[llvm-commits] [llvm] r63790 - in /llvm/branches/release_25: lib/Transforms/Scalar/ScalarReplAggregates.cpp test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll test/Transforms/ScalarRepl/bitfield-sroa.ll test/Transforms/ScalarRepl/memset-aggregate.ll test/Transforms/ScalarRepl/vector_promote.ll

Tanya Lattner tonic at nondot.org
Wed Feb 4 15:12:25 PST 2009


Author: tbrethou
Date: Wed Feb  4 17:12:25 2009
New Revision: 63790

URL: http://llvm.org/viewvc/llvm-project?rev=63790&view=rev
Log:
SROA CBE Fix.

Modified:
    llvm/branches/release_25/lib/Transforms/Scalar/ScalarReplAggregates.cpp
    llvm/branches/release_25/test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll
    llvm/branches/release_25/test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll
    llvm/branches/release_25/test/Transforms/ScalarRepl/bitfield-sroa.ll
    llvm/branches/release_25/test/Transforms/ScalarRepl/memset-aggregate.ll
    llvm/branches/release_25/test/Transforms/ScalarRepl/vector_promote.ll

Modified: llvm/branches/release_25/lib/Transforms/Scalar/ScalarReplAggregates.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/lib/Transforms/Scalar/ScalarReplAggregates.cpp?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/lib/Transforms/Scalar/ScalarReplAggregates.cpp (original)
+++ llvm/branches/release_25/lib/Transforms/Scalar/ScalarReplAggregates.cpp Wed Feb  4 17:12:25 2009
@@ -125,13 +125,13 @@
     void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocationInst *AI,
                                       SmallVector<AllocaInst*, 32> &NewElts);
     
-    bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
-                            uint64_t Offset, unsigned AllocaSize);
-    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
+    const Type *CanConvertToScalar(Value *V, bool &IsNotTrivial);
+    void ConvertToScalar(AllocationInst *AI, const Type *Ty);
+    void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset);
     Value *ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, 
-                                     uint64_t Offset);
-    Value *ConvertUsesOfStoreToScalar(Value *StoredVal, AllocaInst *NewAI, 
-                                      uint64_t Offset, Instruction *InsertPt);
+                                     unsigned Offset);
+    Value *ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, 
+                                      unsigned Offset);
     static Instruction *isOnlyCopiedFromConstantGlobal(AllocationInst *AI);
   };
 }
@@ -223,38 +223,17 @@
       AI->eraseFromParent();
       continue;
     }
-
-    // If this alloca is impossible for us to promote, reject it early.
-    if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
-      continue;
-    
-    // Check to see if this allocation is only modified by a memcpy/memmove from
-    // a constant global.  If this is the case, we can change all users to use
-    // the constant global instead.  This is commonly produced by the CFE by
-    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
-    // is only subsequently read.
-    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
-      DOUT << "Found alloca equal to global: " << *AI;
-      DOUT << "  memcpy = " << *TheCopy;
-      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
-      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
-      TheCopy->eraseFromParent();  // Don't mutate the global.
-      AI->eraseFromParent();
-      ++NumGlobals;
-      Changed = true;
-      continue;
-    }
     
     // Check to see if we can perform the core SROA transformation.  We cannot
     // transform the allocation instruction if it is an array allocation
     // (allocations OF arrays are ok though), and an allocation of a scalar
     // value cannot be decomposed at all.
-    uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
-        
-    if ((isa<StructType>(AI->getAllocatedType()) ||
+    if (!AI->isArrayAllocation() &&
+        (isa<StructType>(AI->getAllocatedType()) ||
          isa<ArrayType>(AI->getAllocatedType())) &&
-        // Do not promote any struct whose size is too big.
-        AllocaSize < SRThreshold &&
+        AI->getAllocatedType()->isSized() &&
+        // Do not promote any struct whose size is larger than "128" bytes.
+        TD->getTypePaddedSize(AI->getAllocatedType()) < SRThreshold &&
         // Do not promote any struct into more than "32" separate vars.
         getNumSAElements(AI->getAllocatedType()) < SRThreshold/4) {
       // Check that all of the users of the allocation are capable of being
@@ -272,40 +251,35 @@
         continue;
       }
     }
+    
+    // Check to see if this allocation is only modified by a memcpy/memmove from
+    // a constant global.  If this is the case, we can change all users to use
+    // the constant global instead.  This is commonly produced by the CFE by
+    // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
+    // is only subsequently read.
+    if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
+      DOUT << "Found alloca equal to global: " << *AI;
+      DOUT << "  memcpy = " << *TheCopy;
+      Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
+      AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
+      TheCopy->eraseFromParent();  // Don't mutate the global.
+      AI->eraseFromParent();
+      ++NumGlobals;
+      Changed = true;
+      continue;
+    }
 
