhaustiveSolver.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/ExhaustiveSolver.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,93 @@
> +#ifndef LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
> +#define LLVM_CODEGEN_PBQP_EXHAUSTIVESOLVER_H
> +
> +#include "Solver.h"
> +
> +namespace PBQP {
> +
> +class ExhaustiveSolverImpl {
> +private:
> +
> +  const SimpleGraph &g;
> +
> +  PBQPNum getSolutionCost(const Solution &solution) const {
> +    PBQPNum cost = 0.0;
> +    
> +    for (SimpleGraph::ConstNodeIterator
> +         nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +      
> +      unsigned nodeId = g.getNodeID(nodeItr);
> +
> +      cost += g.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
> +    }
> +
> +    for (SimpleGraph::ConstEdgeIterator
> +         edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +      
> +      SimpleGraph::ConstNodeIterator n1 = g.getEdgeNode1Itr(edgeItr),
> +                                     n2 = g.getEdgeNode2Itr(edgeItr);
> +      unsigned sol1 = solution.getSelection(g.getNodeID(n1)),
> +               sol2 = solution.getSelection(g.getNodeID(n2));
> +
> +      cost += g.getEdgeCosts(edgeItr)[sol1][sol2];
> +    }
> +
> +    return cost;
> +  }
> +
> +public:
> +
> +  ExhaustiveSolverImpl(const SimpleGraph &g) : g(g) {}
> +
> +  Solution solve() const {
> +    Solution current(g.getNumNodes(), true), optimal(current);
> +
> +    PBQPNum bestCost = std::numeric_limits<PBQPNum>::infinity();
> +    bool finished = false;
> +
> +    while (!finished) {
> +      PBQPNum currentCost = getSolutionCost(current);
> +
> +      if (currentCost < bestCost) {
> +        optimal = current;
> +        bestCost = currentCost;
> +      }
> +
> +      // assume we're done.
> +      finished = true;
> +
> +      for (unsigned i = 0; i < g.getNumNodes(); ++i) {
> +        if (current.getSelection(i) ==
> +            (g.getNodeCosts(g.getNodeItr(i)).getLength() - 1)) {
> +          current.setSelection(i, 0);
> +        }
> +        else {
> +          current.setSelection(i, current.getSelection(i) + 1);
> +          finished = false;
> +          break;
> +        }
> +      }
> +
> +    }
> +
> +    optimal.setSolutionCost(bestCost);
> +
> +    return optimal;
> +  }
> +
> +};
> +
> +class ExhaustiveSolver : public Solver {
> +public:
> +  ~ExhaustiveSolver() {}
> +  Solution solve(const SimpleGraph &g) const {
> +    ExhaustiveSolverImpl solver(g);
> +    return solver.solve();
> +  }
> +};
> +
> +}
> +
> +#endif // LLVM_CODGEN_PBQP_EXHAUSTIVESOLVER_HPP
>
> Added: llvm/trunk/lib/CodeGen/PBQP/GraphBase.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/GraphBase.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/GraphBase.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/GraphBase.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,570 @@
> +#ifndef LLVM_CODEGEN_PBQP_GRAPHBASE_H
> +#define LLVM_CODEGEN_PBQP_GRAPHBASE_H
> +
> +#include "PBQPMath.h"
> +
> +#include <list>
> +#include <vector>
> +
> +namespace PBQP {
> +
> +// UGLY, but I'm not sure there's a good way around this: We need to be able to
> +// look up a Node's "adjacent edge list" structure type before the Node type is
> +// fully constructed.  We can enable this by pushing the choice of data type
> +// out into this traits class.
> +template <typename Graph>
> +class NodeBaseTraits {
> +  public:
> +    typedef std::list<typename Graph::EdgeIterator> AdjEdgeList;
> +    typedef typename AdjEdgeList::iterator AdjEdgeIterator;
> +    typedef typename AdjEdgeList::const_iterator ConstAdjEdgeIterator;
> +};
> +
> +/// \brief Base for concrete graph classes. Provides a basic set of graph
> +///        operations which are useful for PBQP solvers.
> +template <typename NodeEntry, typename EdgeEntry>
> +class GraphBase {
> +private:
> +
> +  typedef GraphBase<NodeEntry, EdgeEntry> ThisGraphT;
> +
> +  typedef std::list<NodeEntry> NodeList;
> +  typedef std::list<EdgeEntry> EdgeList;
> +
> +  NodeList nodeList;
> +  unsigned nodeListSize;
> +
> +  EdgeList edgeList;
> +  unsigned edgeListSize;
> +
> +  GraphBase(const ThisGraphT &other) { abort(); }
> +  void operator=(const ThisGraphT &other) { abort(); } 
> +  
> +public:
> +
> +  /// \brief Iterates over the nodes of a graph.
> +  typedef typename NodeList::iterator NodeIterator;
> +  /// \brief Iterates over the nodes of a const graph.
> +  typedef typename NodeList::const_iterator ConstNodeIterator;
> +  /// \brief Iterates over the edges of a graph.
> +  typedef typename EdgeList::iterator EdgeIterator;
> +  /// \brief Iterates over the edges of a const graph.
> +  typedef typename EdgeList::const_iterator ConstEdgeIterator;
> +
> +  /// \brief Iterates over the edges attached to a node.
> +  typedef typename NodeBaseTraits<ThisGraphT>::AdjEdgeIterator
> +    AdjEdgeIterator;
> +
> +  /// \brief Iterates over the edges attached to a node in a const graph.
> +  typedef typename NodeBaseTraits<ThisGraphT>::ConstAdjEdgeIterator
> +    ConstAdjEdgeIterator;
> +
> +private:
> +
> +  typedef std::vector<NodeIterator> IDToNodeMap;
> +
> +  IDToNodeMap idToNodeMap;
> +  bool nodeIDsValid;
> +
> +  void invalidateNodeIDs() {
> +    if (nodeIDsValid) {
> +      idToNodeMap.clear();
> +      nodeIDsValid = false;
> +    }
> +  }
> +
> +  template <typename ItrT>
> +  bool iteratorInRange(ItrT itr, const ItrT &begin, const ItrT &end) {
> +    for (ItrT t = begin; t != end; ++t) {
> +      if (itr == t)
> +        return true;
> +    }
> +
> +    return false;
> +  }
> +
> +protected:
> +
> +  GraphBase() : nodeListSize(0), edgeListSize(0), nodeIDsValid(false) {}
> +  
> +  NodeEntry& getNodeEntry(const NodeIterator &nodeItr) { return *nodeItr; }
> +  const NodeEntry& getNodeEntry(const ConstNodeIterator &nodeItr) const {
> +    return *nodeItr;
> +  }
> +
> +  EdgeEntry& getEdgeEntry(const EdgeIterator &edgeItr) { return *edgeItr; }
> +  const EdgeEntry& getEdgeEntry(const ConstEdgeIterator &edgeItr) const {
> +    return *edgeItr;
> +  }
> +
> +  NodeIterator addConstructedNode(const NodeEntry &nodeEntry) {
> +    ++nodeListSize;
> +
> +    invalidateNodeIDs();
> +
> +    NodeIterator newNodeItr = nodeList.insert(nodeList.end(), nodeEntry);
> +
> +    return newNodeItr;
> +  }
> +
> +  EdgeIterator addConstructedEdge(const EdgeEntry &edgeEntry) {
> +
> +    assert((findEdge(edgeEntry.getNode1Itr(), edgeEntry.getNode2Itr())
> +          == edgeList.end()) && "Attempt to add duplicate edge.");
> +
> +    ++edgeListSize;
> +
> +    // Add the edge to the graph.
> +    EdgeIterator edgeItr = edgeList.insert(edgeList.end(), edgeEntry);
> +
> +    // Get a reference to the version in the graph.
> +    EdgeEntry &newEdgeEntry = getEdgeEntry(edgeItr);
> +
> +    // Node entries:
> +    NodeEntry &node1Entry = getNodeEntry(newEdgeEntry.getNode1Itr()),
> +              &node2Entry = getNodeEntry(newEdgeEntry.getNode2Itr());
> +
> +    unsigned n1Len = node1Entry.getCosts().getLength(),
> +             n2Len = node2Entry.getCosts().getLength(),
> +             mRows = newEdgeEntry.getCosts().getRows(),
> +             mCols = newEdgeEntry.getCosts().getCols();
> +
> +    // Sanity check on matrix dimensions.
> +    assert((n1Len == mRows) && (n2Len == mCols) &&
> +        "Matrix dimensions do not match cost vector dimensions.");
> +
> +    // Create links between nodes and edges.
> +    newEdgeEntry.setNode1ThisEdgeItr(
> +        node1Entry.addAdjEdge(edgeItr));
> +    newEdgeEntry.setNode2ThisEdgeItr(
> +        node2Entry.addAdjEdge(edgeItr));
> +
> +    return edgeItr;
> +  }
> +
> +public:
> +
> +  /// \brief Returns the number of nodes in this graph.
> +  unsigned getNumNodes() const { return nodeListSize; }
> +
> +  /// \brief Returns the number of edges in this graph.
> +  unsigned getNumEdges() const { return edgeListSize; } 
> +
> +  /// \brief Return the cost vector for the given node.
> +  Vector& getNodeCosts(const NodeIterator &nodeItr) {
> +    return getNodeEntry(nodeItr).getCosts();
> +  }
> +
> +  /// \brief Return the cost vector for the give node. 
> +  const Vector& getNodeCosts(const ConstNodeIterator &nodeItr) const {
> +    return getNodeEntry(nodeItr).getCosts();
> +  }
> +
> +  /// \brief Return the degree of the given node.
> +  unsigned getNodeDegree(const NodeIterator &nodeItr) const {
> +    return getNodeEntry(nodeItr).getDegree();
> +  }
> +
> +  /// \brief Assigns sequential IDs to the nodes, starting at 0, which
> +  /// remain valid until the next addition or removal of a node.
> +  void assignNodeIDs() {
> +    unsigned curID = 0;
> +    idToNodeMap.resize(getNumNodes());
> +    for (NodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr, ++curID) {
> +      getNodeEntry(nodeItr).setID(curID);
> +      idToNodeMap[curID] = nodeItr;
> +    }
> +    nodeIDsValid = true;
> +  }
> +
> +  /// \brief Assigns sequential IDs to the nodes using the ordering of the
> +  /// given vector.
> +  void assignNodeIDs(const std::vector<NodeIterator> &nodeOrdering) {
> +    assert((getNumNodes() == nodeOrdering.size()) && 
> +           "Wrong number of nodes in node ordering.");
> +    idToNodeMap = nodeOrdering;
> +    for (unsigned nodeID = 0; nodeID < idToNodeMap.size(); ++nodeID) {
> +      getNodeEntry(idToNodeMap[nodeID]).setID(nodeID);
> +    }
> +    nodeIDsValid = true;
> +  }
> +
> +  /// \brief Returns true if valid node IDs are assigned, false otherwise.
> +  bool areNodeIDsValid() const { return nodeIDsValid; }
> +
> +  /// \brief Return the numeric ID of the given node.
> +  ///
> +  /// Calls to this method will result in an assertion failure if there have
> +  /// been any node additions or removals since the last call to
> +  /// assignNodeIDs().
> +  unsigned getNodeID(const ConstNodeIterator &nodeItr) const {
> +    assert(nodeIDsValid && "Attempt to retrieve invalid ID.");
> +    return getNodeEntry(nodeItr).getID();
> +  }
> +
> +  /// \brief Returns the iterator associated with the given node ID.
> +  NodeIterator getNodeItr(unsigned nodeID) {
> +    assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
> +    return idToNodeMap[nodeID];
> +  }
> +
> +  /// \brief Returns the iterator associated with the given node ID.
> +  ConstNodeIterator getNodeItr(unsigned nodeID) const {
> +    assert(nodeIDsValid && "Attempt to retrieve iterator with invalid ID.");
> +    return idToNodeMap[nodeID];
> +  }
> +
> +  /// \brief Removes the given node (and all attached edges) from the graph.
> +  void removeNode(const NodeIterator &nodeItr) {
> +    assert(iteratorInRange(nodeItr, nodeList.begin(), nodeList.end()) &&
> +           "Iterator does not belong to this graph!");
> +
> +    invalidateNodeIDs();
> +    
> +    NodeEntry &nodeEntry = getNodeEntry(nodeItr);
> +
> +    // We need to copy this out because it will be destroyed as the edges are
> +    // removed.
> +    typedef std::vector<EdgeIterator> AdjEdgeList;
> +    typedef typename AdjEdgeList::iterator AdjEdgeListItr;
> +
> +    AdjEdgeList adjEdges;
> +    adjEdges.reserve(nodeEntry.getDegree());
> +    std::copy(nodeEntry.adjEdgesBegin(), nodeEntry.adjEdgesEnd(),
> +              std::back_inserter(adjEdges));
> +
> +    // Iterate over the copied out edges and remove them from the graph.
> +    for (AdjEdgeListItr itr = adjEdges.begin(), end = adjEdges.end();
> +         itr != end; ++itr) {
> +      removeEdge(*itr);
> +    }
> +
> +    // Erase the node from the nodelist.
