[llvm-commits] [llvm] r59340 - in /llvm/trunk/lib/CodeGen/SelectionDAG: CMakeLists.txt LatencyPriorityQueue.cpp LatencyPriorityQueue.h ScheduleDAGList.cpp

Dan Gohman gohman at apple.com
Fri Nov 14 16:23:40 PST 2008


Author: djg
Date: Fri Nov 14 18:23:40 2008
New Revision: 59340

URL: http://llvm.org/viewvc/llvm-project?rev=59340&view=rev
Log:
Move ScheduleDAGList's LatencyPriorityQueue class out to a separate file.

Added:
    llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp
      - copied, changed from r59333, llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
    llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h
      - copied, changed from r59333, llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
Modified:
    llvm/trunk/lib/CodeGen/SelectionDAG/CMakeLists.txt
    llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/CMakeLists.txt
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/CMakeLists.txt?rev=59340&r1=59339&r2=59340&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/CMakeLists.txt (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/CMakeLists.txt Fri Nov 14 18:23:40 2008
@@ -2,6 +2,7 @@
   CallingConvLower.cpp
   DAGCombiner.cpp
   FastISel.cpp
+  LatencyPriorityQueue.cpp
   LegalizeDAG.cpp
   LegalizeFloatTypes.cpp
   LegalizeIntegerTypes.cpp

Copied: llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp (from r59333, llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp?p2=llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp&p1=llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp&r1=59333&r2=59340&rev=59340&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.cpp Fri Nov 14 18:23:40 2008
@@ -1,4 +1,4 @@
-//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
+//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -7,386 +7,17 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements a top-down list scheduler, using standard algorithms.
-// The basic approach uses a priority queue of available nodes to schedule.
-// One at a time, nodes are taken from the priority queue (thus in priority
-// order), checked for legality to schedule, and emitted if legal.
-//
-// Nodes may not be legal to schedule either due to structural hazards (e.g.
-// pipeline or resource constraints) or because an input to the instruction has
-// not completed execution.
+// This file implements the LatencyPriorityQueue class, which is a
+// SchedulingPriorityQueue that schedules using latency information to
+// reduce the length of the critical path through the basic block.
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "pre-RA-sched"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/SchedulerRegistry.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetInstrInfo.h"
+#define DEBUG_TYPE "scheduler"
+#include "LatencyPriorityQueue.h"
 #include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/ADT/PriorityQueue.h"
-#include "llvm/ADT/Statistic.h"
-#include <climits>
 using namespace llvm;
 