     // If we can turn this aggregate value (potentially with casts) into a
     // simple scalar value that can be mem2reg'd into a register value.
-    // IsNotTrivial tracks whether this is something that mem2reg could have
-    // promoted itself.  If so, we don't want to transform it needlessly.  Note
-    // that we can't just check based on the type: the alloca may be of an i32
-    // but that has pointer arithmetic to set byte 3 of it or something.
     bool IsNotTrivial = false;
-    const Type *VectorTy = 0;
-    if (CanConvertToScalar(AI, IsNotTrivial, VectorTy,
-                           0, unsigned(AllocaSize)) && IsNotTrivial) {
-      AllocaInst *NewAI;
-      if (VectorTy && isa<VectorType>(VectorTy)) {
-        DOUT << "CONVERT TO VECTOR: " << *AI << "  TYPE = " << *VectorTy <<"\n";
-        
-        // Create and insert the vector alloca.
-        NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
-        ConvertUsesToScalar(AI, NewAI, 0);
-      } else {
-        DOUT << "CONVERT TO SCALAR INTEGER: " << *AI << "\n";
-        
-        // Create and insert the integer alloca.
-        const Type *NewTy = IntegerType::get(AllocaSize*8);
-        NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
-        ConvertUsesToScalar(AI, NewAI, 0);
+    if (const Type *ActualType = CanConvertToScalar(AI, IsNotTrivial))
+      if (IsNotTrivial && ActualType != Type::VoidTy) {
+        ConvertToScalar(AI, ActualType);
+        Changed = true;
+        continue;
       }
-      NewAI->takeName(AI);
-      AI->eraseFromParent();
-      ++NumConverted;
-      Changed = true;
-      continue;
-    }
     
-    // Otherwise, couldn't process this alloca.
+    // Otherwise, couldn't process this.
   }
 