> +    nodeList.erase(nodeItr);
> +    --nodeListSize;
> +  }
> +
> +  NodeIterator nodesBegin() { return nodeList.begin(); }
> +  ConstNodeIterator nodesBegin() const { return nodeList.begin(); }
> +  NodeIterator nodesEnd() { return nodeList.end(); }
> +  ConstNodeIterator nodesEnd() const { return nodeList.end(); }
> +
> +  AdjEdgeIterator adjEdgesBegin(const NodeIterator &nodeItr) {
> +    return getNodeEntry(nodeItr).adjEdgesBegin();
> +  }
> +
> +  ConstAdjEdgeIterator adjEdgesBegin(const ConstNodeIterator &nodeItr) const {
> +    return getNodeEntry(nodeItr).adjEdgesBegin();
> +  }
> +
> +  AdjEdgeIterator adjEdgesEnd(const NodeIterator &nodeItr) {
> +    return getNodeEntry(nodeItr).adjEdgesEnd();
> +  }
> +  
> +  ConstAdjEdgeIterator adjEdgesEnd(const ConstNodeIterator &nodeItr) const {
> +    getNodeEntry(nodeItr).adjEdgesEnd();
> +  }
> +
> +  EdgeIterator findEdge(const NodeIterator &node1Itr,
> +                        const NodeIterator &node2Itr) {
> +
> +    for (AdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
> +         adjEdgeEnd = adjEdgesEnd(node1Itr);
> +         adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
> +      if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
> +          (getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
> +        return *adjEdgeItr;
> +      }
> +    }
> +
> +    return edgeList.end();
> +  }
> +
> +  ConstEdgeIterator findEdge(const ConstNodeIterator &node1Itr,
> +                             const ConstNodeIterator &node2Itr) const {
> +
> +    for (ConstAdjEdgeIterator adjEdgeItr = adjEdgesBegin(node1Itr),
> +         adjEdgeEnd = adjEdgesEnd(node1Itr);
> +         adjEdgeItr != adjEdgesEnd; ++adjEdgeItr) {
> +      if ((getEdgeNode1Itr(*adjEdgeItr) == node2Itr) ||
> +          (getEdgeNode2Itr(*adjEdgeItr) == node2Itr)) {
> +        return *adjEdgeItr;
> +      }
> +    }
> +
> +    return edgeList.end();
> +  }
> +
> +  Matrix& getEdgeCosts(const EdgeIterator &edgeItr) {
> +    return getEdgeEntry(edgeItr).getCosts();
> +  }
> +
> +  const Matrix& getEdgeCosts(const ConstEdgeIterator &edgeItr) const {
> +    return getEdgeEntry(edgeItr).getCosts();
> +  }
> +
> +  NodeIterator getEdgeNode1Itr(const EdgeIterator &edgeItr) {
> +    return getEdgeEntry(edgeItr).getNode1Itr();
> +  }
> +
> +  ConstNodeIterator getEdgeNode1Itr(const ConstEdgeIterator &edgeItr) const {
> +    return getEdgeEntry(edgeItr).getNode1Itr();
> +  }
> +
> +  NodeIterator getEdgeNode2Itr(const EdgeIterator &edgeItr) {
> +    return getEdgeEntry(edgeItr).getNode2Itr();
> +  }
> +
> +  ConstNodeIterator getEdgeNode2Itr(const ConstEdgeIterator &edgeItr) const {
> +    return getEdgeEntry(edgeItr).getNode2Itr();
> +  }
> +
> +  NodeIterator getEdgeOtherNode(const EdgeIterator &edgeItr,
> +                                const NodeIterator &nodeItr) {
> +
> +    EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
> +    if (nodeItr == edgeEntry.getNode1Itr()) {
> +      return edgeEntry.getNode2Itr();
> +    }
> +    //else
> +    return edgeEntry.getNode1Itr();
> +  }
> +
> +  ConstNodeIterator getEdgeOtherNode(const ConstEdgeIterator &edgeItr,
> +                                     const ConstNodeIterator &nodeItr) const {
> +
> +    const EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
> +    if (nodeItr == edgeEntry.getNode1Itr()) {
> +      return edgeEntry.getNode2Itr();
> +    }
> +    //else
> +    return edgeEntry.getNode1Itr();
> +  }
> +
> +  void removeEdge(const EdgeIterator &edgeItr) {
> +    assert(iteratorInRange(edgeItr, edgeList.begin(), edgeList.end()) &&
> +           "Iterator does not belong to this graph!");
> +
> +    --edgeListSize;
> +
> +    // Get the edge entry.
> +    EdgeEntry &edgeEntry = getEdgeEntry(edgeItr);
> +
> +    // Get the nodes entry.
> +    NodeEntry &node1Entry(getNodeEntry(edgeEntry.getNode1Itr())),
> +              &node2Entry(getNodeEntry(edgeEntry.getNode2Itr()));
> +
> +    // Disconnect the edge from the nodes.
> +    node1Entry.removeAdjEdge(edgeEntry.getNode1ThisEdgeItr());
> +    node2Entry.removeAdjEdge(edgeEntry.getNode2ThisEdgeItr());
> +
> +    // Remove the edge from the graph.
> +    edgeList.erase(edgeItr);
> +  }
> +
> +  EdgeIterator edgesBegin() { return edgeList.begin(); }
> +  ConstEdgeIterator edgesBegin() const { return edgeList.begin(); }
> +  EdgeIterator edgesEnd() { return edgeList.end(); }
> +  ConstEdgeIterator edgesEnd() const { return edgeList.end(); }
> +
> +  void clear() {
> +    nodeList.clear();
> +    nodeListSize = 0;
> +    edgeList.clear();
> +    edgeListSize = 0;
> +    idToNodeMap.clear();
> +  }
> +
> +  template <typename OStream>
> +  void printDot(OStream &os) const {
> +    
> +    assert(areNodeIDsValid() &&
> +           "Cannot print a .dot of a graph unless IDs have been assigned.");
> +    
> +    os << "graph {\n";
> +
> +    for (ConstNodeIterator nodeItr = nodesBegin(), nodeEnd = nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +
> +      os << "  node" << getNodeID(nodeItr) << " [ label=\""
> +         << getNodeID(nodeItr) << ": " << getNodeCosts(nodeItr) << "\" ]\n";
> +    }
> +
> +    os << "  edge [ len=" << getNumNodes() << " ]\n";
> +
> +    for (ConstEdgeIterator edgeItr = edgesBegin(), edgeEnd = edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +
> +      os << "  node" << getNodeID(getEdgeNode1Itr(edgeItr))
> +         << " -- node" << getNodeID(getEdgeNode2Itr(edgeItr))
> +         << " [ label=\"";
> +
> +      const Matrix &edgeCosts = getEdgeCosts(edgeItr);
> +
> +      for (unsigned i = 0; i < edgeCosts.getRows(); ++i) {
> +        os << edgeCosts.getRowAsVector(i) << "\\n";
> +      }
> +
> +      os << "\" ]\n";
> +    }
> +
> +    os << "}\n";
> +  }
> +
> +  template <typename OStream>
> +  void printDot(OStream &os) {
> +    if (!areNodeIDsValid()) {
> +      assignNodeIDs();
> +    }
> +
> +    const_cast<const ThisGraphT*>(this)->printDot(os);
> +  }
> +
> +  template <typename OStream>
> +  void dumpTo(OStream &os) const {
> +    typedef ConstNodeIterator ConstNodeID;
> +    
> +    assert(areNodeIDsValid() &&
> +           "Cannot dump a graph unless IDs have been assigned.");
> +
> +    for (ConstNodeIterator nItr = nodesBegin(), nEnd = nodesEnd();
> +         nItr != nEnd; ++nItr) {
> +      os << getNodeID(nItr) << "\n";
> +    }
> +
> +    unsigned edgeNumber = 1;
> +    for (ConstEdgeIterator eItr = edgesBegin(), eEnd = edgesEnd();
> +         eItr != eEnd; ++eItr) {
> +
> +      os << edgeNumber++ << ": { "
> +         << getNodeID(getEdgeNode1Itr(eItr)) << ", "
> +         << getNodeID(getEdgeNode2Itr(eItr)) << " }\n";
> +    }
> +
> +  }
> +
> +  template <typename OStream>
> +  void dumpTo(OStream &os) {
> +    if (!areNodeIDsValid()) {
> +      assignNodeIDs();
> +    }
> +
> +    const_cast<const ThisGraphT*>(this)->dumpTo(os);
> +  }
> +
> +};
> +
> +/// \brief Provides a base from which to derive nodes for GraphBase.
> +template <typename NodeImpl, typename EdgeImpl>
> +class NodeBase {
> +private:
> +
> +  typedef GraphBase<NodeImpl, EdgeImpl> GraphBaseT;
> +  typedef NodeBaseTraits<GraphBaseT> ThisNodeBaseTraits;
> +
> +public:
> +  typedef typename GraphBaseT::EdgeIterator EdgeIterator;
> +
> +private:
> +  typedef typename ThisNodeBaseTraits::AdjEdgeList AdjEdgeList;
> +
> +  unsigned degree, id;
> +  Vector costs;
> +  AdjEdgeList adjEdges;
> +
> +  void operator=(const NodeBase& other) {
> +    assert(false && "Can't assign NodeEntrys.");
> +  }
> +
> +public:
> +
> +  typedef typename ThisNodeBaseTraits::AdjEdgeIterator AdjEdgeIterator;
> +  typedef typename ThisNodeBaseTraits::ConstAdjEdgeIterator
> +    ConstAdjEdgeIterator;
> +
> +  NodeBase(const Vector &costs) : degree(0), costs(costs) {
> +    assert((costs.getLength() > 0) && "Can't have zero-length cost vector.");
> +  }
> +
> +  Vector& getCosts() { return costs; }
> +  const Vector& getCosts() const { return costs; }
> +
> +  unsigned getDegree() const { return degree;  }
> +
> +  void setID(unsigned id) { this->id = id; }
> +  unsigned getID() const { return id; }
> +
> +  AdjEdgeIterator addAdjEdge(const EdgeIterator &edgeItr) {
> +    ++degree;
> +    return adjEdges.insert(adjEdges.end(), edgeItr);
> +  }
> +
> +  void removeAdjEdge(const AdjEdgeIterator &adjEdgeItr) {
> +    --degree;
> +    adjEdges.erase(adjEdgeItr);
> +  }
> +
> +  AdjEdgeIterator adjEdgesBegin() { return adjEdges.begin(); } 
> +  ConstAdjEdgeIterator adjEdgesBegin() const { return adjEdges.begin(); }
> +  AdjEdgeIterator adjEdgesEnd() { return adjEdges.end(); }
> +  ConstAdjEdgeIterator adjEdgesEnd() const { return adjEdges.end(); }
> +
> +};
> +
> +template <typename NodeImpl, typename EdgeImpl>
> +class EdgeBase {
> +public:
> +  typedef typename GraphBase<NodeImpl, EdgeImpl>::NodeIterator NodeIterator;
> +  typedef typename GraphBase<NodeImpl, EdgeImpl>::EdgeIterator EdgeIterator;
> +
> +  typedef typename NodeImpl::AdjEdgeIterator NodeAdjEdgeIterator;
> +
> +private:
> +
> +  NodeIterator node1Itr, node2Itr;
> +  NodeAdjEdgeIterator node1ThisEdgeItr, node2ThisEdgeItr;
> +  Matrix costs;
> +
> +  void operator=(const EdgeBase &other) {
> +    assert(false && "Can't assign EdgeEntrys.");
> +  }
> +
> +public:
> +
> +  EdgeBase(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
> +           const Matrix &costs) :
> +    node1Itr(node1Itr), node2Itr(node2Itr), costs(costs) {
> +
> +    assert((costs.getRows() > 0) && (costs.getCols() > 0) &&
> +           "Can't have zero-dimensioned cost matrices");
> +  }
> +
> +  Matrix& getCosts() { return costs; }
> +  const Matrix& getCosts() const { return costs; }
> +
> +  const NodeIterator& getNode1Itr() const { return node1Itr; }
> +  const NodeIterator& getNode2Itr() const { return node2Itr; }
> +
> +  void setNode1ThisEdgeItr(const NodeAdjEdgeIterator &node1ThisEdgeItr) {
> +    this->node1ThisEdgeItr = node1ThisEdgeItr;
> +  }
> +
> +  const NodeAdjEdgeIterator& getNode1ThisEdgeItr() const {
> +    return node1ThisEdgeItr;
> +  }
> +
> +  void setNode2ThisEdgeItr(const NodeAdjEdgeIterator &node2ThisEdgeItr) {
> +    this->node2ThisEdgeItr = node2ThisEdgeItr;
> +  }
> +
> +  const NodeAdjEdgeIterator& getNode2ThisEdgeItr() const {
> +    return node2ThisEdgeItr;
> +  }
> +
> +};
> +
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_GRAPHBASE_HPP
>
> Added: llvm/trunk/lib/CodeGen/PBQP/GraphGenerator.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/GraphGenerator.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/GraphGenerator.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/GraphGenerator.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,195 @@
> +#ifndef LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
> +#define LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
> +
> +#include "PBQPMath.h"
> +
> +namespace PBQP {
> +
> +unsigned randRange(unsigned min, unsigned max) {
> +  return min + (rand() % (max - min + 1));
> +}
> +
> +class BasicNodeCostsGenerator {
> +private:
> +
> +  unsigned maxDegree, minCost, maxCost;
> +
> +
> +public:
> +
> +  BasicNodeCostsGenerator(unsigned maxDegree, unsigned minCost,
> +                          unsigned maxCost) :
> +    maxDegree(maxDegree), minCost(minCost), maxCost(maxCost) { }
> +
> +  Vector operator()() const {
> +    Vector v(randRange(1, maxDegree));
> +    for (unsigned i = 0; i < v.getLength(); ++i) {
> +      v[i] = randRange(minCost, maxCost);
> +    }
> +    return v;
> +  };
> +
> +};
> +
> +class FixedDegreeSpillCostGenerator {
> +private:
> +
> +  unsigned degree, spillCostMin, spillCostMax;
> +
> +public:
> +
> +  FixedDegreeSpillCostGenerator(unsigned degree, unsigned spillCostMin,
> +                                unsigned spillCostMax) :
> +    degree(degree), spillCostMin(spillCostMin), spillCostMax(spillCostMax) { }
> +
> +  Vector operator()() const {
> +    Vector v(degree, 0);
> +    v[0] = randRange(spillCostMin, spillCostMax);
> +    return v;
> +  }
> +
> +};
> +
> +class BasicEdgeCostsGenerator {
> +private:
> +
> +  unsigned minCost, maxCost;
> +
> +public:
> +
> +  BasicEdgeCostsGenerator(unsigned minCost, unsigned maxCost) :
> +    minCost(minCost), maxCost(maxCost) {}
> +
> +  Matrix operator()(const SimpleGraph &g,
> +                        const SimpleGraph::ConstNodeIterator &n1,
> +                        const SimpleGraph::ConstNodeIterator &n2) const {
> +
> +    Matrix m(g.getNodeCosts(n1).getLength(),
> +                 g.getNodeCosts(n2).getLength());
> +
> +    for (unsigned i = 0; i < m.getRows(); ++i) {
> +      for (unsigned j = 0; j < m.getCols(); ++j) {
> +        m[i][j] = randRange(minCost, maxCost);
> +      }
> +    }
> +
> +    return m;
> +  }
> +
> +};
> +
> +class InterferenceCostsGenerator {
> +public:
> +
> +  Matrix operator()(const SimpleGraph &g,
> +                        const SimpleGraph::ConstNodeIterator &n1,
> +                        const SimpleGraph::ConstNodeIterator &n2) const {
> +
> +    unsigned len = g.getNodeCosts(n1).getLength();
> +
> +    assert(len == g.getNodeCosts(n2).getLength());
> +
> +    Matrix m(len, len);
> +
> +    m[0][0] = 0;
> +    for (unsigned i = 1; i < len; ++i) {
> +      m[i][i] = std::numeric_limits<PBQPNum>::infinity();
> +    }
> +
> +    return m;
> +  }
> +};
> +
> +class RingEdgeGenerator {
> +public:
> +
> +  template <typename EdgeCostsGenerator>
> +  void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
> +
> +    assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
> +
> +    if (g.getNumNodes() < 2)
> +      return;
> +
> +    if (g.getNumNodes() == 2) {
> +      SimpleGraph::NodeIterator n1 = g.getNodeItr(0),
> +                                n2 = g.getNodeItr(1);
> +      g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
> +      return;
> +    }
> +
> +    // Else |V| > 2:
> +    for (unsigned i = 0; i < g.getNumNodes(); ++i) {
> +      SimpleGraph::NodeIterator
> +        n1 = g.getNodeItr(i),
> +        n2 = g.getNodeItr((i + 1) % g.getNumNodes());
> +      g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
> +    }
> +  }
> +
> +};
> +
> +class FullyConnectedEdgeGenerator {
> +public:
> +    
> +  template <typename EdgeCostsGenerator>
> +  void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
> +    assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
> +    
> +    for (unsigned i = 0; i < g.getNumNodes(); ++i) {
> +      for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
> +        SimpleGraph::NodeIterator
> +          n1 = g.getNodeItr(i),
> +          n2 = g.getNodeItr(j);
> +        g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
> +      }
> +    }
> +  }
> +
> +};
> +
> +class RandomEdgeGenerator {
> +public:
> +
> +  template <typename EdgeCostsGenerator>
> +  void operator()(SimpleGraph &g, EdgeCostsGenerator &edgeCostsGen) {
> +    
> +    assert(g.areNodeIDsValid() && "Graph must have valid node IDs.");
> +    
> +    for (unsigned i = 0; i < g.getNumNodes(); ++i) {
> +      for (unsigned j = i + 1; j < g.getNumNodes(); ++j) {
> +        if (rand() % 2 == 0) {
> +          SimpleGraph::NodeIterator
> +            n1 = g.getNodeItr(i),
> +            n2 = g.getNodeItr(j);
> +          g.addEdge(n1, n2, edgeCostsGen(g, n1, n2));
> +        }
> +      }
> +    }
> +  }
> +
> +};
> +
> +template <typename NodeCostsGenerator,
> +          typename EdgesGenerator,
> +          typename EdgeCostsGenerator>
> +SimpleGraph createRandomGraph(unsigned numNodes,
> +                              NodeCostsGenerator nodeCostsGen,
> +                              EdgesGenerator edgeGen,
> +                              EdgeCostsGenerator edgeCostsGen) {
> +
> +  SimpleGraph g;
> +  for (unsigned n = 0; n < numNodes; ++n) {
> +    g.addNode(nodeCostsGen());
> +  }
> +
> +  g.assignNodeIDs();
> +
> +  edgeGen(g, edgeCostsGen);
> +
> +  return g;
> +}
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_GRAPHGENERATOR_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/HeuristicSolver.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/HeuristicSolver.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/HeuristicSolver.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/HeuristicSolver.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,799 @@
> +#ifndef LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
> +#define LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
> +
> +#include "Solver.h"
> +#include "AnnotatedGraph.h"
> +
> +#include <limits>
> +#include <iostream>
> +
> +namespace PBQP {
> +
> +/// \brief Important types for the HeuristicSolverImpl.
