[llvm-commits] [llvm] r75252 - in /llvm/trunk: include/llvm/Analysis/ScalarEvolution.h include/llvm/Analysis/ScalarEvolutionExpressions.h lib/Analysis/ScalarEvolution.cpp test/Transforms/IndVarSimplify/iv-sext.ll

Dan Gohman gohman at apple.com
Fri Jul 10 09:42:52 PDT 2009


Author: djg
Date: Fri Jul 10 11:42:52 2009
New Revision: 75252

URL: http://llvm.org/viewvc/llvm-project?rev=75252&view=rev
Log:
Generalize ScalarEvolution's cast-folding code to support more kinds
of loops. Add several new functions to for working with ScalarEvolution's
add-hoc value-range analysis functionality.

Added:
    llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
Modified:
    llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
    llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
    llvm/trunk/lib/Analysis/ScalarEvolution.cpp

Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolution.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolution.h?rev=75252&r1=75251&r2=75252&view=diff

==============================================================================
--- llvm/trunk/include/llvm/Analysis/ScalarEvolution.h (original)
+++ llvm/trunk/include/llvm/Analysis/ScalarEvolution.h Fri Jul 10 11:42:52 2009
@@ -26,6 +26,7 @@
 #include "llvm/Support/DataTypes.h"
 #include "llvm/Support/ValueHandle.h"
 #include "llvm/Support/Allocator.h"
+#include "llvm/Support/ConstantRange.h"
 #include "llvm/ADT/FoldingSet.h"
 #include "llvm/ADT/DenseMap.h"
 #include <iosfwd>
@@ -333,12 +334,20 @@
     /// found.
     BasicBlock* getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
 
-    /// isNecessaryCond - Test whether the given CondValue value is a condition
-    /// which is at least as strict as the one described by Pred, LHS, and RHS.
+    /// isNecessaryCond - Test whether the condition described by Pred, LHS,
+    /// and RHS is a necessary condition for the given Cond value to evaluate
+    /// to true.
     bool isNecessaryCond(Value *Cond, ICmpInst::Predicate Pred,
                          const SCEV *LHS, const SCEV *RHS,
                          bool Inverse);
 
+    /// isNecessaryCondOperands - Test whether the condition described by Pred,
+    /// LHS, and RHS is a necessary condition for the condition described by
+    /// Pred, FoundLHS, and FoundRHS to evaluate to true.
+    bool isNecessaryCondOperands(ICmpInst::Predicate Pred,
+                                 const SCEV *LHS, const SCEV *RHS,
+                                 const SCEV *FoundLHS, const SCEV *FoundRHS);
+
     /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
     /// in the header of its containing loop, we know the loop executes a
     /// constant number of times, and the PHI node is just a recurrence
@@ -506,10 +515,16 @@
 
     /// isLoopGuardedByCond - Test whether entry to the loop is protected by
     /// a conditional between LHS and RHS.  This is used to help avoid max
-    /// expressions in loop trip counts.
+    /// expressions in loop trip counts, and to eliminate casts.
     bool isLoopGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
                              const SCEV *LHS, const SCEV *RHS);
 
+    /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
+    /// protected by a conditional between LHS and RHS.  This is used to
+    /// to eliminate casts.
+    bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
+                                     const SCEV *LHS, const SCEV *RHS);
+
     /// getBackedgeTakenCount - If the specified loop has a predictable
     /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
     /// object. The backedge-taken count is the number of times the loop header
@@ -545,13 +560,42 @@
     /// bitwidth of S.
     uint32_t GetMinTrailingZeros(const SCEV *S);
 
-    /// GetMinLeadingZeros - Determine the minimum number of zero bits that S is
-    /// guaranteed to begin with (at every loop iteration).
-    uint32_t GetMinLeadingZeros(const SCEV *S);
-
-    /// GetMinSignBits - Determine the minimum number of sign bits that S is
-    /// guaranteed to begin with.
-    uint32_t GetMinSignBits(const SCEV *S);
+    /// getUnsignedRange - Determine the unsigned range for a particular SCEV.
+    ///
+    ConstantRange getUnsignedRange(const SCEV *S);
+
+    /// getSignedRange - Determine the signed range for a particular SCEV.
+    ///
+    ConstantRange getSignedRange(const SCEV *S);
+
+    /// isKnownNegative - Test if the given expression is known to be negative.
+    ///
+    bool isKnownNegative(const SCEV *S);
+
+    /// isKnownPositive - Test if the given expression is known to be positive.
+    ///
+    bool isKnownPositive(const SCEV *S);
+
+    /// isKnownNonNegative - Test if the given expression is known to be
+    /// non-negative.
+    ///
+    bool isKnownNonNegative(const SCEV *S);
+
+    /// isKnownNonPositive - Test if the given expression is known to be
+    /// non-positive.
+    ///
+    bool isKnownNonPositive(const SCEV *S);
+
+    /// isKnownNonZero - Test if the given expression is known to be
+    /// non-zero.
+    ///
+    bool isKnownNonZero(const SCEV *S);
+
+    /// isKnownNonZero - Test if the given expression is known to satisfy
+    /// the condition described by Pred, LHS, and RHS.
+    ///
+    bool isKnownPredicate(ICmpInst::Predicate Pred,
+                          const SCEV *LHS, const SCEV *RHS);
 
     virtual bool runOnFunction(Function &F);
     virtual void releaseMemory();

Modified: llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h?rev=75252&r1=75251&r2=75252&view=diff

==============================================================================
--- llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h (original)
+++ llvm/trunk/include/llvm/Analysis/ScalarEvolutionExpressions.h Fri Jul 10 11:42:52 2009
@@ -453,6 +453,12 @@
                                                  const SCEV *Conc,
                                                  ScalarEvolution &SE) const;
 
+    /// getPostIncExpr - Return an expression representing the value of
+    /// this expression one iteration of the loop ahead.
+    const SCEV *getPostIncExpr(ScalarEvolution &SE) const {
+      return SE.getAddExpr(this, getStepRecurrence(SE));
+    }
+
     virtual void print(raw_ostream &OS) const;
 
