[llvm-commits] [llvm] r52677 - in /llvm/trunk:?lib/Transforms/IPO/DeadArgumentElimination.cpp?test/Tra nsforms/DeadArgElim/2008-06-23-DeadAfterLive.ll?test/Transforms/Dead ArgElim/deadretval2.ll?test/Transforms/DeadArgElim/multdeadretval.ll

Matthijs Kooijman matthijs at stdin.nl
Thu Jul 3 04:20:04 PDT 2008


Hi Duncan,

> can you please post patches inline and not as attachments.
> It makes them easier to comment on.
Sorry for that, my own mailreader automatically includes text attachments in
replies :-)

Also, since this patch has been commented on a few times before, I mainly sent
it so people could apply and test it (which is easier with attachments I
guess...). I would like to have some comments about the last (CallSite
part), so here it is again, now inline.

Gr.

Matthijs

Index: lib/Transforms/IPO/DeadArgumentElimination.cpp
===================================================================
--- lib/Transforms/IPO/DeadArgumentElimination.cpp	(revision 52952)
+++ lib/Transforms/IPO/DeadArgumentElimination.cpp	(working copy)
@@ -10,10 +10,10 @@
 // This pass deletes dead arguments from internal functions.  Dead argument
 // elimination removes arguments which are directly dead, as well as arguments
 // only passed into function calls as dead arguments of other functions.  This
-// pass also deletes dead arguments in a similar way.
+// pass also deletes dead return values in a similar way.
 //
 // This pass is often useful as a cleanup pass to run after aggressive
-// interprocedural passes, which add possibly-dead arguments.
+// interprocedural passes, which add possibly-dead arguments or return values.
 //
 //===----------------------------------------------------------------------===//
 
@@ -42,41 +42,80 @@
   /// DAE - The dead argument elimination pass.
   ///
   class VISIBILITY_HIDDEN DAE : public ModulePass {
+  public:
+
+    /// Struct that represent either a (part of a) return value or a function
+    /// argument.  Used so that arguments and return values can be used
+    /// interchangably.
+    struct RetOrArg {
+      RetOrArg(const Function* F, unsigned Idx, bool IsArg) : F(F), Idx(Idx),
+               IsArg(IsArg) {}
+      const Function *F;
+      unsigned Idx;
+      bool IsArg;
+
+      /// Make RetOrArg comparable, so we can put it into a map
+      bool operator<(const RetOrArg &O) const {
+        if (F != O.F)
+          return F < O.F;
+        else if (Idx != O.Idx)
+          return Idx < O.Idx;
+        else
+          return IsArg < O.IsArg;
+      }
+
+      /// Make RetOrArg comparable, so we can easily iterate the multimap
+      bool operator==(const RetOrArg &O) const {
+        return F == O.F && Idx == O.Idx && IsArg == O.IsArg;
+      }
+
+      std::string getString() {
+        // Temp debug function, ugly static allocation happening here.
+        char IdxStr[100];
+        snprintf(IdxStr, 99, "%d\n", Idx);
+        return std::string((IsArg ? "Argument #" : "Return value #")) + IdxStr + " of function " + F->getName();
+      }
+    };
+
     /// Liveness enum - During our initial pass over the program, we determine
-    /// that things are either definately alive, definately dead, or in need of
-    /// interprocedural analysis (MaybeLive).
-    ///
-    enum Liveness { Live, MaybeLive, Dead };
+    /// that things are either alive or maybe alive. We don't mark anything
+    /// explicitly dead (even if we know they are), since anything not alive
+    /// with no registered uses (in Uses) will never be marked alive and will
+    /// thus become dead in the end.
+    enum Liveness { Live, MaybeLive };
 
-    /// LiveArguments, MaybeLiveArguments, DeadArguments - These sets contain
-    /// all of the arguments in the program.  The Dead set contains arguments
-    /// which are completely dead (never used in the function).  The MaybeLive
-    /// set contains arguments which are only passed into other function calls,
-    /// thus may be live and may be dead.  The Live set contains arguments which
-    /// are known to be alive.
-    ///
-    std::set<Argument*> DeadArguments, MaybeLiveArguments, LiveArguments;
+    /// Convenience wrapper
+    RetOrArg CreateRet(const Function *F, unsigned Idx) {
+      return RetOrArg(F, Idx, false);
+    }
+    /// Convenience wrapper
+    RetOrArg CreateArg(const Function *F, unsigned Idx) {
+      return RetOrArg(F, Idx, true);
+    }
 
-    /// DeadRetVal, MaybeLiveRetVal, LifeRetVal - These sets contain all of the
-    /// functions in the program.  The Dead set contains functions whose return
-    /// value is known to be dead.  The MaybeLive set contains functions whose
-    /// return values are only used by return instructions, and the Live set
-    /// contains functions whose return values are used, functions that are
-    /// external, and functions that already return void.
-    ///
-    std::set<Function*> DeadRetVal, MaybeLiveRetVal, LiveRetVal;
+    typedef std::multimap<RetOrArg, RetOrArg> UseMap;
+    /// This map maps a return value or argument to all return values or
+    /// arguments it uses.
+    /// For example (indices are left out for clarity):
+    ///  - Uses[ret F] = ret G
+    ///    This means that F calls G, and F returns the value returned by G.
+    ///  - Uses[arg F] = ret G
+    ///    This means that some function calls G and passes its result as an
+    ///    argument to F.
+    ///  - Uses[ret F] = arg F
+    ///    This means that F returns one of its own arguments.
+    ///  - Uses[arg F] = arg G
+    ///    This means that G calls F and passes one of its own (G's) arguments
+    ///    directly to F.
+    UseMap Uses;
 
-    /// InstructionsToInspect - As we mark arguments and return values
-    /// MaybeLive, we keep track of which instructions could make the values
-    /// live here.  Once the entire program has had the return value and
-    /// arguments analyzed, this set is scanned to promote the MaybeLive objects
-    /// to be Live if they really are used.
-    std::vector<Instruction*> InstructionsToInspect;
+    typedef std::set<RetOrArg> LiveSet;
 
-    /// CallSites - Keep track of the call sites of functions that have
-    /// MaybeLive arguments or return values.
-    std::multimap<Function*, CallSite> CallSites;
+    /// This set contains all values that have been determined to be live
+    LiveSet LiveValues;
 