   return Changed;
@@ -1171,126 +1145,229 @@
   }
 }
 
-/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
-/// the offset specified by Offset (which is specified in bytes).
+/// MergeInType - Add the 'In' type to the accumulated type so far.  If the
+/// types are incompatible, return true, otherwise update Accum and return
+/// false.
 ///
-/// There are two cases we handle here:
-///   1) A union of vector types of the same size and potentially its elements.
+/// There are three cases we handle here:
+///   1) An effectively-integer union, where the pieces are stored into as
+///      smaller integers (common with byte swap and other idioms).
+///   2) A union of vector types of the same size and potentially its elements.
 ///      Here we turn element accesses into insert/extract element operations.
-///      This promotes a <4 x float> with a store of float to the third element
-///      into a <4 x float> that uses insert element.
-///   2) A fully general blob of memory, which we turn into some (potentially
-///      large) integer type with extract and insert operations where the loads
-///      and stores would mutate the memory.
-static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
-                        unsigned AllocaSize, const TargetData &TD) {
-  // If this could be contributing to a vector, analyze it.
-  if (VecTy != Type::VoidTy) { // either null or a vector type.
-
-    // If the In type is a vector that is the same size as the alloca, see if it
-    // matches the existing VecTy.
-    if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
-      if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
-        // If we're storing/loading a vector of the right size, allow it as a
-        // vector.  If this the first vector we see, remember the type so that
-        // we know the element size.
-        if (VecTy == 0)
-          VecTy = VInTy;
-        return;
-      }
-    } else if (In == Type::FloatTy || In == Type::DoubleTy ||
-               (isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
-                isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
-      // If we're accessing something that could be an element of a vector, see
-      // if the implied vector agrees with what we already have and if Offset is
-      // compatible with it.
-      unsigned EltSize = In->getPrimitiveSizeInBits()/8;
-      if (Offset % EltSize == 0 &&
-          AllocaSize % EltSize == 0 &&
-          (VecTy == 0 || 
-           cast<VectorType>(VecTy)->getElementType()
-                 ->getPrimitiveSizeInBits()/8 == EltSize)) {
-        if (VecTy == 0)
-          VecTy = VectorType::get(In, AllocaSize/EltSize);
-        return;
-      }
+///   3) A union of scalar types, such as int/float or int/pointer.  Here we
+///      merge together into integers, allowing the xform to work with #1 as
+///      well.
+static bool MergeInType(const Type *In, const Type *&Accum,
+                        const TargetData &TD) {
+  // If this is our first type, just use it.
+  const VectorType *PTy;
+  if (Accum == Type::VoidTy || In == Accum) {
+    Accum = In;
+  } else if (In == Type::VoidTy) {
+    // Noop.
+  } else if (In->isInteger() && Accum->isInteger()) {   // integer union.
+    // Otherwise pick whichever type is larger.
+    if (cast<IntegerType>(In)->getBitWidth() > 
+        cast<IntegerType>(Accum)->getBitWidth())
+      Accum = In;
+  } else if (isa<PointerType>(In) && isa<PointerType>(Accum)) {
+    // Pointer unions just stay as one of the pointers.
+  } else if (isa<VectorType>(In) || isa<VectorType>(Accum)) {
+    if ((PTy = dyn_cast<VectorType>(Accum)) && 
+        PTy->getElementType() == In) {
+      // Accum is a vector, and we are accessing an element: ok.
+    } else if ((PTy = dyn_cast<VectorType>(In)) && 
+               PTy->getElementType() == Accum) {
+      // In is a vector, and accum is an element: ok, remember In.
+      Accum = In;
+    } else if ((PTy = dyn_cast<VectorType>(In)) && isa<VectorType>(Accum) &&
+               PTy->getBitWidth() == cast<VectorType>(Accum)->getBitWidth()) {
+      // Two vectors of the same size: keep Accum.
+    } else {
+      // Cannot insert an short into a <4 x int> or handle
+      // <2 x int> -> <4 x int>
+      return true;
     }
+  } else {
+    // Pointer/FP/Integer unions merge together as integers.
+    switch (Accum->getTypeID()) {
+    case Type::PointerTyID: Accum = TD.getIntPtrType(); break;
+    case Type::FloatTyID:   Accum = Type::Int32Ty; break;
+    case Type::DoubleTyID:  Accum = Type::Int64Ty; break;
+    case Type::X86_FP80TyID:  return true;
+    case Type::FP128TyID: return true;
+    case Type::PPC_FP128TyID: return true;
+    default:
+      assert(Accum->isInteger() && "Unknown FP type!");
+      break;
+    }
+    
+    switch (In->getTypeID()) {
+    case Type::PointerTyID: In = TD.getIntPtrType(); break;
+    case Type::FloatTyID:   In = Type::Int32Ty; break;
+    case Type::DoubleTyID:  In = Type::Int64Ty; break;
+    case Type::X86_FP80TyID:  return true;
+    case Type::FP128TyID: return true;
+    case Type::PPC_FP128TyID: return true;
+    default:
+      assert(In->isInteger() && "Unknown FP type!");
+      break;
+    }
+    return MergeInType(In, Accum, TD);
   }
-  
-  // Otherwise, we have a case that we can't handle with an optimized vector
-  // form.  We can still turn this into a large integer.
-  VecTy = Type::VoidTy;
-}
-
-/// CanConvertToScalar - V is a pointer.  If we can convert the pointee and all
-/// its accesses to use a to single vector type, return true, and set VecTy to
-/// the new type.  If we could convert the alloca into a single promotable
-/// integer, return true but set VecTy to VoidTy.  Further, if the use is not a
-/// completely trivial use that mem2reg could promote, set IsNotTrivial.  Offset
-/// is the current offset from the base of the alloca being analyzed.
+  return false;
+}
+
+/// getIntAtLeastAsBigAs - Return an integer type that is at least as big as the
+/// specified type.  If there is no suitable type, this returns null.
+const Type *getIntAtLeastAsBigAs(unsigned NumBits) {
+  if (NumBits > 64) return 0;
+  if (NumBits > 32) return Type::Int64Ty;
+  if (NumBits > 16) return Type::Int32Ty;
+  if (NumBits > 8) return Type::Int16Ty;
+  return Type::Int8Ty;    
+}
+
+/// CanConvertToScalar - V is a pointer.  If we can convert the pointee to a
+/// single scalar integer type, return that type.  Further, if the use is not
+/// a completely trivial use that mem2reg could promote, set IsNotTrivial.  If
+/// there are no uses of this pointer, return Type::VoidTy to differentiate from
+/// failure.
 ///
-bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial,
-                              const Type *&VecTy, uint64_t Offset,
-                              unsigned AllocaSize) {
+const Type *SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial) {
+  const Type *UsedType = Type::VoidTy; // No uses, no forced type.
+  const PointerType *PTy = cast<PointerType>(V->getType());
+
   for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
     Instruction *User = cast<Instruction>(*UI);
     
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      // Don't break volatile loads.
       if (LI->isVolatile())
-        return false;
-      MergeInType(LI->getType(), Offset, VecTy, AllocaSize, *TD);
+        return 0;
+
+      // FIXME: Loads of a first class aggregrate value could be converted to a
+      // series of loads and insertvalues
+      if (!LI->getType()->isSingleValueType())
+        return 0;
+
+      if (MergeInType(LI->getType(), UsedType, *TD))
+        return 0;
       continue;
     }
     
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
       // Storing the pointer, not into the value?
       if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
-      MergeInType(SI->getOperand(0)->getType(), Offset, VecTy, AllocaSize, *TD);
+
+      // FIXME: Stores of a first class aggregrate value could be converted to a
+      // series of extractvalues and stores
+      if (!SI->getOperand(0)->getType()->isSingleValueType())
+        return 0;
+      
+      // NOTE: We could handle storing of FP imms into integers here!
+      
+      if (MergeInType(SI->getOperand(0)->getType(), UsedType, *TD))
+        return 0;
       continue;
     }
-    
-    if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
-      if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, Offset, AllocaSize))
-        return false;
+    if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
       IsNotTrivial = true;
+      const Type *SubTy = CanConvertToScalar(CI, IsNotTrivial);
+      if (!SubTy || MergeInType(SubTy, UsedType, *TD)) return 0;
       continue;
     }
 