> +/// 
> +/// Declared seperately to allow access to heuristic classes before the solver
> +/// is fully constructed.
> +template <typename HeuristicNodeData, typename HeuristicEdgeData>
> +class HSITypes {
> +public:
> +
> +  class NodeData;
> +  class EdgeData;
> +
> +  typedef AnnotatedGraph<NodeData, EdgeData> SolverGraph;
> +  typedef typename SolverGraph::NodeIterator GraphNodeIterator;
> +  typedef typename SolverGraph::EdgeIterator GraphEdgeIterator;
> +  typedef typename SolverGraph::AdjEdgeIterator GraphAdjEdgeIterator;
> +
> +  typedef std::list<GraphNodeIterator> NodeList;
> +  typedef typename NodeList::iterator NodeListIterator;
> +
> +  typedef std::vector<GraphNodeIterator> NodeStack;
> +  typedef typename NodeStack::iterator NodeStackIterator;
> +
> +  class NodeData {
> +    friend class EdgeData;
> +
> +  private:
> +
> +    typedef std::list<GraphEdgeIterator> LinksList;
> +
> +    unsigned numLinks;
> +    LinksList links, solvedLinks;
> +    NodeListIterator bucketItr;
> +    HeuristicNodeData heuristicData;
> +
> +  public:
> +
> +    typedef typename LinksList::iterator AdjLinkIterator;
> +
> +  private:
> +
> +    AdjLinkIterator addLink(const GraphEdgeIterator &edgeItr) {
> +      ++numLinks;
> +      return links.insert(links.end(), edgeItr);
> +    }
> +
> +    void delLink(const AdjLinkIterator &adjLinkItr) {
> +      --numLinks;
> +      links.erase(adjLinkItr);
> +    }
> +
> +  public:
> +
> +    NodeData() : numLinks(0) {}
> +
> +    unsigned getLinkDegree() const { return numLinks; }
> +
> +    HeuristicNodeData& getHeuristicData() { return heuristicData; }
> +    const HeuristicNodeData& getHeuristicData() const {
> +      return heuristicData;
> +    }
> +
> +    void setBucketItr(const NodeListIterator &bucketItr) {
> +      this->bucketItr = bucketItr;
> +    }
> +
> +    const NodeListIterator& getBucketItr() const {
> +      return bucketItr;
> +    }
> +
> +    AdjLinkIterator adjLinksBegin() {
> +      return links.begin();
> +    }
> +
> +    AdjLinkIterator adjLinksEnd() {
> +      return links.end();
> +    }
> +
> +    void addSolvedLink(const GraphEdgeIterator &solvedLinkItr) {
> +      solvedLinks.push_back(solvedLinkItr);
> +    }
> +
> +    AdjLinkIterator solvedLinksBegin() {
> +      return solvedLinks.begin();
> +    }
> +
> +    AdjLinkIterator solvedLinksEnd() {
> +      return solvedLinks.end();
> +    }
> +
> +  };
> +
> +  class EdgeData {
> +  private:
> +
> +    SolverGraph &g;
> +    GraphNodeIterator node1Itr, node2Itr;
> +    HeuristicEdgeData heuristicData;
> +    typename NodeData::AdjLinkIterator node1ThisEdgeItr, node2ThisEdgeItr;
> +
> +  public:
> +
> +    EdgeData(SolverGraph &g) : g(g) {}
> +
> +    HeuristicEdgeData& getHeuristicData() { return heuristicData; }
> +    const HeuristicEdgeData& getHeuristicData() const {
> +      return heuristicData;
> +    }
> +
> +    void setup(const GraphEdgeIterator &thisEdgeItr) {
> +      node1Itr = g.getEdgeNode1Itr(thisEdgeItr);
> +      node2Itr = g.getEdgeNode2Itr(thisEdgeItr);
> +
> +      node1ThisEdgeItr = g.getNodeData(node1Itr).addLink(thisEdgeItr);
> +      node2ThisEdgeItr = g.getNodeData(node2Itr).addLink(thisEdgeItr);
> +    }
> +
> +    void unlink() {
> +      g.getNodeData(node1Itr).delLink(node1ThisEdgeItr);
> +      g.getNodeData(node2Itr).delLink(node2ThisEdgeItr);
> +    }
> +
> +  };
> +
> +};
> +
> +template <typename Heuristic>
> +class HeuristicSolverImpl {
> +public:
> +  // Typedefs to make life easier:
> +  typedef HSITypes<typename Heuristic::NodeData,
> +                   typename Heuristic::EdgeData> HSIT;
> +  typedef typename HSIT::SolverGraph SolverGraph;
> +  typedef typename HSIT::NodeData NodeData;
> +  typedef typename HSIT::EdgeData EdgeData;
> +  typedef typename HSIT::GraphNodeIterator GraphNodeIterator;
> +  typedef typename HSIT::GraphEdgeIterator GraphEdgeIterator;
> +  typedef typename HSIT::GraphAdjEdgeIterator GraphAdjEdgeIterator;
> +
> +  typedef typename HSIT::NodeList NodeList;
> +  typedef typename HSIT::NodeListIterator NodeListIterator;
> +
> +  typedef std::vector<GraphNodeIterator> NodeStack;
> +  typedef typename NodeStack::iterator NodeStackIterator;
> +
> +  /*!
> +   * \brief Constructor, which performs all the actual solver work.
> +   */
> +  HeuristicSolverImpl(const SimpleGraph &orig) :
> +    solution(orig.getNumNodes(), true)
> +  {
> +    copyGraph(orig);
> +    simplify();
> +    setup();
> +    computeSolution();
> +    computeSolutionCost(orig);
> +  }
> +
> +  /*!
> +   * \brief Returns the graph for this solver.
> +   */
> +  SolverGraph& getGraph() { return g; }
> +
> +  /*!
> +   * \brief Return the solution found by this solver.
> +   */
> +  const Solution& getSolution() const { return solution; }
> +
> +private:
> +
> +  /*!
> +   * \brief Add the given node to the appropriate bucket for its link
> +   * degree.
> +   */
> +  void addToBucket(const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g.getNodeData(nodeItr);
> +
> +    switch (nodeData.getLinkDegree()) {
> +      case 0: nodeData.setBucketItr(
> +                r0Bucket.insert(r0Bucket.end(), nodeItr));
> +              break;                                            
> +      case 1: nodeData.setBucketItr(
> +                r1Bucket.insert(r1Bucket.end(), nodeItr));
> +              break;
> +      case 2: nodeData.setBucketItr(
> +                r2Bucket.insert(r2Bucket.end(), nodeItr));
> +              break;
> +      default: heuristic.addToRNBucket(nodeItr);
> +               break;
> +    }
> +  }
> +
> +  /*!
> +   * \brief Remove the given node from the appropriate bucket for its link
> +   * degree.
> +   */
> +  void removeFromBucket(const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g.getNodeData(nodeItr);
> +
> +    switch (nodeData.getLinkDegree()) {
> +      case 0: r0Bucket.erase(nodeData.getBucketItr()); break;
> +      case 1: r1Bucket.erase(nodeData.getBucketItr()); break;
> +      case 2: r2Bucket.erase(nodeData.getBucketItr()); break;
> +      default: heuristic.removeFromRNBucket(nodeItr); break;
> +    }
> +  }
> +
> +public:
> +
> +  /*!
> +   * \brief Add a link.
> +   */
> +  void addLink(const GraphEdgeIterator &edgeItr) {
> +    g.getEdgeData(edgeItr).setup(edgeItr);
> +
> +    if ((g.getNodeData(g.getEdgeNode1Itr(edgeItr)).getLinkDegree() > 2) ||
> +        (g.getNodeData(g.getEdgeNode2Itr(edgeItr)).getLinkDegree() > 2)) {
> +      heuristic.handleAddLink(edgeItr);
> +    }
> +  }
> +
> +  /*!
> +   * \brief Remove link, update info for node.
> +   *
> +   * Only updates information for the given node, since usually the other
> +   * is about to be removed.
> +   */
> +  void removeLink(const GraphEdgeIterator &edgeItr,
> +                  const GraphNodeIterator &nodeItr) {
> +
> +    if (g.getNodeData(nodeItr).getLinkDegree() > 2) {
> +      heuristic.handleRemoveLink(edgeItr, nodeItr);
> +    }
> +    g.getEdgeData(edgeItr).unlink();
> +  }
> +
> +  /*!
> +   * \brief Remove link, update info for both nodes. Useful for R2 only.
> +   */
> +  void removeLinkR2(const GraphEdgeIterator &edgeItr) {
> +    GraphNodeIterator node1Itr = g.getEdgeNode1Itr(edgeItr);
> +
> +    if (g.getNodeData(node1Itr).getLinkDegree() > 2) {
> +      heuristic.handleRemoveLink(edgeItr, node1Itr);
> +    }
> +    removeLink(edgeItr, g.getEdgeNode2Itr(edgeItr));
> +  }
> +
> +  /*!
> +   * \brief Removes all links connected to the given node.
> +   */
> +  void unlinkNode(const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g.getNodeData(nodeItr);
> +
> +    typedef std::vector<GraphEdgeIterator> TempEdgeList;
> +
> +    TempEdgeList edgesToUnlink;
> +    edgesToUnlink.reserve(nodeData.getLinkDegree());
> +
> +    // Copy adj edges into a temp vector. We want to destroy them during
> +    // the unlink, and we can't do that while we're iterating over them.
> +    std::copy(nodeData.adjLinksBegin(), nodeData.adjLinksEnd(),
> +              std::back_inserter(edgesToUnlink));
> +
> +    for (typename TempEdgeList::iterator
> +         edgeItr = edgesToUnlink.begin(), edgeEnd = edgesToUnlink.end();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +
> +      GraphNodeIterator otherNode = g.getEdgeOtherNode(*edgeItr, nodeItr);
> +
> +      removeFromBucket(otherNode);
> +      removeLink(*edgeItr, otherNode);
> +      addToBucket(otherNode);
> +    }
> +  }
> +
> +  /*!
> +   * \brief Push the given node onto the stack to be solved with
> +   * backpropagation.
> +   */
> +  void pushStack(const GraphNodeIterator &nodeItr) {
> +    stack.push_back(nodeItr);
> +  }
> +
> +  /*!
> +   * \brief Set the solution of the given node.