+    typedef SmallVector<RetOrArg, 5> UseVector;
+
   public:
     static char ID; // Pass identification, replacement for typeid
     DAE() : ModulePass((intptr_t)&ID) {}
@@ -85,20 +124,21 @@
     virtual bool ShouldHackArguments() const { return false; }
 
   private:
-    Liveness getArgumentLiveness(const Argument &A);
-    bool isMaybeLiveArgumentNowLive(Argument *Arg);
+    Liveness IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses);
+    Liveness SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
+                       unsigned RetValNum = 0);
+    Liveness SurveyUses(Value *V, UseVector &MaybeLiveUses);
 
+    void SurveyFunction(Function &F);
+    void MarkValue(const RetOrArg &RA, Liveness L,
+                   const UseVector &MaybeLiveUses);
+    void MarkLive(RetOrArg RA);
+    bool RemoveDeadStuffFromFunction(Function *F);
     bool DeleteDeadVarargs(Function &Fn);
-    void SurveyFunction(Function &Fn);
-
-    void MarkArgumentLive(Argument *Arg);
-    void MarkRetValLive(Function *F);
-    void MarkReturnInstArgumentLive(ReturnInst *RI);
-
-    void RemoveDeadArgumentsFromFunction(Function *F);
   };
 }
 
+
 char DAE::ID = 0;
 static RegisterPass<DAE>
 X("deadargelim", "Dead Argument Elimination");
@@ -155,7 +195,7 @@
   // remove the "..." and adjust all the calls.
 
   // Start by computing a new prototype for the function, which is the same as
-  // the old function, but has fewer arguments.
+  // the old function, but doesn't have isVarArg set.
   const FunctionType *FTy = Fn.getFunctionType();
   std::vector<const Type*> Params(FTy->param_begin(), FTy->param_end());
   FunctionType *NFTy = FunctionType::get(FTy->getReturnType(), Params, false);
@@ -233,74 +273,155 @@
   return true;
 }
 
+/// Convenience function that returns the number of return values. It returns 0
+/// for void functions and 1 for functions not returning a struct. It returns
+/// the number of struct elements for functions returning a struct.
+static unsigned NumRetVals(const Function *F) {
+  if (F->getReturnType() == Type::VoidTy)
+    return 0;
+  else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType()))
+    return STy->getNumElements();
+  else
+    return 1;
+}
 
-static inline bool CallPassesValueThoughVararg(Instruction *Call,
-                                               const Value *Arg) {
-  CallSite CS = CallSite::get(Call);
-  const Type *CalledValueTy = CS.getCalledValue()->getType();
-  const Type *FTy = cast<PointerType>(CalledValueTy)->getElementType();
-  unsigned NumFixedArgs = cast<FunctionType>(FTy)->getNumParams();
-  for (CallSite::arg_iterator AI = CS.arg_begin()+NumFixedArgs;
-       AI != CS.arg_end(); ++AI)
-    if (AI->get() == Arg)
-      return true;
-  return false;
+/// IsMaybeAlive - This checks Use for liveness. If Use is live, returns Live,
+/// else returns MaybeLive. Also, adds Use to MaybeLiveUses in the latter case.
+DAE::Liveness DAE::IsMaybeLive(RetOrArg Use, UseVector &MaybeLiveUses) {
+  // We're live if our use is already marked as live
+  if (LiveValues.count(Use))
+    return Live;
+
+  // We're maybe live otherwise, but remember that we must become live if
+  // Use becomes live.
+  MaybeLiveUses.push_back(Use);
+  return MaybeLive;
 }
 
-// getArgumentLiveness - Inspect an argument, determining if is known Live
-// (used in a computation), MaybeLive (only passed as an argument to a call), or
-// Dead (not used).
-DAE::Liveness DAE::getArgumentLiveness(const Argument &A) {
-  const Function *F = A.getParent();
+
+/// SurveyUse - This looks at a single use of an argument or return value
+/// and determines if it should be alive or not. Adds this use to MaybeLiveUses
+/// if it causes the used value to become MaybeAlive.
+///
+/// RetValNum is the return value number to use when this use is used in a
+/// return instruction. This is used in the recursion, you should always leave
+/// it at 0.
+DAE::Liveness DAE::SurveyUse(Value::use_iterator U, UseVector &MaybeLiveUses,
+                             unsigned RetValNum) {
+    Value *V = *U;
+    if (ReturnInst *RI = dyn_cast<ReturnInst>(V)) {
+      // The value is returned from another function. It's only live when the
+      // caller's return value is live
+      RetOrArg Use = CreateRet(RI->getParent()->getParent(), RetValNum);
+      // We might be live, depending on the liveness of Use
+      return IsMaybeLive(Use, MaybeLiveUses);
+    }
+    if (InsertValueInst *IV = dyn_cast<InsertValueInst>(V)) {
+      if (U.getOperandNo() != InsertValueInst::getAggregateOperandIndex()
+          && IV->hasIndices())
+        // The use we are examining is inserted into an aggregate. Our liveness
+        // depends on all uses of that aggregate, but if it is used as a return
+        // value, only index at which we were inserted counts.
+        RetValNum = *IV->idx_begin();
+
+      // Note that if we are used as the aggregate operand to the insertvalue,
+      // we don't change RetValNum, but do survey all our uses.
+
+      Liveness Result = MaybeLive;
+      for (Value::use_iterator I = IV->use_begin(),
+           E = V->use_end(); I != E; ++I) {
+        Result = SurveyUse(I, MaybeLiveUses, RetValNum);
+        if (Result == Live)
+          break;
+      }
+      return Result;
+    }
+    CallSite CS = CallSite::get(V);
+    if (CS.getInstruction()) {
+      Function *F = CS.getCalledFunction();
+      if (F) {
+        // Used in a direct call
   
-  // If this is the return value of a struct function, it's not really dead.
-  if (F->hasStructRetAttr() && &*(F->arg_begin()) == &A)
-    return Live;
-  
-  if (A.use_empty())  // First check, directly dead?
-    return Dead;
+        // Find the argument number.
+        unsigned ArgNo = CS.getArgumentNo(U.getOperandNo());
 
-  // Scan through all of the uses, looking for non-argument passing uses.
-  for (Value::use_const_iterator I = A.use_begin(), E = A.use_end(); I!=E;++I) {
-    // Return instructions do not immediately effect liveness.
-    if (isa<ReturnInst>(*I))
-      continue;
+        // Check for vararg. to skip the first operand to call (the
+        // function itself).
+        if (ArgNo >= F->getFunctionType()->getNumParams())
+          // The value is passed in through a vararg! Must be live.
+          return Live;
 