     /// Methods for support type inquiry through isa, cast, and dyn_cast:

Modified: llvm/trunk/lib/Analysis/ScalarEvolution.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Analysis/ScalarEvolution.cpp?rev=75252&r1=75251&r2=75252&view=diff

==============================================================================
--- llvm/trunk/lib/Analysis/ScalarEvolution.cpp (original)
+++ llvm/trunk/lib/Analysis/ScalarEvolution.cpp Fri Jul 10 11:42:52 2009
@@ -811,6 +811,11 @@
   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
     if (AR->isAffine()) {
+      const SCEV *Start = AR->getStart();
+      const SCEV *Step = AR->getStepRecurrence(*this);
+      unsigned BitWidth = getTypeSizeInBits(AR->getType());
+      const Loop *L = AR->getLoop();
+
       // Check whether the backedge-taken count is SCEVCouldNotCompute.
       // Note that this serves two purposes: It filters out loops that are
       // simply not analyzable, and it covers the case where this code is
@@ -819,12 +824,10 @@
       // in infinite recursion. In the later case, the analysis code will
       // cope with a conservative value, and it will take care to purge
       // that value once it has finished.
-      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
         // Manually compute the final value for AR, checking for
         // overflow.
-        const SCEV *Start = AR->getStart();
-        const SCEV *Step = AR->getStepRecurrence(*this);
 
         // Check whether the backedge-taken count can be losslessly casted to
         // the addrec's type. The count is always unsigned.
@@ -833,8 +836,7 @@
         const SCEV *RecastedMaxBECount =
           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
         if (MaxBECount == RecastedMaxBECount) {
-          const Type *WideTy =
-            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
+          const Type *WideTy = IntegerType::get(BitWidth * 2);
           // Check whether Start+Step*MaxBECount has no unsigned overflow.
           const SCEV *ZMul =
             getMulExpr(CastedMaxBECount,
@@ -848,7 +850,7 @@
             // Return the expression with the addrec on the outside.
             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
                                  getZeroExtendExpr(Step, Ty),
-                                 AR->getLoop());
+                                 L);
 
           // Similar to above, only this time treat the step value as signed.
           // This covers loops that count down.
@@ -864,7 +866,35 @@
             // Return the expression with the addrec on the outside.
             return getAddRecExpr(getZeroExtendExpr(Start, Ty),
                                  getSignExtendExpr(Step, Ty),
-                                 AR->getLoop());
+                                 L);
+        }
+
+        // If the backedge is guarded by a comparison with the pre-inc value
+        // the addrec is safe. Also, if the entry is guarded by a comparison
+        // with the start value and the backedge is guarded by a comparison
+        // with the post-inc value, the addrec is safe.
+        if (isKnownPositive(Step)) {
+          const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
+                                      getUnsignedRange(Step).getUnsignedMax());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getZeroExtendExpr(Step, Ty),
+                                 L);
+        } else if (isKnownNegative(Step)) {
+          const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMin());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) &&
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) ||
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getZeroExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
         }
       }
     }
@@ -907,6 +937,11 @@
   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
     if (AR->isAffine()) {
+      const SCEV *Start = AR->getStart();
+      const SCEV *Step = AR->getStepRecurrence(*this);
+      unsigned BitWidth = getTypeSizeInBits(AR->getType());
+      const Loop *L = AR->getLoop();
+
       // Check whether the backedge-taken count is SCEVCouldNotCompute.
       // Note that this serves two purposes: It filters out loops that are
       // simply not analyzable, and it covers the case where this code is
@@ -915,12 +950,10 @@
       // in infinite recursion. In the later case, the analysis code will
       // cope with a conservative value, and it will take care to purge
       // that value once it has finished.
-      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AR->getLoop());
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
         // Manually compute the final value for AR, checking for
         // overflow.
-        const SCEV *Start = AR->getStart();
-        const SCEV *Step = AR->getStepRecurrence(*this);
 
         // Check whether the backedge-taken count can be losslessly casted to
         // the addrec's type. The count is always unsigned.
@@ -929,8 +962,7 @@
         const SCEV *RecastedMaxBECount =
           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
         if (MaxBECount == RecastedMaxBECount) {
-          const Type *WideTy =
-            IntegerType::get(getTypeSizeInBits(Start->getType()) * 2);
+          const Type *WideTy = IntegerType::get(BitWidth * 2);
           // Check whether Start+Step*MaxBECount has no signed overflow.
           const SCEV *SMul =
             getMulExpr(CastedMaxBECount,
@@ -944,7 +976,35 @@
             // Return the expression with the addrec on the outside.
             return getAddRecExpr(getSignExtendExpr(Start, Ty),
                                  getSignExtendExpr(Step, Ty),
-                                 AR->getLoop());
+                                 L);
+        }
+
+        // If the backedge is guarded by a comparison with the pre-inc value
+        // the addrec is safe. Also, if the entry is guarded by a comparison
+        // with the start value and the backedge is guarded by a comparison
+        // with the post-inc value, the addrec is safe.
+        if (isKnownPositive(Step)) {
+          const SCEV *N = getConstant(APInt::getSignedMinValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMax());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_SLT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SLT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
+        } else if (isKnownNegative(Step)) {
+          const SCEV *N = getConstant(APInt::getSignedMaxValue(BitWidth) -
+                                      getSignedRange(Step).getSignedMin());
+          if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT, AR, N) ||
+              (isLoopGuardedByCond(L, ICmpInst::ICMP_SGT, Start, N) &&
+               isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_SGT,
+                                           AR->getPostIncExpr(*this), N)))
+            // Return the expression with the addrec on the outside.
+            return getAddRecExpr(getSignExtendExpr(Start, Ty),
+                                 getSignExtendExpr(Step, Ty),
+                                 L);
         }
       }
     }
@@ -2391,19 +2451,16 @@
       const StructLayout &SL = *TD->getStructLayout(STy);
       unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
       uint64_t Offset = SL.getElementOffset(FieldNo);
-      TotalOffset = getAddExpr(TotalOffset,
-                                  getIntegerSCEV(Offset, IntPtrTy));
+      TotalOffset = getAddExpr(TotalOffset, getIntegerSCEV(Offset, IntPtrTy));
     } else {
       // For an array, add the element offset, explicitly scaled.
       const SCEV *LocalOffset = getSCEV(Index);
       if (!isa<PointerType>(LocalOffset->getType()))
         // Getelementptr indicies are signed.
-        LocalOffset = getTruncateOrSignExtend(LocalOffset,
-                                              IntPtrTy);
+        LocalOffset = getTruncateOrSignExtend(LocalOffset, IntPtrTy);
       LocalOffset =
         getMulExpr(LocalOffset,
-                   getIntegerSCEV(TD->getTypeAllocSize(*GTI),
-                                  IntPtrTy));
+                   getIntegerSCEV(TD->getTypeAllocSize(*GTI), IntPtrTy));
       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
     }
   }
@@ -2491,18 +2548,95 @@
   return 0;
 }
 