     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
-      // If this is a GEP with a variable indices, we can't handle it.
-      if (!GEP->hasAllConstantIndices())
-        return false;
+      // Check to see if this is stepping over an element: GEP Ptr, int C
+      if (GEP->getNumOperands() == 2 && isa<ConstantInt>(GEP->getOperand(1))) {
+        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
+        unsigned ElSize = TD->getTypePaddedSize(PTy->getElementType());
+        unsigned BitOffset = Idx*ElSize*8;
+        if (BitOffset > 64 || !isPowerOf2_32(ElSize)) return 0;
+        
+        IsNotTrivial = true;
+        const Type *SubElt = CanConvertToScalar(GEP, IsNotTrivial);
+        if (SubElt == 0) return 0;
+        if (SubElt != Type::VoidTy && SubElt->isInteger()) {
+          const Type *NewTy = 
+            getIntAtLeastAsBigAs(TD->getTypePaddedSizeInBits(SubElt)+BitOffset);
+          if (NewTy == 0 || MergeInType(NewTy, UsedType, *TD)) return 0;
+          continue;
+        }
+        // Cannot handle this!
+        return 0;
+      }
       
-      // Compute the offset that this GEP adds to the pointer.
-      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
-                                                &Indices[0], Indices.size());
-      // See if all uses can be converted.
-      if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, Offset+GEPOffset,
-                              AllocaSize))
-        return false;
-      IsNotTrivial = true;
-      continue;
-    }
-    
-    // If this is a constant sized memset of a constant value (e.g. 0) we can
-    // handle it.
-    if (isa<MemSetInst>(User) &&
-        // Store of constant value.
-        isa<ConstantInt>(User->getOperand(2)) &&
-        // Store with constant size.
-        isa<ConstantInt>(User->getOperand(3))) {
-      VecTy = Type::VoidTy;
-      IsNotTrivial = true;
-      continue;
+      if (GEP->getNumOperands() == 3 && 
+          isa<ConstantInt>(GEP->getOperand(1)) &&
+          isa<ConstantInt>(GEP->getOperand(2)) &&
+          cast<ConstantInt>(GEP->getOperand(1))->isZero()) {
+        // We are stepping into an element, e.g. a structure or an array:
+        // GEP Ptr, i32 0, i32 Cst
+        const Type *AggTy = PTy->getElementType();
+        unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
+        
+        if (const ArrayType *ATy = dyn_cast<ArrayType>(AggTy)) {
+          if (Idx >= ATy->getNumElements()) return 0;  // Out of range.
+        } else if (const VectorType *VectorTy = dyn_cast<VectorType>(AggTy)) {
+          // Getting an element of the vector.
+          if (Idx >= VectorTy->getNumElements()) return 0;  // Out of range.
+
+          // Merge in the vector type.
+          if (MergeInType(VectorTy, UsedType, *TD)) return 0;
+          
+          const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
+          if (SubTy == 0) return 0;
+          
+          if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
+            return 0;
+
+          // We'll need to change this to an insert/extract element operation.
+          IsNotTrivial = true;
+          continue;    // Everything looks ok
+          
+        } else if (isa<StructType>(AggTy)) {
+          // Structs are always ok.
+        } else {
+          return 0;
+        }
+        const Type *NTy =
+          getIntAtLeastAsBigAs(TD->getTypePaddedSizeInBits(AggTy));
+        if (NTy == 0 || MergeInType(NTy, UsedType, *TD)) return 0;
+        const Type *SubTy = CanConvertToScalar(GEP, IsNotTrivial);
+        if (SubTy == 0) return 0;
+        if (SubTy != Type::VoidTy && MergeInType(SubTy, UsedType, *TD))
+          return 0;
+        continue;    // Everything looks ok
+      }
+      return 0;
     }
     
-    // Otherwise, we cannot handle this!
-    return false;
+    // Cannot handle this!
+    return 0;
   }
   
-  return true;
+  return UsedType;
+}
+
+/// ConvertToScalar - The specified alloca passes the CanConvertToScalar
+/// predicate and is non-trivial.  Convert it to something that can be trivially
+/// promoted into a register by mem2reg.
+void SROA::ConvertToScalar(AllocationInst *AI, const Type *ActualTy) {
+  DOUT << "CONVERT TO SCALAR: " << *AI << "  TYPE = "
+       << *ActualTy << "\n";
+  ++NumConverted;
+  
+  BasicBlock *EntryBlock = AI->getParent();
+  assert(EntryBlock == &EntryBlock->getParent()->getEntryBlock() &&
+         "Not in the entry block!");
+  EntryBlock->getInstList().remove(AI);  // Take the alloca out of the program.
+  
+  // Create and insert the alloca.
+  AllocaInst *NewAI = new AllocaInst(ActualTy, 0, AI->getName(),
+                                     EntryBlock->begin());
+  ConvertUsesToScalar(AI, NewAI, 0);
+  delete AI;
 }
 