-    CallSite CS = CallSite::get(const_cast<User*>(*I));
-    if (!CS.getInstruction()) {
-      // If its used by something that is not a call or invoke, it's alive!
-      return Live;
+        assert(CS.getArgument(ArgNo) == CS.getInstruction()->getOperand(U.getOperandNo()) && "Argument is not where we expected it");
+
+        // Value passed to a normal call. It's only live when the corresponding
+        // argument to the called function turns out live
+        RetOrArg Use = CreateArg(F, ArgNo);
+        return IsMaybeLive(Use, MaybeLiveUses);
+      }
     }
-    // If it's an indirect call, mark it alive...
-    Function *Callee = CS.getCalledFunction();
-    if (!Callee) return Live;
+    // Used in any other way? Value must be live.
+    return Live;
+}
 
-    // Check to see if it's passed through a va_arg area: if so, we cannot
-    // remove it.
-    if (CallPassesValueThoughVararg(CS.getInstruction(), &A))
-      return Live;   // If passed through va_arg area, we cannot remove it
+/// SurveyUses - This looks at all the uses of the given return value
+/// (possibly a partial return value from a function returning a struct).
+/// Returns the Liveness deduced from the uses of this value.
+///
+/// Adds all uses that cause the result to be MaybeLive to MaybeLiveRetUses.
+DAE::Liveness DAE::SurveyUses(Value *V, UseVector &MaybeLiveUses) {
+  // Assume it's dead (which will only hold if there are no uses at all..)
+  Liveness Result = MaybeLive;
+  // Check each use
+  for (Value::use_iterator I = V->use_begin(),
+       E = V->use_end(); I != E; ++I) {
+    Result = SurveyUse(I, MaybeLiveUses);
+    if (Result == Live)
+      break;
   }
-
-  return MaybeLive;  // It must be used, but only as argument to a function
+  return Result;
 }
 
-
 // SurveyFunction - This performs the initial survey of the specified function,
 // checking out whether or not it uses any of its incoming arguments or whether
 // any callers use the return value.  This fills in the
-// (Dead|MaybeLive|Live)(Arguments|RetVal) sets.
+// LiveValues set and Uses map.
 //
 // We consider arguments of non-internal functions to be intrinsically alive as
 // well as arguments to functions which have their "address taken".
 //
 void DAE::SurveyFunction(Function &F) {
   bool FunctionIntrinsicallyLive = false;
-  Liveness RetValLiveness = F.getReturnType() == Type::VoidTy ? Live : Dead;
+  unsigned RetCount = NumRetVals(&F);
+  // Assume all return values are dead
+  typedef SmallVector<Liveness, 5> RetVals;
+  RetVals RetValLiveness(RetCount, MaybeLive);
 
-  if (!F.hasInternalLinkage() &&
-      (!ShouldHackArguments() || F.isIntrinsic()))
+  // These vectors maps each return value to the uses that make it MaybeLive, so
+  // we can add those to the MaybeLiveRetVals list if the return value
+  // really turns out to be MaybeLive. Initializes to RetCount empty vectors
+  typedef SmallVector<UseVector, 5> RetUses;
+  // Intialized to a list of RetCount empty lists
+  RetUses MaybeLiveRetUses(RetCount);
+
+  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
+      if (RI->getNumOperands() != 0 && RI->getOperand(0)->getType()
+          != F.getFunctionType()->getReturnType()) {
+        // We don't support old style multiple return values
+        FunctionIntrinsicallyLive = true;
+        break;
+      }
+
+  if (!F.hasInternalLinkage() && (!ShouldHackArguments() || F.isIntrinsic()))
     FunctionIntrinsicallyLive = true;
-  else
+
+  if (!FunctionIntrinsicallyLive) {
+    DOUT << "DAE - Inspecting callers for fn: " << F.getName() << "\n";
+    // Keep track of the number of live retvals, so we can skip checks once all
+    // of them turn out to be live.
+    unsigned NumLiveRetVals = 0;
+    const Type *STy = dyn_cast<StructType>(F.getReturnType());
+    // Loop all uses of the function
     for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I) {
       // If the function is PASSED IN as an argument, its address has been taken
       if (I.getOperandNo() != 0) {
@@ -316,190 +437,142 @@
         break;
       }
 
-      // Check to see if the return value is used...
-      if (RetValLiveness != Live)
-        for (Value::use_iterator I = TheCall->use_begin(),
-               E = TheCall->use_end(); I != E; ++I)
-          if (isa<ReturnInst>(cast<Instruction>(*I))) {
-            RetValLiveness = MaybeLive;
-          } else if (isa<CallInst>(cast<Instruction>(*I)) ||
-                     isa<InvokeInst>(cast<Instruction>(*I))) {
-            if (CallPassesValueThoughVararg(cast<Instruction>(*I), TheCall) ||
-                !CallSite::get(cast<Instruction>(*I)).getCalledFunction()) {
-              RetValLiveness = Live;
+      // If we end up here, we are looking at a direct call to our function.
+
+      // Now, check how our return value(s) is/are used in this caller. Don't
+      // bother checking return values if all of them are live already
+      if (NumLiveRetVals != RetCount) {
+        if (STy) {
+          // Check all uses of the return value
+          for (Value::use_iterator I = TheCall->use_begin(),
+               E = TheCall->use_end(); I != E; ++I) {
+            ExtractValueInst *Ext = dyn_cast<ExtractValueInst>(*I);
+            if (Ext && Ext->hasIndices()) {
+              // This use uses a part of our return value, survey the uses of
+              // that part and store the results for this index only.
+              unsigned Idx = *Ext->idx_begin();
+              if (RetValLiveness[Idx] != Live) {
+                RetValLiveness[Idx] = SurveyUses(Ext, MaybeLiveRetUses[Idx]);
+                if (RetValLiveness[Idx] == Live)
+                  NumLiveRetVals++;
+              }
+            } else {
+              // Used by something else than extractvalue. Mark all
+              // return values as live.
+              for (unsigned i = 0; i != RetCount; ++i )
+                RetValLiveness[i] = Live;
+              NumLiveRetVals = RetCount;
               break;
-            } else {
-              RetValLiveness = MaybeLive;
             }
-          } else {
-            RetValLiveness = Live;
-            break;
           }
+        } else {
+          // Single return value
+          RetValLiveness[0] = SurveyUses(TheCall, MaybeLiveRetUses[0]);
+          if (RetValLiveness[0] == Live)
+            NumLiveRetVals = RetCount;
+        }
+      }
     }
-
+  }
   if (FunctionIntrinsicallyLive) {
-    DOUT << "  Intrinsically live fn: " << F.getName() << "\n";
+    DOUT << "DAE - Intrinsically live fn: " << F.getName() << "\n";
+    // Mark all arguments as live
+    unsigned i = 0;
     for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
-         AI != E; ++AI)
-      LiveArguments.insert(AI);
-    LiveRetVal.insert(&F);
+         AI != E; ++AI, ++i)
+      MarkLive(CreateArg(&F, i));
+    // Mark all return values as live
+    i = 0;
+    for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i)
+      MarkLive(CreateRet(&F, i));
     return;
   }
 