-uint32_t
-ScalarEvolution::GetMinLeadingZeros(const SCEV *S) {
-  // TODO: Handle other SCEV expression types here.
+/// getUnsignedRange - Determine the unsigned range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getUnsignedRange(const SCEV *S) {
 
   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
-    return C->getValue()->getValue().countLeadingZeros();
+    return ConstantRange(C->getValue()->getValue());
+
+  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Add->getOperand(0));
+    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+      X = X.add(getUnsignedRange(Add->getOperand(i)));
+    return X;
+  }
+
+  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Mul->getOperand(0));
+    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+      X = X.multiply(getUnsignedRange(Mul->getOperand(i)));
+    return X;
+  }
+
+  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+    ConstantRange X = getUnsignedRange(SMax->getOperand(0));
+    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+      X = X.smax(getUnsignedRange(SMax->getOperand(i)));
+    return X;
+  }
+
+  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+    ConstantRange X = getUnsignedRange(UMax->getOperand(0));
+    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+      X = X.umax(getUnsignedRange(UMax->getOperand(i)));
+    return X;
+  }
 
-  if (const SCEVZeroExtendExpr *C = dyn_cast<SCEVZeroExtendExpr>(S)) {
-    // A zero-extension cast adds zero bits.
-    return GetMinLeadingZeros(C->getOperand()) +
-           (getTypeSizeInBits(C->getType()) -
-            getTypeSizeInBits(C->getOperand()->getType()));
+  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+    ConstantRange X = getUnsignedRange(UDiv->getLHS());
+    ConstantRange Y = getUnsignedRange(UDiv->getRHS());
+    return X.udiv(Y);
+  }
+
+  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+    ConstantRange X = getUnsignedRange(ZExt->getOperand());
+    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+  }
+
+  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+    ConstantRange X = getUnsignedRange(SExt->getOperand());
+    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+  }
+
+  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+    ConstantRange X = getUnsignedRange(Trunc->getOperand());
+    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+  }
+
+  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
+
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
+    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
+    if (!Trip) return FullSet;
+
+    // TODO: non-affine addrec
+    if (AddRec->isAffine()) {
+      const Type *Ty = AddRec->getType();
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+        const SCEV *Start = AddRec->getStart();
+        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+        // Check for overflow.
+        if (!isKnownPredicate(ICmpInst::ICMP_ULE, Start, End))
+          return FullSet;
+
+        ConstantRange StartRange = getUnsignedRange(Start);
+        ConstantRange EndRange = getUnsignedRange(End);
+        APInt Min = APIntOps::umin(StartRange.getUnsignedMin(),
+                                   EndRange.getUnsignedMin());
+        APInt Max = APIntOps::umax(StartRange.getUnsignedMax(),
+                                   EndRange.getUnsignedMax());
+        if (Min.isMinValue() && Max.isMaxValue())
+          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
+        return ConstantRange(Min, Max+1);
+      }
+    }
   }
 
   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
@@ -2511,67 +2645,119 @@
     APInt Mask = APInt::getAllOnesValue(BitWidth);
     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
     ComputeMaskedBits(U->getValue(), Mask, Zeros, Ones, TD);
-    return Zeros.countLeadingOnes();
+    return ConstantRange(Ones, ~Zeros);
   }
 
-  return 1;
+  return FullSet;
 }
 
-uint32_t
-ScalarEvolution::GetMinSignBits(const SCEV *S) {
-  // TODO: Handle other SCEV expression types here.
+/// getSignedRange - Determine the signed range for a particular SCEV.
+///
+ConstantRange
+ScalarEvolution::getSignedRange(const SCEV *S) {
+
+  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
+    return ConstantRange(C->getValue()->getValue());
 
-  if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
-    const APInt &A = C->getValue()->getValue();
-    return A.isNegative() ? A.countLeadingOnes() :
-                            A.countLeadingZeros();
+  if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
+    ConstantRange X = getSignedRange(Add->getOperand(0));
+    for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
+      X = X.add(getSignedRange(Add->getOperand(i)));
+    return X;
   }
 
-  if (const SCEVSignExtendExpr *C = dyn_cast<SCEVSignExtendExpr>(S)) {
-    // A sign-extension cast adds sign bits.
-    return GetMinSignBits(C->getOperand()) +
-           (getTypeSizeInBits(C->getType()) -
-            getTypeSizeInBits(C->getOperand()->getType()));
+  if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
+    ConstantRange X = getSignedRange(Mul->getOperand(0));
+    for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
+      X = X.multiply(getSignedRange(Mul->getOperand(i)));
+    return X;
   }
 
-  if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
-    unsigned BitWidth = getTypeSizeInBits(A->getType());
+  if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
+    ConstantRange X = getSignedRange(SMax->getOperand(0));
+    for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
+      X = X.smax(getSignedRange(SMax->getOperand(i)));
+    return X;
+  }
+
+  if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
+    ConstantRange X = getSignedRange(UMax->getOperand(0));
+    for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
+      X = X.umax(getSignedRange(UMax->getOperand(i)));
+    return X;
+  }
+
+  if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
+    ConstantRange X = getSignedRange(UDiv->getLHS());
+    ConstantRange Y = getSignedRange(UDiv->getRHS());
+    return X.udiv(Y);
+  }
+
+  if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
+    ConstantRange X = getSignedRange(ZExt->getOperand());
+    return X.zeroExtend(cast<IntegerType>(ZExt->getType())->getBitWidth());
+  }
 