 
@@ -1301,87 +1378,105 @@
 ///
 /// Offset is an offset from the original alloca, in bits that need to be
 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
-void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
+void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, unsigned Offset) {
   while (!Ptr->use_empty()) {
     Instruction *User = cast<Instruction>(Ptr->use_back());
-
+    
     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
-      LI->replaceAllUsesWith(ConvertUsesOfLoadToScalar(LI, NewAI, Offset));
+      Value *NV = ConvertUsesOfLoadToScalar(LI, NewAI, Offset);
+      LI->replaceAllUsesWith(NV);
       LI->eraseFromParent();
       continue;
     }
-
+    
     if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
       assert(SI->getOperand(0) != Ptr && "Consistency error!");
-      new StoreInst(ConvertUsesOfStoreToScalar(SI->getOperand(0), NewAI,
-                                               Offset, SI), NewAI, SI);
+
+      Value *SV = ConvertUsesOfStoreToScalar(SI, NewAI, Offset);
+      new StoreInst(SV, NewAI, SI);
       SI->eraseFromParent();
       continue;
     }
-
+    
     if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
       ConvertUsesToScalar(CI, NewAI, Offset);
       CI->eraseFromParent();
       continue;
     }
-
-    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
-      // Compute the offset that this GEP adds to the pointer.
-      SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
-      uint64_t GEPOffset = TD->getIndexedOffset(GEP->getOperand(0)->getType(),
-                                                &Indices[0], Indices.size());
-      ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
-      GEP->eraseFromParent();
-      continue;
-    }
     
-    // If this is a constant sized memset of a constant value (e.g. 0) we can
-    // transform it into a store of the expanded constant value.
-    if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
-      assert(MSI->getRawDest() == Ptr && "Consistency error!");
-      unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
-      unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
+    if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
+      const PointerType *AggPtrTy = 
+        cast<PointerType>(GEP->getOperand(0)->getType());
+      unsigned AggSizeInBits =
+        TD->getTypePaddedSizeInBits(AggPtrTy->getElementType());
+
+      // Check to see if this is stepping over an element: GEP Ptr, int C
+      unsigned NewOffset = Offset;
+      if (GEP->getNumOperands() == 2) {
+        unsigned Idx = cast<ConstantInt>(GEP->getOperand(1))->getZExtValue();
+        unsigned BitOffset = Idx*AggSizeInBits;
+        
+        NewOffset += BitOffset;
+        ConvertUsesToScalar(GEP, NewAI, NewOffset);
+        GEP->eraseFromParent();
+        continue;
+      }
       
-      // Compute the value replicated the right number of times.
-      APInt APVal(NumBytes*8, Val);
-
-      // Splat the value if non-zero.
-      if (Val)
-        for (unsigned i = 1; i != NumBytes; ++i)
-          APVal |= APVal << 8;
+      assert(GEP->getNumOperands() == 3 && "Unsupported operation");
       
-      new StoreInst(ConvertUsesOfStoreToScalar(ConstantInt::get(APVal), NewAI,
-                                               Offset, MSI), NewAI, MSI);
-      MSI->eraseFromParent();
+      // We know that operand #2 is zero.
+      unsigned Idx = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
+      const Type *AggTy = AggPtrTy->getElementType();
+      if (const SequentialType *SeqTy = dyn_cast<SequentialType>(AggTy)) {
+        unsigned ElSizeBits =
+          TD->getTypePaddedSizeInBits(SeqTy->getElementType());
+
+        NewOffset += ElSizeBits*Idx;
+      } else {
+        const StructType *STy = cast<StructType>(AggTy);
+        unsigned EltBitOffset =
+          TD->getStructLayout(STy)->getElementOffsetInBits(Idx);
+        
+        NewOffset += EltBitOffset;
+      }
+      ConvertUsesToScalar(GEP, NewAI, NewOffset);
+      GEP->eraseFromParent();
       continue;
     }
-        
     
     assert(0 && "Unsupported operation!");
     abort();
   }
 }
 
-/// ConvertUsesOfLoadToScalar - Convert all of the users of the specified load
-/// to use the new alloca directly, returning the value that should replace the
-/// load.  This happens when we are converting an "integer union" to a single
-/// integer scalar, or when we are converting a "vector union" to a vector with
-/// insert/extractelement instructions.
+/// ConvertUsesOfLoadToScalar - Convert all of the users the specified load to
+/// use the new alloca directly, returning the value that should replace the
+/// load.  This happens when we are converting an "integer union" to a
+/// single integer scalar, or when we are converting a "vector union" to a
+/// vector with insert/extractelement instructions.
 ///
 /// Offset is an offset from the original alloca, in bits that need to be
 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
-Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI,
-                                       uint64_t Offset) {
+Value *SROA::ConvertUsesOfLoadToScalar(LoadInst *LI, AllocaInst *NewAI, 
+                                       unsigned Offset) {
   // The load is a bit extract from NewAI shifted right by Offset bits.
   Value *NV = new LoadInst(NewAI, LI->getName(), LI);
-
-  // If the load is of the whole new alloca, no conversion is needed.
-  if (NV->getType() == LI->getType() && Offset == 0)
+  
+  if (NV->getType() == LI->getType() && Offset == 0) {
+    // We win, no conversion needed.
     return NV;
+  } 
 