-  switch (RetValLiveness) {
-  case Live:      LiveRetVal.insert(&F); break;
-  case MaybeLive: MaybeLiveRetVal.insert(&F); break;
-  case Dead:      DeadRetVal.insert(&F); break;
+  // Now we've inspected all callers, record the liveness of our return values.
+  for (unsigned i = 0, e = RetValLiveness.size(); i != e; ++i) {
+    RetOrArg Ret = CreateRet(&F, i);
+    // Mark the result down
+    MarkValue(Ret, RetValLiveness[i], MaybeLiveRetUses[i]);
   }
+  DOUT << "DAE - Inspecting args for fn: " << F.getName() << "\n";
 
-  DOUT << "  Inspecting args for fn: " << F.getName() << "\n";
+  // Now, check all of our arguments
+  unsigned i = 0;
+  UseVector MaybeLiveArgUses;
+  for (Function::arg_iterator AI = F.arg_begin(),
+       E = F.arg_end(); AI != E; ++AI, ++i) {
+    // See what the effect of this use is (recording any uses that cause
+    // MaybeLive in MaybeLiveArgUses)
+    Liveness Result = SurveyUses(AI, MaybeLiveArgUses);
+    RetOrArg Arg = CreateArg(&F, i);
+    // Mark the result down
+    MarkValue(Arg, Result, MaybeLiveArgUses);
+    // Clear the vector again for the next iteration
+    MaybeLiveArgUses.clear();
+  }
+}
 
-  // If it is not intrinsically alive, we know that all users of the
-  // function are call sites.  Mark all of the arguments live which are
-  // directly used, and keep track of all of the call sites of this function
-  // if there are any arguments we assume that are dead.
-  //
-  bool AnyMaybeLiveArgs = false;
-  for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
-       AI != E; ++AI)
-    switch (getArgumentLiveness(*AI)) {
-    case Live:
-      DOUT << "    Arg live by use: " << AI->getName() << "\n";
-      LiveArguments.insert(AI);
-      break;
-    case Dead:
-      DOUT << "    Arg definitely dead: " << AI->getName() <<"\n";
-      DeadArguments.insert(AI);
-      break;
+/// MarkValue - This function marks the liveness of RA depending on L. If L is
+/// MaybeLive, it also records any uses in MaybeLiveUses such that RA will be
+/// marked live if any use in MaybeLiveUses gets marked live later on.
+void DAE::MarkValue(const RetOrArg &RA, Liveness L,
+                    const UseVector &MaybeLiveUses) {
+  switch (L) {
+    case Live: MarkLive(RA); break;
     case MaybeLive:
-      DOUT << "    Arg only passed to calls: " << AI->getName() << "\n";
-      AnyMaybeLiveArgs = true;
-      MaybeLiveArguments.insert(AI);
+    {
+      // Note any uses of this value, so this return value can be
+      // marked live whenever one of the uses becomes live.
+      UseMap::iterator Where = Uses.begin();
+      for (UseVector::const_iterator UI = MaybeLiveUses.begin(),
+           UE = MaybeLiveUses.end(); UI != UE; ++UI)
+        Where = Uses.insert(Where, UseMap::value_type(*UI, RA));
       break;
     }
-
-  // If there are any "MaybeLive" arguments, we need to check callees of
-  // this function when/if they become alive.  Record which functions are
-  // callees...
-  if (AnyMaybeLiveArgs || RetValLiveness == MaybeLive)
-    for (Value::use_iterator I = F.use_begin(), E = F.use_end();
-         I != E; ++I) {
-      if (AnyMaybeLiveArgs)
-        CallSites.insert(std::make_pair(&F, CallSite::get(*I)));
-
-      if (RetValLiveness == MaybeLive)
-        for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
-             UI != E; ++UI)
-          InstructionsToInspect.push_back(cast<Instruction>(*UI));
-    }
-}
-
-// isMaybeLiveArgumentNowLive - Check to see if Arg is alive.  At this point, we
-// know that the only uses of Arg are to be passed in as an argument to a
-// function call or return.  Check to see if the formal argument passed in is in
-// the LiveArguments set.  If so, return true.
-//
-bool DAE::isMaybeLiveArgumentNowLive(Argument *Arg) {
-  for (Value::use_iterator I = Arg->use_begin(), E = Arg->use_end(); I!=E; ++I){
-    if (isa<ReturnInst>(*I)) {
-      if (LiveRetVal.count(Arg->getParent())) return true;
-      continue;
-    }
-
-    CallSite CS = CallSite::get(*I);
-
-    // We know that this can only be used for direct calls...
-    Function *Callee = CS.getCalledFunction();
-
-    // Loop over all of the arguments (because Arg may be passed into the call
-    // multiple times) and check to see if any are now alive...
-    CallSite::arg_iterator CSAI = CS.arg_begin();
-    for (Function::arg_iterator AI = Callee->arg_begin(), E = Callee->arg_end();
-         AI != E; ++AI, ++CSAI)
-      // If this is the argument we are looking for, check to see if it's alive
-      if (*CSAI == Arg && LiveArguments.count(AI))
-        return true;
   }
-  return false;
 }
 