-    // Special case decrementing a value (ADD X, -1):
-    if (const SCEVConstant *CRHS = dyn_cast<SCEVConstant>(A->getOperand(0)))
-      if (CRHS->isAllOnesValue()) {
-        SmallVector<const SCEV *, 4> OtherOps(A->op_begin() + 1, A->op_end());
-        const SCEV *OtherOpsAdd = getAddExpr(OtherOps);
-        unsigned LZ = GetMinLeadingZeros(OtherOpsAdd);
-
-        // If the input is known to be 0 or 1, the output is 0/-1, which is all
-        // sign bits set.
-        if (LZ == BitWidth - 1)
-          return BitWidth;
-
-        // If we are subtracting one from a positive number, there is no carry
-        // out of the result.
-        if (LZ > 0)
-          return GetMinSignBits(OtherOpsAdd);
-      }
-
-    // Add can have at most one carry bit.  Thus we know that the output
-    // is, at worst, one more bit than the inputs.
-    unsigned Min = BitWidth;
-    for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
-      unsigned N = GetMinSignBits(A->getOperand(i));
-      Min = std::min(Min, N) - 1;
-      if (Min == 0) return 1;
+  if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
+    ConstantRange X = getSignedRange(SExt->getOperand());
+    return X.signExtend(cast<IntegerType>(SExt->getType())->getBitWidth());
+  }
+
+  if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
+    ConstantRange X = getSignedRange(Trunc->getOperand());
+    return X.truncate(cast<IntegerType>(Trunc->getType())->getBitWidth());
+  }
+
+  ConstantRange FullSet(getTypeSizeInBits(S->getType()), true);
+
+  if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
+    const SCEV *T = getBackedgeTakenCount(AddRec->getLoop());
+    const SCEVConstant *Trip = dyn_cast<SCEVConstant>(T);
+    if (!Trip) return FullSet;
+
+    // TODO: non-affine addrec
+    if (AddRec->isAffine()) {
+      const Type *Ty = AddRec->getType();
+      const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
+      if (getTypeSizeInBits(MaxBECount->getType()) <= getTypeSizeInBits(Ty)) {
+        MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty);
+
+        const SCEV *Start = AddRec->getStart();
+        const SCEV *Step = AddRec->getStepRecurrence(*this);
+        const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
+
+        // Check for overflow.
+        if (!(isKnownPositive(Step) &&
+              isKnownPredicate(ICmpInst::ICMP_SLT, Start, End)) &&
+            !(isKnownNegative(Step) &&
+              isKnownPredicate(ICmpInst::ICMP_SGT, Start, End)))
+          return FullSet;
+
+        ConstantRange StartRange = getSignedRange(Start);
+        ConstantRange EndRange = getSignedRange(End);
+        APInt Min = APIntOps::smin(StartRange.getSignedMin(),
+                                   EndRange.getSignedMin());
+        APInt Max = APIntOps::smax(StartRange.getSignedMax(),
+                                   EndRange.getSignedMax());
+        if (Min.isMinSignedValue() && Max.isMaxSignedValue())
+          return ConstantRange(Min.getBitWidth(), /*isFullSet=*/true);
+        return ConstantRange(Min, Max+1);
+      }
     }
-    return 1;
   }
 
   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
     // For a SCEVUnknown, ask ValueTracking.
-    return ComputeNumSignBits(U->getValue(), TD);
+    unsigned BitWidth = getTypeSizeInBits(U->getType());
+    unsigned NS = ComputeNumSignBits(U->getValue(), TD);
+    if (NS == 1)
+      return FullSet;
+    return
+      ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
+                    APInt::getSignedMaxValue(BitWidth).ashr(NS - 1)+1);
   }
 
-  return 1;
+  return FullSet;
 }
 
 /// createSCEV - We know that there is no SCEV for the specified value.
@@ -3651,7 +3837,7 @@
             if (!isSCEVable(Op->getType()))
               return V;
 
-            const SCEV *OpV = getSCEVAtScope(getSCEV(Op), L);
+            const SCEV* OpV = getSCEVAtScope(Op, L);
             if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(OpV)) {
               Constant *C = SC->getValue();
               if (C->getType() != Op->getType())
@@ -4052,12 +4238,176 @@
   return false;
 }
 