-  // If the result alloca is a vector type, this is either an element
-  // access or a bitcast to another vector type of the same size.
+  // If the result type of the 'union' is a pointer, then this must be ptr->ptr
+  // cast.  Anything else would result in NV being an integer.
+  if (isa<PointerType>(NV->getType())) {
+    assert(isa<PointerType>(LI->getType()));
+    return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
+  }
+  
   if (const VectorType *VTy = dyn_cast<VectorType>(NV->getType())) {
+    // If the result alloca is a vector type, this is either an element
+    // access or a bitcast to another vector type.
     if (isa<VectorType>(LI->getType()))
       return new BitCastInst(NV, LI->getType(), LI->getName(), LI);
 
@@ -1390,19 +1485,18 @@
     if (Offset) {
       unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
       Elt = Offset/EltSize;
-      assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
+      Offset -= EltSize*Elt;
     }
-    // Return the element extracted out of it.
-    Value *V = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
-                                      "tmp", LI);
-    if (V->getType() != LI->getType())
-      V = new BitCastInst(V, LI->getType(), "tmp", LI);
-    return V;
+    NV = new ExtractElementInst(NV, ConstantInt::get(Type::Int32Ty, Elt),
+                                "tmp", LI);
+    
+    // If we're done, return this element.
+    if (NV->getType() == LI->getType() && Offset == 0)
+      return NV;
   }
-
-  // Otherwise, this must be a union that was converted to an integer value.
+  
   const IntegerType *NTy = cast<IntegerType>(NV->getType());
-
+  
   // If this is a big-endian system and the load is narrower than the
   // full alloca type, we need to do a shift to get the right bits.
   int ShAmt = 0;
@@ -1415,30 +1509,29 @@
   } else {
     ShAmt = Offset;
   }
-
+  
   // Note: we support negative bitwidths (with shl) which are not defined.
   // We do this to support (f.e.) loads off the end of a structure where
   // only some bits are used.
   if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
-    NV = BinaryOperator::CreateLShr(NV,
-                                    ConstantInt::get(NV->getType(), ShAmt),
+    NV = BinaryOperator::CreateLShr(NV, 
+                                    ConstantInt::get(NV->getType(),ShAmt),
                                     LI->getName(), LI);
   else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
-    NV = BinaryOperator::CreateShl(NV,
-                                   ConstantInt::get(NV->getType(), -ShAmt),
+    NV = BinaryOperator::CreateShl(NV, 
+                                   ConstantInt::get(NV->getType(),-ShAmt),
                                    LI->getName(), LI);
-
+  
   // Finally, unconditionally truncate the integer to the right width.
   unsigned LIBitWidth = TD->getTypeSizeInBits(LI->getType());
   if (LIBitWidth < NTy->getBitWidth())
     NV = new TruncInst(NV, IntegerType::get(LIBitWidth),
                        LI->getName(), LI);
-
+  
   // If the result is an integer, this is a trunc or bitcast.
   if (isa<IntegerType>(LI->getType())) {
     // Should be done.
-  } else if (LI->getType()->isFloatingPoint() ||
-             isa<VectorType>(LI->getType())) {
+  } else if (LI->getType()->isFloatingPoint()) {
     // Just do a bitcast, we know the sizes match up.
     NV = new BitCastInst(NV, LI->getType(), LI->getName(), LI);
   } else {
@@ -1458,100 +1551,90 @@
 ///
 /// Offset is an offset from the original alloca, in bits that need to be
 /// shifted to the right.  By the end of this, there should be no uses of Ptr.
-Value *SROA::ConvertUsesOfStoreToScalar(Value *SV, AllocaInst *NewAI,
-                                        uint64_t Offset, Instruction *IP) {
-
+Value *SROA::ConvertUsesOfStoreToScalar(StoreInst *SI, AllocaInst *NewAI, 
+                                        unsigned Offset) {
+  
   // Convert the stored type to the actual type, shift it left to insert
   // then 'or' into place.
+  Value *SV = SI->getOperand(0);
   const Type *AllocaType = NewAI->getType()->getElementType();
-  if (SV->getType() == AllocaType && Offset == 0)
-    return SV;
-
-  if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
-    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
-
+  if (SV->getType() == AllocaType && Offset == 0) {
+    // All is well.
+  } else if (const VectorType *PTy = dyn_cast<VectorType>(AllocaType)) {
+    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
+    
     // If the result alloca is a vector type, this is either an element
     // access or a bitcast to another vector type.
     if (isa<VectorType>(SV->getType())) {
-      SV = new BitCastInst(SV, AllocaType, SV->getName(), IP);
+      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
     } else {
       // Must be an element insertion.
-      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(VTy->getElementType());
-      
-      if (SV->getType() != VTy->getElementType())
-        SV = new BitCastInst(SV, VTy->getElementType(), "tmp", IP);
-      
+      unsigned Elt = Offset/TD->getTypePaddedSizeInBits(PTy->getElementType());
       SV = InsertElementInst::Create(Old, SV,
                                      ConstantInt::get(Type::Int32Ty, Elt),
-                                     "tmp", IP);
-    }
-    return SV;
-  }
-
-
-  Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", IP);
-
-  // If SV is a float, convert it to the appropriate integer type.
-  // If it is a pointer, do the same, and also handle ptr->ptr casts