-/// MarkArgumentLive - The MaybeLive argument 'Arg' is now known to be alive.
-/// Mark it live in the specified sets and recursively mark arguments in callers
-/// live that are needed to pass in a value.
-///
-void DAE::MarkArgumentLive(Argument *Arg) {
-  std::set<Argument*>::iterator It = MaybeLiveArguments.lower_bound(Arg);
-  if (It == MaybeLiveArguments.end() || *It != Arg) return;
+/// MarkLive - Mark the given return value or argument as live. Additionally,
+/// mark any values that are used by this value (according to Uses) live as
+/// well.
+void DAE::MarkLive(RetOrArg RA) {
+  if (!LiveValues.insert(RA).second)
+    return; // We were already marked Live
 
-  DOUT << "  MaybeLive argument now live: " << Arg->getName() <<"\n";
-  MaybeLiveArguments.erase(It);
-  LiveArguments.insert(Arg);
+  if (RA.IsArg)
+    DOUT << "DAE - Marking argument " << RA.Idx << " to function "
+         << RA.F->getNameStart() << " live\n";
+  else
+    DOUT << "DAE - Marking return value " << RA.Idx << " of function "
+         << RA.F->getNameStart() << " live\n";
 
-  // Loop over all of the call sites of the function, making any arguments
-  // passed in to provide a value for this argument live as necessary.
-  //
-  Function *Fn = Arg->getParent();
-  unsigned ArgNo = std::distance(Fn->arg_begin(), Function::arg_iterator(Arg));
+  // We don't use upper_bound (or equal_range) here, because our recursive call
+  // to ourselves is likely to mark the upper_bound (which is the first value
+  // not belonging to RA) to become erased and the iterator invalidated.
+  UseMap::iterator Begin = Uses.lower_bound(RA);
+  UseMap::iterator E = Uses.end();
+  UseMap::iterator I;
+  for (I = Begin; I != E && I->first == RA; ++I)
+    MarkLive(I->second);
 
-  std::multimap<Function*, CallSite>::iterator I = CallSites.lower_bound(Fn);
-  for (; I != CallSites.end() && I->first == Fn; ++I) {
-    CallSite CS = I->second;
-    Value *ArgVal = *(CS.arg_begin()+ArgNo);
-    if (Argument *ActualArg = dyn_cast<Argument>(ArgVal)) {
-      MarkArgumentLive(ActualArg);
-    } else {
-      // If the value passed in at this call site is a return value computed by
-      // some other call site, make sure to mark the return value at the other
-      // call site as being needed.
-      CallSite ArgCS = CallSite::get(ArgVal);
-      if (ArgCS.getInstruction())
-        if (Function *Fn = ArgCS.getCalledFunction())
-          MarkRetValLive(Fn);
-    }
-  }
+  // Erase RA from the Uses map (from the lower bound to wherever we ended up
+  // after the loop).
+  Uses.erase(Begin, I);
 }
 
-/// MarkArgumentLive - The MaybeLive return value for the specified function is
-/// now known to be alive.  Propagate this fact to the return instructions which
-/// produce it.
-void DAE::MarkRetValLive(Function *F) {
-  assert(F && "Shame shame, we can't have null pointers here!");
-
-  // Check to see if we already knew it was live
-  std::set<Function*>::iterator I = MaybeLiveRetVal.lower_bound(F);
-  if (I == MaybeLiveRetVal.end() || *I != F) return;  // It's already alive!
-
-  DOUT << "  MaybeLive retval now live: " << F->getName() << "\n";
-
-  MaybeLiveRetVal.erase(I);
-  LiveRetVal.insert(F);        // It is now known to be live!
-
-  // Loop over all of the functions, noticing that the return value is now live.
-  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
-    if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
-      MarkReturnInstArgumentLive(RI);
-}
-
-void DAE::MarkReturnInstArgumentLive(ReturnInst *RI) {
-  Value *Op = RI->getOperand(0);
-  if (Argument *A = dyn_cast<Argument>(Op)) {
-    MarkArgumentLive(A);
-  } else if (CallInst *CI = dyn_cast<CallInst>(Op)) {
-    if (Function *F = CI->getCalledFunction())
-      MarkRetValLive(F);
-  } else if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
-    if (Function *F = II->getCalledFunction())
-      MarkRetValLive(F);
-  }
-}
-
-// RemoveDeadArgumentsFromFunction - We know that F has dead arguments, as
+// RemoveDeadStuffFromFunction - Remove any arguments and return values from F
+// that are not in LiveValues. This function is a noop for any Function created
+// by this function before, or any function that was not inspected for liveness.
 // specified by the DeadArguments list.  Transform the function and all of the
 // callees of the function to not have these arguments.
 //
-void DAE::RemoveDeadArgumentsFromFunction(Function *F) {
+bool DAE::RemoveDeadStuffFromFunction(Function *F) {
+  // Quick exit path for external functions
+  if (!F->hasInternalLinkage() && (!ShouldHackArguments() || F->isIntrinsic()))
+    return false;
+
   // Start by computing a new prototype for the function, which is the same as
-  // the old function, but has fewer arguments.
+  // the old function, but has fewer arguments and a different return type.
   const FunctionType *FTy = F->getFunctionType();
   std::vector<const Type*> Params;
 
@@ -510,28 +583,94 @@
   // The existing function return attributes.
   ParameterAttributes RAttrs = PAL.getParamAttrs(0);
 