-/// isLoopGuardedByCond - Test whether entry to the loop is protected by
-/// a conditional between LHS and RHS.  This is used to help avoid max
-/// expressions in loop trip counts.
-bool ScalarEvolution::isLoopGuardedByCond(const Loop *L,
-                                          ICmpInst::Predicate Pred,
-                                          const SCEV *LHS, const SCEV *RHS) {
+bool ScalarEvolution::isKnownNegative(const SCEV *S) {
+  return getSignedRange(S).getSignedMax().isNegative();
+}
+
+bool ScalarEvolution::isKnownPositive(const SCEV *S) {
+  return getSignedRange(S).getSignedMin().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
+  return !getSignedRange(S).getSignedMin().isNegative();
+}
+
+bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
+  return !getSignedRange(S).getSignedMax().isStrictlyPositive();
+}
+
+bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
+  return isKnownNegative(S) || isKnownPositive(S);
+}
+
+bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
+                                       const SCEV *LHS, const SCEV *RHS) {
+
+  if (HasSameValue(LHS, RHS))
+    return ICmpInst::isTrueWhenEqual(Pred);
+
+  switch (Pred) {
+  default:
+    assert(0 && "Unexpected ICmpInst::Predicate value!");
+    break;
+  case ICmpInst::ICMP_SGT:
+    Pred = ICmpInst::ICMP_SLT;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_SLT: {
+    ConstantRange LHSRange = getSignedRange(LHS);
+    ConstantRange RHSRange = getSignedRange(RHS);
+    if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin()))
+      return true;
+    if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax()))
+      return false;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    ConstantRange DiffRange = getUnsignedRange(Diff);
+    if (isKnownNegative(Diff)) {
+      if (DiffRange.getUnsignedMax().ult(LHSRange.getUnsignedMin()))
+        return true;
+      if (DiffRange.getUnsignedMin().uge(LHSRange.getUnsignedMax()))
+        return false;
+    } else if (isKnownPositive(Diff)) {
+      if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
+        return true;
+      if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
+        return false;
+    }
+    break;
+  }
+  case ICmpInst::ICMP_SGE:
+    Pred = ICmpInst::ICMP_SLE;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_SLE: {
+    ConstantRange LHSRange = getSignedRange(LHS);
+    ConstantRange RHSRange = getSignedRange(RHS);
+    if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin()))
+      return true;
+    if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax()))
+      return false;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    ConstantRange DiffRange = getUnsignedRange(Diff);
+    if (isKnownNonPositive(Diff)) {
+      if (DiffRange.getUnsignedMax().ule(LHSRange.getUnsignedMin()))
+        return true;
+      if (DiffRange.getUnsignedMin().ugt(LHSRange.getUnsignedMax()))
+        return false;
+    } else if (isKnownNonNegative(Diff)) {
+      if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
+        return true;
+      if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
+        return false;
+    }
+    break;
+  }
+  case ICmpInst::ICMP_UGT:
+    Pred = ICmpInst::ICMP_ULT;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_ULT: {
+    ConstantRange LHSRange = getUnsignedRange(LHS);
+    ConstantRange RHSRange = getUnsignedRange(RHS);
+    if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax()))
+      return false;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    ConstantRange DiffRange = getUnsignedRange(Diff);
+    if (LHSRange.getUnsignedMax().ult(DiffRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().uge(DiffRange.getUnsignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_UGE:
+    Pred = ICmpInst::ICMP_ULE;
+    std::swap(LHS, RHS);
+  case ICmpInst::ICMP_ULE: {
+    ConstantRange LHSRange = getUnsignedRange(LHS);
+    ConstantRange RHSRange = getUnsignedRange(RHS);
+    if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax()))
+      return false;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    ConstantRange DiffRange = getUnsignedRange(Diff);
+    if (LHSRange.getUnsignedMax().ule(DiffRange.getUnsignedMin()))
+      return true;
+    if (LHSRange.getUnsignedMin().ugt(DiffRange.getUnsignedMax()))
+      return false;
+    break;
+  }
+  case ICmpInst::ICMP_NE: {
+    if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet())
+      return true;
+    if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet())
+      return true;
+
+    const SCEV *Diff = getMinusSCEV(LHS, RHS);
+    if (isKnownNonZero(Diff))
+      return true;
+    break;
+  }
+  case ICmpInst::ICMP_EQ:
+    break;
+  }
+  return false;
+}
+
+/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
+/// protected by a conditional between LHS and RHS.  This is used to
+/// to eliminate casts.
+bool
+ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
+                                             ICmpInst::Predicate Pred,
+                                             const SCEV *LHS, const SCEV *RHS) {
+  // Interpret a null as meaning no loop, where there is obviously no guard
+  // (interprocedural conditions notwithstanding).
+  if (!L) return true;
+
+  BasicBlock *Latch = L->getLoopLatch();
+  if (!Latch)
+    return false;
+
+  BranchInst *LoopContinuePredicate =
+    dyn_cast<BranchInst>(Latch->getTerminator());
+  if (!LoopContinuePredicate ||
+      LoopContinuePredicate->isUnconditional())
+    return false;
+
+  return
+    isNecessaryCond(LoopContinuePredicate->getCondition(), Pred, LHS, RHS,
+                    LoopContinuePredicate->getSuccessor(0) != L->getHeader());
+}
+
+/// isLoopGuardedByCond - Test whether entry to the loop is protected
+/// by a conditional between LHS and RHS.  This is used to help avoid max
+/// expressions in loop trip counts, and to eliminate casts.
+bool
+ScalarEvolution::isLoopGuardedByCond(const Loop *L,
+                                     ICmpInst::Predicate Pred,
+                                     const SCEV *LHS, const SCEV *RHS) {
   // Interpret a null as meaning no loop, where there is obviously no guard
   // (interprocedural conditions notwithstanding).
   if (!L) return false;
@@ -4086,8 +4436,9 @@
   return false;
 }
 
-/// isNecessaryCond - Test whether the given CondValue value is a condition
-/// which is at least as strict as the one described by Pred, LHS, and RHS.
+/// isNecessaryCond - Test whether the condition described by Pred, LHS,
+/// and RHS is a necessary condition for the given Cond value to evaluate
+/// to true.
 bool ScalarEvolution::isNecessaryCond(Value *CondValue,
                                       ICmpInst::Predicate Pred,
                                       const SCEV *LHS, const SCEV *RHS,
@@ -4112,30 +4463,35 @@
   // see if it is the comparison we are looking for.
   Value *PreCondLHS = ICI->getOperand(0);
   Value *PreCondRHS = ICI->getOperand(1);
-  ICmpInst::Predicate Cond;
+  ICmpInst::Predicate FoundPred;
   if (Inverse)
-    Cond = ICI->getInversePredicate();
+    FoundPred = ICI->getInversePredicate();
   else
-    Cond = ICI->getPredicate();
+    FoundPred = ICI->getPredicate();
 