-  // here.
-  unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
-  unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
-  unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
-  unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
-  if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
-    SV = new BitCastInst(SV, IntegerType::get(SrcWidth), SV->getName(), IP);
-  else if (isa<PointerType>(SV->getType()))
-    SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), IP);
-
-  // Zero extend or truncate the value if needed.
-  if (SV->getType() != AllocaType) {
-    if (SV->getType()->getPrimitiveSizeInBits() <
-             AllocaType->getPrimitiveSizeInBits())
-      SV = new ZExtInst(SV, AllocaType, SV->getName(), IP);
-    else {
-      // Truncation may be needed if storing more than the alloca can hold
-      // (undefined behavior).
-      SV = new TruncInst(SV, AllocaType, SV->getName(), IP);
-      SrcWidth = DestWidth;
-      SrcStoreWidth = DestStoreWidth;
+                                     "tmp", SI);
     }
-  }
-
-  // If this is a big-endian system and the store is narrower than the
-  // full alloca type, we need to do a shift to get the right bits.
-  int ShAmt = 0;
-  if (TD->isBigEndian()) {
-    // On big-endian machines, the lowest bit is stored at the bit offset
-    // from the pointer given by getTypeStoreSizeInBits.  This matters for
-    // integers with a bitwidth that is not a multiple of 8.
-    ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
+  } else if (isa<PointerType>(AllocaType)) {
+    // If the alloca type is a pointer, then all the elements must be
+    // pointers.
+    if (SV->getType() != AllocaType)
+      SV = new BitCastInst(SV, AllocaType, SV->getName(), SI);
   } else {
-    ShAmt = Offset;
-  }
-
-  // Note: we support negative bitwidths (with shr) which are not defined.
-  // We do this to support (f.e.) stores off the end of a structure where
-  // only some bits in the structure are set.
-  APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
-  if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
-    SV = BinaryOperator::CreateShl(SV,
-                                   ConstantInt::get(SV->getType(), ShAmt),
-                                   SV->getName(), IP);
-    Mask <<= ShAmt;
-  } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
-    SV = BinaryOperator::CreateLShr(SV,
-                                    ConstantInt::get(SV->getType(), -ShAmt),
-                                    SV->getName(), IP);
-    Mask = Mask.lshr(-ShAmt);
-  }
-
-  // Mask out the bits we are about to insert from the old value, and or
-  // in the new bits.
-  if (SrcWidth != DestWidth) {
-    assert(DestWidth > SrcWidth);
-    Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
-                                    Old->getName()+".mask", IP);
-    SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", IP);
+    Value *Old = new LoadInst(NewAI, NewAI->getName()+".in", SI);
+    
+    // If SV is a float, convert it to the appropriate integer type.
+    // If it is a pointer, do the same, and also handle ptr->ptr casts
+    // here.
+    unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
+    unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
+    unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
+    unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
+    if (SV->getType()->isFloatingPoint())
+      SV = new BitCastInst(SV, IntegerType::get(SrcWidth),
+                           SV->getName(), SI);
+    else if (isa<PointerType>(SV->getType()))
+      SV = new PtrToIntInst(SV, TD->getIntPtrType(), SV->getName(), SI);
+    
+    // Always zero extend the value if needed.
+    if (SV->getType() != AllocaType)
+      SV = new ZExtInst(SV, AllocaType, SV->getName(), SI);
+    
+    // If this is a big-endian system and the store is narrower than the
+    // full alloca type, we need to do a shift to get the right bits.
+    int ShAmt = 0;
+    if (TD->isBigEndian()) {
+      // On big-endian machines, the lowest bit is stored at the bit offset
+      // from the pointer given by getTypeStoreSizeInBits.  This matters for
+      // integers with a bitwidth that is not a multiple of 8.
+      ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
+    } else {
+      ShAmt = Offset;
+    }
+    
+    // Note: we support negative bitwidths (with shr) which are not defined.
+    // We do this to support (f.e.) stores off the end of a structure where
+    // only some bits in the structure are set.
+    APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
+    if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
+      SV = BinaryOperator::CreateShl(SV, 
+                                     ConstantInt::get(SV->getType(), ShAmt),
+                                     SV->getName(), SI);
+      Mask <<= ShAmt;
+    } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
+      SV = BinaryOperator::CreateLShr(SV,
+                                      ConstantInt::get(SV->getType(),-ShAmt),
+                                      SV->getName(), SI);
+      Mask = Mask.lshr(ShAmt);
+    }
+    
+    // Mask out the bits we are about to insert from the old value, and or
+    // in the new bits.
+    if (SrcWidth != DestWidth) {
+      assert(DestWidth > SrcWidth);
+      Old = BinaryOperator::CreateAnd(Old, ConstantInt::get(~Mask),
+                                      Old->getName()+".mask", SI);
+      SV = BinaryOperator::CreateOr(Old, SV, SV->getName()+".ins", SI);
+    }
   }
   return SV;
 }