> +   */
> +  void setSolution(const GraphNodeIterator &nodeItr, unsigned solIndex) {
> +    solution.setSelection(g.getNodeID(nodeItr), solIndex);
> +
> +    for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
> +         adjEdgeEnd = g.adjEdgesEnd(nodeItr);
> +         adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
> +      GraphEdgeIterator edgeItr(*adjEdgeItr);
> +      GraphNodeIterator adjNodeItr(g.getEdgeOtherNode(edgeItr, nodeItr));
> +      g.getNodeData(adjNodeItr).addSolvedLink(edgeItr);
> +    }
> +  }
> +
> +private:
> +
> +  SolverGraph g;
> +  Heuristic heuristic;
> +  Solution solution;
> +
> +  NodeList r0Bucket,
> +           r1Bucket,
> +           r2Bucket;
> +
> +  NodeStack stack;
> +
> +  // Copy the SimpleGraph into an annotated graph which we can use for reduction.
> +  void copyGraph(const SimpleGraph &orig) {
> +
> +    assert((g.getNumEdges() == 0) && (g.getNumNodes() == 0) &&
> +           "Graph should be empty prior to solver setup.");
> +
> +    assert(orig.areNodeIDsValid() &&
> +           "Cannot copy from a graph with invalid node IDs.");
> +
> +    std::vector<GraphNodeIterator> newNodeItrs;
> +
> +    for (unsigned nodeID = 0; nodeID < orig.getNumNodes(); ++nodeID) {
> +      newNodeItrs.push_back(
> +        g.addNode(orig.getNodeCosts(orig.getNodeItr(nodeID)), NodeData()));
> +    }
> +
> +    for (SimpleGraph::ConstEdgeIterator
> +         origEdgeItr = orig.edgesBegin(), origEdgeEnd = orig.edgesEnd();
> +         origEdgeItr != origEdgeEnd; ++origEdgeItr) {
> +
> +      unsigned id1 = orig.getNodeID(orig.getEdgeNode1Itr(origEdgeItr)),
> +               id2 = orig.getNodeID(orig.getEdgeNode2Itr(origEdgeItr));
> +
> +      g.addEdge(newNodeItrs[id1], newNodeItrs[id2],
> +                orig.getEdgeCosts(origEdgeItr), EdgeData(g));
> +    }
> +
> +    // Assign IDs to the new nodes using the ordering from the old graph,
> +    // this will lead to nodes in the new graph getting the same ID as the
> +    // corresponding node in the old graph.
> +    g.assignNodeIDs(newNodeItrs);
> +  }
> +
> +  // Simplify the annotated graph by eliminating independent edges and trivial
> +  // nodes. 
> +  void simplify() {
> +    disconnectTrivialNodes();
> +    eliminateIndependentEdges();
> +  }
> +
> +  // Eliminate trivial nodes.
> +  void disconnectTrivialNodes() {
> +    for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +
> +      if (g.getNodeCosts(nodeItr).getLength() == 1) {
> +
> +        std::vector<GraphEdgeIterator> edgesToRemove;
> +
> +        for (GraphAdjEdgeIterator adjEdgeItr = g.adjEdgesBegin(nodeItr),
> +             adjEdgeEnd = g.adjEdgesEnd(nodeItr);
> +             adjEdgeItr != adjEdgeEnd; ++adjEdgeItr) {
> +
> +          GraphEdgeIterator edgeItr = *adjEdgeItr;
> +
> +          if (g.getEdgeNode1Itr(edgeItr) == nodeItr) {
> +            GraphNodeIterator otherNodeItr = g.getEdgeNode2Itr(edgeItr);
> +            g.getNodeCosts(otherNodeItr) +=
> +              g.getEdgeCosts(edgeItr).getRowAsVector(0);
> +          }
> +          else {
> +            GraphNodeIterator otherNodeItr = g.getEdgeNode1Itr(edgeItr);
> +            g.getNodeCosts(otherNodeItr) +=
> +              g.getEdgeCosts(edgeItr).getColAsVector(0);
> +          }
> +
> +          edgesToRemove.push_back(edgeItr);
> +        }
> +
> +        while (!edgesToRemove.empty()) {
> +          g.removeEdge(edgesToRemove.back());
> +          edgesToRemove.pop_back();
> +        }
> +      }
> +    }
> +  }
> +
> +  void eliminateIndependentEdges() {
> +    std::vector<GraphEdgeIterator> edgesToProcess;
> +
> +    for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +      edgesToProcess.push_back(edgeItr);
> +    }
> +
> +    while (!edgesToProcess.empty()) {
> +      tryToEliminateEdge(edgesToProcess.back());
> +      edgesToProcess.pop_back();
> +    }
> +  }
> +
> +  void tryToEliminateEdge(const GraphEdgeIterator &edgeItr) {
> +    if (tryNormaliseEdgeMatrix(edgeItr)) {
> +      g.removeEdge(edgeItr); 
> +    }
> +  }
> +
> +  bool tryNormaliseEdgeMatrix(const GraphEdgeIterator &edgeItr) {
> +
> +    Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
> +    Vector &uCosts = g.getNodeCosts(g.getEdgeNode1Itr(edgeItr)),
> +               &vCosts = g.getNodeCosts(g.getEdgeNode2Itr(edgeItr));
> +
> +    for (unsigned r = 0; r < edgeCosts.getRows(); ++r) {
> +      PBQPNum rowMin = edgeCosts.getRowMin(r);
> +      uCosts[r] += rowMin;
> +      if (rowMin != std::numeric_limits<PBQPNum>::infinity()) {
> +        edgeCosts.subFromRow(r, rowMin);
> +      }
> +      else {
> +        edgeCosts.setRow(r, 0);
> +      }
> +    }
> +
> +    for (unsigned c = 0; c < edgeCosts.getCols(); ++c) {
> +      PBQPNum colMin = edgeCosts.getColMin(c);
> +      vCosts[c] += colMin;
> +      if (colMin != std::numeric_limits<PBQPNum>::infinity()) {
> +        edgeCosts.subFromCol(c, colMin);
> +      }
> +      else {
> +        edgeCosts.setCol(c, 0);
> +      }
> +    }
> +
> +    return edgeCosts.isZero();
> +  }
> +
> +  void setup() {
> +    setupLinks();
> +    heuristic.initialise(*this);
> +    setupBuckets();
> +  }
> +
> +  void setupLinks() {
> +    for (GraphEdgeIterator edgeItr = g.edgesBegin(), edgeEnd = g.edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +      g.getEdgeData(edgeItr).setup(edgeItr);
> +    }
> +  }
> +
> +  void setupBuckets() {
> +    for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +      addToBucket(nodeItr);
> +    }
> +  }
> +
> +  void computeSolution() {
> +    assert(g.areNodeIDsValid() &&
> +           "Nodes cannot be added/removed during reduction.");
> +
> +    reduce();
> +    computeTrivialSolutions();
> +    backpropagate();
> +  }
> +
> +  void printNode(const GraphNodeIterator &nodeItr) {
> +
> +    std::cerr << "Node " << g.getNodeID(nodeItr) << " (" << &*nodeItr << "):\n"
> +              << "  costs = " << g.getNodeCosts(nodeItr) << "\n"
> +              << "  link degree = " << g.getNodeData(nodeItr).getLinkDegree() << "\n"
> +              << "  links = [ ";
> +
> +    for (typename HSIT::NodeData::AdjLinkIterator 
> +         aeItr = g.getNodeData(nodeItr).adjLinksBegin(),
> +         aeEnd = g.getNodeData(nodeItr).adjLinksEnd();
> +         aeItr != aeEnd; ++aeItr) {
> +      std::cerr << "(" << g.getNodeID(g.getEdgeNode1Itr(*aeItr))
> +                << ", " << g.getNodeID(g.getEdgeNode2Itr(*aeItr))
> +                << ") ";
> +    }
> +    std::cout << "]\n";
> +  }
> +
> +  void dumpState() {
> +
> +    std::cerr << "\n";
> +
> +    for (GraphNodeIterator nodeItr = g.nodesBegin(), nodeEnd = g.nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +      printNode(nodeItr);
> +    }
> +
> +    NodeList* buckets[] = { &r0Bucket, &r1Bucket, &r2Bucket };
> +
> +    for (unsigned b = 0; b < 3; ++b) {
> +      NodeList &bucket = *buckets[b];
> +
> +      std::cerr << "Bucket " << b << ": [ ";
> +
> +      for (NodeListIterator nItr = bucket.begin(), nEnd = bucket.end();
> +           nItr != nEnd; ++nItr) {
> +        std::cerr << g.getNodeID(*nItr) << " ";
> +      }
> +
> +      std::cerr << "]\n";
> +    }
> +
> +    std::cerr << "Stack: [ ";
> +    for (NodeStackIterator nsItr = stack.begin(), nsEnd = stack.end();
> +         nsItr != nsEnd; ++nsItr) {
> +      std::cerr << g.getNodeID(*nsItr) << " ";
> +    }
> +    std::cerr << "]\n";
> +  }
> +
> +  void reduce() {
> +    bool reductionFinished = r1Bucket.empty() && r2Bucket.empty() &&
> +      heuristic.rNBucketEmpty();
> +
> +    while (!reductionFinished) {
> +
> +      if (!r1Bucket.empty()) {
> +        processR1();
> +      }
> +      else if (!r2Bucket.empty()) {
> +        processR2();
> +      }
> +      else if (!heuristic.rNBucketEmpty()) {
> +        solution.setProvedOptimal(false);
> +        solution.incRNReductions();
> +        heuristic.processRN();
> +      } 
> +      else reductionFinished = true;
> +    }
> +      
> +  };
> +
> +  void processR1() {
> +
> +    // Remove the first node in the R0 bucket:
> +    GraphNodeIterator xNodeItr = r1Bucket.front();
> +    r1Bucket.pop_front();
> +
> +    solution.incR1Reductions();
> +
> +    //std::cerr << "Applying R1 to " << g.getNodeID(xNodeItr) << "\n";
> +
> +    assert((g.getNodeData(xNodeItr).getLinkDegree() == 1) &&
> +           "Node in R1 bucket has degree != 1");
> +
> +    GraphEdgeIterator edgeItr = *g.getNodeData(xNodeItr).adjLinksBegin();
> +
> +    const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
> +
> +    const Vector &xCosts = g.getNodeCosts(xNodeItr);
> +    unsigned xLen = xCosts.getLength();
> +
> +    // Duplicate a little code to avoid transposing matrices:
> +    if (xNodeItr == g.getEdgeNode1Itr(edgeItr)) {
> +      GraphNodeIterator yNodeItr = g.getEdgeNode2Itr(edgeItr);
> +      Vector &yCosts = g.getNodeCosts(yNodeItr);
> +      unsigned yLen = yCosts.getLength();
> +
> +      for (unsigned j = 0; j < yLen; ++j) {
> +        PBQPNum min = edgeCosts[0][j] + xCosts[0];
> +        for (unsigned i = 1; i < xLen; ++i) {
> +          PBQPNum c = edgeCosts[i][j] + xCosts[i];
> +          if (c < min)
> +            min = c;
> +        }
> +        yCosts[j] += min;
> +      }
> +    }
> +    else {
> +      GraphNodeIterator yNodeItr = g.getEdgeNode1Itr(edgeItr);
> +      Vector &yCosts = g.getNodeCosts(yNodeItr);
> +      unsigned yLen = yCosts.getLength();
> +
> +      for (unsigned i = 0; i < yLen; ++i) {
> +        PBQPNum min = edgeCosts[i][0] + xCosts[0];
> +
> +        for (unsigned j = 1; j < xLen; ++j) {
> +          PBQPNum c = edgeCosts[i][j] + xCosts[j];
> +          if (c < min)
> +            min = c;
> +        }
> +        yCosts[i] += min;
> +      }
> +    }
> +
> +    unlinkNode(xNodeItr);
> +    pushStack(xNodeItr);
> +  }
> +
> +  void processR2() {
> +
> +    GraphNodeIterator xNodeItr = r2Bucket.front();
> +    r2Bucket.pop_front();
> +
> +    solution.incR2Reductions();
> +
> +    // Unlink is unsafe here. At some point it may optimistically more a node
> +    // to a lower-degree list when its degree will later rise, or vice versa,
> +    // violating the assumption that node degrees monotonically decrease
> +    // during the reduction phase. Instead we'll bucket shuffle manually.
> +    pushStack(xNodeItr);
> +
> +    assert((g.getNodeData(xNodeItr).getLinkDegree() == 2) &&
> +           "Node in R2 bucket has degree != 2");
> +
> +    const Vector &xCosts = g.getNodeCosts(xNodeItr);
> +
> +    typename NodeData::AdjLinkIterator tempItr =
> +      g.getNodeData(xNodeItr).adjLinksBegin();
> +
> +    GraphEdgeIterator yxEdgeItr = *tempItr,
> +                      zxEdgeItr = *(++tempItr);
> +
> +    GraphNodeIterator yNodeItr = g.getEdgeOtherNode(yxEdgeItr, xNodeItr),
> +                      zNodeItr = g.getEdgeOtherNode(zxEdgeItr, xNodeItr);
> +
> +    removeFromBucket(yNodeItr);
> +    removeFromBucket(zNodeItr);
> +
> +    removeLink(yxEdgeItr, yNodeItr);
> +    removeLink(zxEdgeItr, zNodeItr);
> +
> +    // Graph some of the costs:
> +    bool flipEdge1 = (g.getEdgeNode1Itr(yxEdgeItr) == xNodeItr),
> +         flipEdge2 = (g.getEdgeNode1Itr(zxEdgeItr) == xNodeItr);
> +
> +    const Matrix *yxCosts = flipEdge1 ?
> +      new Matrix(g.getEdgeCosts(yxEdgeItr).transpose()) :
> +      &g.getEdgeCosts(yxEdgeItr),
> +                     *zxCosts = flipEdge2 ?
> +      new Matrix(g.getEdgeCosts(zxEdgeItr).transpose()) :
> +        &g.getEdgeCosts(zxEdgeItr);
> +
> +    unsigned xLen = xCosts.getLength(),
> +             yLen = yxCosts->getRows(),
> +             zLen = zxCosts->getRows();
> +
> +    // Compute delta:
> +    Matrix delta(yLen, zLen);
> +
> +    for (unsigned i = 0; i < yLen; ++i) {
> +      for (unsigned j = 0; j < zLen; ++j) {
> +        PBQPNum min = (*yxCosts)[i][0] + (*zxCosts)[j][0] + xCosts[0];
> +        for (unsigned k = 1; k < xLen; ++k) {
> +          PBQPNum c = (*yxCosts)[i][k] + (*zxCosts)[j][k] + xCosts[k];
> +          if (c < min) {
> +            min = c;
> +          }
> +        }
> +        delta[i][j] = min;
> +      }
> +    }
> +
> +    if (flipEdge1)
> +      delete yxCosts;
> +
> +    if (flipEdge2)
> +      delete zxCosts;
> +
> +    // Deal with the potentially induced yz edge.