-  if (Cond == Pred)
+  if (FoundPred == Pred)
     ; // An exact match.
-  else if (!ICmpInst::isTrueWhenEqual(Cond) && Pred == ICmpInst::ICMP_NE)
-    ; // The actual condition is beyond sufficient.
-  else
+  else if (!ICmpInst::isTrueWhenEqual(FoundPred) && Pred == ICmpInst::ICMP_NE) {
+    // The actual condition is beyond sufficient.
+    FoundPred = ICmpInst::ICMP_NE;
+    // NE is symmetric but the original comparison may not be. Swap
+    // the operands if necessary so that they match below.
+    if (isa<SCEVConstant>(LHS))
+      std::swap(PreCondLHS, PreCondRHS);
+  } else
     // Check a few special cases.
-    switch (Cond) {
+    switch (FoundPred) {
     case ICmpInst::ICMP_UGT:
       if (Pred == ICmpInst::ICMP_ULT) {
         std::swap(PreCondLHS, PreCondRHS);
-        Cond = ICmpInst::ICMP_ULT;
+        FoundPred = ICmpInst::ICMP_ULT;
         break;
       }
       return false;
     case ICmpInst::ICMP_SGT:
       if (Pred == ICmpInst::ICMP_SLT) {
         std::swap(PreCondLHS, PreCondRHS);
-        Cond = ICmpInst::ICMP_SLT;
+        FoundPred = ICmpInst::ICMP_SLT;
         break;
       }
       return false;
@@ -4144,8 +4500,8 @@
       // so check for this case by checking if the NE is comparing against
       // a minimum or maximum constant.
       if (!ICmpInst::isTrueWhenEqual(Pred))
-        if (ConstantInt *CI = dyn_cast<ConstantInt>(PreCondRHS)) {
-          const APInt &A = CI->getValue();
+        if (const SCEVConstant *C = dyn_cast<SCEVConstant>(RHS)) {
+          const APInt &A = C->getValue()->getValue();
           switch (Pred) {
           case ICmpInst::ICMP_SLT:
             if (A.isMaxSignedValue()) break;
@@ -4162,7 +4518,7 @@
           default:
             return false;
           }
-          Cond = ICmpInst::ICMP_NE;
+          FoundPred = Pred;
           // NE is symmetric but the original comparison may not be. Swap
           // the operands if necessary so that they match below.
           if (isa<SCEVConstant>(LHS))
@@ -4175,14 +4531,70 @@
       return false;
     }
 
-  if (!PreCondLHS->getType()->isInteger()) return false;
+  assert(Pred == FoundPred && "Conditions were not reconciled!");
+
+  const SCEV *FoundLHS = getSCEV(PreCondLHS);
+  const SCEV *FoundRHS = getSCEV(PreCondRHS);
+
+  // Balance the types.
+  if (getTypeSizeInBits(LHS->getType()) >
+      getTypeSizeInBits(FoundLHS->getType())) {
+    if (CmpInst::isSigned(Pred)) {
+      FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
+      FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
+    } else {
+      FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
+      FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
+    }
+  } else if (getTypeSizeInBits(LHS->getType()) <
+             getTypeSizeInBits(FoundLHS->getType())) {
+    // TODO: Cast LHS and RHS to FoundLHS' type. Currently this can
+    // result in infinite recursion since the code to construct
+    // cast expressions may want to know things about the loop
+    // iteration in order to do simplifications.
+    return false;
+  }
+
+  return isNecessaryCondOperands(Pred, LHS, RHS,
+                                 FoundLHS, FoundRHS) ||
+         // ~x < ~y --> x > y
+         isNecessaryCondOperands(Pred, LHS, RHS,
+                                 getNotSCEV(FoundRHS), getNotSCEV(FoundLHS));
+}
+
+/// isNecessaryCondOperands - Test whether the condition described by Pred,
+/// LHS, and RHS is a necessary condition for the condition described by
+/// Pred, FoundLHS, and FoundRHS to evaluate to true.
+bool
+ScalarEvolution::isNecessaryCondOperands(ICmpInst::Predicate Pred,
+                                         const SCEV *LHS, const SCEV *RHS,
+                                         const SCEV *FoundLHS,
+                                         const SCEV *FoundRHS) {
+  switch (Pred) {
+  default: break;
+  case ICmpInst::ICMP_SLT:
+    if (isKnownPredicate(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_SGE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_SGT:
+    if (isKnownPredicate(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_SLE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_ULT:
+    if (isKnownPredicate(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_UGE, RHS, FoundRHS))
+      return true;
+    break;
+  case ICmpInst::ICMP_UGT:
+    if (isKnownPredicate(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
+        isKnownPredicate(ICmpInst::ICMP_ULE, RHS, FoundRHS))
+      return true;
+    break;
+  }
 
-  const SCEV *PreCondLHSSCEV = getSCEV(PreCondLHS);
-  const SCEV *PreCondRHSSCEV = getSCEV(PreCondRHS);
-  return (HasSameValue(LHS, PreCondLHSSCEV) &&
-          HasSameValue(RHS, PreCondRHSSCEV)) ||
-         (HasSameValue(LHS, getNotSCEV(PreCondRHSSCEV)) &&
-          HasSameValue(RHS, getNotSCEV(PreCondLHSSCEV)));
+  return false;
 }
 
 /// getBECount - Subtract the end and start values and divide by the step,
@@ -4267,9 +4679,9 @@
     const SCEV *Start = AddRec->getOperand(0);
 
     // Determine the minimum constant start value.
-    const SCEV *MinStart = isa<SCEVConstant>(Start) ? Start :
-      getConstant(isSigned ? APInt::getSignedMinValue(BitWidth) :
-                             APInt::getMinValue(BitWidth));
+    const SCEV *MinStart = getConstant(isSigned ?
+      getSignedRange(Start).getSignedMin() :
+      getUnsignedRange(Start).getUnsignedMin());
 
     // If we know that the condition is true in order to enter the loop,
     // then we know that it will run exactly (m-n)/s times. Otherwise, we
@@ -4277,18 +4689,16 @@
     // the division must round up.
     const SCEV *End = RHS;
     if (!isLoopGuardedByCond(L,
-                             isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
+                             isSigned ? ICmpInst::ICMP_SLT :
+                                        ICmpInst::ICMP_ULT,
                              getMinusSCEV(Start, Step), RHS))
       End = isSigned ? getSMaxExpr(RHS, Start)
                      : getUMaxExpr(RHS, Start);
 
     // Determine the maximum constant end value.
-    const SCEV *MaxEnd =
-      isa<SCEVConstant>(End) ? End :
-      getConstant(isSigned ? APInt::getSignedMaxValue(BitWidth)
-                               .ashr(GetMinSignBits(End) - 1) :
-                             APInt::getMaxValue(BitWidth)
-                               .lshr(GetMinLeadingZeros(End)));
+    const SCEV *MaxEnd = getConstant(isSigned ?
+      getSignedRange(End).getSignedMax() :
+      getUnsignedRange(End).getUnsignedMax());
 
     // Finally, we subtract these two values and divide, rounding up, to get
     // the number of times the backedge is executed.