-STATISTIC(NumNoops , "Number of noops inserted");
-STATISTIC(NumStalls, "Number of pipeline stalls");
-
-static RegisterScheduler
-  tdListDAGScheduler("list-td", "Top-down list scheduler",
-                     createTDListDAGScheduler);
-   
-namespace {
-//===----------------------------------------------------------------------===//
-/// ScheduleDAGList - The actual list scheduler implementation.  This supports
-/// top-down scheduling.
-///
-class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
-private:
-  /// AvailableQueue - The priority queue to use for the available SUnits.
-  ///
-  SchedulingPriorityQueue *AvailableQueue;
-  
-  /// PendingQueue - This contains all of the instructions whose operands have
-  /// been issued, but their results are not ready yet (due to the latency of
-  /// the operation).  Once the operands becomes available, the instruction is
-  /// added to the AvailableQueue.  This keeps track of each SUnit and the
-  /// number of cycles left to execute before the operation is available.
-  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
-
-  /// HazardRec - The hazard recognizer to use.
-  HazardRecognizer *HazardRec;
-
-public:
-  ScheduleDAGList(SelectionDAG *dag, MachineBasicBlock *bb,
-                  const TargetMachine &tm,
-                  SchedulingPriorityQueue *availqueue,
-                  HazardRecognizer *HR)
-    : ScheduleDAG(dag, bb, tm),
-      AvailableQueue(availqueue), HazardRec(HR) {
-    }
-
-  ~ScheduleDAGList() {
-    delete HazardRec;
-    delete AvailableQueue;
-  }
-
-  void Schedule();
-
-private:
-  void ReleaseSucc(SUnit *SuccSU, bool isChain);
-  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
-  void ListScheduleTopDown();
-};
-}  // end anonymous namespace
-
-HazardRecognizer::~HazardRecognizer() {}
-
-
-/// Schedule - Schedule the DAG using list scheduling.
-void ScheduleDAGList::Schedule() {
-  DOUT << "********** List Scheduling **********\n";
-  
-  // Build scheduling units.
-  BuildSchedUnits();
-
-  AvailableQueue->initNodes(SUnits);
-  
-  ListScheduleTopDown();
-  
-  AvailableQueue->releaseState();
-}
-
-//===----------------------------------------------------------------------===//
-//  Top-Down Scheduling
-//===----------------------------------------------------------------------===//
-
-/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
-/// the PendingQueue if the count reaches zero.
-void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
-  SuccSU->NumPredsLeft--;
-  
-  assert(SuccSU->NumPredsLeft >= 0 &&
-         "List scheduling internal error");
-  
-  if (SuccSU->NumPredsLeft == 0) {
-    // Compute how many cycles it will be before this actually becomes
-    // available.  This is the max of the start time of all predecessors plus
-    // their latencies.
-    unsigned AvailableCycle = 0;
-    for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
-         E = SuccSU->Preds.end(); I != E; ++I) {
-      // If this is a token edge, we don't need to wait for the latency of the
-      // preceeding instruction (e.g. a long-latency load) unless there is also
-      // some other data dependence.
-      SUnit &Pred = *I->Dep;
-      unsigned PredDoneCycle = Pred.Cycle;
-      if (!I->isCtrl)
-        PredDoneCycle += Pred.Latency;
-      else if (Pred.Latency)
-        PredDoneCycle += 1;
-
-      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
-    }
-    
-    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
-  }
-}
-
-/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
-/// count of its successors. If a successor pending count is zero, add it to
-/// the Available queue.
-void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
-  DOUT << "*** Scheduling [" << CurCycle << "]: ";
-  DEBUG(SU->dump(DAG));
-  
-  Sequence.push_back(SU);
-  SU->Cycle = CurCycle;
-  
-  // Bottom up: release successors.
-  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    ReleaseSucc(I->Dep, I->isCtrl);
-}
-
-/// ListScheduleTopDown - The main loop of list scheduling for top-down
-/// schedulers.
-void ScheduleDAGList::ListScheduleTopDown() {
-  unsigned CurCycle = 0;
-
-  // All leaves to Available queue.
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    // It is available if it has no predecessors.
-    if (SUnits[i].Preds.empty()) {
-      AvailableQueue->push(&SUnits[i]);
-      SUnits[i].isAvailable = SUnits[i].isPending = true;
-    }
-  }
-  
-  // While Available queue is not empty, grab the node with the highest
-  // priority. If it is not ready put it back.  Schedule the node.
-  std::vector<SUnit*> NotReady;
-  Sequence.reserve(SUnits.size());
-  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
-    // Check to see if any of the pending instructions are ready to issue.  If
-    // so, add them to the available queue.
-    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
-      if (PendingQueue[i].first == CurCycle) {
-        AvailableQueue->push(PendingQueue[i].second);
-        PendingQueue[i].second->isAvailable = true;
-        PendingQueue[i] = PendingQueue.back();
-        PendingQueue.pop_back();
-        --i; --e;
-      } else {
-        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
-      }
-    }
-    
-    // If there are no instructions available, don't try to issue anything, and
-    // don't advance the hazard recognizer.
-    if (AvailableQueue->empty()) {
-      ++CurCycle;
-      continue;
-    }
-
-    SUnit *FoundSUnit = 0;
-    SDNode *FoundNode = 0;
-    
-    bool HasNoopHazards = false;
-    while (!AvailableQueue->empty()) {
-      SUnit *CurSUnit = AvailableQueue->pop();
-      
-      // Get the node represented by this SUnit.
-      FoundNode = CurSUnit->getNode();
-      
-      // If this is a pseudo op, like copyfromreg, look to see if there is a
-      // real target node flagged to it.  If so, use the target node.
-      while (!FoundNode->isMachineOpcode()) {
-        SDNode *N = FoundNode->getFlaggedNode();
-        if (!N) break;
-        FoundNode = N;
-      }
-      
-      HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
-      if (HT == HazardRecognizer::NoHazard) {
-        FoundSUnit = CurSUnit;
-        break;
-      }
-      