-  // Make the function return void if the return value is dead.
+
+  // Find out the new return value
+
   const Type *RetTy = FTy->getReturnType();
-  if (DeadRetVal.count(F)) {
-    RetTy = Type::VoidTy;
-    RAttrs &= ~ParamAttr::typeIncompatible(RetTy);
-    DeadRetVal.erase(F);
+  const Type *NRetTy = NULL;
+  unsigned RetCount = NumRetVals(F);
+  // Explicitely track if anything changed, for debugging
+  bool Changed = false;
+  // -1 means unused, other numbers are the new index
+  SmallVector<int, 5> NewRetIdxs(RetCount, -1);
+  std::vector<const Type*> RetTypes;
+  if (RetTy != Type::VoidTy) {
+    const StructType *STy = dyn_cast<StructType>(RetTy);
+    if (STy)
+      // Look at each of the original return values individually
+      for (unsigned i = 0; i != RetCount; ++i) {
+        RetOrArg Ret = CreateRet(F, i);
+        if (LiveValues.erase(Ret)) {
+          RetTypes.push_back(STy->getElementType(i));
+          NewRetIdxs[i] = RetTypes.size() - 1;
+        } else {
+          ++NumRetValsEliminated;
+          DOUT << "DAE - Removing return value " << i << " from "
+               << F->getNameStart() << "\n";
+          Changed = true;
+        }
+      }
+    else
+      // We used to return a single value
+      if (LiveValues.erase(CreateRet(F, 0))) {
+        RetTypes.push_back(RetTy);
+        NewRetIdxs[0] = 0;
+      } else {
+        DOUT << "DAE - Removing return value from " << F->getNameStart()
+             << "\n";
+        ++NumRetValsEliminated;
+        Changed = true;
+      }
+    if (RetTypes.size() > 1 || (STy && STy->getNumElements()==RetTypes.size()))
+      // More than one return type? Return a struct with them. Also, if we used
+      // to return a struct and didn't change the number of return values,
+      // return a struct again. This prevents changing {something} into something
+      // and {} into void.
+      // Make the new struct packed if we used to return a packed struct
+      // already.
+      NRetTy = StructType::get(RetTypes, STy->isPacked());
+    else if (RetTypes.size() == 1)
+      // One return type? Just a simple value then, but only if we didn't use to
+      // return a struct with that simple value before.
+      NRetTy = RetTypes.front();
+    else if (RetTypes.size() == 0)
+      // No return types? Make it void, but only if we didn't use to return {}.
+      NRetTy = Type::VoidTy;
+  } else {
+    NRetTy = Type::VoidTy;
   }
 
+  assert(NRetTy && "No new return type found?");
+
+  // Remove any incompatible attributes
+  RAttrs &= ~ParamAttr::typeIncompatible(NRetTy);
   if (RAttrs)
     ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
 
+  // Remember which arguments are still alive
+  SmallVector<bool, 10> ArgAlive(FTy->getNumParams(), false);
   // Construct the new parameter list from non-dead arguments. Also construct
-  // a new set of parameter attributes to correspond.
-  unsigned index = 1;
-  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
-       ++I, ++index)
-    if (!DeadArguments.count(I)) {
+  // a new set of parameter attributes to correspond. Skip the first parameter
+  // attribute, since that belongs to the return value.
+  unsigned i = 0;
+  for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
+       I != E; ++I, ++i) {
+    RetOrArg Arg = CreateArg(F, i);
+    if (LiveValues.erase(Arg)) {
       Params.push_back(I->getType());
-      
-      if (ParameterAttributes Attrs = PAL.getParamAttrs(index))
+      ArgAlive[i] = true;
+
+      // Get the original parameter attributes (skipping the first one, that is
+      // for the return value
+      if (ParameterAttributes Attrs = PAL.getParamAttrs(i + 1))
         ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Params.size(), Attrs));
+    } else {
+      ++NumArgumentsEliminated;
+      DOUT << "DAE - Removing argument " << i << " (" << I->getNameStart()
+           << ") from " << F->getNameStart() << "\n";
+      Changed = true;
     }
+  }
 
   // Reconstruct the ParamAttrsList based on the vector we constructed.
   PAListPtr NewPAL = PAListPtr::get(ParamAttrsVec.begin(), ParamAttrsVec.end());
@@ -539,19 +678,33 @@
   // Work around LLVM bug PR56: the CWriter cannot emit varargs functions which
   // have zero fixed arguments.
   //
+  // Not that we apply this hack for a vararg fuction that does not have any
+  // arguments anymore, but did have them before (so don't bother fixing
+  // functions that were already broken wrt CWriter).
   bool ExtraArgHack = false;
-  if (Params.empty() && FTy->isVarArg()) {
+  if (Params.empty() && FTy->isVarArg() && FTy->getNumParams() != 0) {
     ExtraArgHack = true;
     Params.push_back(Type::Int32Ty);
   }
 
   // Create the new function type based on the recomputed parameters.
-  FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg());
+  FunctionType *NFTy = FunctionType::get(NRetTy, Params, FTy->isVarArg());
 
+  // No change?
+  if (NFTy == FTy)
+    return false;
+
+  // The function type is only allowed to be different if we actually left out
+  // an argument or return value.
+  assert(Changed && "Function type changed while no arguments or return values"
+                    "were removed!");
+
   // Create the new function body and insert it into the module...
   Function *NF = Function::Create(NFTy, F->getLinkage());
   NF->copyAttributesFrom(F);
   NF->setParamAttrs(NewPAL);
+  // Insert the new function before the old function, so we won't be processing
+  // it again.
   F->getParent()->getFunctionList().insert(F, NF);
   NF->takeName(F);
 
@@ -562,6 +715,7 @@
   while (!F->use_empty()) {
     CallSite CS = CallSite::get(F->use_back());
     Instruction *Call = CS.getInstruction();
+
     ParamAttrsVec.clear();
     const PAListPtr &CallPAL = CS.getParamAttrs();
 
@@ -572,14 +726,17 @@
     if (RAttrs)
       ParamAttrsVec.push_back(ParamAttrsWithIndex::get(0, RAttrs));
 
-    // Loop over the operands, deleting dead ones...
-    CallSite::arg_iterator AI = CS.arg_begin();
-    index = 1;
-    for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end();
-         I != E; ++I, ++AI, ++index)
-      if (!DeadArguments.count(I)) {    // Remove operands for dead arguments
-        Args.push_back(*AI);
-        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index))
+    // Declare these outside of the loops, so we can reuse them for the second
+    // loop, which loops the varargs
+    CallSite::arg_iterator I = CS.arg_begin();
+    unsigned i = 0;
+    // Loop over those operands, corresponding to the normal arguments to the
+    // original function, and add those that are still alive.
+    for (unsigned e = FTy->getNumParams(); i != e; ++I, ++i)
+      if (ArgAlive[i]) {
+        Args.push_back(*I);
+        // Get original parameter attributes, but skip return attributes
+        if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
           ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
       }
 
@@ -587,9 +744,9 @@
       Args.push_back(UndefValue::get(Type::Int32Ty));
 
     // Push any varargs arguments on the list. Don't forget their attributes.
-    for (; AI != CS.arg_end(); ++AI) {
-      Args.push_back(*AI);
-      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(index++))
+    for (CallSite::arg_iterator E = CS.arg_end(); I != E; ++I, ++i) {
+      Args.push_back(*I);
+      if (ParameterAttributes Attrs = CallPAL.getParamAttrs(i + 1))
         ParamAttrsVec.push_back(ParamAttrsWithIndex::get(Args.size(), Attrs));
     }
 