Added: llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll?rev=75252&view=auto

==============================================================================
--- llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll (added)
+++ llvm/trunk/test/Transforms/IndVarSimplify/iv-sext.ll Fri Jul 10 11:42:52 2009
@@ -0,0 +1,143 @@
+; RUN: llvm-as < %s | opt -indvars | llvm-dis > %t
+; RUN: grep {= sext} %t | count 4
+; RUN: grep {phi i64} %t | count 2
+
+; Indvars should be able to promote the hiPart induction variable in the
+; inner loop to i64.
+; TODO: it should promote hiPart to i64 in the outer loop too.
+
+target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
+
+define void @t(float* %pTmp1, float* %peakWeight, float* %nrgReducePeakrate, i32 %bandEdgeIndex, float %tmp1) nounwind {
+entry:
+	%tmp = load float* %peakWeight, align 4		; <float> [#uses=1]
+	%tmp2 = icmp sgt i32 %bandEdgeIndex, 0		; <i1> [#uses=1]
+	br i1 %tmp2, label %bb.nph22, label %return
+
+bb.nph22:		; preds = %entry
+	%tmp3 = add i32 %bandEdgeIndex, -1		; <i32> [#uses=2]
+	br label %bb
+
+bb:		; preds = %bb8, %bb.nph22
+	%distERBhi.121 = phi float [ %distERBhi.2.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ]		; <float> [#uses=2]
+	%distERBlo.120 = phi float [ %distERBlo.0.lcssa, %bb8 ], [ 0.000000e+00, %bb.nph22 ]		; <float> [#uses=2]
+	%hiPart.119 = phi i32 [ %hiPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=3]
+	%loPart.118 = phi i32 [ %loPart.0.lcssa, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=2]
+	%peakCount.117 = phi float [ %peakCount.2.lcssa, %bb8 ], [ %tmp, %bb.nph22 ]		; <float> [#uses=2]
+	%part.016 = phi i32 [ %tmp46, %bb8 ], [ 0, %bb.nph22 ]		; <i32> [#uses=5]
+	%tmp4 = icmp sgt i32 %part.016, 0		; <i1> [#uses=1]
+	br i1 %tmp4, label %bb1, label %bb3.preheader
+
+bb1:		; preds = %bb
+	%tmp5 = add i32 %part.016, -1		; <i32> [#uses=1]
+	%tmp6 = sext i32 %tmp5 to i64		; <i64> [#uses=1]
+	%tmp7 = getelementptr float* %pTmp1, i64 %tmp6		; <float*> [#uses=1]
+	%tmp8 = load float* %tmp7, align 4		; <float> [#uses=1]
+	%tmp9 = fadd float %tmp8, %distERBlo.120		; <float> [#uses=1]
+	%tmp10 = add i32 %part.016, -1		; <i32> [#uses=1]
+	%tmp11 = sext i32 %tmp10 to i64		; <i64> [#uses=1]
+	%tmp12 = getelementptr float* %pTmp1, i64 %tmp11		; <float*> [#uses=1]
+	%tmp13 = load float* %tmp12, align 4		; <float> [#uses=1]
+	%tmp14 = fsub float %distERBhi.121, %tmp13		; <float> [#uses=1]
+	br label %bb3.preheader
+
+bb3.preheader:		; preds = %bb1, %bb
+	%distERBlo.0.ph = phi float [ %distERBlo.120, %bb ], [ %tmp9, %bb1 ]		; <float> [#uses=3]
+	%distERBhi.0.ph = phi float [ %distERBhi.121, %bb ], [ %tmp14, %bb1 ]		; <float> [#uses=3]
+	%tmp15 = fcmp ogt float %distERBlo.0.ph, 2.500000e+00		; <i1> [#uses=1]
+	br i1 %tmp15, label %bb.nph, label %bb5.preheader
+
+bb.nph:		; preds = %bb3.preheader
+	br label %bb2
+
+bb2:		; preds = %bb3, %bb.nph
+	%distERBlo.03 = phi float [ %tmp19, %bb3 ], [ %distERBlo.0.ph, %bb.nph ]		; <float> [#uses=1]
+	%loPart.02 = phi i32 [ %tmp24, %bb3 ], [ %loPart.118, %bb.nph ]		; <i32> [#uses=3]
+	%peakCount.01 = phi float [ %tmp23, %bb3 ], [ %peakCount.117, %bb.nph ]		; <float> [#uses=1]
+	%tmp16 = sext i32 %loPart.02 to i64		; <i64> [#uses=1]
+	%tmp17 = getelementptr float* %pTmp1, i64 %tmp16		; <float*> [#uses=1]
+	%tmp18 = load float* %tmp17, align 4		; <float> [#uses=1]
+	%tmp19 = fsub float %distERBlo.03, %tmp18		; <float> [#uses=3]
+	%tmp20 = sext i32 %loPart.02 to i64		; <i64> [#uses=1]
+	%tmp21 = getelementptr float* %peakWeight, i64 %tmp20		; <float*> [#uses=1]
+	%tmp22 = load float* %tmp21, align 4		; <float> [#uses=1]
+	%tmp23 = fsub float %peakCount.01, %tmp22		; <float> [#uses=2]
+	%tmp24 = add i32 %loPart.02, 1		; <i32> [#uses=2]
+	br label %bb3
+
+bb3:		; preds = %bb2
+	%tmp25 = fcmp ogt float %tmp19, 2.500000e+00		; <i1> [#uses=1]
+	br i1 %tmp25, label %bb2, label %bb3.bb5.preheader_crit_edge