> +    GraphEdgeIterator yzEdgeItr = g.findEdge(yNodeItr, zNodeItr);
> +    if (yzEdgeItr == g.edgesEnd()) {
> +      yzEdgeItr = g.addEdge(yNodeItr, zNodeItr, delta, EdgeData(g));
> +    }
> +    else {
> +      // There was an edge, but we're going to screw with it. Delete the old
> +      // link, update the costs. We'll re-link it later.
> +      removeLinkR2(yzEdgeItr);
> +      g.getEdgeCosts(yzEdgeItr) +=
> +        (yNodeItr == g.getEdgeNode1Itr(yzEdgeItr)) ?
> +        delta : delta.transpose();
> +    }
> +
> +    bool nullCostEdge = tryNormaliseEdgeMatrix(yzEdgeItr);
> +
> +    // Nulled the edge, remove it entirely.
> +    if (nullCostEdge) {
> +      g.removeEdge(yzEdgeItr);
> +    }
> +    else {
> +      // Edge remains - re-link it.
> +      addLink(yzEdgeItr);
> +    }
> +
> +    addToBucket(yNodeItr);
> +    addToBucket(zNodeItr);
> +    }
> +
> +  void computeTrivialSolutions() {
> +
> +    for (NodeListIterator r0Itr = r0Bucket.begin(), r0End = r0Bucket.end();
> +         r0Itr != r0End; ++r0Itr) {
> +      GraphNodeIterator nodeItr = *r0Itr;
> +
> +      solution.incR0Reductions();
> +      setSolution(nodeItr, g.getNodeCosts(nodeItr).minIndex());
> +    }
> +
> +  }
> +
> +  void backpropagate() {
> +    while (!stack.empty()) {
> +      computeSolution(stack.back());
> +      stack.pop_back();
> +    }
> +  }
> +
> +  void computeSolution(const GraphNodeIterator &nodeItr) {
> +
> +    NodeData &nodeData = g.getNodeData(nodeItr);
> +
> +    Vector v(g.getNodeCosts(nodeItr));
> +
> +    // Solve based on existing links.
> +    for (typename NodeData::AdjLinkIterator
> +         solvedLinkItr = nodeData.solvedLinksBegin(),
> +         solvedLinkEnd = nodeData.solvedLinksEnd();
> +         solvedLinkItr != solvedLinkEnd; ++solvedLinkItr) {
> +
> +      GraphEdgeIterator solvedEdgeItr(*solvedLinkItr);
> +      Matrix &edgeCosts = g.getEdgeCosts(solvedEdgeItr);
> +
> +      if (nodeItr == g.getEdgeNode1Itr(solvedEdgeItr)) {
> +        GraphNodeIterator adjNode(g.getEdgeNode2Itr(solvedEdgeItr));
> +        unsigned adjSolution =
> +          solution.getSelection(g.getNodeID(adjNode));
> +        v += edgeCosts.getColAsVector(adjSolution);
> +      }
> +      else {
> +        GraphNodeIterator adjNode(g.getEdgeNode1Itr(solvedEdgeItr));
> +        unsigned adjSolution =
> +          solution.getSelection(g.getNodeID(adjNode));
> +        v += edgeCosts.getRowAsVector(adjSolution);
> +      }
> +
> +    }
> +
> +    setSolution(nodeItr, v.minIndex());
> +  }
> +
> +  void computeSolutionCost(const SimpleGraph &orig) {
> +    PBQPNum cost = 0.0;
> +
> +    for (SimpleGraph::ConstNodeIterator
> +         nodeItr = orig.nodesBegin(), nodeEnd = orig.nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +
> +      unsigned nodeId = orig.getNodeID(nodeItr);
> +
> +      cost += orig.getNodeCosts(nodeItr)[solution.getSelection(nodeId)];
> +    }
> +
> +    for (SimpleGraph::ConstEdgeIterator
> +         edgeItr = orig.edgesBegin(), edgeEnd = orig.edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +
> +      SimpleGraph::ConstNodeIterator n1 = orig.getEdgeNode1Itr(edgeItr),
> +                                     n2 = orig.getEdgeNode2Itr(edgeItr);
> +      unsigned sol1 = solution.getSelection(orig.getNodeID(n1)),
> +               sol2 = solution.getSelection(orig.getNodeID(n2));
> +
> +      cost += orig.getEdgeCosts(edgeItr)[sol1][sol2];
> +    }
> +
> +    solution.setSolutionCost(cost);
> +  }
> +
> +};
> +
> +template <typename Heuristic>
> +class HeuristicSolver : public Solver {
> +public:
> +  Solution solve(const SimpleGraph &g) const {
> +    HeuristicSolverImpl<Heuristic> solverImpl(g);
> +    return solverImpl.getSolution();
> +  }
> +};
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_HEURISTICSOLVER_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/Heuristics/Briggs.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/Heuristics/Briggs.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/Heuristics/Briggs.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/Heuristics/Briggs.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,385 @@
> +#ifndef LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
> +#define LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
> +
> +#include "../HeuristicSolver.h"
> +
> +#include <set>
> +
> +namespace PBQP {
> +namespace Heuristics {
> +
> +class Briggs {
> +  public:
> +
> +    class NodeData;
> +    class EdgeData;
> +
> +  private:
> +
> +    typedef HeuristicSolverImpl<Briggs> Solver;
> +    typedef HSITypes<NodeData, EdgeData> HSIT;
> +    typedef HSIT::SolverGraph SolverGraph;
> +    typedef HSIT::GraphNodeIterator GraphNodeIterator;
> +    typedef HSIT::GraphEdgeIterator GraphEdgeIterator;
> +
> +    class LinkDegreeComparator {
> +      public:
> +        LinkDegreeComparator() : g(0) {}
> +        LinkDegreeComparator(SolverGraph *g) : g(g) {}
> +
> +        bool operator()(const GraphNodeIterator &node1Itr,
> +                        const GraphNodeIterator &node2Itr) const {
> +          assert((g != 0) && "Graph object not set, cannot access node data.");
> +          unsigned n1Degree = g->getNodeData(node1Itr).getLinkDegree(),
> +                   n2Degree = g->getNodeData(node2Itr).getLinkDegree();
> +          if (n1Degree > n2Degree) {
> +            return true;
> +          }
> +          else if (n1Degree < n2Degree) {
> +            return false;
> +          }
> +          // else they're "equal" by degree, differentiate based on ID.
> +          return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
> +        }
> +
> +      private:
> +        SolverGraph *g;
> +    };
> +
> +    class SpillPriorityComparator {
> +      public:
> +        SpillPriorityComparator() : g(0) {}
> +        SpillPriorityComparator(SolverGraph *g) : g(g) {}
> +
> +        bool operator()(const GraphNodeIterator &node1Itr,
> +                        const GraphNodeIterator &node2Itr) const {
> +          assert((g != 0) && "Graph object not set, cannot access node data.");
> +          PBQPNum cost1 =
> +            g->getNodeCosts(node1Itr)[0] /
> +            g->getNodeData(node1Itr).getLinkDegree(),
> +            cost2 =
> +              g->getNodeCosts(node2Itr)[0] /
> +              g->getNodeData(node2Itr).getLinkDegree();
> +
> +          if (cost1 < cost2) {
> +            return true;
> +          }
> +          else if (cost1 > cost2) {
> +            return false;
> +          }
> +          // else they'er "equal" again, differentiate based on address again.
> +          return g->getNodeID(node1Itr) < g->getNodeID(node2Itr);
> +        }
> +
> +      private:
> +        SolverGraph *g;
> +    };
> +
> +    typedef std::set<GraphNodeIterator, LinkDegreeComparator>
> +      RNAllocableNodeList;
> +    typedef RNAllocableNodeList::iterator RNAllocableNodeListIterator;
> +
> +    typedef std::set<GraphNodeIterator, SpillPriorityComparator>
> +      RNUnallocableNodeList;
> +    typedef RNUnallocableNodeList::iterator RNUnallocableNodeListIterator;
> +
> +  public:
> +
> +    class NodeData {
> +      private:
> +        RNAllocableNodeListIterator rNAllocableNodeListItr;
> +        RNUnallocableNodeListIterator rNUnallocableNodeListItr;
> +        unsigned numRegOptions, numDenied, numSafe;
> +        std::vector<unsigned> unsafeDegrees;
> +        bool allocable;
> +
> +        void addRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
> +            const GraphEdgeIterator &edgeItr, bool add) {
> +
> +          //assume we're adding...
> +          unsigned udTarget = 0, dir = 1;
> +
> +          if (!add) {
> +            udTarget = 1;
> +            dir = -1;
> +          }
> +
> +          EdgeData &linkEdgeData = g.getEdgeData(edgeItr).getHeuristicData();
> +
> +          EdgeData::ConstUnsafeIterator edgeUnsafeBegin, edgeUnsafeEnd;
> +
> +          if (nodeItr == g.getEdgeNode1Itr(edgeItr)) {
> +            numDenied += (dir * linkEdgeData.getWorstDegree());
> +            edgeUnsafeBegin = linkEdgeData.unsafeBegin();
> +            edgeUnsafeEnd = linkEdgeData.unsafeEnd();
> +          }
> +          else {
> +            numDenied += (dir * linkEdgeData.getReverseWorstDegree());
> +            edgeUnsafeBegin = linkEdgeData.reverseUnsafeBegin();
> +            edgeUnsafeEnd = linkEdgeData.reverseUnsafeEnd();
> +          }
> +
> +          assert((unsafeDegrees.size() ==
> +                static_cast<unsigned>(
> +                  std::distance(edgeUnsafeBegin, edgeUnsafeEnd)))
> +              && "Unsafe array size mismatch.");
> +
> +          std::vector<unsigned>::iterator unsafeDegreesItr =
> +            unsafeDegrees.begin();
> +
> +          for (EdgeData::ConstUnsafeIterator edgeUnsafeItr = edgeUnsafeBegin;
> +              edgeUnsafeItr != edgeUnsafeEnd;
> +              ++edgeUnsafeItr, ++unsafeDegreesItr) {
> +
> +            if ((*edgeUnsafeItr == 1) && (*unsafeDegreesItr == udTarget))  {
> +              numSafe -= dir;
> +            }
> +            *unsafeDegreesItr += (dir * (*edgeUnsafeItr));
> +          }
> +
> +          allocable = (numDenied < numRegOptions) || (numSafe > 0);
> +        }
> +
> +      public:
> +
> +        void setup(SolverGraph &g, const GraphNodeIterator &nodeItr) {
> +
> +          numRegOptions = g.getNodeCosts(nodeItr).getLength() - 1;
> +
> +          numSafe = numRegOptions; // Optimistic, correct below.
> +          numDenied = 0; // Also optimistic.
> +          unsafeDegrees.resize(numRegOptions, 0);
> +
> +          HSIT::NodeData &nodeData = g.getNodeData(nodeItr);
> +
> +          for (HSIT::NodeData::AdjLinkIterator
> +              adjLinkItr = nodeData.adjLinksBegin(),
> +              adjLinkEnd = nodeData.adjLinksEnd();
> +              adjLinkItr != adjLinkEnd; ++adjLinkItr) {
> +
> +            addRemoveLink(g, nodeItr, *adjLinkItr, true);
> +          }
> +        }
> +
> +        bool isAllocable() const { return allocable; }
> +
> +        void handleAddLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
> +            const GraphEdgeIterator &adjEdge) {
> +          addRemoveLink(g, nodeItr, adjEdge, true);
> +        }
> +
> +        void handleRemoveLink(SolverGraph &g, const GraphNodeIterator &nodeItr,
> +            const GraphEdgeIterator &adjEdge) {
> +          addRemoveLink(g, nodeItr, adjEdge, false);
> +        }
> +
> +        void setRNAllocableNodeListItr(
> +            const RNAllocableNodeListIterator &rNAllocableNodeListItr) {
> +
> +          this->rNAllocableNodeListItr = rNAllocableNodeListItr;
> +        }
> +
> +        RNAllocableNodeListIterator getRNAllocableNodeListItr() const {
> +          return rNAllocableNodeListItr;
> +        }
> +
> +        void setRNUnallocableNodeListItr(
> +            const RNUnallocableNodeListIterator &rNUnallocableNodeListItr) {
> +
> +          this->rNUnallocableNodeListItr = rNUnallocableNodeListItr;
> +        }
> +
> +        RNUnallocableNodeListIterator getRNUnallocableNodeListItr() const {
> +          return rNUnallocableNodeListItr;
> +        }
> +
> +
> +    };
> +
> +    class EdgeData {
> +      private:
> +
> +        typedef std::vector<unsigned> UnsafeArray;
> +
> +        unsigned worstDegree,
> +                 reverseWorstDegree;
> +        UnsafeArray unsafe, reverseUnsafe;
> +
> +      public:
> +
> +        EdgeData() : worstDegree(0), reverseWorstDegree(0) {}
> +
> +        typedef UnsafeArray::const_iterator ConstUnsafeIterator;
> +
> +        void setup(SolverGraph &g, const GraphEdgeIterator &edgeItr) {
> +          const Matrix &edgeCosts = g.getEdgeCosts(edgeItr);
> +          unsigned numRegs = edgeCosts.getRows() - 1,
> +                   numReverseRegs = edgeCosts.getCols() - 1;
> +
> +          unsafe.resize(numRegs, 0);
> +          reverseUnsafe.resize(numReverseRegs, 0);
> +
> +          std::vector<unsigned> rowInfCounts(numRegs, 0),
> +                                colInfCounts(numReverseRegs, 0);
> +
> +          for (unsigned i = 0; i < numRegs; ++i) {
> +            for (unsigned j = 0; j < numReverseRegs; ++j) {
> +              if (edgeCosts[i + 1][j + 1] ==
> +                  std::numeric_limits<PBQPNum>::infinity()) {
> +                unsafe[i] = 1;
> +                reverseUnsafe[j] = 1;
> +                ++rowInfCounts[i];
> +                ++colInfCounts[j];
> +
> +                if (colInfCounts[j] > worstDegree) {
> +                  worstDegree = colInfCounts[j];
> +                }
> +
> +                if (rowInfCounts[i] > reverseWorstDegree) {
> +                  reverseWorstDegree = rowInfCounts[i];
> +                }
> +              }
> +            }
> +          }
> +        }
> +
> +        unsigned getWorstDegree() const { return worstDegree; }
> +        unsigned getReverseWorstDegree() const { return reverseWorstDegree; }
> +        ConstUnsafeIterator unsafeBegin() const { return unsafe.begin(); }
> +        ConstUnsafeIterator unsafeEnd() const { return unsafe.end(); }
> +        ConstUnsafeIterator reverseUnsafeBegin() const {
> +          return reverseUnsafe.begin();
> +        }
> +        ConstUnsafeIterator reverseUnsafeEnd() const {
> +          return reverseUnsafe.end();
> +        }
> +    };
> +
> +  void initialise(Solver &solver) {
> +    this->s = &solver;
> +    g = &s->getGraph();
> +    rNAllocableBucket = RNAllocableNodeList(LinkDegreeComparator(g));
> +    rNUnallocableBucket =
> +      RNUnallocableNodeList(SpillPriorityComparator(g));
> +    
> +    for (GraphEdgeIterator
> +         edgeItr = g->edgesBegin(), edgeEnd = g->edgesEnd();
> +         edgeItr != edgeEnd; ++edgeItr) {
> +
> +      g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
> +    }
> +
> +    for (GraphNodeIterator
> +         nodeItr = g->nodesBegin(), nodeEnd = g->nodesEnd();
> +         nodeItr != nodeEnd; ++nodeItr) {
> +
> +      g->getNodeData(nodeItr).getHeuristicData().setup(*g, nodeItr);
> +    }
> +  }
> +
> +  void addToRNBucket(const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
> +
> +    if (nodeData.isAllocable()) {
> +      nodeData.setRNAllocableNodeListItr(
> +        rNAllocableBucket.insert(rNAllocableBucket.begin(), nodeItr));
> +    }
> +    else {
> +      nodeData.setRNUnallocableNodeListItr(
> +        rNUnallocableBucket.insert(rNUnallocableBucket.begin(), nodeItr));
> +    }
> +  }
> +
> +  void removeFromRNBucket(const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
> +
> +    if (nodeData.isAllocable()) {
> +      rNAllocableBucket.erase(nodeData.getRNAllocableNodeListItr());
> +    }
> +    else {
> +      rNUnallocableBucket.erase(nodeData.getRNUnallocableNodeListItr());
> +    }
> +  }
> +
> +  void handleAddLink(const GraphEdgeIterator &edgeItr) {
> +    // We assume that if we got here this edge is attached to at least
> +    // one high degree node.