-      // Remember if this is a noop hazard.
-      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
-      
-      NotReady.push_back(CurSUnit);
-    }
-    
-    // Add the nodes that aren't ready back onto the available list.
-    if (!NotReady.empty()) {
-      AvailableQueue->push_all(NotReady);
-      NotReady.clear();
-    }
-
-    // If we found a node to schedule, do it now.
-    if (FoundSUnit) {
-      ScheduleNodeTopDown(FoundSUnit, CurCycle);
-      HazardRec->EmitInstruction(FoundNode);
-      FoundSUnit->isScheduled = true;
-      AvailableQueue->ScheduledNode(FoundSUnit);
-
-      // If this is a pseudo-op node, we don't want to increment the current
-      // cycle.
-      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
-        ++CurCycle;        
-    } else if (!HasNoopHazards) {
-      // Otherwise, we have a pipeline stall, but no other problem, just advance
-      // the current cycle and try again.
-      DOUT << "*** Advancing cycle, no work to do\n";
-      HazardRec->AdvanceCycle();
-      ++NumStalls;
-      ++CurCycle;
-    } else {
-      // Otherwise, we have no instructions to issue and we have instructions
-      // that will fault if we don't do this right.  This is the case for
-      // processors without pipeline interlocks and other cases.
-      DOUT << "*** Emitting noop\n";
-      HazardRec->EmitNoop();
-      Sequence.push_back(0);   // NULL SUnit* -> noop
-      ++NumNoops;
-      ++CurCycle;
-    }
-  }
-
-#ifndef NDEBUG
-  // Verify that all SUnits were scheduled.
-  bool AnyNotSched = false;
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    if (SUnits[i].NumPredsLeft != 0) {
-      if (!AnyNotSched)
-        cerr << "*** List scheduling failed! ***\n";
-      SUnits[i].dump(DAG);
-      cerr << "has not been scheduled!\n";
-      AnyNotSched = true;
-    }
-  }
-  assert(!AnyNotSched);
-#endif
-}
-
-//===----------------------------------------------------------------------===//
-//                    LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-// 
-namespace {
-  class LatencyPriorityQueue;
-  
-  /// Sorting functions for the Available queue.
-  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
-    LatencyPriorityQueue *PQ;
-    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
-    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
-    
-    bool operator()(const SUnit* left, const SUnit* right) const;
-  };
-}  // end anonymous namespace
-
-namespace {
-  class LatencyPriorityQueue : public SchedulingPriorityQueue {
-    // SUnits - The SUnits for the current graph.
-    std::vector<SUnit> *SUnits;
-    
-    // Latencies - The latency (max of latency from this node to the bb exit)
-    // for each node.
-    std::vector<int> Latencies;
-
-    /// NumNodesSolelyBlocking - This vector contains, for every node in the
-    /// Queue, the number of nodes that the node is the sole unscheduled
-    /// predecessor for.  This is used as a tie-breaker heuristic for better
-    /// mobility.
-    std::vector<unsigned> NumNodesSolelyBlocking;
-
-    PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
-public:
-    LatencyPriorityQueue() : Queue(latency_sort(this)) {
-    }
-    
-    void initNodes(std::vector<SUnit> &sunits) {
-      SUnits = &sunits;
-      // Calculate node priorities.
-      CalculatePriorities();
-    }
-
-    void addNode(const SUnit *SU) {
-      Latencies.resize(SUnits->size(), -1);
-      NumNodesSolelyBlocking.resize(SUnits->size(), 0);
-      CalcLatency(*SU);
-    }
-
-    void updateNode(const SUnit *SU) {
-      Latencies[SU->NodeNum] = -1;
-      CalcLatency(*SU);
-    }
-
-    void releaseState() {
-      SUnits = 0;
-      Latencies.clear();
-    }
-    
-    unsigned getLatency(unsigned NodeNum) const {
-      assert(NodeNum < Latencies.size());
-      return Latencies[NodeNum];
-    }
-    
-    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
-      assert(NodeNum < NumNodesSolelyBlocking.size());
-      return NumNodesSolelyBlocking[NodeNum];
-    }
-    
-    unsigned size() const { return Queue.size(); }
-
-    bool empty() const { return Queue.empty(); }
-    
-    virtual void push(SUnit *U) {
-      push_impl(U);
-    }
-    void push_impl(SUnit *U);
-    
-    void push_all(const std::vector<SUnit *> &Nodes) {
-      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
-        push_impl(Nodes[i]);
-    }
-    
-    SUnit *pop() {
-      if (empty()) return NULL;
-      SUnit *V = Queue.top();
-      Queue.pop();
-      return V;
-    }
-
-    void remove(SUnit *SU) {
-      assert(!Queue.empty() && "Not in queue!");
-      Queue.erase_one(SU);
-    }
-
-    // ScheduledNode - As nodes are scheduled, we look to see if there are any
-    // successor nodes that have a single unscheduled predecessor.  If so, that
-    // single predecessor has a higher priority, since scheduling it will make
-    // the node available.
-    void ScheduledNode(SUnit *Node);
-
-private:
-    void CalculatePriorities();
-    int CalcLatency(const SUnit &SU);
-    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
-    SUnit *getSingleUnscheduledPred(SUnit *SU);
-  };
-}
-
 bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
   unsigned LHSNum = LHS->NodeNum;
   unsigned RHSNum = RHS->NodeNum;
@@ -532,20 +163,3 @@
   // NumNodesSolelyBlocking value.
   push(OnlyAvailablePred);
 }
-
-
-//===----------------------------------------------------------------------===//
-//                         Public Constructor Functions
-//===----------------------------------------------------------------------===//
-
-/// createTDListDAGScheduler - This creates a top-down list scheduler with a
-/// new hazard recognizer. This scheduler takes ownership of the hazard
-/// recognizer and deletes it when done.
-ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
-                                            SelectionDAG *DAG,
-                                            const TargetMachine *TM,
-                                            MachineBasicBlock *BB, bool Fast) {
-  return new ScheduleDAGList(DAG, BB, *TM,
-                             new LatencyPriorityQueue(),
-                             IS->CreateTargetHazardRecognizer());
-}