@@ -613,11 +770,55 @@
     Args.clear();
 
     if (!Call->use_empty()) {
-      if (New->getType() == Type::VoidTy)
-        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
-      else {
+      if (New->getType() == Call->getType()) {
+        // Return type not changed? Just replace users then
         Call->replaceAllUsesWith(New);
         New->takeName(Call);
+      } else if (New->getType() == Type::VoidTy) {
+        // Our return value has uses, but they will get removed later on.
+        // Replace by null for now.
+        Call->replaceAllUsesWith(Constant::getNullValue(Call->getType()));
+      } else {
+        assert(isa<StructType>(RetTy) && "Return type changed, but not into a"
+                                         "void. The old return type must have"
+                                         "been a struct!");
+        // The original return value was a struct, update all uses (which are
+        // all extractvalue instructions).
+        for (Value::use_iterator I = Call->use_begin(), E = Call->use_end();
+             I != E;) {
+          assert(isa<ExtractValueInst>(*I) && "Return value not only used by"
+                                              "extractvalue?");
+          ExtractValueInst *EV = cast<ExtractValueInst>(*I);
+          // Increment now, since we're about to throw away this use.
+          ++I;
+          assert(EV->hasIndices() && "Return value used by extractvalue without"
+                                     "indices?");
+          unsigned Idx = *EV->idx_begin();
+          if (NewRetIdxs[Idx] != -1) {
+            if (RetTypes.size() > 1) {
+              // We're still returning a struct, create a new extractvalue
+              // instruction with the first index updated
+              std::vector<unsigned> NewIdxs(EV->idx_begin(), EV->idx_end());
+              NewIdxs[0] = NewRetIdxs[Idx];
+              Value *NEV = ExtractValueInst::Create(New, NewIdxs.begin(),
+                                                    NewIdxs.end(), "retval",
+                                                    EV);
+              EV->replaceAllUsesWith(NEV);
+              EV->eraseFromParent();
+            } else {
+              // We are now only returning a simple value, remove the
+              // extractvalue
+              EV->replaceAllUsesWith(New);
+              EV->eraseFromParent();
+            }
+          } else {
+            // Value unused, replace uses by null for now, they will get removed
+            // later on
+            EV->replaceAllUsesWith(Constant::getNullValue(EV->getType()));
+            EV->eraseFromParent();
+          }
+        }
+        New->takeName(Call);
       }
     }
 
@@ -632,13 +833,11 @@
   NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList());
 
   // Loop over the argument list, transfering uses of the old arguments over to
-  // the new arguments, also transfering over the names as well.  While we're at
-  // it, remove the dead arguments from the DeadArguments list.
-  //
+  // the new arguments, also transfering over the names as well.
+  i = 0;
   for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(),
-         I2 = NF->arg_begin();
-       I != E; ++I)
-    if (!DeadArguments.count(I)) {
+       I2 = NF->arg_begin(); I != E; ++I, ++i)
+    if (ArgAlive[i]) {
       // If this is a live argument, move the name and users over to the new
       // version.
       I->replaceAllUsesWith(I2);
@@ -646,10 +845,8 @@
       ++I2;
     } else {
       // If this argument is dead, replace any uses of it with null constants
-      // (these are guaranteed to only be operands to call instructions which
-      // will later be simplified).
+      // (these are guaranteed to become unused later on)
       I->replaceAllUsesWith(Constant::getNullValue(I->getType()));
-      DeadArguments.erase(I);
     }
 
   // If we change the return value of the function we must rewrite any return
@@ -657,16 +854,52 @@
   if (F->getReturnType() != NF->getReturnType())
     for (Function::iterator BB = NF->begin(), E = NF->end(); BB != E; ++BB)
       if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
-        ReturnInst::Create(0, RI);
+        Value *RetVal;
+
+        if (NFTy->getReturnType() == Type::VoidTy) {
+          RetVal = 0;
+        } else {
+          assert (isa<StructType>(RetTy));
+          // The original return value was a struct, insert
+          // extractvalue/insertvalue chains to extract only the values we need
+          // to return and insert them into our new result.
+          // This does generate messy code, but we'll let it to instcombine to
+          // clean that up
+          Value *OldRet = RI->getOperand(0);
+          // Start out building up our return value from undef
+          RetVal = llvm::UndefValue::get(NRetTy);
+          for (unsigned i = 0; i != RetCount; ++i)
+            if (NewRetIdxs[i] != -1) {
+              ExtractValueInst *EV = ExtractValueInst::Create(OldRet, i,
+                                                              "newret", RI);
+              if (RetTypes.size() > 1) {
+                // We're still returning a struct, so reinsert the value into
+                // our new return value at the new index
+
+                RetVal = InsertValueInst::Create(RetVal, EV, NewRetIdxs[i],
+                                                 "oldret");
+              } else {
+                // We are now only returning a simple value, so just return the
+                // extracted value
+                RetVal = EV;
+              }
+            }
+        }
+        // Replace the return instruction with one returning the new return
+        // value (possibly 0 if we became void).
+        ReturnInst::Create(RetVal, RI);
         BB->getInstList().erase(RI);
       }
 
   // Now that the old function is dead, delete it.
   F->eraseFromParent();
+
+  return true;
 }
 