> +    g->getEdgeData(edgeItr).getHeuristicData().setup(*g, edgeItr);
> +
> +    GraphNodeIterator n1Itr = g->getEdgeNode1Itr(edgeItr),
> +                      n2Itr = g->getEdgeNode2Itr(edgeItr);
> +   
> +    HSIT::NodeData &n1Data = g->getNodeData(n1Itr),
> +                   &n2Data = g->getNodeData(n2Itr);
> +
> +    if (n1Data.getLinkDegree() > 2) {
> +      n1Data.getHeuristicData().handleAddLink(*g, n1Itr, edgeItr);
> +    }
> +    if (n2Data.getLinkDegree() > 2) {
> +      n2Data.getHeuristicData().handleAddLink(*g, n2Itr, edgeItr);
> +    }
> +  }
> +
> +  void handleRemoveLink(const GraphEdgeIterator &edgeItr,
> +                        const GraphNodeIterator &nodeItr) {
> +    NodeData &nodeData = g->getNodeData(nodeItr).getHeuristicData();
> +    nodeData.handleRemoveLink(*g, nodeItr, edgeItr);
> +  }
> +
> +  void processRN() {
> +
> +   /* 
> +    std::cerr << "processRN():\n"
> +              << "  rNAllocable = [ ";
> +    for (RNAllocableNodeListIterator nItr = rNAllocableBucket.begin(),
> +                                     nEnd = rNAllocableBucket.end();
> +         nItr != nEnd; ++nItr) {
> +      std::cerr << g->getNodeID(*nItr) << " (" << g->getNodeData(*nItr).getLinkDegree() << ")    ";
> +    }
> +    std::cerr << "]\n"
> +              << "  rNUnallocable = [ ";
> +    for (RNUnallocableNodeListIterator nItr = rNUnallocableBucket.begin(),
> +                                       nEnd = rNUnallocableBucket.end();
> +         nItr != nEnd; ++nItr) {
> +      float bCost = g->getNodeCosts(*nItr)[0] / g->getNodeData(*nItr).getLinkDegree();
> +      std::cerr << g->getNodeID(*nItr) << " (" << bCost << ")   ";
> +    }
> +    std::cerr << "]\n";
> +    */
> +
> +    if (!rNAllocableBucket.empty()) {
> +      GraphNodeIterator selectedNodeItr = *rNAllocableBucket.begin();
> +      //std::cerr << "RN safely pushing " << g->getNodeID(selectedNodeItr) << "\n";
> +      rNAllocableBucket.erase(rNAllocableBucket.begin());
> +      s->pushStack(selectedNodeItr);
> +      s->unlinkNode(selectedNodeItr);
> +    }
> +    else {
> +      GraphNodeIterator selectedNodeItr = *rNUnallocableBucket.begin();
> +      //std::cerr << "RN optimistically pushing " << g->getNodeID(selectedNodeItr) << "\n";
> +      rNUnallocableBucket.erase(rNUnallocableBucket.begin());
> +      s->pushStack(selectedNodeItr);
> +      s->unlinkNode(selectedNodeItr);
> +    }
> + 
> +  }
> +
> +  bool rNBucketEmpty() const {
> +    return (rNAllocableBucket.empty() && rNUnallocableBucket.empty());
> +  }
> +
> +private:
> +
> +  Solver *s;
> +  SolverGraph *g;
> +  RNAllocableNodeList rNAllocableBucket;
> +  RNUnallocableNodeList rNUnallocableBucket;
> +};
> +
> +
> +
> +}
> +}
> +
> +
> +#endif // LLVM_CODEGEN_PBQP_HEURISTICS_BRIGGS_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/PBQPMath.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/PBQPMath.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/PBQPMath.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/PBQPMath.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,279 @@
> +#ifndef LLVM_CODEGEN_PBQP_PBQPMATH_H 
> +#define LLVM_CODEGEN_PBQP_PBQPMATH_H
> +
> +#include <cassert>
> +#include <algorithm>
> +#include <functional>
> +
> +namespace PBQP {
> +
> +typedef double PBQPNum;
> +
> +/// \brief PBQP Vector class.
> +class Vector {
> +  public:
> +
> +    /// \brief Construct a PBQP vector of the given size.
> +    explicit Vector(unsigned length) :
> +      length(length), data(new PBQPNum[length]) {
> +      }
> +
> +    /// \brief Construct a PBQP vector with initializer.
> +    Vector(unsigned length, PBQPNum initVal) :
> +      length(length), data(new PBQPNum[length]) {
> +        std::fill(data, data + length, initVal);
> +      }
> +
> +    /// \brief Copy construct a PBQP vector.
> +    Vector(const Vector &v) :
> +      length(v.length), data(new PBQPNum[length]) {
> +        std::copy(v.data, v.data + length, data);
> +      }
> +
> +    /// \brief Destroy this vector, return its memory.
> +    ~Vector() { delete[] data; }
> +
> +    /// \brief Assignment operator.
> +    Vector& operator=(const Vector &v) {
> +      delete[] data;
> +      length = v.length;
> +      data = new PBQPNum[length];
> +      std::copy(v.data, v.data + length, data);
> +      return *this;
> +    }
> +
> +    /// \brief Return the length of the vector
> +    unsigned getLength() const throw () {
> +      return length;
> +    }
> +
> +    /// \brief Element access.
> +    PBQPNum& operator[](unsigned index) {
> +      assert(index < length && "Vector element access out of bounds.");
> +      return data[index];
> +    }
> +
> +    /// \brief Const element access.
> +    const PBQPNum& operator[](unsigned index) const {
> +      assert(index < length && "Vector element access out of bounds.");
> +      return data[index];
> +    }
> +
> +    /// \brief Add another vector to this one.
> +    Vector& operator+=(const Vector &v) {
> +      assert(length == v.length && "Vector length mismatch.");
> +      std::transform(data, data + length, v.data, data, std::plus<PBQPNum>()); 
> +      return *this;
> +    }
> +
> +    /// \brief Subtract another vector from this one.
> +    Vector& operator-=(const Vector &v) {
> +      assert(length == v.length && "Vector length mismatch.");
> +      std::transform(data, data + length, v.data, data, std::minus<PBQPNum>()); 
> +      return *this;
> +    }
> +
> +    /// \brief Returns the index of the minimum value in this vector
> +    unsigned minIndex() const {
> +      return std::min_element(data, data + length) - data;
> +    }
> +
> +  private:
> +    unsigned length;
> +    PBQPNum *data;
> +};
> +
> +/// \brief Output a textual representation of the given vector on the given
> +///        output stream.
> +template <typename OStream>
> +OStream& operator<<(OStream &os, const Vector &v) {
> +  assert((v.getLength() != 0) && "Zero-length vector badness.");
> +
> +  os << "[ " << v[0];
> +  for (unsigned i = 1; i < v.getLength(); ++i) {
> +    os << ", " << v[i];
> +  }
> +  os << " ]";
> +
> +  return os;
> +} 
> +
> +
> +/// \brief PBQP Matrix class
> +class Matrix {
> +  public:
> +
> +    /// \brief Construct a PBQP Matrix with the given dimensions.
> +    Matrix(unsigned rows, unsigned cols) :
> +      rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
> +    }
> +
> +    /// \brief Construct a PBQP Matrix with the given dimensions and initial
> +    /// value.
> +    Matrix(unsigned rows, unsigned cols, PBQPNum initVal) :
> +      rows(rows), cols(cols), data(new PBQPNum[rows * cols]) {
> +        std::fill(data, data + (rows * cols), initVal);
> +    }
> +
> +    /// \brief Copy construct a PBQP matrix.
> +    Matrix(const Matrix &m) :
> +      rows(m.rows), cols(m.cols), data(new PBQPNum[rows * cols]) {
> +        std::copy(m.data, m.data + (rows * cols), data);  
> +    }
> +
> +    /// \brief Destroy this matrix, return its memory.
> +    ~Matrix() { delete[] data; }
> +
> +    /// \brief Assignment operator.
> +    Matrix& operator=(const Matrix &m) {
> +      delete[] data;
> +      rows = m.rows; cols = m.cols;
> +      data = new PBQPNum[rows * cols];
> +      std::copy(m.data, m.data + (rows * cols), data);
> +      return *this;
> +    }
> +
> +    /// \brief Return the number of rows in this matrix.
> +    unsigned getRows() const throw () { return rows; }
> +
> +    /// \brief Return the number of cols in this matrix.
> +    unsigned getCols() const throw () { return cols; }
> +
> +    /// \brief Matrix element access.
> +    PBQPNum* operator[](unsigned r) {
> +      assert(r < rows && "Row out of bounds.");
> +      return data + (r * cols);
> +    }
> +
> +    /// \brief Matrix element access.
> +    const PBQPNum* operator[](unsigned r) const {
> +      assert(r < rows && "Row out of bounds.");
> +      return data + (r * cols);
> +    }
> +
> +    /// \brief Returns the given row as a vector.
> +    Vector getRowAsVector(unsigned r) const {
> +      Vector v(cols);
> +      for (unsigned c = 0; c < cols; ++c)
> +        v[c] = (*this)[r][c];
> +      return v; 
> +    }
> +
> +    /// \brief Returns the given column as a vector.
> +    Vector getColAsVector(unsigned c) const {
> +      Vector v(rows);
> +      for (unsigned r = 0; r < rows; ++r)
> +        v[r] = (*this)[r][c];
> +      return v;
> +    }
> +
> +    /// \brief Reset the matrix to the given value.
> +    Matrix& reset(PBQPNum val = 0) {
> +      std::fill(data, data + (rows * cols), val);
> +      return *this;
> +    }
> +
> +    /// \brief Set a single row of this matrix to the given value.
> +    Matrix& setRow(unsigned r, PBQPNum val) {
> +      assert(r < rows && "Row out of bounds.");
> +      std::fill(data + (r * cols), data + ((r + 1) * cols), val);
> +      return *this;
> +    }
> +
> +    /// \brief Set a single column of this matrix to the given value.
> +    Matrix& setCol(unsigned c, PBQPNum val) {
> +      assert(c < cols && "Column out of bounds.");
> +      for (unsigned r = 0; r < rows; ++r)
> +        (*this)[r][c] = val;
> +      return *this;
> +    }
> +
> +    /// \brief Matrix transpose.
> +    Matrix transpose() const {
> +      Matrix m(cols, rows);
> +      for (unsigned r = 0; r < rows; ++r)
> +        for (unsigned c = 0; c < cols; ++c)
> +          m[c][r] = (*this)[r][c];
> +      return m;
> +    }
> +
> +    /// \brief Returns the diagonal of the matrix as a vector.
> +    ///
> +    /// Matrix must be square.
> +    Vector diagonalize() const {
> +      assert(rows == cols && "Attempt to diagonalize non-square matrix.");
> +
> +      Vector v(rows);
> +      for (unsigned r = 0; r < rows; ++r)
> +        v[r] = (*this)[r][r];
> +      return v;
> +    } 
> +
> +    /// \brief Add the given matrix to this one.
> +    Matrix& operator+=(const Matrix &m) {
> +      assert(rows == m.rows && cols == m.cols &&
> +          "Matrix dimensions mismatch.");
> +      std::transform(data, data + (rows * cols), m.data, data,
> +          std::plus<PBQPNum>());
> +      return *this;
> +    }
> +
> +    /// \brief Returns the minimum of the given row
> +    PBQPNum getRowMin(unsigned r) const {
> +      assert(r < rows && "Row out of bounds");
> +      return *std::min_element(data + (r * cols), data + ((r + 1) * cols));
> +    }
> +
> +    /// \brief Returns the minimum of the given column
> +    PBQPNum getColMin(unsigned c) const {
> +      PBQPNum minElem = (*this)[0][c];
> +      for (unsigned r = 1; r < rows; ++r)
> +        if ((*this)[r][c] < minElem) minElem = (*this)[r][c];
> +      return minElem;
> +    }
> +
> +    /// \brief Subtracts the given scalar from the elements of the given row.