Modified: llvm/branches/release_25/test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll (original)
+++ llvm/branches/release_25/test/Transforms/ScalarRepl/2003-05-29-ArrayFail.ll Wed Feb  4 17:12:25 2009
@@ -1,4 +1,4 @@
-; RUN: llvm-as < %s | opt -scalarrepl -instcombine | llvm-dis | grep {ret i32 undef}
+; RUN: echo disabled
 
 ; Test that an array is not incorrectly deconstructed.
 

Modified: llvm/branches/release_25/test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll (original)
+++ llvm/branches/release_25/test/Transforms/ScalarRepl/2006-11-07-InvalidArrayPromote.ll Wed Feb  4 17:12:25 2009
@@ -1,4 +1,4 @@
-; RUN: llvm-as < %s | opt -scalarrepl | llvm-dis | not grep alloca
+; RUN: echo disabled
 
 define i32 @func(<4 x float> %v0, <4 x float> %v1) nounwind {
 	%vsiidx = alloca [2 x <4 x i32>], align 16		; <[2 x <4 x i32>]*> [#uses=3]

Modified: llvm/branches/release_25/test/Transforms/ScalarRepl/bitfield-sroa.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/test/Transforms/ScalarRepl/bitfield-sroa.ll?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/test/Transforms/ScalarRepl/bitfield-sroa.ll (original)
+++ llvm/branches/release_25/test/Transforms/ScalarRepl/bitfield-sroa.ll Wed Feb  4 17:12:25 2009
@@ -1,4 +1,4 @@
-; RUN: llvm-as < %s | opt -scalarrepl | llvm-dis | not grep alloca        
+; RUN: echo disabled
 ; rdar://6532315
 %t = type { { i32, i16, i8, i8 } }
 

Modified: llvm/branches/release_25/test/Transforms/ScalarRepl/memset-aggregate.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/test/Transforms/ScalarRepl/memset-aggregate.ll?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/test/Transforms/ScalarRepl/memset-aggregate.ll (original)
+++ llvm/branches/release_25/test/Transforms/ScalarRepl/memset-aggregate.ll Wed Feb  4 17:12:25 2009
@@ -1,7 +1,6 @@
 ; PR1226
 ; RUN: llvm-as < %s | opt -scalarrepl | llvm-dis | grep {ret i32 16843009}
 ; RUN: llvm-as < %s | opt -scalarrepl | llvm-dis | not grep alloca
-; RUN: llvm-as < %s | opt -scalarrepl -instcombine | llvm-dis | grep {ret i16 514}
 
 target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64"
 target triple = "i686-apple-darwin8"
@@ -49,18 +48,3 @@
 }
 
 
-	%struct.f = type { i32, i32, i32, i32, i32, i32 }
-
-define i16 @test4() nounwind {
-entry:
-	%A = alloca %struct.f, align 8		; <%struct.f*> [#uses=3]
-	%0 = getelementptr %struct.f* %A, i32 0, i32 0		; <i32*> [#uses=1]
-	store i32 1, i32* %0, align 8
-	%1 = getelementptr %struct.f* %A, i32 0, i32 1		; <i32*> [#uses=1]
-	%2 = bitcast i32* %1 to i8*		; <i8*> [#uses=1]
-	call void @llvm.memset.i32(i8* %2, i8 2, i32 12, i32 4)
-	%3 = getelementptr %struct.f* %A, i32 0, i32 2		; <i32*> [#uses=1]
-	%4 = load i32* %3, align 8		; <i32> [#uses=1]
-	%retval12 = trunc i32 %4 to i16		; <i16> [#uses=1]
-	ret i16 %retval12
-}

Modified: llvm/branches/release_25/test/Transforms/ScalarRepl/vector_promote.ll
URL: http://llvm.org/viewvc/llvm-project/llvm/branches/release_25/test/Transforms/ScalarRepl/vector_promote.ll?rev=63790&r1=63789&r2=63790&view=diff

==============================================================================
--- llvm/branches/release_25/test/Transforms/ScalarRepl/vector_promote.ll (original)
+++ llvm/branches/release_25/test/Transforms/ScalarRepl/vector_promote.ll Wed Feb  4 17:12:25 2009
@@ -53,12 +53,3 @@
 	ret void
 }
 
-define i32 @test5(float %X) {  ;; should turn into bitcast.
-	%X_addr = alloca [4 x float]
-        %X1 = getelementptr [4 x float]* %X_addr, i32 0, i32 2
-	store float %X, float* %X1
-	%a = bitcast float* %X1 to i32*
-	%tmp = load i32* %a
-	ret i32 %tmp
-}
-





More information about the llvm-commits mailing list