 bool DAE::runOnModule(Module &M) {
   bool Changed = false;
+
   // First pass: Do a simple check to see if any functions can have their "..."
   // removed.  We can do this if they never call va_start.  This loop cannot be
   // fused with the next loop, because deleting a function invalidates
@@ -677,7 +910,7 @@
     if (F.getFunctionType()->isVarArg())
       Changed |= DeleteDeadVarargs(F);
   }
-  
+
   // Second phase:loop through the module, determining which arguments are live.
   // We assume all arguments are dead unless proven otherwise (allowing us to
   // determine that dead arguments passed into recursive functions are dead).
@@ -685,86 +918,14 @@
   DOUT << "DAE - Determining liveness\n";
   for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
     SurveyFunction(*I);
-
-  // Loop over the instructions to inspect, propagating liveness among arguments
-  // and return values which are MaybeLive.
-  while (!InstructionsToInspect.empty()) {
-    Instruction *I = InstructionsToInspect.back();
-    InstructionsToInspect.pop_back();
-
-    if (ReturnInst *RI = dyn_cast<ReturnInst>(I)) {
-      // For return instructions, we just have to check to see if the return
-      // value for the current function is known now to be alive.  If so, any
-      // arguments used by it are now alive, and any call instruction return
-      // value is alive as well.
-      if (LiveRetVal.count(RI->getParent()->getParent()))
-        MarkReturnInstArgumentLive(RI);
-
-    } else {
-      CallSite CS = CallSite::get(I);
-      assert(CS.getInstruction() && "Unknown instruction for the I2I list!");
-
-      Function *Callee = CS.getCalledFunction();
-
-      // If we found a call or invoke instruction on this list, that means that
-      // an argument of the function is a call instruction.  If the argument is
-      // live, then the return value of the called instruction is now live.
-      //
-      CallSite::arg_iterator AI = CS.arg_begin();  // ActualIterator
-      for (Function::arg_iterator FI = Callee->arg_begin(),
-             E = Callee->arg_end(); FI != E; ++AI, ++FI) {
-        // If this argument is another call...
-        CallSite ArgCS = CallSite::get(*AI);
-        if (ArgCS.getInstruction() && LiveArguments.count(FI))
-          if (Function *Callee = ArgCS.getCalledFunction())
-            MarkRetValLive(Callee);
-      }
-    }
+  
+  // Now, remove all dead arguments and return values from each function in
+  // turn
+  for (Module::iterator I = M.begin(), E = M.end(); I != E; ) {
+    // Increment now, because the function will probably get removed (ie
+    // replaced by a new one)
+    Function *F = I++;
+    Changed |= RemoveDeadStuffFromFunction(F);
   }
-
-  // Now we loop over all of the MaybeLive arguments, promoting them to be live
-  // arguments if one of the calls that uses the arguments to the calls they are
-  // passed into requires them to be live.  Of course this could make other
-  // arguments live, so process callers recursively.
-  //
-  // Because elements can be removed from the MaybeLiveArguments set, copy it to
-  // a temporary vector.
-  //
-  std::vector<Argument*> TmpArgList(MaybeLiveArguments.begin(),
-                                    MaybeLiveArguments.end());
-  for (unsigned i = 0, e = TmpArgList.size(); i != e; ++i) {
-    Argument *MLA = TmpArgList[i];
-    if (MaybeLiveArguments.count(MLA) &&
-        isMaybeLiveArgumentNowLive(MLA))
-      MarkArgumentLive(MLA);
-  }
-
-  // Recover memory early...
-  CallSites.clear();
-
-  // At this point, we know that all arguments in DeadArguments and
-  // MaybeLiveArguments are dead.  If the two sets are empty, there is nothing
-  // to do.
-  if (MaybeLiveArguments.empty() && DeadArguments.empty() &&
-      MaybeLiveRetVal.empty() && DeadRetVal.empty())
-    return Changed;
-
-  // Otherwise, compact into one set, and start eliminating the arguments from
-  // the functions.
-  DeadArguments.insert(MaybeLiveArguments.begin(), MaybeLiveArguments.end());
-  MaybeLiveArguments.clear();
-  DeadRetVal.insert(MaybeLiveRetVal.begin(), MaybeLiveRetVal.end());
-  MaybeLiveRetVal.clear();
-
-  LiveArguments.clear();
-  LiveRetVal.clear();
-
-  NumArgumentsEliminated += DeadArguments.size();
-  NumRetValsEliminated   += DeadRetVal.size();
-  while (!DeadArguments.empty())
-    RemoveDeadArgumentsFromFunction((*DeadArguments.begin())->getParent());
-
-  while (!DeadRetVal.empty())
-    RemoveDeadArgumentsFromFunction(*DeadRetVal.begin());
-  return true;
+  return Changed;
 }
Index: include/llvm/Support/CallSite.h
===================================================================
--- include/llvm/Support/CallSite.h	(revision 52952)
+++ include/llvm/Support/CallSite.h	(working copy)
@@ -124,12 +124,18 @@
   void setArgument(unsigned ArgNo, Value* newVal) {
     assert(I && "Not a call or invoke instruction!");
     assert(arg_begin() + ArgNo < arg_end() && "Argument # out of range!");
-    if (I->getOpcode() == Instruction::Call)
-      I->setOperand(ArgNo+1, newVal); // Skip Function
-    else
-      I->setOperand(ArgNo+3, newVal); // Skip Function, BB, BB
+    I->setOperand(getArgumentOffset() + ArgNo, newVal);
   }
-  
+
+  /// Given an operand number, returns the argument that corresponds to it.
+  /// OperandNo must be a valid operand number that actually corresponds to an
+  /// argument.
+  unsigned getArgumentNo(unsigned OperandNo) const {
+    assert(OperandNo >= getArgumentOffset() && "Operand number passed was not a "
+                                               "valid argument");
+    return OperandNo - getArgumentOffset();
+  }
+
   /// hasArgument - Returns true if this CallSite passes the given Value* as an
   /// argument to the called function.
   bool hasArgument(const Value *Arg) const;
@@ -140,14 +146,11 @@
 
   /// arg_begin/arg_end - Return iterators corresponding to the actual argument
   /// list for a call site.
-  ///
   arg_iterator arg_begin() const {
     assert(I && "Not a call or invoke instruction!");
-    if (I->getOpcode() == Instruction::Call)
-      return I->op_begin()+1; // Skip Function
-    else
-      return I->op_begin()+3; // Skip Function, BB, BB
+    return I->op_begin() + getArgumentOffset(); // Skip Function
   }
+
   arg_iterator arg_end() const { return I->op_end(); }
   bool arg_empty() const { return arg_end() == arg_begin(); }
   unsigned arg_size() const { return unsigned(arg_end() - arg_begin()); }
@@ -155,6 +158,15 @@
   bool operator<(const CallSite &CS) const {
     return getInstruction() < CS.getInstruction();
   }
+
+private:
+  /// Returns the operand number of the first argument
+  unsigned getArgumentOffset() const {
+    if (I->getOpcode() == Instruction::Call)
+      return 1; // Skip Function
+    else
+      return 3; // Skip Function, BB, BB
+  }
 };
 
 } // End llvm namespace
-------------- next part --------------
A non-text attachment was scrubbed...
Name: signature.asc
Type: application/pgp-signature
Size: 189 bytes
Desc: Digital signature
URL: <http://lists.llvm.org/pipermail/llvm-commits/attachments/20080703/75ab7a26/attachment.sig>


More information about the llvm-commits mailing list