> +    Matrix& subFromRow(unsigned r, PBQPNum val) {
> +      assert(r < rows && "Row out of bounds");
> +      std::transform(data + (r * cols), data + ((r + 1) * cols),
> +          data + (r * cols),
> +          std::bind2nd(std::minus<PBQPNum>(), val));
> +      return *this;
> +    }
> +
> +    /// \brief Subtracts the given scalar from the elements of the given column.
> +    Matrix& subFromCol(unsigned c, PBQPNum val) {
> +      for (unsigned r = 0; r < rows; ++r)
> +        (*this)[r][c] -= val;
> +      return *this;
> +    }
> +
> +    /// \brief Returns true if this is a zero matrix.
> +    bool isZero() const {
> +      return find_if(data, data + (rows * cols),
> +          std::bind2nd(std::not_equal_to<PBQPNum>(), 0)) ==
> +        data + (rows * cols);
> +    }
> +
> +  private:
> +    unsigned rows, cols;
> +    PBQPNum *data;
> +};
> +
> +/// \brief Output a textual representation of the given matrix on the given
> +///        output stream.
> +template <typename OStream>
> +OStream& operator<<(OStream &os, const Matrix &m) {
> +
> +  assert((m.getRows() != 0) && "Zero-row matrix badness.");
> +
> +  for (unsigned i = 0; i < m.getRows(); ++i) {
> +    os << m.getRowAsVector(i);
> +  }
> +
> +  return os;
> +}
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_PBQPMATH_HPP
>
> Added: llvm/trunk/lib/CodeGen/PBQP/SimpleGraph.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/SimpleGraph.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/SimpleGraph.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/SimpleGraph.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,86 @@
> +#ifndef LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
> +#define LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
> +
> +#include "GraphBase.h"
> +
> +namespace PBQP {
> +
> +class SimpleEdge;
> +
> +class SimpleNode : public NodeBase<SimpleNode, SimpleEdge> {
> +public:
> +  SimpleNode(const Vector &costs) :
> +    NodeBase<SimpleNode, SimpleEdge>(costs) {}
> +};
> +
> +class SimpleEdge : public EdgeBase<SimpleNode, SimpleEdge> {
> +public:
> +  SimpleEdge(const NodeIterator &node1Itr, const NodeIterator &node2Itr,
> +             const Matrix &costs) :
> +    EdgeBase<SimpleNode, SimpleEdge>(node1Itr, node2Itr, costs) {}
> +};
> +
> +class SimpleGraph : public GraphBase<SimpleNode, SimpleEdge> {
> +private:
> +
> +  typedef GraphBase<SimpleNode, SimpleEdge> PGraph;
> +
> +  void copyFrom(const SimpleGraph &other) {
> +    assert(other.areNodeIDsValid() &&
> +           "Cannot copy from another graph unless IDs have been assigned.");
> +   
> +    std::vector<NodeIterator> newNodeItrs(other.getNumNodes());
> +
> +    for (ConstNodeIterator nItr = other.nodesBegin(), nEnd = other.nodesEnd();
> +         nItr != nEnd; ++nItr) {
> +      newNodeItrs[other.getNodeID(nItr)] = addNode(other.getNodeCosts(nItr));
> +    }
> +
> +    for (ConstEdgeIterator eItr = other.edgesBegin(), eEnd = other.edgesEnd();
> +         eItr != eEnd; ++eItr) {
> +
> +      unsigned node1ID = other.getNodeID(other.getEdgeNode1Itr(eItr)),
> +               node2ID = other.getNodeID(other.getEdgeNode2Itr(eItr));
> +
> +      addEdge(newNodeItrs[node1ID], newNodeItrs[node2ID],
> +              other.getEdgeCosts(eItr));
> +    }
> +  }
> +
> +  void copyFrom(SimpleGraph &other) {
> +    if (!other.areNodeIDsValid()) {
> +      other.assignNodeIDs();
> +    }
> +    copyFrom(const_cast<const SimpleGraph&>(other));
> +  }
> +
> +public:
> +
> +  SimpleGraph() {}
> +
> +
> +  SimpleGraph(const SimpleGraph &other) : PGraph() {
> +    copyFrom(other);
> +  }
> +
> +  SimpleGraph& operator=(const SimpleGraph &other) {
> +    clear();
> +    copyFrom(other);
> +    return *this;
> +  }
> +
> +  NodeIterator addNode(const Vector &costs) {
> +    return PGraph::addConstructedNode(SimpleNode(costs));
> +  }
> +
> +  EdgeIterator addEdge(const NodeIterator &node1Itr,
> +                       const NodeIterator &node2Itr,
> +                       const Matrix &costs) {
> +    return PGraph::addConstructedEdge(SimpleEdge(node1Itr, node2Itr, costs));
> +  }
> +
> +};
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_SIMPLEGRAPH_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/Solution.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/Solution.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/Solution.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/Solution.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,74 @@
> +#ifndef LLVM_CODEGEN_PBQP_SOLUTION_H
> +#define LLVM_CODEGEN_PBQP_SOLUTION_H
> +
> +#include "PBQPMath.h"
> +
> +namespace PBQP {
> +
> +class Solution {
> +
> +  friend class SolverImplementation;
> +
> +private:
> +
> +  std::vector<unsigned> selections;
> +  PBQPNum solutionCost;
> +  bool provedOptimal;
> +  unsigned r0Reductions, r1Reductions,
> +           r2Reductions, rNReductions;
> +
> +public:
> +
> +  Solution() :
> +    solutionCost(0.0), provedOptimal(false),
> +    r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
> +
> +  Solution(unsigned length, bool assumeOptimal) :
> +    selections(length), solutionCost(0.0), provedOptimal(assumeOptimal),
> +    r0Reductions(0), r1Reductions(0), r2Reductions(0), rNReductions(0) {}
> +
> +  void setProvedOptimal(bool provedOptimal) {
> +    this->provedOptimal = provedOptimal;
> +  }
> +
> +  void setSelection(unsigned nodeID, unsigned selection) {
> +    selections[nodeID] = selection;
> +  }
> +
> +  void setSolutionCost(PBQPNum solutionCost) {
> +    this->solutionCost = solutionCost;
> +  }
> +
> +  void incR0Reductions() { ++r0Reductions; }
> +  void incR1Reductions() { ++r1Reductions; }
> +  void incR2Reductions() { ++r2Reductions; }
> +  void incRNReductions() { ++rNReductions; }
> +
> +  unsigned numNodes() const { return selections.size(); }
> +
> +  unsigned getSelection(unsigned nodeID) const {
> +    return selections[nodeID];
> +  }
> +
> +  PBQPNum getCost() const { return solutionCost; }
> +
> +  bool isProvedOptimal() const { return provedOptimal; }
> +
> +  unsigned getR0Reductions() const { return r0Reductions; }
> +  unsigned getR1Reductions() const { return r1Reductions; }
> +  unsigned getR2Reductions() const { return r2Reductions; }
> +  unsigned getRNReductions() const { return rNReductions; }
> +
> +  bool operator==(const Solution &other) const {
> +    return (selections == other.selections);
> +  }
> +
> +  bool operator!=(const Solution &other) const {
> +    return !(*this == other);
> +  }
> +
> +};
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_SOLUTION_H
>
> Added: llvm/trunk/lib/CodeGen/PBQP/Solver.h
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/PBQP/Solver.h?rev=78354&view=auto
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/PBQP/Solver.h (added)
> +++ llvm/trunk/lib/CodeGen/PBQP/Solver.h Thu Aug  6 18:32:48 2009
> @@ -0,0 +1,21 @@
> +#ifndef LLVM_CODEGEN_PBQP_SOLVER_H
> +#define LLVM_CODEGEN_PBQP_SOLVER_H
> +
> +#include "SimpleGraph.h"
> +#include "Solution.h"
> +
> +namespace PBQP {
> +
> +/// \brief Interface for solver classes.
> +class Solver {
> +public:
> +
> +  virtual ~Solver() = 0;
> +  virtual Solution solve(const SimpleGraph &orig) const = 0;
> +};
> +
> +Solver::~Solver() {}
> +
> +}
> +
> +#endif // LLVM_CODEGEN_PBQP_SOLVER_H
>
> Modified: llvm/trunk/lib/CodeGen/RegAllocPBQP.cpp
> URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/RegAllocPBQP.cpp?rev=78354&r1=78353&r2=78354&view=diff
>
> ==============================================================================
> --- llvm/trunk/lib/CodeGen/RegAllocPBQP.cpp (original)
> +++ llvm/trunk/lib/CodeGen/RegAllocPBQP.cpp Thu Aug  6 18:32:48 2009
> @@ -31,7 +31,9 @@
>  
>  #define DEBUG_TYPE "regalloc"
>  
> -#include "PBQP.h"
> +#include "PBQP/HeuristicSolver.h"
> +#include "PBQP/SimpleGraph.h"
> +#include "PBQP/Heuristics/Briggs.h"
>  #include "VirtRegMap.h"
>  #include "VirtRegRewriter.h"
>  #include "llvm/CodeGen/LiveIntervalAnalysis.h"
> @@ -54,42 +56,41 @@
>  using namespace llvm;
>  
>  static RegisterRegAlloc
> -registerPBQPRepAlloc("pbqp", "PBQP register allocator",
> -                     createPBQPRegisterAllocator);
> +registerPBQPRepAlloc("pbqp", "PBQP register allocator.",
> +                      llvm::createPBQPRegisterAllocator);
>  
>  namespace {
>  
> -  //!
> -  //! PBQP based allocators solve the register allocation problem by mapping
> -  //! register allocation problems to Partitioned Boolean Quadratic
> -  //! Programming problems.
> +  ///
> +  /// PBQP based allocators solve the register allocation problem by mapping
> +  /// register allocation problems to Partitioned Boolean Quadratic
> +  /// Programming problems.
>    class VISIBILITY_HIDDEN PBQPRegAlloc : public MachineFunctionPass {
>    public:
>  
>      static char ID;
> -
> -    //! Construct a PBQP register allocator.
> +    
> +    /// Construct a PBQP register allocator.
>      PBQPRegAlloc() : MachineFunctionPass((intptr_t)&ID) {}
>  
> -    //! Return the pass name.
> +    /// Return the pass name.
>      virtual const char* getPassName() const throw() {
>        return "PBQP Register Allocator";
>      }
>  
> -    //! PBQP analysis usage.
> -    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
> -      AU.setPreservesCFG();
> -      AU.addRequired<LiveIntervals>();
> -      AU.addRequiredTransitive<RegisterCoalescer>();
> -      AU.addRequired<LiveStacks>();
> -      AU.addPreserved<LiveStacks>();
> -      AU.addRequired<MachineLoopInfo>();
> -      AU.addPreserved<MachineLoopInfo>();
> -      AU.addRequired<VirtRegMap>();
> -      MachineFunctionPass::getAnalysisUsage(AU);
> +    /// PBQP analysis usage.
> +    virtual void getAnalysisUsage(AnalysisUsage &au) const {
> +      au.addRequired<LiveIntervals>();
> +      //au.addRequiredID(SplitCriticalEdgesID);
> +      au.addRequired<LiveStacks>();
> +      au.addPreserved<LiveStacks>();
> +      au.addRequired<MachineLoopInfo>();
> +      au.addPreserved<MachineLoopInfo>();
> +      au.addRequired<VirtRegMap>();
> +      MachineFunctionPass::getAnalysisUsage(au);
>      }
>  
> -    //! Perform register allocation
> +    /// Perform register allocation
>      virtual bool runOnMachineFunction(MachineFunction &MF);
>  
>    private:
> @@ -99,7 +100,7 @@
>      typedef std::vector<AllowedSet> AllowedSetMap;
>      typedef std::set<unsigned> RegSet;
>      typedef std::pair<unsigned, unsigned> RegPair;
> -    typedef std::map<RegPair, PBQPNum> CoalesceMap;
> +    typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
>  
>      typedef std::set<LiveInterval*> LiveIntervalSet;
>  
> @@ -121,60 +122,60 @@
>                      emptyVRegIntervals;
>  
>  
> -    //! Builds a PBQP cost vector.
> +    /// Builds a PBQP cost vector.
>      template <typename RegContainer>
> -    PBQPVector* buildCostVector(unsigned vReg,
> -                                const RegContainer &allowed,
> -                                const CoalesceMap &cealesces,
> -                                PBQPNum spillCost) const;
> -
> -    //! \brief Builds a PBQP interference matrix.
> -    //!
> -    //! @return Either a pointer to a non-zero PBQP matrix representing the
> -    //!         allocation option costs, or a null pointer for a zero matrix.
> -    //!
> -    //! Expects allowed sets for two interfering LiveIntervals. These allowed
> -    //! sets should contain only allocable registers from the LiveInterval's
> -    //! register class, with any interfering pre-colored registers removed.
> +    PBQP::Vector buildCostVector(unsigned vReg,
> +                                 const RegContainer &allowed,
> +                                 const CoalesceMap &cealesces,
> +                                 PBQP::PBQPNum spillCost) const;
> +
> +    /// \brief Builds a PBQP interference matrix.
> +    ///
> +    /// @return Either a pointer to a non-zero PBQP matrix representing the
> +    ///         allocation option costs, or a null pointer for a zero matrix.
> +    ///
> +    /// Expects allowed sets for two interfering LiveIntervals. These allowed
> +    /// sets should contain only allocable registers from the LiveInterval's
> +    /// register class, with any interfering pre-colored registers removed.
>      template <typename RegContainer>
> -    PBQPMatrix* buildInterferenceMatrix(const RegContainer &allowed1,
> -                                        const RegContainer &allowed2) const;
> +    PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
> +                                          const RegContainer &allowed2) const;
>  
> -    //!
> -    //! Expects allowed sets for two potentially coalescable LiveIntervals,
> -    //! and an estimated benefit due to coalescing. The allowed sets should
> -    //! contain only allocable registers from the LiveInterval's register
> -    //! classes, with any interfering pre-colored registers removed.