Copied: llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h (from r59333, llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp)
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h?p2=llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h&p1=llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp&r1=59333&r2=59340&rev=59340&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/LatencyPriorityQueue.h Fri Nov 14 18:23:40 2008
@@ -1,4 +1,4 @@
-//===---- ScheduleDAGList.cpp - Implement a list scheduler for isel DAG ---===//
+//===---- LatencyPriorityQueue.h - A latency-oriented priority queue ------===//
 //
 //                     The LLVM Compiler Infrastructure
 //
@@ -7,295 +7,29 @@
 //
 //===----------------------------------------------------------------------===//
 //
-// This implements a top-down list scheduler, using standard algorithms.
-// The basic approach uses a priority queue of available nodes to schedule.
-// One at a time, nodes are taken from the priority queue (thus in priority
-// order), checked for legality to schedule, and emitted if legal.
-//
-// Nodes may not be legal to schedule either due to structural hazards (e.g.
-// pipeline or resource constraints) or because an input to the instruction has
-// not completed execution.
+// This file declares the LatencyPriorityQueue class, which is a
+// SchedulingPriorityQueue that schedules using latency information to
+// reduce the length of the critical path through the basic block.
 //
 //===----------------------------------------------------------------------===//
 
-#define DEBUG_TYPE "pre-RA-sched"
+#ifndef LATENCY_PRIORITY_QUEUE_H
+#define LATENCY_PRIORITY_QUEUE_H
+
 #include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/SchedulerRegistry.h"
-#include "llvm/CodeGen/SelectionDAGISel.h"
-#include "llvm/Target/TargetRegisterInfo.h"
-#include "llvm/Target/TargetData.h"
-#include "llvm/Target/TargetMachine.h"
-#include "llvm/Target/TargetInstrInfo.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/Compiler.h"
 #include "llvm/ADT/PriorityQueue.h"
-#include "llvm/ADT/Statistic.h"
-#include <climits>
-using namespace llvm;
-
-STATISTIC(NumNoops , "Number of noops inserted");
-STATISTIC(NumStalls, "Number of pipeline stalls");
-
-static RegisterScheduler
-  tdListDAGScheduler("list-td", "Top-down list scheduler",
-                     createTDListDAGScheduler);
-   
-namespace {
-//===----------------------------------------------------------------------===//
-/// ScheduleDAGList - The actual list scheduler implementation.  This supports
-/// top-down scheduling.
-///
-class VISIBILITY_HIDDEN ScheduleDAGList : public ScheduleDAG {
-private:
-  /// AvailableQueue - The priority queue to use for the available SUnits.
-  ///
-  SchedulingPriorityQueue *AvailableQueue;
-  
-  /// PendingQueue - This contains all of the instructions whose operands have
-  /// been issued, but their results are not ready yet (due to the latency of
-  /// the operation).  Once the operands becomes available, the instruction is
-  /// added to the AvailableQueue.  This keeps track of each SUnit and the
-  /// number of cycles left to execute before the operation is available.
-  std::vector<std::pair<unsigned, SUnit*> > PendingQueue;
-
-  /// HazardRec - The hazard recognizer to use.
-  HazardRecognizer *HazardRec;
-
-public:
-  ScheduleDAGList(SelectionDAG *dag, MachineBasicBlock *bb,
-                  const TargetMachine &tm,
-                  SchedulingPriorityQueue *availqueue,
-                  HazardRecognizer *HR)
-    : ScheduleDAG(dag, bb, tm),
-      AvailableQueue(availqueue), HazardRec(HR) {
-    }
-
-  ~ScheduleDAGList() {
-    delete HazardRec;
-    delete AvailableQueue;
-  }
-
-  void Schedule();
-
-private:
-  void ReleaseSucc(SUnit *SuccSU, bool isChain);
-  void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
-  void ListScheduleTopDown();
-};
-}  // end anonymous namespace
-
-HazardRecognizer::~HazardRecognizer() {}
-
-
-/// Schedule - Schedule the DAG using list scheduling.
-void ScheduleDAGList::Schedule() {
-  DOUT << "********** List Scheduling **********\n";
-  
-  // Build scheduling units.
-  BuildSchedUnits();
-
-  AvailableQueue->initNodes(SUnits);
-  
-  ListScheduleTopDown();
-  
-  AvailableQueue->releaseState();
-}
-
-//===----------------------------------------------------------------------===//
-//  Top-Down Scheduling
-//===----------------------------------------------------------------------===//
-
-/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
-/// the PendingQueue if the count reaches zero.
-void ScheduleDAGList::ReleaseSucc(SUnit *SuccSU, bool isChain) {
-  SuccSU->NumPredsLeft--;
-  
-  assert(SuccSU->NumPredsLeft >= 0 &&
-         "List scheduling internal error");
-  
-  if (SuccSU->NumPredsLeft == 0) {
-    // Compute how many cycles it will be before this actually becomes
-    // available.  This is the max of the start time of all predecessors plus
-    // their latencies.
-    unsigned AvailableCycle = 0;
-    for (SUnit::pred_iterator I = SuccSU->Preds.begin(),
-         E = SuccSU->Preds.end(); I != E; ++I) {
-      // If this is a token edge, we don't need to wait for the latency of the
-      // preceeding instruction (e.g. a long-latency load) unless there is also
-      // some other data dependence.
-      SUnit &Pred = *I->Dep;
-      unsigned PredDoneCycle = Pred.Cycle;
-      if (!I->isCtrl)
-        PredDoneCycle += Pred.Latency;
-      else if (Pred.Latency)
-        PredDoneCycle += 1;
-
-      AvailableCycle = std::max(AvailableCycle, PredDoneCycle);
-    }
-    
-    PendingQueue.push_back(std::make_pair(AvailableCycle, SuccSU));
-  }
-}
-
-/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
-/// count of its successors. If a successor pending count is zero, add it to
-/// the Available queue.
-void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
-  DOUT << "*** Scheduling [" << CurCycle << "]: ";
-  DEBUG(SU->dump(DAG));
-  
-  Sequence.push_back(SU);
-  SU->Cycle = CurCycle;
-  
-  // Bottom up: release successors.
-  for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    ReleaseSucc(I->Dep, I->isCtrl);
-}
-
-/// ListScheduleTopDown - The main loop of list scheduling for top-down
-/// schedulers.
-void ScheduleDAGList::ListScheduleTopDown() {
-  unsigned CurCycle = 0;
-
-  // All leaves to Available queue.
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    // It is available if it has no predecessors.
-    if (SUnits[i].Preds.empty()) {
-      AvailableQueue->push(&SUnits[i]);
-      SUnits[i].isAvailable = SUnits[i].isPending = true;
-    }
-  }
-  
-  // While Available queue is not empty, grab the node with the highest
-  // priority. If it is not ready put it back.  Schedule the node.
-  std::vector<SUnit*> NotReady;
-  Sequence.reserve(SUnits.size());
-  while (!AvailableQueue->empty() || !PendingQueue.empty()) {
-    // Check to see if any of the pending instructions are ready to issue.  If
-    // so, add them to the available queue.
-    for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
-      if (PendingQueue[i].first == CurCycle) {
-        AvailableQueue->push(PendingQueue[i].second);
-        PendingQueue[i].second->isAvailable = true;
-        PendingQueue[i] = PendingQueue.back();
-        PendingQueue.pop_back();
-        --i; --e;
-      } else {
-        assert(PendingQueue[i].first > CurCycle && "Negative latency?");
-      }
-    }
-    
-    // If there are no instructions available, don't try to issue anything, and
-    // don't advance the hazard recognizer.
-    if (AvailableQueue->empty()) {
-      ++CurCycle;
-      continue;
-    }
 