+
+bb3.bb5.preheader_crit_edge:		; preds = %bb3
+	%tmp24.lcssa = phi i32 [ %tmp24, %bb3 ]		; <i32> [#uses=1]
+	%tmp23.lcssa = phi float [ %tmp23, %bb3 ]		; <float> [#uses=1]
+	%tmp19.lcssa = phi float [ %tmp19, %bb3 ]		; <float> [#uses=1]
+	br label %bb5.preheader
+
+bb5.preheader:		; preds = %bb3.bb5.preheader_crit_edge, %bb3.preheader
+	%distERBlo.0.lcssa = phi float [ %tmp19.lcssa, %bb3.bb5.preheader_crit_edge ], [ %distERBlo.0.ph, %bb3.preheader ]		; <float> [#uses=2]
+	%loPart.0.lcssa = phi i32 [ %tmp24.lcssa, %bb3.bb5.preheader_crit_edge ], [ %loPart.118, %bb3.preheader ]		; <i32> [#uses=1]
+	%peakCount.0.lcssa = phi float [ %tmp23.lcssa, %bb3.bb5.preheader_crit_edge ], [ %peakCount.117, %bb3.preheader ]		; <float> [#uses=2]
+	%.not10 = fcmp olt float %distERBhi.0.ph, 2.500000e+00		; <i1> [#uses=1]
+	%tmp26 = icmp sgt i32 %tmp3, %hiPart.119		; <i1> [#uses=1]
+	%or.cond11 = and i1 %tmp26, %.not10		; <i1> [#uses=1]
+	br i1 %or.cond11, label %bb.nph12, label %bb7
+
+bb.nph12:		; preds = %bb5.preheader
+	br label %bb4
+
+bb4:		; preds = %bb5, %bb.nph12
+	%distERBhi.29 = phi float [ %tmp30, %bb5 ], [ %distERBhi.0.ph, %bb.nph12 ]		; <float> [#uses=1]
+	%hiPart.08 = phi i32 [ %tmp31, %bb5 ], [ %hiPart.119, %bb.nph12 ]		; <i32> [#uses=2]
+	%peakCount.27 = phi float [ %tmp35, %bb5 ], [ %peakCount.0.lcssa, %bb.nph12 ]		; <float> [#uses=1]
+	%tmp27 = sext i32 %hiPart.08 to i64		; <i64> [#uses=1]
+	%tmp28 = getelementptr float* %pTmp1, i64 %tmp27		; <float*> [#uses=1]
+	%tmp29 = load float* %tmp28, align 4		; <float> [#uses=1]
+	%tmp30 = fadd float %tmp29, %distERBhi.29		; <float> [#uses=3]
+	%tmp31 = add i32 %hiPart.08, 1		; <i32> [#uses=4]
+	%tmp32 = sext i32 %tmp31 to i64		; <i64> [#uses=1]
+	%tmp33 = getelementptr float* %peakWeight, i64 %tmp32		; <float*> [#uses=1]
+	%tmp34 = load float* %tmp33, align 4		; <float> [#uses=1]
+	%tmp35 = fadd float %tmp34, %peakCount.27		; <float> [#uses=2]
+	br label %bb5
+
+bb5:		; preds = %bb4
+	%.not = fcmp olt float %tmp30, 2.500000e+00		; <i1> [#uses=1]
+	%tmp36 = icmp sgt i32 %tmp3, %tmp31		; <i1> [#uses=1]
+	%or.cond = and i1 %tmp36, %.not		; <i1> [#uses=1]
+	br i1 %or.cond, label %bb4, label %bb5.bb7_crit_edge
+
+bb5.bb7_crit_edge:		; preds = %bb5
+	%tmp35.lcssa = phi float [ %tmp35, %bb5 ]		; <float> [#uses=1]
+	%tmp31.lcssa = phi i32 [ %tmp31, %bb5 ]		; <i32> [#uses=1]
+	%tmp30.lcssa = phi float [ %tmp30, %bb5 ]		; <float> [#uses=1]
+	br label %bb7
+
+bb7:		; preds = %bb5.bb7_crit_edge, %bb5.preheader
+	%distERBhi.2.lcssa = phi float [ %tmp30.lcssa, %bb5.bb7_crit_edge ], [ %distERBhi.0.ph, %bb5.preheader ]		; <float> [#uses=2]
+	%hiPart.0.lcssa = phi i32 [ %tmp31.lcssa, %bb5.bb7_crit_edge ], [ %hiPart.119, %bb5.preheader ]		; <i32> [#uses=1]
+	%peakCount.2.lcssa = phi float [ %tmp35.lcssa, %bb5.bb7_crit_edge ], [ %peakCount.0.lcssa, %bb5.preheader ]		; <float> [#uses=2]
+	%tmp37 = fadd float %distERBlo.0.lcssa, %distERBhi.2.lcssa		; <float> [#uses=1]
+	%tmp38 = fdiv float %peakCount.2.lcssa, %tmp37		; <float> [#uses=1]
+	%tmp39 = fmul float %tmp38, %tmp1		; <float> [#uses=2]
+	%tmp40 = fmul float %tmp39, %tmp39		; <float> [#uses=2]
+	%tmp41 = fmul float %tmp40, %tmp40		; <float> [#uses=1]
+	%tmp42 = fadd float %tmp41, 1.000000e+00		; <float> [#uses=1]
+	%tmp43 = fdiv float 1.000000e+00, %tmp42		; <float> [#uses=1]
+	%tmp44 = sext i32 %part.016 to i64		; <i64> [#uses=1]
+	%tmp45 = getelementptr float* %nrgReducePeakrate, i64 %tmp44		; <float*> [#uses=1]
+	store float %tmp43, float* %tmp45, align 4
+	%tmp46 = add i32 %part.016, 1		; <i32> [#uses=2]
+	br label %bb8
+
+bb8:		; preds = %bb7
+	%tmp47 = icmp slt i32 %tmp46, %bandEdgeIndex		; <i1> [#uses=1]
+	br i1 %tmp47, label %bb, label %bb8.return_crit_edge
+
+bb8.return_crit_edge:		; preds = %bb8
+	br label %return
+
+return:		; preds = %bb8.return_crit_edge, %entry
+	ret void
+}





More information about the llvm-commits mailing list