> +    ///
> +    /// Expects allowed sets for two potentially coalescable LiveIntervals,
> +    /// and an estimated benefit due to coalescing. The allowed sets should
> +    /// contain only allocable registers from the LiveInterval's register
> +    /// classes, with any interfering pre-colored registers removed.
>      template <typename RegContainer>
> -    PBQPMatrix* buildCoalescingMatrix(const RegContainer &allowed1,
> -                                      const RegContainer &allowed2,
> -                                      PBQPNum cBenefit) const;
> -
> -    //! \brief Finds coalescing opportunities and returns them as a map.
> -    //!
> -    //! Any entries in the map are guaranteed coalescable, even if their
> -    //! corresponding live intervals overlap.
> +    PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
> +                                        const RegContainer &allowed2,
> +                                        PBQP::PBQPNum cBenefit) const;
> +
> +    /// \brief Finds coalescing opportunities and returns them as a map.
> +    ///
> +    /// Any entries in the map are guaranteed coalescable, even if their
> +    /// corresponding live intervals overlap.
>      CoalesceMap findCoalesces();
>  
> -    //! \brief Finds the initial set of vreg intervals to allocate.
> +    /// \brief Finds the initial set of vreg intervals to allocate.
>      void findVRegIntervalsToAlloc();
>  
> -    //! \brief Constructs a PBQP problem representation of the register
> -    //! allocation problem for this function.
> -    //!
> -    //! @return a PBQP solver object for the register allocation problem.
> -    pbqp* constructPBQPProblem();
> +    /// \brief Constructs a PBQP problem representation of the register
> +    /// allocation problem for this function.
> +    ///
> +    /// @return a PBQP solver object for the register allocation problem.
> +    PBQP::SimpleGraph constructPBQPProblem();
>  
> -    //! \brief Adds a stack interval if the given live interval has been
> -    //! spilled. Used to support stack slot coloring.
> +    /// \brief Adds a stack interval if the given live interval has been
> +    /// spilled. Used to support stack slot coloring.
>      void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
>  
> -    //! \brief Given a solved PBQP problem maps this solution back to a register
> -    //! assignment.
> -    bool mapPBQPToRegAlloc(pbqp *problem);
> +    /// \brief Given a solved PBQP problem maps this solution back to a register
> +    /// assignment.
> +    bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
>  
> -    //! \brief Postprocessing before final spilling. Sets basic block "live in"
> -    //! variables.
> +    /// \brief Postprocessing before final spilling. Sets basic block "live in"
> +    /// variables.
>      void finalizeAlloc() const;
>  
>    };
> @@ -184,17 +185,17 @@
>  
>  
>  template <typename RegContainer>
> -PBQPVector* PBQPRegAlloc::buildCostVector(unsigned vReg,
> -                                          const RegContainer &allowed,
> -                                          const CoalesceMap &coalesces,
> -                                          PBQPNum spillCost) const {
> +PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
> +                                           const RegContainer &allowed,
> +                                           const CoalesceMap &coalesces,
> +                                           PBQP::PBQPNum spillCost) const {
>  
>    typedef typename RegContainer::const_iterator AllowedItr;
>  
>    // Allocate vector. Additional element (0th) used for spill option
> -  PBQPVector *v = new PBQPVector(allowed.size() + 1);
> +  PBQP::Vector v(allowed.size() + 1, 0);
>  
> -  (*v)[0] = spillCost;
> +  v[0] = spillCost;
>  
>    // Iterate over the allowed registers inserting coalesce benefits if there
>    // are any.
> @@ -212,14 +213,14 @@
>        continue;
>  
>      // We have a coalesce - insert the benefit.
> -    (*v)[ai + 1] = -cmItr->second;
> +    v[ai + 1] = -cmItr->second;
>    }
>  
>    return v;
>  }
>  
>  template <typename RegContainer>
> -PBQPMatrix* PBQPRegAlloc::buildInterferenceMatrix(
> +PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
>        const RegContainer &allowed1, const RegContainer &allowed2) const {
>  
>    typedef typename RegContainer::const_iterator RegContainerIterator;
> @@ -232,7 +233,8 @@
>    // that the spill option (element 0,0) has zero cost, since we can allocate
>    // both intervals to memory safely (the cost for each individual allocation
>    // to memory is accounted for by the cost vectors for each live interval).
> -  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
> +  PBQP::Matrix *m =
> +    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
>  
>    // Assume this is a zero matrix until proven otherwise.  Zero matrices occur
>    // between interfering live ranges with non-overlapping register sets (e.g.
> @@ -262,7 +264,7 @@
>  
>        // If the row/column regs are identical or alias insert an infinity.
>        if ((reg1 == reg2) || tri->areAliases(reg1, reg2)) {
> -        (*m)[ri][ci] = std::numeric_limits<PBQPNum>::infinity();
> +        (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
>          isZeroMatrix = false;
>        }
>  
> @@ -284,9 +286,9 @@
>  }
>  
>  template <typename RegContainer>
> -PBQPMatrix* PBQPRegAlloc::buildCoalescingMatrix(
> +PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
>        const RegContainer &allowed1, const RegContainer &allowed2,
> -      PBQPNum cBenefit) const {
> +      PBQP::PBQPNum cBenefit) const {
>  
>    typedef typename RegContainer::const_iterator RegContainerIterator;
>  
> @@ -295,7 +297,8 @@
>    // for the LiveIntervals which are (potentially) to be coalesced. The amount
>    // -cBenefit will be placed in any element representing the same register
>    // for both intervals.
> -  PBQPMatrix *m = new PBQPMatrix(allowed1.size() + 1, allowed2.size() + 1);
> +  PBQP::Matrix *m =
> +    new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
>  
>    // Reset costs to zero.
>    m->reset(0);
> @@ -497,10 +500,11 @@
>    }
>  }
>  
> -pbqp* PBQPRegAlloc::constructPBQPProblem() {
> +PBQP::SimpleGraph PBQPRegAlloc::constructPBQPProblem() {
>  
>    typedef std::vector<const LiveInterval*> LIVector;
>    typedef std::vector<unsigned> RegVector;
> +  typedef std::vector<PBQP::SimpleGraph::NodeIterator> NodeVector;
>  
>    // This will store the physical intervals for easy reference.
>    LIVector physIntervals;
> @@ -532,10 +536,11 @@
>    }
>  
>    // Get the set of potential coalesces.
> -  CoalesceMap coalesces(findCoalesces());
> +  CoalesceMap coalesces;//(findCoalesces());
>  
>    // Construct a PBQP solver for this problem
> -  pbqp *solver = alloc_pbqp(vregIntervalsToAlloc.size());
> +  PBQP::SimpleGraph problem;
> +  NodeVector problemNodes(vregIntervalsToAlloc.size());
>  
>    // Resize allowedSets container appropriately.
>    allowedSets.resize(vregIntervalsToAlloc.size());
> @@ -596,13 +601,13 @@
>  
>      // Set the spill cost to the interval weight, or epsilon if the
>      // interval weight is zero
> -    PBQPNum spillCost = (li->weight != 0.0) ?
> -        li->weight : std::numeric_limits<PBQPNum>::min();
> +    PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
> +        li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
>  
>      // Build a cost vector for this interval.
> -    add_pbqp_nodecosts(solver, node,
> -                       buildCostVector(li->reg, allowedSets[node], coalesces,
> -                                       spillCost));
> +    problemNodes[node] =
> +      problem.addNode(
> +        buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
>  
>    }
>  
> @@ -618,7 +623,7 @@
>        CoalesceMap::const_iterator cmItr =
>          coalesces.find(RegPair(li->reg, li2->reg));
>  
> -      PBQPMatrix *m = 0;
> +      PBQP::Matrix *m = 0;
>  
>        if (cmItr != coalesces.end()) {
>          m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
> @@ -629,14 +634,29 @@
>        }
>  
>        if (m != 0) {
> -        add_pbqp_edgecosts(solver, node1, node2, m);
> +        problem.addEdge(problemNodes[node1],
> +                        problemNodes[node2],
> +                        *m);
> +
>          delete m;
>        }
>      }
>    }
>  
> +  problem.assignNodeIDs();
> +
> +  assert(problem.getNumNodes() == allowedSets.size());
> +  for (unsigned i = 0; i < allowedSets.size(); ++i) {
> +    assert(problem.getNodeItr(i) == problemNodes[i]);
> +  }
> +/*
> +  std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
> +            << problem.getNumEdges() << " edges.\n";
> +
> +  problem.printDot(std::cerr);
> +*/
>    // We're done, PBQP problem constructed - return it.
> -  return solver;
> +  return problem;
>  }
>  
>  void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
> @@ -659,7 +679,9 @@
>    stackInterval.MergeRangesInAsValue(rhsInterval, vni);
>  }
>  
> -bool PBQPRegAlloc::mapPBQPToRegAlloc(pbqp *problem) {
> +bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
> +
> +  static unsigned round = 0;
>  
>    // Set to true if we have any spills
>    bool anotherRoundNeeded = false;
> @@ -667,10 +689,56 @@
>    // Clear the existing allocation.
>    vrm->clearAllVirt();
>  
> +  CoalesceMap coalesces;//(findCoalesces());
> +
> +  for (unsigned i = 0; i < node2LI.size(); ++i) {
> +    if (solution.getSelection(i) == 0) {
> +      continue;
> +    }
> +
> +    unsigned iSel = solution.getSelection(i);
> +    unsigned iAlloc = allowedSets[i][iSel - 1];
> +
> +    for (unsigned j = i + 1; j < node2LI.size(); ++j) {
> +
> +      if (solution.getSelection(j) == 0) {
> +        continue;
> +      }
> +
> +      unsigned jSel = solution.getSelection(j);
> +      unsigned jAlloc = allowedSets[j][jSel - 1];
> +       
> +      if ((iAlloc != jAlloc) && !tri->areAliases(iAlloc, jAlloc)) {
> +        continue;
> +      }
> +
> +      if (node2LI[i]->overlaps(*node2LI[j])) {
> +        if (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) == coalesces.end()) {
> +          DEBUG(errs() <<  "In round " << ++round << ":\n"
> +               << "Bogusness in " << mf->getFunction()->getName() << "!\n"
> +               << "Live interval " << i << " (reg" << node2LI[i]->reg << ") and\n"
> +               << "Live interval " << j << " (reg" << node2LI[j]->reg << ")\n"
> +               << "  were allocated registers " << iAlloc << " (index " << iSel << ") and "
> +               << jAlloc << "(index " << jSel 
> +               << ") respectively in a graph of " << solution.numNodes() << " nodes.\n"
> +               << "li[i]->empty() = " << node2LI[i]->empty() << "\n"
> +               << "li[j]->empty() = " << node2LI[j]->empty() << "\n"
> +               << "li[i]->overlaps(li[j]) = " << node2LI[i]->overlaps(*node2LI[j]) << "\n"
> +                << "coalesce = " << (coalesces.find(RegPair(node2LI[i]->reg, node2LI[j]->reg)) != coalesces.end()) << "\n");
> +             
> +          DEBUG(errs() << "solution.getCost() = " << solution.getCost() << "\n");
> +          exit(1);
> +        }
> +      }
> +    }
> +  }
> +
> +
>    // Iterate over the nodes mapping the PBQP solution to a register assignment.
>    for (unsigned node = 0; node < node2LI.size(); ++node) {
>      unsigned virtReg = node2LI[node]->reg,
> -             allocSelection = get_pbqp_solution(problem, node);
> +             allocSelection = solution.getSelection(node);
> +
>  
>      // If the PBQP solution is non-zero it's a physical register...
>      if (allocSelection != 0) {
> @@ -731,11 +799,12 @@
>  
>    // First allocate registers for the empty intervals.
>    for (LiveIntervalSet::const_iterator
> -         itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
> +	 itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
>           itr != end; ++itr) {
>      LiveInterval *li = *itr;
>  
>      unsigned physReg = vrm->getRegAllocPref(li->reg);
> +
>      if (physReg == 0) {
>        const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
>        physReg = *liRC->allocation_order_begin(*mf);
> @@ -766,8 +835,8 @@
>        continue;
>      }
>  
> -    // Ignore unallocated vregs:
>      if (reg == 0) {
> +      // Filter out zero regs - they're for intervals that were spilled.
>        continue;
>      }
>  
> @@ -806,8 +875,7 @@
>  
>    vrm = &getAnalysis<VirtRegMap>();
>  
> -  DEBUG(errs() << "PBQP Register Allocating for " 
> -        << mf->getFunction()->getName() << "\n");
> +  DEBUG(errs() << "PBQP2 Register Allocating for " << mf->getFunction()->getName() << "\n");
>  
>    // Allocator main loop:
>    //
> @@ -832,15 +900,19 @@
>      unsigned round = 0;
>  
>      while (!pbqpAllocComplete) {
> -      DOUT << "  PBQP Regalloc round " << round << ":\n";
> -
> -      pbqp *problem = constructPBQPProblem();
> +      DEBUG(errs() << "  PBQP Regalloc round " << round << ":\n");
>  
> -      solve_pbqp(problem);
> -
> -      pbqpAllocComplete = mapPBQPToRegAlloc(problem);
> -
> -      free_pbqp(problem);
> +      PBQP::SimpleGraph problem = constructPBQPProblem();
> +      PBQP::HeuristicSolver<PBQP::Heuristics::Briggs> solver;
> +      problem.assignNodeIDs();
> +      PBQP::Solution solution = solver.solve(problem);
> +/*
> +      std::cerr << "Solution:\n";
> +      for (unsigned i = 0; i < solution.numNodes(); ++i) {
> +        std::cerr << "  " << i << " -> " << solution.getSelection(i) << "\n";
> +      }
> +*/
> +      pbqpAllocComplete = mapPBQPToRegAlloc(solution);
>  
>        ++round;
>      }
> @@ -855,7 +927,7 @@
>    node2LI.clear();
>    allowedSets.clear();
>  
> -  DOUT << "Post alloc VirtRegMap:\n" << *vrm << "\n";
> +  DEBUG(errs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
>  
>    // Run rewriter
>    std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
>
>
> _______________________________________________
> llvm-commits mailing list
> llvm-commits at cs.uiuc.edu
> http://lists.cs.uiuc.edu/mailman/listinfo/llvm-commits
>   

-------------- next part --------------
An embedded and charset-unspecified text was scrubbed...
Name: strtol.ll
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20090810/8b5f701e/attachment.ksh>


More information about the llvm-commits mailing list