-    SUnit *FoundSUnit = 0;
-    SDNode *FoundNode = 0;
-    
-    bool HasNoopHazards = false;
-    while (!AvailableQueue->empty()) {
-      SUnit *CurSUnit = AvailableQueue->pop();
-      
-      // Get the node represented by this SUnit.
-      FoundNode = CurSUnit->getNode();
-      
-      // If this is a pseudo op, like copyfromreg, look to see if there is a
-      // real target node flagged to it.  If so, use the target node.
-      while (!FoundNode->isMachineOpcode()) {
-        SDNode *N = FoundNode->getFlaggedNode();
-        if (!N) break;
-        FoundNode = N;
-      }
-      
-      HazardRecognizer::HazardType HT = HazardRec->getHazardType(FoundNode);
-      if (HT == HazardRecognizer::NoHazard) {
-        FoundSUnit = CurSUnit;
-        break;
-      }
-      
-      // Remember if this is a noop hazard.
-      HasNoopHazards |= HT == HazardRecognizer::NoopHazard;
-      
-      NotReady.push_back(CurSUnit);
-    }
-    
-    // Add the nodes that aren't ready back onto the available list.
-    if (!NotReady.empty()) {
-      AvailableQueue->push_all(NotReady);
-      NotReady.clear();
-    }
-
-    // If we found a node to schedule, do it now.
-    if (FoundSUnit) {
-      ScheduleNodeTopDown(FoundSUnit, CurCycle);
-      HazardRec->EmitInstruction(FoundNode);
-      FoundSUnit->isScheduled = true;
-      AvailableQueue->ScheduledNode(FoundSUnit);
-
-      // If this is a pseudo-op node, we don't want to increment the current
-      // cycle.
-      if (FoundSUnit->Latency)  // Don't increment CurCycle for pseudo-ops!
-        ++CurCycle;        
-    } else if (!HasNoopHazards) {
-      // Otherwise, we have a pipeline stall, but no other problem, just advance
-      // the current cycle and try again.
-      DOUT << "*** Advancing cycle, no work to do\n";
-      HazardRec->AdvanceCycle();
-      ++NumStalls;
-      ++CurCycle;
-    } else {
-      // Otherwise, we have no instructions to issue and we have instructions
-      // that will fault if we don't do this right.  This is the case for
-      // processors without pipeline interlocks and other cases.
-      DOUT << "*** Emitting noop\n";
-      HazardRec->EmitNoop();
-      Sequence.push_back(0);   // NULL SUnit* -> noop
-      ++NumNoops;
-      ++CurCycle;
-    }
-  }
-
-#ifndef NDEBUG
-  // Verify that all SUnits were scheduled.
-  bool AnyNotSched = false;
-  for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
-    if (SUnits[i].NumPredsLeft != 0) {
-      if (!AnyNotSched)
-        cerr << "*** List scheduling failed! ***\n";
-      SUnits[i].dump(DAG);
-      cerr << "has not been scheduled!\n";
-      AnyNotSched = true;
-    }
-  }
-  assert(!AnyNotSched);
-#endif
-}
-
-//===----------------------------------------------------------------------===//
-//                    LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-// 
-namespace {
+namespace llvm {
   class LatencyPriorityQueue;
   
   /// Sorting functions for the Available queue.
   struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
     LatencyPriorityQueue *PQ;
-    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
-    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
+    explicit latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
     
     bool operator()(const SUnit* left, const SUnit* right) const;
   };
-}  // end anonymous namespace
 
-namespace {
   class LatencyPriorityQueue : public SchedulingPriorityQueue {
     // SUnits - The SUnits for the current graph.
     std::vector<SUnit> *SUnits;
@@ -387,165 +121,4 @@
   };
 }
 
-bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
-  unsigned LHSNum = LHS->NodeNum;
-  unsigned RHSNum = RHS->NodeNum;
-
-  // The most important heuristic is scheduling the critical path.
-  unsigned LHSLatency = PQ->getLatency(LHSNum);
-  unsigned RHSLatency = PQ->getLatency(RHSNum);
-  if (LHSLatency < RHSLatency) return true;
-  if (LHSLatency > RHSLatency) return false;
-  
-  // After that, if two nodes have identical latencies, look to see if one will
-  // unblock more other nodes than the other.
-  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
-  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
-  if (LHSBlocked < RHSBlocked) return true;
-  if (LHSBlocked > RHSBlocked) return false;
-  
-  // Finally, just to provide a stable ordering, use the node number as a
-  // deciding factor.
-  return LHSNum < RHSNum;
-}
-
-
-/// CalcNodePriority - Calculate the maximal path from the node to the exit.
-///
-int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
-  int &Latency = Latencies[SU.NodeNum];
-  if (Latency != -1)
-    return Latency;
-
-  std::vector<const SUnit*> WorkList;
-  WorkList.push_back(&SU);
-  while (!WorkList.empty()) {
-    const SUnit *Cur = WorkList.back();
-    bool AllDone = true;
-    int MaxSuccLatency = 0;
-    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
-         I != E; ++I) {
-      int SuccLatency = Latencies[I->Dep->NodeNum];
-      if (SuccLatency == -1) {
-        AllDone = false;
-        WorkList.push_back(I->Dep);
-      } else {
-        MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
-      }
-    }
-    if (AllDone) {
-      Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
-      WorkList.pop_back();
-    }
-  }
-
-  return Latency;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-void LatencyPriorityQueue::CalculatePriorities() {
-  Latencies.assign(SUnits->size(), -1);
-  NumNodesSolelyBlocking.assign(SUnits->size(), 0);
-
-  // For each node, calculate the maximal path from the node to the exit.
-  std::vector<std::pair<const SUnit*, unsigned> > WorkList;
-  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
-    const SUnit *SU = &(*SUnits)[i];
-    if (SU->Succs.empty())
-      WorkList.push_back(std::make_pair(SU, 0U));
-  }
-
-  while (!WorkList.empty()) {
-    const SUnit *SU = WorkList.back().first;
-    unsigned SuccLat = WorkList.back().second;
-    WorkList.pop_back();
-    int &Latency = Latencies[SU->NodeNum];
-    if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
-      Latency = SU->Latency + SuccLat;
-      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
-           I != E; ++I)
-        WorkList.push_back(std::make_pair(I->Dep, Latency));
-    }
-  }
-}
-
-/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
-/// of SU, return it, otherwise return null.
-SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
-  SUnit *OnlyAvailablePred = 0;
-  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-       I != E; ++I) {
-    SUnit &Pred = *I->Dep;
-    if (!Pred.isScheduled) {
-      // We found an available, but not scheduled, predecessor.  If it's the
-      // only one we have found, keep track of it... otherwise give up.
-      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
-        return 0;
-      OnlyAvailablePred = &Pred;
-    }
-  }
-      
-  return OnlyAvailablePred;
-}
-
-void LatencyPriorityQueue::push_impl(SUnit *SU) {
-  // Look at all of the successors of this node.  Count the number of nodes that
-  // this node is the sole unscheduled node for.
-  unsigned NumNodesBlocking = 0;
-  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    if (getSingleUnscheduledPred(I->Dep) == SU)
-      ++NumNodesBlocking;
-  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-  
-  Queue.push(SU);
-}
-
-
-// ScheduledNode - As nodes are scheduled, we look to see if there are any
-// successor nodes that have a single unscheduled predecessor.  If so, that
-// single predecessor has a higher priority, since scheduling it will make
-// the node available.
-void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
-  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    AdjustPriorityOfUnscheduledPreds(I->Dep);
-}
-
-/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
-/// scheduled.  If SU is not itself available, then there is at least one
-/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
-/// unscheduled predecessor, we want to increase its priority: it getting
-/// scheduled will make this node available, so it is better than some other
-/// node of the same priority that will not make a node available.
-void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
-  if (SU->isPending) return;  // All preds scheduled.
-  
-  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
-  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-  
-  // Okay, we found a single predecessor that is available, but not scheduled.
-  // Since it is available, it must be in the priority queue.  First remove it.
-  remove(OnlyAvailablePred);
-
-  // Reinsert the node into the priority queue, which recomputes its
-  // NumNodesSolelyBlocking value.
-  push(OnlyAvailablePred);
-}
-
-
-//===----------------------------------------------------------------------===//
-//                         Public Constructor Functions
-//===----------------------------------------------------------------------===//
-
-/// createTDListDAGScheduler - This creates a top-down list scheduler with a
-/// new hazard recognizer. This scheduler takes ownership of the hazard
-/// recognizer and deletes it when done.
-ScheduleDAG* llvm::createTDListDAGScheduler(SelectionDAGISel *IS,
-                                            SelectionDAG *DAG,
-                                            const TargetMachine *TM,
-                                            MachineBasicBlock *BB, bool Fast) {
-  return new ScheduleDAGList(DAG, BB, *TM,
-                             new LatencyPriorityQueue(),
-                             IS->CreateTargetHazardRecognizer());
-}
+#endif

Modified: llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp
URL: http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp?rev=59340&r1=59339&r2=59340&view=diff

==============================================================================
--- llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp (original)
+++ llvm/trunk/lib/CodeGen/SelectionDAG/ScheduleDAGList.cpp Fri Nov 14 18:23:40 2008
@@ -30,6 +30,7 @@
 #include "llvm/Support/Compiler.h"
 #include "llvm/ADT/PriorityQueue.h"
 #include "llvm/ADT/Statistic.h"
+#include "LatencyPriorityQueue.h"
 #include <climits>
 using namespace llvm;
 
@@ -276,265 +277,6 @@
 }
 
 //===----------------------------------------------------------------------===//
-//                    LatencyPriorityQueue Implementation
-//===----------------------------------------------------------------------===//
-//
-// This is a SchedulingPriorityQueue that schedules using latency information to
-// reduce the length of the critical path through the basic block.
-// 
-namespace {
-  class LatencyPriorityQueue;
-  
-  /// Sorting functions for the Available queue.
-  struct latency_sort : public std::binary_function<SUnit*, SUnit*, bool> {
-    LatencyPriorityQueue *PQ;
-    latency_sort(LatencyPriorityQueue *pq) : PQ(pq) {}
-    latency_sort(const latency_sort &RHS) : PQ(RHS.PQ) {}
-    
-    bool operator()(const SUnit* left, const SUnit* right) const;
-  };
-}  // end anonymous namespace
-
-namespace {
-  class LatencyPriorityQueue : public SchedulingPriorityQueue {
-    // SUnits - The SUnits for the current graph.
-    std::vector<SUnit> *SUnits;
-    
-    // Latencies - The latency (max of latency from this node to the bb exit)
-    // for each node.
-    std::vector<int> Latencies;
-
-    /// NumNodesSolelyBlocking - This vector contains, for every node in the
-    /// Queue, the number of nodes that the node is the sole unscheduled
-    /// predecessor for.  This is used as a tie-breaker heuristic for better
-    /// mobility.
-    std::vector<unsigned> NumNodesSolelyBlocking;
-
-    PriorityQueue<SUnit*, std::vector<SUnit*>, latency_sort> Queue;
-public:
-    LatencyPriorityQueue() : Queue(latency_sort(this)) {
-    }
-    
-    void initNodes(std::vector<SUnit> &sunits) {
-      SUnits = &sunits;
-      // Calculate node priorities.
-      CalculatePriorities();
-    }
-
-    void addNode(const SUnit *SU) {
-      Latencies.resize(SUnits->size(), -1);
-      NumNodesSolelyBlocking.resize(SUnits->size(), 0);
-      CalcLatency(*SU);
-    }
-
-    void updateNode(const SUnit *SU) {
-      Latencies[SU->NodeNum] = -1;
-      CalcLatency(*SU);
-    }
-
-    void releaseState() {
-      SUnits = 0;
-      Latencies.clear();
-    }
-    
-    unsigned getLatency(unsigned NodeNum) const {
-      assert(NodeNum < Latencies.size());
-      return Latencies[NodeNum];
-    }
-    
-    unsigned getNumSolelyBlockNodes(unsigned NodeNum) const {
-      assert(NodeNum < NumNodesSolelyBlocking.size());
-      return NumNodesSolelyBlocking[NodeNum];
-    }
-    
-    unsigned size() const { return Queue.size(); }
-
-    bool empty() const { return Queue.empty(); }
-    
-    virtual void push(SUnit *U) {
-      push_impl(U);
-    }
-    void push_impl(SUnit *U);
-    
-    void push_all(const std::vector<SUnit *> &Nodes) {
-      for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
-        push_impl(Nodes[i]);
-    }
-    
-    SUnit *pop() {
-      if (empty()) return NULL;
-      SUnit *V = Queue.top();
-      Queue.pop();
-      return V;
-    }
-
-    void remove(SUnit *SU) {
-      assert(!Queue.empty() && "Not in queue!");
-      Queue.erase_one(SU);
-    }
-
-    // ScheduledNode - As nodes are scheduled, we look to see if there are any
-    // successor nodes that have a single unscheduled predecessor.  If so, that
-    // single predecessor has a higher priority, since scheduling it will make
-    // the node available.
-    void ScheduledNode(SUnit *Node);
-
-private:
-    void CalculatePriorities();
-    int CalcLatency(const SUnit &SU);
-    void AdjustPriorityOfUnscheduledPreds(SUnit *SU);
-    SUnit *getSingleUnscheduledPred(SUnit *SU);
-  };
-}
-
-bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
-  unsigned LHSNum = LHS->NodeNum;
-  unsigned RHSNum = RHS->NodeNum;
-
-  // The most important heuristic is scheduling the critical path.
-  unsigned LHSLatency = PQ->getLatency(LHSNum);
-  unsigned RHSLatency = PQ->getLatency(RHSNum);
-  if (LHSLatency < RHSLatency) return true;
-  if (LHSLatency > RHSLatency) return false;
-  
-  // After that, if two nodes have identical latencies, look to see if one will
-  // unblock more other nodes than the other.
-  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
-  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
-  if (LHSBlocked < RHSBlocked) return true;
-  if (LHSBlocked > RHSBlocked) return false;
-  
-  // Finally, just to provide a stable ordering, use the node number as a
-  // deciding factor.
-  return LHSNum < RHSNum;
-}
-
-
-/// CalcNodePriority - Calculate the maximal path from the node to the exit.
-///
-int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
-  int &Latency = Latencies[SU.NodeNum];
-  if (Latency != -1)
-    return Latency;
-
-  std::vector<const SUnit*> WorkList;
-  WorkList.push_back(&SU);
-  while (!WorkList.empty()) {
-    const SUnit *Cur = WorkList.back();
-    bool AllDone = true;
-    int MaxSuccLatency = 0;
-    for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
-         I != E; ++I) {
-      int SuccLatency = Latencies[I->Dep->NodeNum];
-      if (SuccLatency == -1) {
-        AllDone = false;
-        WorkList.push_back(I->Dep);
-      } else {
-        MaxSuccLatency = std::max(MaxSuccLatency, SuccLatency);
-      }
-    }
-    if (AllDone) {
-      Latencies[Cur->NodeNum] = MaxSuccLatency + Cur->Latency;
-      WorkList.pop_back();
-    }
-  }
-
-  return Latency;
-}
-
-/// CalculatePriorities - Calculate priorities of all scheduling units.
-void LatencyPriorityQueue::CalculatePriorities() {
-  Latencies.assign(SUnits->size(), -1);
-  NumNodesSolelyBlocking.assign(SUnits->size(), 0);
-
-  // For each node, calculate the maximal path from the node to the exit.
-  std::vector<std::pair<const SUnit*, unsigned> > WorkList;
-  for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
-    const SUnit *SU = &(*SUnits)[i];
-    if (SU->Succs.empty())
-      WorkList.push_back(std::make_pair(SU, 0U));
-  }
-
-  while (!WorkList.empty()) {
-    const SUnit *SU = WorkList.back().first;
-    unsigned SuccLat = WorkList.back().second;
-    WorkList.pop_back();
-    int &Latency = Latencies[SU->NodeNum];
-    if (Latency == -1 || (SU->Latency + SuccLat) > (unsigned)Latency) {
-      Latency = SU->Latency + SuccLat;
-      for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
-           I != E; ++I)
-        WorkList.push_back(std::make_pair(I->Dep, Latency));
-    }
-  }
-}
-
-/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
-/// of SU, return it, otherwise return null.
-SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
-  SUnit *OnlyAvailablePred = 0;
-  for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
-       I != E; ++I) {
-    SUnit &Pred = *I->Dep;
-    if (!Pred.isScheduled) {
-      // We found an available, but not scheduled, predecessor.  If it's the
-      // only one we have found, keep track of it... otherwise give up.
-      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
-        return 0;
-      OnlyAvailablePred = &Pred;
-    }
-  }
-      
-  return OnlyAvailablePred;
-}
-
-void LatencyPriorityQueue::push_impl(SUnit *SU) {
-  // Look at all of the successors of this node.  Count the number of nodes that
-  // this node is the sole unscheduled node for.
-  unsigned NumNodesBlocking = 0;
-  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    if (getSingleUnscheduledPred(I->Dep) == SU)
-      ++NumNodesBlocking;
-  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
-  
-  Queue.push(SU);
-}
-
-
-// ScheduledNode - As nodes are scheduled, we look to see if there are any
-// successor nodes that have a single unscheduled predecessor.  If so, that
-// single predecessor has a higher priority, since scheduling it will make
-// the node available.
-void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
-  for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
-       I != E; ++I)
-    AdjustPriorityOfUnscheduledPreds(I->Dep);
-}
-
-/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
-/// scheduled.  If SU is not itself available, then there is at least one
-/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
-/// unscheduled predecessor, we want to increase its priority: it getting
-/// scheduled will make this node available, so it is better than some other
-/// node of the same priority that will not make a node available.
-void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
-  if (SU->isPending) return;  // All preds scheduled.
-  
-  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
-  if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable) return;
-  
-  // Okay, we found a single predecessor that is available, but not scheduled.
-  // Since it is available, it must be in the priority queue.  First remove it.
-  remove(OnlyAvailablePred);
-
-  // Reinsert the node into the priority queue, which recomputes its
-  // NumNodesSolelyBlocking value.
-  push(OnlyAvailablePred);
-}
-
-
-//===----------------------------------------------------------------------===//
 //                         Public Constructor Functions
 //===----------------------------------------------------------------------===//
 





More information about the llvm-commits mailing list